Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has c...
Saved in:
Published in | Frontiers in microbiology Vol. 14; p. 1167085 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2023.1167085 |
Cover
Abstract | Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998–1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions. |
---|---|
AbstractList | Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998–1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions. Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions. |
Author | Li, Hongzhao Kim, Ji-Young V. Pickering, Bradley S. |
AuthorAffiliation | 1 National Centre for Foreign Animal Disease, Canadian Food Inspection Agency , Winnipeg, MB , Canada 2 Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg, MB , Canada 3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University , Ames, IA , United States |
AuthorAffiliation_xml | – name: 1 National Centre for Foreign Animal Disease, Canadian Food Inspection Agency , Winnipeg, MB , Canada – name: 2 Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg, MB , Canada – name: 3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University , Ames, IA , United States |
Author_xml | – sequence: 1 givenname: Hongzhao surname: Li fullname: Li, Hongzhao – sequence: 2 givenname: Ji-Young V. surname: Kim fullname: Kim, Ji-Young V. – sequence: 3 givenname: Bradley S. surname: Pickering fullname: Pickering, Bradley S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37529329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB7kD1CgKSnYxW_P0KAoImSlSGmCRGdde-yNw4y92DNB8OvxZjcoocCFH9fnfsfWOUYHMUWH0BuCl4y13Qc_BmuWFFO2JEQq3IoX6IhIyRcM028HT_aH6LSUO1wHx7TOr9AhU4J2jHZHaHXpYtjAfchzaX6nFFMJ5WOT5slkB9_L-wZiGGFoblOZSj30zSZNLk6h1qL72bjR5bWL1r1GLz0MxZ3u1xP09eLzzfnl4ur6y-r87GphueymBQFqpCUeemMIKNoJYbn1mABhlvXe2Jb0vcJUeqIMKHBSSOEd94JQ8IKdoNWO2ye405tcX5d_6QRBPxRSXmvIU7CD07hTwjIslKGU8-ppO9FJ2mEhCEi1ZX3asTazGV1v678yDM-gz29iuNXrdK8JZq0SglbCuz0hpx-zK5MeQ7FuGCC6NBdNWy4I5oq1Vfr2qdlfl8cwqqDdCWxOpWTntQ0TTCFtvcNQTfU2ev0Qvd5Gr_fR11b6T-sj_T9NfwDnM7M9 |
CitedBy_id | crossref_primary_10_1038_s41467_024_47213_8 crossref_primary_10_1128_jvi_00503_24 crossref_primary_10_1038_s41598_024_57190_z crossref_primary_10_1126_scitranslmed_adl2055 crossref_primary_10_1002_rmv_2488 crossref_primary_10_1371_journal_pgph_0003926 crossref_primary_10_3390_v16091359 crossref_primary_10_3389_fchbi_2024_1363498 crossref_primary_10_3390_v16020171 crossref_primary_10_1007_s40203_024_00236_x crossref_primary_10_1002_pro_70085 crossref_primary_10_3390_v16111688 crossref_primary_10_3390_pathogens13070587 |
Cites_doi | 10.1126/science.288.5470.1432 10.1007/s11357-022-00670-9 10.3201/eid1301.060791 10.1038/nrmicro1323 10.3201/eid2409.171427 10.1016/j.antiviral.2021.105084 10.3390/ani13010159 10.1016/j.virol.2012.06.001 10.3390/v13102020 10.1016/j.onehlt.2020.100207 10.1371/journal.pntd.0000114 10.1038/s41598-019-40476-y 10.1093/cid/ciy1092 10.1007/82_2012_208 10.1073/pnas.1501690112 10.3390/v14102167 10.1371/journal.pntd.0003302 10.3201/eid1602.090552 10.3201/eid1508.081237 10.3201/eid1802.111492 10.1007/82_2012_207 10.1126/science.7701348 10.1073/pnas.1911773116 10.1016/j.celrep.2022.110969 10.1093/infdis/jiy015 10.3201/eid2102.141433 10.3201/eid2309.161922 10.3389/fpubh.2022.818545 10.3390/v13030517 10.1056/NEJMoa1805376 10.3389/fmicb.2021.811157 10.1371/journal.pone.0144055 10.1038/ncomms6342 10.1371/journal.ppat.1004001 10.1038/s41586-022-04532-4 10.1007/978-94-017-9457-2_40 10.1371/journal.pone.0042689 10.1038/s41586-022-05506-2 10.1177/1757975914528249 10.1186/s12985-021-01652-7 10.4061/2011/567248 10.1089/vbz.2011.0656 10.1007/82_2012_205 10.1038/d41586-022-02175-z 10.1016/j.antiviral.2013.06.012 10.1016/j.onehlt.2022.100423 10.3201/eid1107.041350 10.1038/ncomms1796 10.1371/journal.ppat.1002836 10.1007/82_2012_210 10.3201/eid2805.212338 10.1016/B978-0-444-53488-0.00032-8 10.1086/338818 10.1056/NEJM200004273421701 10.1016/j.antiviral.2015.09.017 10.1016/j.vaccine.2016.08.028 10.1056/NEJMc2202705 10.3201/eid1012.040701 10.3390/v11030291 10.3201/eid2803.211245 10.3390/pathogens11121419 10.1017/s0317167100001785 10.1016/S0140-6736(99)04299-3 10.1099/jgv.0.001328 10.4269/ajtmh.2011.10-0567 10.1128/jvi.00921-22 10.1111/j.1863-2378.2008.01218.xJVB1218 10.3390/v13020169 10.1128/JVI.00666-21 10.1128/JVI.03655-13 10.1073/pnas.2122769119 10.1111/nyas.13910 10.3201/eid1202.051247 10.1099/vir.0.058404-0 10.3201/eid1307.061128 10.20506/rst.19.1.1202 10.1016/s1386-6532(02)00268-8 10.1371/journal.pone.0058414 10.1371/journal.pntd.0010157PNTD-D-21-00815 10.1016/j.tvjl.2008.10.016 10.1038/ncomms16060 10.1007/s00705-017-3311-7 10.1371/journal.pone.0006367 10.1186/s12985-018-0964-0 10.3390/v14051100 10.1093/ilar/ilab029 10.1038/nature09575 10.1089/vbz.2016.2051 10.1086/647951 10.1007/s10393-017-1309-y 10.1186/s12992-017-0233-9 10.1093/ve/veac061 10.1016/j.celrep.2021.109628 10.1371/journal.pone.0002739 10.3201/eid2006.131022 10.1371/journal.pntd.0010285 10.1016/S0140-6736(99)04379-2 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Li, Kim and Pickering. Copyright © 2023 Li, Kim and Pickering. 2023 Li, Kim and Pickering |
Copyright_xml | – notice: Copyright © 2023 Li, Kim and Pickering. – notice: Copyright © 2023 Li, Kim and Pickering. 2023 Li, Kim and Pickering |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2023.1167085 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_0975c3057b22441fac9596290551a675 PMC10387552 37529329 10_3389_fmicb_2023_1167085 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-1a2b6c1fadbb1a72955c4cf01a13c3dfbc81dd7026f17ba7ae6565fe4f512af53 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:30:17 EDT 2025 Thu Aug 21 18:42:27 EDT 2025 Fri Sep 05 08:25:26 EDT 2025 Thu Apr 03 06:57:12 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 00:58:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | epidemiology henipavirus transmission Hendra virus henipa-like virus livestock Nipah virus animal host |
Language | English |
License | Copyright © 2023 Li, Kim and Pickering. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-1a2b6c1fadbb1a72955c4cf01a13c3dfbc81dd7026f17ba7ae6565fe4f512af53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Qing Pan, Qingdao Agricultural University, China Reviewed by: Glenn Marsh, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia; Cameron Stewart, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1167085 |
PMID | 37529329 |
PQID | 2845104738 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0975c3057b22441fac9596290551a675 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10387552 proquest_miscellaneous_2845104738 pubmed_primary_37529329 crossref_citationtrail_10_3389_fmicb_2023_1167085 crossref_primary_10_3389_fmicb_2023_1167085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-17 |
PublicationDateYYYYMMDD | 2023-07-17 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Rima (ref87) 2019; 100 Yeo (ref110) 2021; 95 (ref96) 2023 Vanmechelen (ref98) 2022; 8 (ref6) 2023 Quarleri (ref84) 2022; 44 (ref102) 2021 Hernández (ref38) 2022; 14 Lewis (ref54) 2022; 61 Weingartl (ref101) 2009; 181 Yadav (ref109) 2022; 10 Latinne (ref51) 2022; 14 de Araujo (ref21) 2017; 17 Chadha (ref12) 2006; 12 Cheliout Da Silva (ref13) 2021; 13 Hayman (ref37) 2008; 3 Yuen (ref112) 2021; 12 Madera (ref61) 2022; 96 Annand (ref4) 2022; 28 Wong (ref106) 2011; 2011 Kummer (ref47) 2022; 16 Chua (ref19) 1999; 354 Field (ref29) 2015; 10 Eby (ref27) 2023; 613 McKee (ref66) 2021; 13 Mallapaty (ref62) 2022; 608 Goh (ref32) 2000; 342 (ref88) 2023 Wu (ref108) 2014; 20 Halpin (ref36) 2014 Li (ref55) 2022; 16 Hsu (ref39) 2004; 10 Sweileh (ref93) 2017; 13 Lee (ref53) 2015; 112 Wong (ref107) 2012; 359 Luby (ref58) 2012; 359 Keesing (ref43) 2010; 468 Reynes (ref86) 2005; 11 Ching (ref14) 2015; 21 Sasaki (ref90) 2014; 95 Laing (ref48) 2018; 15 Rissanen (ref89) 2017; 8 Chua (ref17) 2003; 26 Nordin (ref73) 1999; 12 Paton (ref76) 1999; 354 Playford (ref82) 2010; 16 Tian (ref97) 2022; 39 (ref11); 48 Lieu (ref56) 2015; 124 (ref83) 2023 Pernet (ref78); 88 Pernet (ref79); 5 Gazal (ref30) 2022; 11 Halpin (ref35) 2011; 85 Zhang (ref113) 2022; 387 Kong (ref46) 2012; 432 Arunkumar (ref5) 2019; 69 Skowron (ref92) 2021; 12 Chua (ref18) 2000; 288 Amarasinghe (ref2) 2017; 162 Peel (ref77) 2022; 28 Schountz (ref91) 2019; 11 Drexler (ref24) 2009; 4 Gurley (ref34) 2007; 13 Geisbert (ref31) 2012; 359 Martin (ref64) 2018; 15 Wang (ref100) 2022; 119 Abdullah (ref1) 2014; 123 Nahar (ref71) 2014; 21 Amaya (ref3) 2021; 193 Eaton (ref26) 2006; 4 Wang (ref99) 2021; 18 Lam (ref50) 2002; 34 Temmam (ref95) 2022; 604 Lo (ref57) 2012; 18 Rahman (ref85) 2012; 12 (ref7) 2023 Mehand (ref67) 2018; 24 Luby (ref60); 15 Taylor (ref94) 2022; 15 Mathers (ref65) 2007; 1 Kasloff (ref42) 2019; 9 Gurley (ref33) 2017; 23 de Wit (ref22) 2014; 10 Yoneda (ref111) 2013; 8 Pickering (ref81) 2016; 34 ref104 Cortes (ref20) 2018; 217 ref105 Bruno (ref9) 2023; 13 ref103 Drexler (ref25) 2012; 3 Nikolay (ref72) 2019; 380 Kessler (ref44) 2018; 1429 Marsh (ref63) 2012; 8 Chowdhury (ref16) 2014; 8 Doyle (ref23) 2021; 36 Chong (ref15) 2002; 29 (ref74) 2023 (ref10); 48 Murray (ref70) 1995; 268 Laing (ref49) 2019; 116 Middleton (ref68) 2012; 359 (ref75) 2023 (ref80) 2023 (ref40) 2023 Khan (ref45) 2012; 7 Mohd Nor (ref69) 2000; 19 Iehlé (ref41) 2007; 13 Field (ref28) 2009; 56 Luby (ref59); 49 Lee (ref52) 2021; 13 Broder (ref8) 2013; 100 |
References_xml | – volume: 288 start-page: 1432 year: 2000 ident: ref18 article-title: Nipah virus: a recently emergent deadly paramyxovirus publication-title: Science doi: 10.1126/science.288.5470.1432 – volume: 44 start-page: 2447 year: 2022 ident: ref84 article-title: Henipaviruses: an expanding global public health concern? publication-title: Geroscience doi: 10.1007/s11357-022-00670-9 – volume-title: Prioritizing diseases for research and development in emergency contexts ident: ref103 – volume: 13 start-page: 159 year: 2007 ident: ref41 article-title: Henipavirus and Tioman virus antibodies in Pteropodid bats, Madagascar publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid1301.060791 – volume: 4 start-page: 23 year: 2006 ident: ref26 article-title: Hendra and Nipah viruses: different and dangerous publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1323 – volume: 24 start-page: e171427 year: 2018 ident: ref67 article-title: World health organization methodology to prioritize emerging infectious diseases in need of research and development publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2409.171427 – volume: 193 start-page: 105084 year: 2021 ident: ref3 article-title: A recombinant cedar virus based high-throughput screening assay for henipavirus antiviral discovery publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2021.105084 – volume: 13 start-page: 159 year: 2023 ident: ref9 article-title: Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis publication-title: Animals (Basel) doi: 10.3390/ani13010159 – volume: 432 start-page: 327 year: 2012 ident: ref46 article-title: Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs publication-title: Virology doi: 10.1016/j.virol.2012.06.001 – volume: 13 start-page: 2020 year: 2021 ident: ref52 article-title: Discovery and genetic characterization of novel paramyxoviruses related to the genus Henipavirus in Crocidura species in the Republic of Korea publication-title: Viruses doi: 10.3390/v13102020 – volume: 12 start-page: 100207 year: 2021 ident: ref112 article-title: Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures publication-title: One Health doi: 10.1016/j.onehlt.2020.100207 – volume: 1 start-page: e114 year: 2007 ident: ref65 article-title: Measuring the burden of neglected tropical diseases: the global burden of disease framework publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0000114 – volume: 9 start-page: 5230 year: 2019 ident: ref42 article-title: Pathogenicity of Nipah henipavirus Bangladesh in a swine host publication-title: Sci. Rep. doi: 10.1038/s41598-019-40476-y – volume: 69 start-page: 377 year: 2019 ident: ref5 article-title: Persistence of Nipah virus RNA in semen of survivor publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciy1092 – volume: 359 start-page: 153 year: 2012 ident: ref31 article-title: Animal challenge models of henipavirus infection and pathogenesis publication-title: Curr. Top. Microbiol. Immunol. doi: 10.1007/82_2012_208 – volume: 112 start-page: E2156 year: 2015 ident: ref53 article-title: Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1501690112 – volume: 14 start-page: 2167 year: 2022 ident: ref38 article-title: First genomic evidence of a Henipa-like virus in Brazil publication-title: Viruses doi: 10.3390/v14102167 – volume: 8 start-page: e3302 year: 2014 ident: ref16 article-title: Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003302 – volume: 16 start-page: 219 year: 2010 ident: ref82 article-title: Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1602.090552 – volume: 15 start-page: 1229 ident: ref60 article-title: Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1508.081237 – volume: 18 start-page: 248 year: 2012 ident: ref57 article-title: Characterization of Nipah virus from outbreaks in Bangladesh, 2008–2010 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1802.111492 – volume: 359 start-page: 25 year: 2012 ident: ref58 article-title: Epidemiology of henipavirus disease in humans publication-title: Curr. Top. Microbiol. Immunol. doi: 10.1007/82_2012_207 – volume: 268 start-page: 94 year: 1995 ident: ref70 article-title: A morbillivirus that caused fatal fisease in horses and humans publication-title: Science doi: 10.1126/science.7701348 – volume-title: Nipah virus disease - India year: 2021 ident: ref102 – volume: 116 start-page: 20707 year: 2019 ident: ref49 article-title: Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by cedar virus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1911773116 – volume: 39 start-page: 110969 year: 2022 ident: ref97 article-title: Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110969 – volume: 217 start-page: 1390 year: 2018 ident: ref20 article-title: Characterization of the spatial and temporal distribution of Nipah virus spillover events in Bangladesh, 2007–2013 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy015 – volume: 48 start-page: 335 ident: ref11 article-title: Update: outbreak of Nipah virus--Malaysia and Singapore, 1999 publication-title: MMWR Morb. Mortal. Wkly Rep. – volume: 21 start-page: 328 year: 2015 ident: ref14 article-title: Outbreak of henipavirus infection, Philippines, 2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2102.141433 – volume-title: Summary of Hendra virus incidents in horses year: 2023 ident: ref83 – volume: 23 start-page: 1446 year: 2017 ident: ref33 article-title: Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid2309.161922 – volume: 10 start-page: 818545 year: 2022 ident: ref109 article-title: Nipah virus outbreak in Kerala state, India amidst of COVID-19 pandemic publication-title: Front. Public Health doi: 10.3389/fpubh.2022.818545 – volume: 13 start-page: 517 year: 2021 ident: ref13 article-title: Functional analysis of the fusion and attachment glycoproteins of Mojiang Henipavirus publication-title: Viruses doi: 10.3390/v13030517 – volume: 380 start-page: 1804 year: 2019 ident: ref72 article-title: Transmission of Nipah virus - 14 years of investigations in Bangladesh publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1805376 – volume: 12 start-page: 811157 year: 2021 ident: ref92 article-title: Nipah virus-another threat from the world of zoonotic viruses publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.811157 – volume: 10 start-page: e0144055 year: 2015 ident: ref29 article-title: Spatiotemporal aspects of Hendra virus infection in pteropid bats (flying-foxes) in eastern Australia publication-title: PLoS One doi: 10.1371/journal.pone.0144055 – volume: 5 start-page: 5342 ident: ref79 article-title: Evidence for henipavirus spillover into human populations in Africa publication-title: Nat. Commun. doi: 10.1038/ncomms6342 – volume: 10 start-page: e1004001 year: 2014 ident: ref22 article-title: Foodborne transmission of nipah virus in Syrian hamsters publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004001 – volume: 604 start-page: 330 year: 2022 ident: ref95 article-title: Bat coronaviruses related to SARS-CoV-2 and infectious for human cells publication-title: Nature doi: 10.1038/s41586-022-04532-4 – volume: 48 start-page: 265 ident: ref10 article-title: Outbreak of Hendra-like virus--Malaysia and Singapore, 1998-1999 publication-title: MMWR Morb. Mortal. Wkly Rep. – start-page: 997 year: 2014 ident: ref36 article-title: A review of Hendra virus and Nipah virus infections in man and other animals publication-title: Zoonoses doi: 10.1007/978-94-017-9457-2_40 – volume: 7 start-page: e42689 year: 2012 ident: ref45 article-title: A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent nipah virus transmission in Bangladesh publication-title: PLoS One doi: 10.1371/journal.pone.0042689 – volume: 613 start-page: 340 year: 2023 ident: ref27 article-title: Pathogen spillover driven by rapid changes in bat ecology publication-title: Nature doi: 10.1038/s41586-022-05506-2 – volume: 21 start-page: 7 year: 2014 ident: ref71 article-title: Piloting the promotion of bamboo skirt barriers to prevent Nipah virus transmission through date palm sap in Bangladesh publication-title: Glob. Health Promot. doi: 10.1177/1757975914528249 – volume: 18 start-page: 197 year: 2021 ident: ref99 article-title: A new Hendra virus genotype found in Australian flying foxes publication-title: Virol. J. doi: 10.1186/s12985-021-01652-7 – volume: 2011 start-page: 567248 year: 2011 ident: ref106 article-title: Pathology of acute henipavirus infection in humans and animals publication-title: Pathol. Res. Int. doi: 10.4061/2011/567248 – volume: 12 start-page: 65 year: 2012 ident: ref85 article-title: Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008 publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2011.0656 – volume: 12 start-page: 20 year: 1999 ident: ref73 article-title: Nipah DIsease in Maysia publication-title: OIE Dis. Inf. – volume-title: Nipah virus claims 5 lives this year: home minister year: 2023 ident: ref88 – volume: 359 start-page: 95 year: 2012 ident: ref107 article-title: Clinical and pathological manifestations of human henipavirus infection publication-title: Curr. Top. Microbiol. Immunol. doi: 10.1007/82_2012_205 – volume: 608 start-page: 656 year: 2022 ident: ref62 article-title: New 'Langya' virus identified in China: what scientists know so far publication-title: Nature doi: 10.1038/d41586-022-02175-z – volume: 100 start-page: 8 year: 2013 ident: ref8 article-title: A treatment for and vaccine against the deadly Hendra and Nipah viruses publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.06.012 – volume: 15 start-page: 100423 year: 2022 ident: ref94 article-title: Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia publication-title: One Health doi: 10.1016/j.onehlt.2022.100423 – volume-title: Livestock year: 2023 ident: ref6 – volume: 11 start-page: 1042 year: 2005 ident: ref86 article-title: Nipah virus in Lyle's flying foxes, Cambodia publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid1107.041350 – volume: 3 start-page: 796 year: 2012 ident: ref25 article-title: Bats host major mammalian paramyxoviruses publication-title: Nat. Commun. doi: 10.1038/ncomms1796 – volume: 8 start-page: e1002836 year: 2012 ident: ref63 article-title: Cedar virus: a novel Henipavirus isolated from Australian bats publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002836 – volume: 359 start-page: 105 year: 2012 ident: ref68 article-title: Henipaviruses in their natural animal hosts publication-title: Curr. Top. Microbiol. Immunol. doi: 10.1007/82_2012_210 – volume: 28 start-page: 1043 year: 2022 ident: ref77 article-title: Novel Hendra virus variant circulating in black flying foxes and grey-headed flying foxes, Australia publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid2805.212338 – volume: 123 start-page: 663 year: 2014 ident: ref1 article-title: Henipavirus encephalitis publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-53488-0.00032-8 – volume: 34 start-page: S48 year: 2002 ident: ref50 article-title: Nipah virus encephalitis outbreak in Malaysia publication-title: Clin. Infect. Dis. doi: 10.1086/338818 – volume: 342 start-page: 1229 year: 2000 ident: ref32 article-title: Clinical features of Nipah virus encephalitis among pig farmers in Malaysia publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200004273421701 – volume-title: Bangladesh Nipah virus update: 10 cases and 7 deaths in 2023 year: 2023 ident: ref75 – volume: 124 start-page: 69 year: 2015 ident: ref56 article-title: The non-pathogenic Henipavirus cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2015.09.017 – volume: 34 start-page: 4777 year: 2016 ident: ref81 article-title: Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response publication-title: Vaccine doi: 10.1016/j.vaccine.2016.08.028 – volume: 387 start-page: 470 year: 2022 ident: ref113 article-title: A zoonotic Henipavirus in febrile patients in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2202705 – volume: 10 start-page: 2082 year: 2004 ident: ref39 article-title: Nipah virus encephalitis reemergence, Bangladesh publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid1012.040701 – volume: 11 start-page: 219 year: 2019 ident: ref91 article-title: Differential innate immune responses elicited by Nipah virus and cedar virus correlate with disparate in vivo pathogenesis in hamsters publication-title: Viruses doi: 10.3390/v11030291 – volume: 28 start-page: 693 year: 2022 ident: ref4 article-title: Novel Hendra virus variant detected by sentinel surveillance of horses in Australia publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2803.211245 – volume: 11 start-page: 1419 year: 2022 ident: ref30 article-title: Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic publication-title: Pathogens doi: 10.3390/pathogens11121419 – volume: 29 start-page: 83 year: 2002 ident: ref15 article-title: Nipah encephalitis outbreak in Malaysia, clinical features in patients from Seremban publication-title: Can. J. Neurol. Sci. doi: 10.1017/s0317167100001785 – volume: 354 start-page: 1257 year: 1999 ident: ref19 article-title: Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia publication-title: Lancet doi: 10.1016/S0140-6736(99)04299-3 – volume: 100 start-page: 1593 year: 2019 ident: ref87 article-title: ICTV virus taxonomy profile: Paramyxoviridae publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001328 – volume: 85 start-page: 946 year: 2011 ident: ref35 article-title: Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2011.10-0567 – volume: 96 start-page: e0092122 year: 2022 ident: ref61 article-title: Discovery and genomic characterization of a novel Henipavirus, Angavokely virus, from fruit bats in Madagascar publication-title: J. Virol. doi: 10.1128/jvi.00921-22 – volume: 56 start-page: 278 year: 2009 ident: ref28 article-title: Bats and emerging zoonoses: henipaviruses and SARS publication-title: Zoonoses Public Health doi: 10.1111/j.1863-2378.2008.01218.xJVB1218 – volume: 13 start-page: 169 year: 2021 ident: ref66 article-title: The ecology of Nipah virus in Bangladesh: a Nexus of land-use change and opportunistic feeding behavior in bats publication-title: Viruses doi: 10.3390/v13020169 – volume: 95 start-page: e0066621 year: 2021 ident: ref110 article-title: Headless Henipaviral receptor binding glycoproteins reveal fusion modulation by the head/stalk Interface and post-receptor binding contributions of the head domain publication-title: J. Virol. doi: 10.1128/JVI.00666-21 – volume: 88 start-page: 5171 ident: ref78 article-title: Functional rectification of the newly described African henipavirus fusion glycoprotein (Gh-M74a) publication-title: J. Virol. doi: 10.1128/JVI.03655-13 – volume: 119 start-page: e2122769119 year: 2022 ident: ref100 article-title: Potent monoclonal antibody-mediated neutralization of a divergent Hendra virus variant publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2122769119 – volume: 1429 start-page: 78 year: 2018 ident: ref44 article-title: Changing resource landscapes and spillover of henipaviruses publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13910 – volume-title: Livestock census year: 2023 ident: ref80 – volume: 12 start-page: 235 year: 2006 ident: ref12 article-title: Nipah virus-associated encephalitis outbreak, Siliguri, India publication-title: Int. Conf. Emerg. Infect. Dis. doi: 10.3201/eid1202.051247 – volume: 95 start-page: 325 year: 2014 ident: ref90 article-title: Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews publication-title: J. Gen. Virol. doi: 10.1099/vir.0.058404-0 – volume: 13 start-page: 1031 year: 2007 ident: ref34 article-title: Person-to-person transmission of Nipah virus in a Bangladeshi community publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1307.061128 – volume: 19 start-page: 160 year: 2000 ident: ref69 article-title: Nipah virus infection of pigs in peninsular Malaysia publication-title: Rev. Sci. Tech. doi: 10.20506/rst.19.1.1202 – volume: 26 start-page: 265 year: 2003 ident: ref17 article-title: Nipah virus outbreak in Malaysia publication-title: J. Clin. Virol. doi: 10.1016/s1386-6532(02)00268-8 – volume: 8 start-page: e58414 year: 2013 ident: ref111 article-title: Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge publication-title: PLoS One doi: 10.1371/journal.pone.0058414 – volume: 16 start-page: e0010157 year: 2022 ident: ref47 article-title: Henipaviruses-a constant threat to livestock and humans publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0010157PNTD-D-21-00815 – volume-title: WHO to identify pathogens that could cause future outbreaks and pandemics ident: ref105 – volume: 181 start-page: 211 year: 2009 ident: ref101 article-title: Animal models of henipavirus infection: a review publication-title: Vet. J. doi: 10.1016/j.tvjl.2008.10.016 – volume: 8 start-page: 16060 year: 2017 ident: ref89 article-title: Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses publication-title: Nat. Commun. doi: 10.1038/ncomms16060 – volume-title: One dies of Nipah virus at DMCH year: 2023 ident: ref96 – volume: 162 start-page: 2493 year: 2017 ident: ref2 article-title: Taxonomy of the order Mononegavirales: update 2017 publication-title: Arch. Virol. doi: 10.1007/s00705-017-3311-7 – volume-title: Summary of human cases of Hendra virus infection year: 2023 ident: ref74 – volume: 4 start-page: e6367 year: 2009 ident: ref24 article-title: Henipavirus RNA in African bats publication-title: PLoS One doi: 10.1371/journal.pone.0006367 – volume: 15 start-page: 56 year: 2018 ident: ref48 article-title: Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species publication-title: Virol. J. doi: 10.1186/s12985-018-0964-0 – volume-title: Bangladesh reports two new Nipah virus deaths year: 2023 ident: ref7 – volume: 14 start-page: 1100 year: 2022 ident: ref51 article-title: Climate anomalies and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian peninsula publication-title: Viruses doi: 10.3390/v14051100 – volume: 61 start-page: 86 year: 2022 ident: ref54 article-title: Livestock and risk group 4 pathogens: researching zoonotic threats to public health and agriculture in maximum containment publication-title: ILAR J. doi: 10.1093/ilar/ilab029 – volume: 468 start-page: 647 year: 2010 ident: ref43 article-title: Impacts of biodiversity on the emergence and transmission of infectious diseases publication-title: Nature doi: 10.1038/nature09575 – volume-title: R&D Blueprint ident: ref104 – volume-title: Genus: Henipavirus year: 2023 ident: ref40 – volume: 17 start-page: 271 year: 2017 ident: ref21 article-title: Antibodies Against Henipa-Like Viruses in Brazilian Bats publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2016.2051 – volume: 49 start-page: 1743 ident: ref59 article-title: Transmission of human infection with Nipah virus publication-title: Clin. Infect. Dis. doi: 10.1086/647951 – volume: 15 start-page: 526 year: 2018 ident: ref64 article-title: Hendra virus spillover is a bimodal system driven by climatic factors publication-title: EcoHealth doi: 10.1007/s10393-017-1309-y – volume: 13 start-page: 9 year: 2017 ident: ref93 article-title: Global research trends of World Health Organization's top eight emerging pathogens publication-title: Glob. Health doi: 10.1186/s12992-017-0233-9 – volume: 8 start-page: veac061 year: 2022 ident: ref98 article-title: The characterization of multiple novel paramyxoviruses highlights the diverse nature of the subfamily Orthoparamyxovirinae publication-title: Virus Evol. doi: 10.1093/ve/veac061 – volume: 36 start-page: 109628 year: 2021 ident: ref23 article-title: Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109628 – volume: 3 start-page: e2739 year: 2008 ident: ref37 article-title: Evidence of henipavirus infection in West African fruit bats publication-title: PLoS One doi: 10.1371/journal.pone.0002739 – volume: 20 start-page: 1064 year: 2014 ident: ref108 article-title: Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2006.131022 – volume: 16 start-page: e0010285 year: 2022 ident: ref55 article-title: Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0010285 – volume: 354 start-page: 1253 year: 1999 ident: ref76 article-title: Outbreak of Nipah-virus infection among abattoir workers in Singapore publication-title: Lancet doi: 10.1016/S0140-6736(99)04379-2 |
SSID | ssj0000402000 |
Score | 2.478735 |
SecondaryResourceType | review_article |
Snippet | Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1167085 |
SubjectTerms | animal host epidemiology Hendra virus henipavirus Microbiology Nipah virus transmission |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRv61fVPCmXdNts228qSiroCcX9haSNMGitsu2FfTXO9N2l10RvXgqbdM2zEw675HkDSEnNJQWgweLuwBBsUp5yprES2TCY6VVzC0SxYfH_mAY3o_YaK7UF64Ja-SBG8OdUx4xDUEZKUg2oW-l5lgwhlNI9RLQLv59KadzZKr-ByMtorTZJQMsjIObUq26WCy8i1MPFIsnz2WiWrD_J5T5fbHkXPa5XSOrLWx0L5vurpMlk22Q5aaQ5McmuRuYLB3L93RSFe5nnmd5kRYXbl6VwHjlS3Hmyix9gxfgno4CThJ3nJe4UAiuAbB2TbsL02yR4e3N0_XAa4skeBqYben5sqf6GuySKOVLgMqM6VBb6ks_0EFilQZEmkRAtawfKRlJAwiOWRNaSPXSsmCbdLI8M7vEZQntS0z5gdGo2xbDUQURDFJqOWfKIf7UYEK3CuJYyOJVAJNAI4vayAKNLFojO-R09sy40c_4tfUV-mHWErWv6wsQEaKNCPFXRDjkeOpFAWMFJ0BkZvKqEJCKGUpTBLFDdhqvzj4VRAyQT487JF7w90JfFu9k6XOtx40a8xFjvb3_6P0-WUGLeLV25wHplJPKHALuKdVRHeJfDOH-4g priority: 102 providerName: Directory of Open Access Journals |
Title | Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37529329 https://www.proquest.com/docview/2845104738 https://pubmed.ncbi.nlm.nih.gov/PMC10387552 https://doaj.org/article/0975c3057b22441fac9596290551a675 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VoqJeqgItDX0oSNxoVvEmzqNSVUFFWZDgxEp7s2zHLhEl2W6yqO2v74yTXVjUckmUl5PM2Jnvi-1vAN6GsbRUeSi5CxIUq1SgrCmCQhZ5prTKcktE8eu3ZDSOv0z4ZA0W6Y56AzYPUjvKJzWeXQ1urm_PsMGfEuPEeIseKLUaUB7wAfUqIIh4Ak9dfxEN5evhvvsyE1lys1JYklCHwHDSzaN5pJhNeBalHAOiA6B_wpZT938Ikv47svKvUHWxDVs9xvTfd5XiOayZ6gVsdFknb1_C55Gpyqn8Xc7mjX9X11XdlM2JX89bpMfyZ3Psy6r8hQXQBJAGNwp_Wrc0qgj3IQr3TT9l0-zA-OLj9_NR0GdUCDTS4DZgcqgSzawslGIScTXnOtY2ZJJFOiqs0ghfixR5mWWpkqk0CPe4NbFFXCAtj3Zhvaorswc-L8JEEj6IjCaRtwzXKkqxRYc2z7nygC0MJnQvN05ZL64E0g6yt3D2FmRv0dvbg3fLa6ad2MZ_z_5AflieSULZbkc9uxR9uxNhnnKN37RUIVaJ8c11TvmG8hCRokSy5MGbhRcFNizqLZGVqeeNwLjNScciyjx41Xl1eatFrfAgW_H3yrOsHqnKH068mwTpU86Hrx8tdB826TUDp955AOvtbG4OEfm06sj9McDlpwk7clX7HtQpAEo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Henipavirus+zoonosis%3A+outbreaks%2C+animal+hosts+and+potential+new+emergence&rft.jtitle=Frontiers+in+microbiology&rft.au=Li%2C+Hongzhao&rft.au=Kim%2C+Ji-Young+V&rft.au=Pickering%2C+Bradley+S&rft.date=2023-07-17&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=14&rft.spage=1167085&rft_id=info:doi/10.3389%2Ffmicb.2023.1167085&rft_id=info%3Apmid%2F37529329&rft.externalDocID=37529329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |