Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence

Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has c...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 14; p. 1167085
Main Authors Li, Hongzhao, Kim, Ji-Young V., Pickering, Bradley S.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.07.2023
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2023.1167085

Cover

Abstract Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998–1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
AbstractList Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998–1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Author Li, Hongzhao
Kim, Ji-Young V.
Pickering, Bradley S.
AuthorAffiliation 1 National Centre for Foreign Animal Disease, Canadian Food Inspection Agency , Winnipeg, MB , Canada
2 Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg, MB , Canada
3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University , Ames, IA , United States
AuthorAffiliation_xml – name: 1 National Centre for Foreign Animal Disease, Canadian Food Inspection Agency , Winnipeg, MB , Canada
– name: 2 Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba , Winnipeg, MB , Canada
– name: 3 Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University , Ames, IA , United States
Author_xml – sequence: 1
  givenname: Hongzhao
  surname: Li
  fullname: Li, Hongzhao
– sequence: 2
  givenname: Ji-Young V.
  surname: Kim
  fullname: Kim, Ji-Young V.
– sequence: 3
  givenname: Bradley S.
  surname: Pickering
  fullname: Pickering, Bradley S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37529329$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB7kD1CgKSnYxW_P0KAoImSlSGmCRGdde-yNw4y92DNB8OvxZjcoocCFH9fnfsfWOUYHMUWH0BuCl4y13Qc_BmuWFFO2JEQq3IoX6IhIyRcM028HT_aH6LSUO1wHx7TOr9AhU4J2jHZHaHXpYtjAfchzaX6nFFMJ5WOT5slkB9_L-wZiGGFoblOZSj30zSZNLk6h1qL72bjR5bWL1r1GLz0MxZ3u1xP09eLzzfnl4ur6y-r87GphueymBQFqpCUeemMIKNoJYbn1mABhlvXe2Jb0vcJUeqIMKHBSSOEd94JQ8IKdoNWO2ye405tcX5d_6QRBPxRSXmvIU7CD07hTwjIslKGU8-ppO9FJ2mEhCEi1ZX3asTazGV1v678yDM-gz29iuNXrdK8JZq0SglbCuz0hpx-zK5MeQ7FuGCC6NBdNWy4I5oq1Vfr2qdlfl8cwqqDdCWxOpWTntQ0TTCFtvcNQTfU2ev0Qvd5Gr_fR11b6T-sj_T9NfwDnM7M9
CitedBy_id crossref_primary_10_1038_s41467_024_47213_8
crossref_primary_10_1128_jvi_00503_24
crossref_primary_10_1038_s41598_024_57190_z
crossref_primary_10_1126_scitranslmed_adl2055
crossref_primary_10_1002_rmv_2488
crossref_primary_10_1371_journal_pgph_0003926
crossref_primary_10_3390_v16091359
crossref_primary_10_3389_fchbi_2024_1363498
crossref_primary_10_3390_v16020171
crossref_primary_10_1007_s40203_024_00236_x
crossref_primary_10_1002_pro_70085
crossref_primary_10_3390_v16111688
crossref_primary_10_3390_pathogens13070587
Cites_doi 10.1126/science.288.5470.1432
10.1007/s11357-022-00670-9
10.3201/eid1301.060791
10.1038/nrmicro1323
10.3201/eid2409.171427
10.1016/j.antiviral.2021.105084
10.3390/ani13010159
10.1016/j.virol.2012.06.001
10.3390/v13102020
10.1016/j.onehlt.2020.100207
10.1371/journal.pntd.0000114
10.1038/s41598-019-40476-y
10.1093/cid/ciy1092
10.1007/82_2012_208
10.1073/pnas.1501690112
10.3390/v14102167
10.1371/journal.pntd.0003302
10.3201/eid1602.090552
10.3201/eid1508.081237
10.3201/eid1802.111492
10.1007/82_2012_207
10.1126/science.7701348
10.1073/pnas.1911773116
10.1016/j.celrep.2022.110969
10.1093/infdis/jiy015
10.3201/eid2102.141433
10.3201/eid2309.161922
10.3389/fpubh.2022.818545
10.3390/v13030517
10.1056/NEJMoa1805376
10.3389/fmicb.2021.811157
10.1371/journal.pone.0144055
10.1038/ncomms6342
10.1371/journal.ppat.1004001
10.1038/s41586-022-04532-4
10.1007/978-94-017-9457-2_40
10.1371/journal.pone.0042689
10.1038/s41586-022-05506-2
10.1177/1757975914528249
10.1186/s12985-021-01652-7
10.4061/2011/567248
10.1089/vbz.2011.0656
10.1007/82_2012_205
10.1038/d41586-022-02175-z
10.1016/j.antiviral.2013.06.012
10.1016/j.onehlt.2022.100423
10.3201/eid1107.041350
10.1038/ncomms1796
10.1371/journal.ppat.1002836
10.1007/82_2012_210
10.3201/eid2805.212338
10.1016/B978-0-444-53488-0.00032-8
10.1086/338818
10.1056/NEJM200004273421701
10.1016/j.antiviral.2015.09.017
10.1016/j.vaccine.2016.08.028
10.1056/NEJMc2202705
10.3201/eid1012.040701
10.3390/v11030291
10.3201/eid2803.211245
10.3390/pathogens11121419
10.1017/s0317167100001785
10.1016/S0140-6736(99)04299-3
10.1099/jgv.0.001328
10.4269/ajtmh.2011.10-0567
10.1128/jvi.00921-22
10.1111/j.1863-2378.2008.01218.xJVB1218
10.3390/v13020169
10.1128/JVI.00666-21
10.1128/JVI.03655-13
10.1073/pnas.2122769119
10.1111/nyas.13910
10.3201/eid1202.051247
10.1099/vir.0.058404-0
10.3201/eid1307.061128
10.20506/rst.19.1.1202
10.1016/s1386-6532(02)00268-8
10.1371/journal.pone.0058414
10.1371/journal.pntd.0010157PNTD-D-21-00815
10.1016/j.tvjl.2008.10.016
10.1038/ncomms16060
10.1007/s00705-017-3311-7
10.1371/journal.pone.0006367
10.1186/s12985-018-0964-0
10.3390/v14051100
10.1093/ilar/ilab029
10.1038/nature09575
10.1089/vbz.2016.2051
10.1086/647951
10.1007/s10393-017-1309-y
10.1186/s12992-017-0233-9
10.1093/ve/veac061
10.1016/j.celrep.2021.109628
10.1371/journal.pone.0002739
10.3201/eid2006.131022
10.1371/journal.pntd.0010285
10.1016/S0140-6736(99)04379-2
ContentType Journal Article
Copyright Copyright © 2023 Li, Kim and Pickering.
Copyright © 2023 Li, Kim and Pickering. 2023 Li, Kim and Pickering
Copyright_xml – notice: Copyright © 2023 Li, Kim and Pickering.
– notice: Copyright © 2023 Li, Kim and Pickering. 2023 Li, Kim and Pickering
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2023.1167085
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0975c3057b22441fac9596290551a675
PMC10387552
37529329
10_3389_fmicb_2023_1167085
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-1a2b6c1fadbb1a72955c4cf01a13c3dfbc81dd7026f17ba7ae6565fe4f512af53
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:30:17 EDT 2025
Thu Aug 21 18:42:27 EDT 2025
Fri Sep 05 08:25:26 EDT 2025
Thu Apr 03 06:57:12 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 00:58:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords epidemiology
henipavirus
transmission
Hendra virus
henipa-like virus
livestock
Nipah virus
animal host
Language English
License Copyright © 2023 Li, Kim and Pickering.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-1a2b6c1fadbb1a72955c4cf01a13c3dfbc81dd7026f17ba7ae6565fe4f512af53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Qing Pan, Qingdao Agricultural University, China
Reviewed by: Glenn Marsh, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia; Cameron Stewart, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2023.1167085
PMID 37529329
PQID 2845104738
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0975c3057b22441fac9596290551a675
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10387552
proquest_miscellaneous_2845104738
pubmed_primary_37529329
crossref_citationtrail_10_3389_fmicb_2023_1167085
crossref_primary_10_3389_fmicb_2023_1167085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-17
PublicationDateYYYYMMDD 2023-07-17
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-17
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Rima (ref87) 2019; 100
Yeo (ref110) 2021; 95
(ref96) 2023
Vanmechelen (ref98) 2022; 8
(ref6) 2023
Quarleri (ref84) 2022; 44
(ref102) 2021
Hernández (ref38) 2022; 14
Lewis (ref54) 2022; 61
Weingartl (ref101) 2009; 181
Yadav (ref109) 2022; 10
Latinne (ref51) 2022; 14
de Araujo (ref21) 2017; 17
Chadha (ref12) 2006; 12
Cheliout Da Silva (ref13) 2021; 13
Hayman (ref37) 2008; 3
Yuen (ref112) 2021; 12
Madera (ref61) 2022; 96
Annand (ref4) 2022; 28
Wong (ref106) 2011; 2011
Kummer (ref47) 2022; 16
Chua (ref19) 1999; 354
Field (ref29) 2015; 10
Eby (ref27) 2023; 613
McKee (ref66) 2021; 13
Mallapaty (ref62) 2022; 608
Goh (ref32) 2000; 342
(ref88) 2023
Wu (ref108) 2014; 20
Halpin (ref36) 2014
Li (ref55) 2022; 16
Hsu (ref39) 2004; 10
Sweileh (ref93) 2017; 13
Lee (ref53) 2015; 112
Wong (ref107) 2012; 359
Luby (ref58) 2012; 359
Keesing (ref43) 2010; 468
Reynes (ref86) 2005; 11
Ching (ref14) 2015; 21
Sasaki (ref90) 2014; 95
Laing (ref48) 2018; 15
Rissanen (ref89) 2017; 8
Chua (ref17) 2003; 26
Nordin (ref73) 1999; 12
Paton (ref76) 1999; 354
Playford (ref82) 2010; 16
Tian (ref97) 2022; 39
(ref11); 48
Lieu (ref56) 2015; 124
(ref83) 2023
Pernet (ref78); 88
Pernet (ref79); 5
Gazal (ref30) 2022; 11
Halpin (ref35) 2011; 85
Zhang (ref113) 2022; 387
Kong (ref46) 2012; 432
Arunkumar (ref5) 2019; 69
Skowron (ref92) 2021; 12
Chua (ref18) 2000; 288
Amarasinghe (ref2) 2017; 162
Peel (ref77) 2022; 28
Schountz (ref91) 2019; 11
Drexler (ref24) 2009; 4
Gurley (ref34) 2007; 13
Geisbert (ref31) 2012; 359
Martin (ref64) 2018; 15
Wang (ref100) 2022; 119
Abdullah (ref1) 2014; 123
Nahar (ref71) 2014; 21
Amaya (ref3) 2021; 193
Eaton (ref26) 2006; 4
Wang (ref99) 2021; 18
Lam (ref50) 2002; 34
Temmam (ref95) 2022; 604
Lo (ref57) 2012; 18
Rahman (ref85) 2012; 12
(ref7) 2023
Mehand (ref67) 2018; 24
Luby (ref60); 15
Taylor (ref94) 2022; 15
Mathers (ref65) 2007; 1
Kasloff (ref42) 2019; 9
Gurley (ref33) 2017; 23
de Wit (ref22) 2014; 10
Yoneda (ref111) 2013; 8
Pickering (ref81) 2016; 34
ref104
Cortes (ref20) 2018; 217
ref105
Bruno (ref9) 2023; 13
ref103
Drexler (ref25) 2012; 3
Nikolay (ref72) 2019; 380
Kessler (ref44) 2018; 1429
Marsh (ref63) 2012; 8
Chowdhury (ref16) 2014; 8
Doyle (ref23) 2021; 36
Chong (ref15) 2002; 29
(ref74) 2023
(ref10); 48
Murray (ref70) 1995; 268
Laing (ref49) 2019; 116
Middleton (ref68) 2012; 359
(ref75) 2023
(ref80) 2023
(ref40) 2023
Khan (ref45) 2012; 7
Mohd Nor (ref69) 2000; 19
Iehlé (ref41) 2007; 13
Field (ref28) 2009; 56
Luby (ref59); 49
Lee (ref52) 2021; 13
Broder (ref8) 2013; 100
References_xml – volume: 288
  start-page: 1432
  year: 2000
  ident: ref18
  article-title: Nipah virus: a recently emergent deadly paramyxovirus
  publication-title: Science
  doi: 10.1126/science.288.5470.1432
– volume: 44
  start-page: 2447
  year: 2022
  ident: ref84
  article-title: Henipaviruses: an expanding global public health concern?
  publication-title: Geroscience
  doi: 10.1007/s11357-022-00670-9
– volume-title: Prioritizing diseases for research and development in emergency contexts
  ident: ref103
– volume: 13
  start-page: 159
  year: 2007
  ident: ref41
  article-title: Henipavirus and Tioman virus antibodies in Pteropodid bats, Madagascar
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid1301.060791
– volume: 4
  start-page: 23
  year: 2006
  ident: ref26
  article-title: Hendra and Nipah viruses: different and dangerous
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1323
– volume: 24
  start-page: e171427
  year: 2018
  ident: ref67
  article-title: World health organization methodology to prioritize emerging infectious diseases in need of research and development
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2409.171427
– volume: 193
  start-page: 105084
  year: 2021
  ident: ref3
  article-title: A recombinant cedar virus based high-throughput screening assay for henipavirus antiviral discovery
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2021.105084
– volume: 13
  start-page: 159
  year: 2023
  ident: ref9
  article-title: Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis
  publication-title: Animals (Basel)
  doi: 10.3390/ani13010159
– volume: 432
  start-page: 327
  year: 2012
  ident: ref46
  article-title: Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs
  publication-title: Virology
  doi: 10.1016/j.virol.2012.06.001
– volume: 13
  start-page: 2020
  year: 2021
  ident: ref52
  article-title: Discovery and genetic characterization of novel paramyxoviruses related to the genus Henipavirus in Crocidura species in the Republic of Korea
  publication-title: Viruses
  doi: 10.3390/v13102020
– volume: 12
  start-page: 100207
  year: 2021
  ident: ref112
  article-title: Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures
  publication-title: One Health
  doi: 10.1016/j.onehlt.2020.100207
– volume: 1
  start-page: e114
  year: 2007
  ident: ref65
  article-title: Measuring the burden of neglected tropical diseases: the global burden of disease framework
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0000114
– volume: 9
  start-page: 5230
  year: 2019
  ident: ref42
  article-title: Pathogenicity of Nipah henipavirus Bangladesh in a swine host
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40476-y
– volume: 69
  start-page: 377
  year: 2019
  ident: ref5
  article-title: Persistence of Nipah virus RNA in semen of survivor
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciy1092
– volume: 359
  start-page: 153
  year: 2012
  ident: ref31
  article-title: Animal challenge models of henipavirus infection and pathogenesis
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/82_2012_208
– volume: 112
  start-page: E2156
  year: 2015
  ident: ref53
  article-title: Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1501690112
– volume: 14
  start-page: 2167
  year: 2022
  ident: ref38
  article-title: First genomic evidence of a Henipa-like virus in Brazil
  publication-title: Viruses
  doi: 10.3390/v14102167
– volume: 8
  start-page: e3302
  year: 2014
  ident: ref16
  article-title: Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0003302
– volume: 16
  start-page: 219
  year: 2010
  ident: ref82
  article-title: Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1602.090552
– volume: 15
  start-page: 1229
  ident: ref60
  article-title: Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1508.081237
– volume: 18
  start-page: 248
  year: 2012
  ident: ref57
  article-title: Characterization of Nipah virus from outbreaks in Bangladesh, 2008–2010
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1802.111492
– volume: 359
  start-page: 25
  year: 2012
  ident: ref58
  article-title: Epidemiology of henipavirus disease in humans
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/82_2012_207
– volume: 268
  start-page: 94
  year: 1995
  ident: ref70
  article-title: A morbillivirus that caused fatal fisease in horses and humans
  publication-title: Science
  doi: 10.1126/science.7701348
– volume-title: Nipah virus disease - India
  year: 2021
  ident: ref102
– volume: 116
  start-page: 20707
  year: 2019
  ident: ref49
  article-title: Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by cedar virus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1911773116
– volume: 39
  start-page: 110969
  year: 2022
  ident: ref97
  article-title: Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110969
– volume: 217
  start-page: 1390
  year: 2018
  ident: ref20
  article-title: Characterization of the spatial and temporal distribution of Nipah virus spillover events in Bangladesh, 2007–2013
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy015
– volume: 48
  start-page: 335
  ident: ref11
  article-title: Update: outbreak of Nipah virus--Malaysia and Singapore, 1999
  publication-title: MMWR Morb. Mortal. Wkly Rep.
– volume: 21
  start-page: 328
  year: 2015
  ident: ref14
  article-title: Outbreak of henipavirus infection, Philippines, 2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2102.141433
– volume-title: Summary of Hendra virus incidents in horses
  year: 2023
  ident: ref83
– volume: 23
  start-page: 1446
  year: 2017
  ident: ref33
  article-title: Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid2309.161922
– volume: 10
  start-page: 818545
  year: 2022
  ident: ref109
  article-title: Nipah virus outbreak in Kerala state, India amidst of COVID-19 pandemic
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.818545
– volume: 13
  start-page: 517
  year: 2021
  ident: ref13
  article-title: Functional analysis of the fusion and attachment glycoproteins of Mojiang Henipavirus
  publication-title: Viruses
  doi: 10.3390/v13030517
– volume: 380
  start-page: 1804
  year: 2019
  ident: ref72
  article-title: Transmission of Nipah virus - 14 years of investigations in Bangladesh
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1805376
– volume: 12
  start-page: 811157
  year: 2021
  ident: ref92
  article-title: Nipah virus-another threat from the world of zoonotic viruses
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.811157
– volume: 10
  start-page: e0144055
  year: 2015
  ident: ref29
  article-title: Spatiotemporal aspects of Hendra virus infection in pteropid bats (flying-foxes) in eastern Australia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144055
– volume: 5
  start-page: 5342
  ident: ref79
  article-title: Evidence for henipavirus spillover into human populations in Africa
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6342
– volume: 10
  start-page: e1004001
  year: 2014
  ident: ref22
  article-title: Foodborne transmission of nipah virus in Syrian hamsters
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004001
– volume: 604
  start-page: 330
  year: 2022
  ident: ref95
  article-title: Bat coronaviruses related to SARS-CoV-2 and infectious for human cells
  publication-title: Nature
  doi: 10.1038/s41586-022-04532-4
– volume: 48
  start-page: 265
  ident: ref10
  article-title: Outbreak of Hendra-like virus--Malaysia and Singapore, 1998-1999
  publication-title: MMWR Morb. Mortal. Wkly Rep.
– start-page: 997
  year: 2014
  ident: ref36
  article-title: A review of Hendra virus and Nipah virus infections in man and other animals
  publication-title: Zoonoses
  doi: 10.1007/978-94-017-9457-2_40
– volume: 7
  start-page: e42689
  year: 2012
  ident: ref45
  article-title: A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent nipah virus transmission in Bangladesh
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042689
– volume: 613
  start-page: 340
  year: 2023
  ident: ref27
  article-title: Pathogen spillover driven by rapid changes in bat ecology
  publication-title: Nature
  doi: 10.1038/s41586-022-05506-2
– volume: 21
  start-page: 7
  year: 2014
  ident: ref71
  article-title: Piloting the promotion of bamboo skirt barriers to prevent Nipah virus transmission through date palm sap in Bangladesh
  publication-title: Glob. Health Promot.
  doi: 10.1177/1757975914528249
– volume: 18
  start-page: 197
  year: 2021
  ident: ref99
  article-title: A new Hendra virus genotype found in Australian flying foxes
  publication-title: Virol. J.
  doi: 10.1186/s12985-021-01652-7
– volume: 2011
  start-page: 567248
  year: 2011
  ident: ref106
  article-title: Pathology of acute henipavirus infection in humans and animals
  publication-title: Pathol. Res. Int.
  doi: 10.4061/2011/567248
– volume: 12
  start-page: 65
  year: 2012
  ident: ref85
  article-title: Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008
  publication-title: Vector Borne Zoonotic Dis.
  doi: 10.1089/vbz.2011.0656
– volume: 12
  start-page: 20
  year: 1999
  ident: ref73
  article-title: Nipah DIsease in Maysia
  publication-title: OIE Dis. Inf.
– volume-title: Nipah virus claims 5 lives this year: home minister
  year: 2023
  ident: ref88
– volume: 359
  start-page: 95
  year: 2012
  ident: ref107
  article-title: Clinical and pathological manifestations of human henipavirus infection
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/82_2012_205
– volume: 608
  start-page: 656
  year: 2022
  ident: ref62
  article-title: New 'Langya' virus identified in China: what scientists know so far
  publication-title: Nature
  doi: 10.1038/d41586-022-02175-z
– volume: 100
  start-page: 8
  year: 2013
  ident: ref8
  article-title: A treatment for and vaccine against the deadly Hendra and Nipah viruses
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.06.012
– volume: 15
  start-page: 100423
  year: 2022
  ident: ref94
  article-title: Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia
  publication-title: One Health
  doi: 10.1016/j.onehlt.2022.100423
– volume-title: Livestock
  year: 2023
  ident: ref6
– volume: 11
  start-page: 1042
  year: 2005
  ident: ref86
  article-title: Nipah virus in Lyle's flying foxes, Cambodia
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid1107.041350
– volume: 3
  start-page: 796
  year: 2012
  ident: ref25
  article-title: Bats host major mammalian paramyxoviruses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1796
– volume: 8
  start-page: e1002836
  year: 2012
  ident: ref63
  article-title: Cedar virus: a novel Henipavirus isolated from Australian bats
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002836
– volume: 359
  start-page: 105
  year: 2012
  ident: ref68
  article-title: Henipaviruses in their natural animal hosts
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/82_2012_210
– volume: 28
  start-page: 1043
  year: 2022
  ident: ref77
  article-title: Novel Hendra virus variant circulating in black flying foxes and grey-headed flying foxes, Australia
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid2805.212338
– volume: 123
  start-page: 663
  year: 2014
  ident: ref1
  article-title: Henipavirus encephalitis
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-444-53488-0.00032-8
– volume: 34
  start-page: S48
  year: 2002
  ident: ref50
  article-title: Nipah virus encephalitis outbreak in Malaysia
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/338818
– volume: 342
  start-page: 1229
  year: 2000
  ident: ref32
  article-title: Clinical features of Nipah virus encephalitis among pig farmers in Malaysia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200004273421701
– volume-title: Bangladesh Nipah virus update: 10 cases and 7 deaths in 2023
  year: 2023
  ident: ref75
– volume: 124
  start-page: 69
  year: 2015
  ident: ref56
  article-title: The non-pathogenic Henipavirus cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2015.09.017
– volume: 34
  start-page: 4777
  year: 2016
  ident: ref81
  article-title: Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.08.028
– volume: 387
  start-page: 470
  year: 2022
  ident: ref113
  article-title: A zoonotic Henipavirus in febrile patients in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2202705
– volume: 10
  start-page: 2082
  year: 2004
  ident: ref39
  article-title: Nipah virus encephalitis reemergence, Bangladesh
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid1012.040701
– volume: 11
  start-page: 219
  year: 2019
  ident: ref91
  article-title: Differential innate immune responses elicited by Nipah virus and cedar virus correlate with disparate in vivo pathogenesis in hamsters
  publication-title: Viruses
  doi: 10.3390/v11030291
– volume: 28
  start-page: 693
  year: 2022
  ident: ref4
  article-title: Novel Hendra virus variant detected by sentinel surveillance of horses in Australia
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2803.211245
– volume: 11
  start-page: 1419
  year: 2022
  ident: ref30
  article-title: Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic
  publication-title: Pathogens
  doi: 10.3390/pathogens11121419
– volume: 29
  start-page: 83
  year: 2002
  ident: ref15
  article-title: Nipah encephalitis outbreak in Malaysia, clinical features in patients from Seremban
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/s0317167100001785
– volume: 354
  start-page: 1257
  year: 1999
  ident: ref19
  article-title: Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)04299-3
– volume: 100
  start-page: 1593
  year: 2019
  ident: ref87
  article-title: ICTV virus taxonomy profile: Paramyxoviridae
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001328
– volume: 85
  start-page: 946
  year: 2011
  ident: ref35
  article-title: Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2011.10-0567
– volume: 96
  start-page: e0092122
  year: 2022
  ident: ref61
  article-title: Discovery and genomic characterization of a novel Henipavirus, Angavokely virus, from fruit bats in Madagascar
  publication-title: J. Virol.
  doi: 10.1128/jvi.00921-22
– volume: 56
  start-page: 278
  year: 2009
  ident: ref28
  article-title: Bats and emerging zoonoses: henipaviruses and SARS
  publication-title: Zoonoses Public Health
  doi: 10.1111/j.1863-2378.2008.01218.xJVB1218
– volume: 13
  start-page: 169
  year: 2021
  ident: ref66
  article-title: The ecology of Nipah virus in Bangladesh: a Nexus of land-use change and opportunistic feeding behavior in bats
  publication-title: Viruses
  doi: 10.3390/v13020169
– volume: 95
  start-page: e0066621
  year: 2021
  ident: ref110
  article-title: Headless Henipaviral receptor binding glycoproteins reveal fusion modulation by the head/stalk Interface and post-receptor binding contributions of the head domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.00666-21
– volume: 88
  start-page: 5171
  ident: ref78
  article-title: Functional rectification of the newly described African henipavirus fusion glycoprotein (Gh-M74a)
  publication-title: J. Virol.
  doi: 10.1128/JVI.03655-13
– volume: 119
  start-page: e2122769119
  year: 2022
  ident: ref100
  article-title: Potent monoclonal antibody-mediated neutralization of a divergent Hendra virus variant
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2122769119
– volume: 1429
  start-page: 78
  year: 2018
  ident: ref44
  article-title: Changing resource landscapes and spillover of henipaviruses
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.13910
– volume-title: Livestock census
  year: 2023
  ident: ref80
– volume: 12
  start-page: 235
  year: 2006
  ident: ref12
  article-title: Nipah virus-associated encephalitis outbreak, Siliguri, India
  publication-title: Int. Conf. Emerg. Infect. Dis.
  doi: 10.3201/eid1202.051247
– volume: 95
  start-page: 325
  year: 2014
  ident: ref90
  article-title: Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.058404-0
– volume: 13
  start-page: 1031
  year: 2007
  ident: ref34
  article-title: Person-to-person transmission of Nipah virus in a Bangladeshi community
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1307.061128
– volume: 19
  start-page: 160
  year: 2000
  ident: ref69
  article-title: Nipah virus infection of pigs in peninsular Malaysia
  publication-title: Rev. Sci. Tech.
  doi: 10.20506/rst.19.1.1202
– volume: 26
  start-page: 265
  year: 2003
  ident: ref17
  article-title: Nipah virus outbreak in Malaysia
  publication-title: J. Clin. Virol.
  doi: 10.1016/s1386-6532(02)00268-8
– volume: 8
  start-page: e58414
  year: 2013
  ident: ref111
  article-title: Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058414
– volume: 16
  start-page: e0010157
  year: 2022
  ident: ref47
  article-title: Henipaviruses-a constant threat to livestock and humans
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0010157PNTD-D-21-00815
– volume-title: WHO to identify pathogens that could cause future outbreaks and pandemics
  ident: ref105
– volume: 181
  start-page: 211
  year: 2009
  ident: ref101
  article-title: Animal models of henipavirus infection: a review
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2008.10.016
– volume: 8
  start-page: 16060
  year: 2017
  ident: ref89
  article-title: Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16060
– volume-title: One dies of Nipah virus at DMCH
  year: 2023
  ident: ref96
– volume: 162
  start-page: 2493
  year: 2017
  ident: ref2
  article-title: Taxonomy of the order Mononegavirales: update 2017
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-017-3311-7
– volume-title: Summary of human cases of Hendra virus infection
  year: 2023
  ident: ref74
– volume: 4
  start-page: e6367
  year: 2009
  ident: ref24
  article-title: Henipavirus RNA in African bats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006367
– volume: 15
  start-page: 56
  year: 2018
  ident: ref48
  article-title: Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species
  publication-title: Virol. J.
  doi: 10.1186/s12985-018-0964-0
– volume-title: Bangladesh reports two new Nipah virus deaths
  year: 2023
  ident: ref7
– volume: 14
  start-page: 1100
  year: 2022
  ident: ref51
  article-title: Climate anomalies and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian peninsula
  publication-title: Viruses
  doi: 10.3390/v14051100
– volume: 61
  start-page: 86
  year: 2022
  ident: ref54
  article-title: Livestock and risk group 4 pathogens: researching zoonotic threats to public health and agriculture in maximum containment
  publication-title: ILAR J.
  doi: 10.1093/ilar/ilab029
– volume: 468
  start-page: 647
  year: 2010
  ident: ref43
  article-title: Impacts of biodiversity on the emergence and transmission of infectious diseases
  publication-title: Nature
  doi: 10.1038/nature09575
– volume-title: R&D Blueprint
  ident: ref104
– volume-title: Genus: Henipavirus
  year: 2023
  ident: ref40
– volume: 17
  start-page: 271
  year: 2017
  ident: ref21
  article-title: Antibodies Against Henipa-Like Viruses in Brazilian Bats
  publication-title: Vector Borne Zoonotic Dis.
  doi: 10.1089/vbz.2016.2051
– volume: 49
  start-page: 1743
  ident: ref59
  article-title: Transmission of human infection with Nipah virus
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/647951
– volume: 15
  start-page: 526
  year: 2018
  ident: ref64
  article-title: Hendra virus spillover is a bimodal system driven by climatic factors
  publication-title: EcoHealth
  doi: 10.1007/s10393-017-1309-y
– volume: 13
  start-page: 9
  year: 2017
  ident: ref93
  article-title: Global research trends of World Health Organization's top eight emerging pathogens
  publication-title: Glob. Health
  doi: 10.1186/s12992-017-0233-9
– volume: 8
  start-page: veac061
  year: 2022
  ident: ref98
  article-title: The characterization of multiple novel paramyxoviruses highlights the diverse nature of the subfamily Orthoparamyxovirinae
  publication-title: Virus Evol.
  doi: 10.1093/ve/veac061
– volume: 36
  start-page: 109628
  year: 2021
  ident: ref23
  article-title: Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109628
– volume: 3
  start-page: e2739
  year: 2008
  ident: ref37
  article-title: Evidence of henipavirus infection in West African fruit bats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002739
– volume: 20
  start-page: 1064
  year: 2014
  ident: ref108
  article-title: Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2006.131022
– volume: 16
  start-page: e0010285
  year: 2022
  ident: ref55
  article-title: Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0010285
– volume: 354
  start-page: 1253
  year: 1999
  ident: ref76
  article-title: Outbreak of Nipah-virus infection among abattoir workers in Singapore
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)04379-2
SSID ssj0000402000
Score 2.478735
SecondaryResourceType review_article
Snippet Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1167085
SubjectTerms animal host
epidemiology
Hendra virus
henipavirus
Microbiology
Nipah virus
transmission
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yIHgRv61fVPCmXdNts228qSiroCcX9haSNMGitsu2FfTXO9N2l10RvXgqbdM2zEw675HkDSEnNJQWgweLuwBBsUp5yprES2TCY6VVzC0SxYfH_mAY3o_YaK7UF64Ja-SBG8OdUx4xDUEZKUg2oW-l5lgwhlNI9RLQLv59KadzZKr-ByMtorTZJQMsjIObUq26WCy8i1MPFIsnz2WiWrD_J5T5fbHkXPa5XSOrLWx0L5vurpMlk22Q5aaQ5McmuRuYLB3L93RSFe5nnmd5kRYXbl6VwHjlS3Hmyix9gxfgno4CThJ3nJe4UAiuAbB2TbsL02yR4e3N0_XAa4skeBqYben5sqf6GuySKOVLgMqM6VBb6ks_0EFilQZEmkRAtawfKRlJAwiOWRNaSPXSsmCbdLI8M7vEZQntS0z5gdGo2xbDUQURDFJqOWfKIf7UYEK3CuJYyOJVAJNAI4vayAKNLFojO-R09sy40c_4tfUV-mHWErWv6wsQEaKNCPFXRDjkeOpFAWMFJ0BkZvKqEJCKGUpTBLFDdhqvzj4VRAyQT487JF7w90JfFu9k6XOtx40a8xFjvb3_6P0-WUGLeLV25wHplJPKHALuKdVRHeJfDOH-4g
  priority: 102
  providerName: Directory of Open Access Journals
Title Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence
URI https://www.ncbi.nlm.nih.gov/pubmed/37529329
https://www.proquest.com/docview/2845104738
https://pubmed.ncbi.nlm.nih.gov/PMC10387552
https://doaj.org/article/0975c3057b22441fac9596290551a675
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VoqJeqgItDX0oSNxoVvEmzqNSVUFFWZDgxEp7s2zHLhEl2W6yqO2v74yTXVjUckmUl5PM2Jnvi-1vAN6GsbRUeSi5CxIUq1SgrCmCQhZ5prTKcktE8eu3ZDSOv0z4ZA0W6Y56AzYPUjvKJzWeXQ1urm_PsMGfEuPEeIseKLUaUB7wAfUqIIh4Ak9dfxEN5evhvvsyE1lys1JYklCHwHDSzaN5pJhNeBalHAOiA6B_wpZT938Ikv47svKvUHWxDVs9xvTfd5XiOayZ6gVsdFknb1_C55Gpyqn8Xc7mjX9X11XdlM2JX89bpMfyZ3Psy6r8hQXQBJAGNwp_Wrc0qgj3IQr3TT9l0-zA-OLj9_NR0GdUCDTS4DZgcqgSzawslGIScTXnOtY2ZJJFOiqs0ghfixR5mWWpkqk0CPe4NbFFXCAtj3Zhvaorswc-L8JEEj6IjCaRtwzXKkqxRYc2z7nygC0MJnQvN05ZL64E0g6yt3D2FmRv0dvbg3fLa6ad2MZ_z_5AflieSULZbkc9uxR9uxNhnnKN37RUIVaJ8c11TvmG8hCRokSy5MGbhRcFNizqLZGVqeeNwLjNScciyjx41Xl1eatFrfAgW_H3yrOsHqnKH068mwTpU86Hrx8tdB826TUDp955AOvtbG4OEfm06sj9McDlpwk7clX7HtQpAEo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Henipavirus+zoonosis%3A+outbreaks%2C+animal+hosts+and+potential+new+emergence&rft.jtitle=Frontiers+in+microbiology&rft.au=Li%2C+Hongzhao&rft.au=Kim%2C+Ji-Young+V&rft.au=Pickering%2C+Bradley+S&rft.date=2023-07-17&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=14&rft.spage=1167085&rft_id=info:doi/10.3389%2Ffmicb.2023.1167085&rft_id=info%3Apmid%2F37529329&rft.externalDocID=37529329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon