Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy

Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring us...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 5; p. 2015
Main Authors Francini, Saverio, D’Amico, Giovanni, Vangi, Elia, Borghi, Costanza, Chirici, Gherardo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22052015

Cover

Abstract Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985–2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.
AbstractList Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985–2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.
Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests' capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985-2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests' capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985-2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.
Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests' capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985-2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.
Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985–2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r 2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.
Author Vangi, Elia
Chirici, Gherardo
Francini, Saverio
D’Amico, Giovanni
Borghi, Costanza
AuthorAffiliation 2 Department of Bioscience and Territory, University of Molise, 86100 Campobasso, Italy
1 Department of Agriculture, Food, Environment and Forestry, University of Florence, 50145 Florence, Italy; saverio.francini@unifi.it (S.F.); elia.vangi@unifi.it (E.V.); costanza.borghi@unifi.it (C.B.); gherardo.chirici@unifi.it (G.C.)
AuthorAffiliation_xml – name: 2 Department of Bioscience and Territory, University of Molise, 86100 Campobasso, Italy
– name: 1 Department of Agriculture, Food, Environment and Forestry, University of Florence, 50145 Florence, Italy; saverio.francini@unifi.it (S.F.); elia.vangi@unifi.it (E.V.); costanza.borghi@unifi.it (C.B.); gherardo.chirici@unifi.it (G.C.)
Author_xml – sequence: 1
  givenname: Saverio
  orcidid: 0000-0001-6991-0289
  surname: Francini
  fullname: Francini, Saverio
– sequence: 2
  givenname: Giovanni
  orcidid: 0000-0002-2341-3268
  surname: D’Amico
  fullname: D’Amico, Giovanni
– sequence: 3
  givenname: Elia
  orcidid: 0000-0002-9772-2258
  surname: Vangi
  fullname: Vangi, Elia
– sequence: 4
  givenname: Costanza
  orcidid: 0000-0002-5334-7548
  surname: Borghi
  fullname: Borghi, Costanza
– sequence: 5
  givenname: Gherardo
  orcidid: 0000-0002-0669-5726
  surname: Chirici
  fullname: Chirici, Gherardo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271161$$D View this record in MEDLINE/PubMed
BookMark eNplks1uEzEQx1eoiH7AgRdAlrjAIdQfu2ubQ6WSNGWlSD0AZ8trezeOdu1ge5HyJLwuTtJWbbnY1sx_fjOemfPixHlniuI9gl8I4fAyYgwrDFH1qjhDJS5nLBtOnrxPi_MYNxBiQgh7U5ySClOEanRW_G1cMn2Qyboe3N4sGiCdBqt8RJm-gh9bqUzrgzNgZbUMB-_STwEsjJLaROA7cLdNVskBNKPsTdiBzgeQ1gZcOznsoj1olj6YmMDCxjSFVjqVQ_esb9aPMkYwX0vXZ5t1oEk57G3xupNDNO_u74vi1_Lm5_z7bHV328yvVzNV1jzNENIUmU4TnhvBtWZKE40Rhtp0rVaGatW1bcUqKClta2001NggzHELa0oYuSiaI1d7uRHbYEcZdsJLKw4GH3ohQ_7eYASqGVSMw5ZKWnKDOe0IxyWvSqa1QmVmXR1Z26kdTc7uUpDDM-hzj7Nr0fs_gnFU1iXPgE_3gOB_T7lfYrRRmWGQzvgpClwTRlFOuc_18YV0k6eSG35QUcoRZFVWfXha0WMpD_PPgsujQAUfYzCdUDblZfD7Au0gEBT7DROPG5YjPr-IeID-r_0HbWDP_w
CitedBy_id crossref_primary_10_1016_j_fecs_2022_100050
crossref_primary_10_1016_j_jag_2023_103403
crossref_primary_10_3390_rs15112919
crossref_primary_10_34133_remotesensing_0086
crossref_primary_10_3390_f15122133
crossref_primary_10_1109_JSTARS_2023_3313251
crossref_primary_10_1016_j_ecoinf_2023_102404
crossref_primary_10_3390_rs17020320
crossref_primary_10_1038_s43017_023_00508_8
crossref_primary_10_1080_22797254_2024_2334717
crossref_primary_10_3390_f14061116
crossref_primary_10_3390_rs15061638
crossref_primary_10_1080_15481603_2024_2396807
crossref_primary_10_3389_fpls_2024_1428268
crossref_primary_10_1016_j_srs_2025_100195
crossref_primary_10_1016_j_envsoft_2022_105580
crossref_primary_10_1109_JSTARS_2023_3296468
crossref_primary_10_1016_j_ecoinf_2023_102082
crossref_primary_10_1126_science_abp8622
crossref_primary_10_1088_1748_9326_acde8f
crossref_primary_10_1016_j_jag_2022_103175
crossref_primary_10_26848_rbgf_v17_2_p1127_1146
crossref_primary_10_1088_1748_9326_ac9c1d
crossref_primary_10_1016_j_jag_2024_103935
crossref_primary_10_1016_j_isprsjprs_2023_06_002
crossref_primary_10_3390_rs14133172
crossref_primary_10_3390_f14061098
crossref_primary_10_1007_s41748_024_00437_6
crossref_primary_10_3390_rs17050796
crossref_primary_10_3390_land12081479
crossref_primary_10_1016_j_srs_2024_100181
crossref_primary_10_3390_rs15225274
crossref_primary_10_1016_j_ecolind_2024_112157
crossref_primary_10_3390_s24123947
crossref_primary_10_1007_s10661_023_12066_z
crossref_primary_10_3390_rs16071281
crossref_primary_10_1016_j_rse_2024_114534
crossref_primary_10_34133_remotesensing_0132
crossref_primary_10_1016_j_jenvman_2023_118736
crossref_primary_10_1016_j_rse_2022_113367
crossref_primary_10_1016_j_catena_2024_108488
crossref_primary_10_3390_rs14184466
crossref_primary_10_1007_s12145_022_00915_3
crossref_primary_10_1080_01431161_2024_2373344
crossref_primary_10_3390_rs15123107
crossref_primary_10_4081_gh_2022_1106
crossref_primary_10_3390_f14061270
crossref_primary_10_1016_j_envsoft_2024_106268
crossref_primary_10_1016_j_rse_2024_114382
crossref_primary_10_3390_rs14205158
crossref_primary_10_1029_2022EF003314
crossref_primary_10_1080_22797254_2024_2399209
crossref_primary_10_1016_j_scitotenv_2023_164281
crossref_primary_10_3390_rs15040923
Cites_doi 10.1080/01431160110075532
10.1109/JSTARS.2012.2228167
10.1016/j.rse.2004.08.008
10.1126/science.1201609
10.1111/gcb.15679
10.1016/j.rse.2007.07.004
10.3390/f12060680
10.1080/01431168608954695
10.1016/j.jclepro.2018.01.050
10.1016/0034-4257(87)90015-0
10.1007/s13595-020-00936-2
10.3390/rs11111275
10.1007/s13595-017-0674-6
10.1016/j.rse.2020.111779
10.1080/02757259609532305
10.1016/S0034-4257(01)00259-0
10.1016/j.rse.2015.09.004
10.1080/01431161.2021.1899334
10.1016/j.rse.2017.12.020
10.1016/j.isprsjprs.2016.01.006
10.1016/j.rse.2017.11.015
10.1080/07038992.2014.945827
10.1016/j.rse.2011.08.024
10.1126/science.1244693
10.3390/rs13081530
10.1111/j.1365-2486.2011.02452.x
10.1046/j.1523-1739.1996.10030695.x
10.3390/rs13030442
10.1080/17538947.2016.1187673
10.1007/s13595-016-0590-1
10.1016/j.rse.2010.07.008
10.1016/j.rse.2010.12.007
10.1080/22797254.2020.1806734
10.1126/science.1155121
10.1007/978-94-017-8663-8
10.1016/j.rse.2022.112904
10.1016/j.srs.2020.100002
10.1126/science.aac6759
10.3390/rs13051038
10.1016/S0304-4238(99)00019-9
10.3390/rs12223720
10.14214/sf.10247
10.1109/Multi-Temp.2013.6866024
10.3832/ifor3648-014
10.1038/nclimate3303
10.1016/j.rse.2020.112234
10.1016/j.rse.2017.06.031
10.1016/j.rse.2021.112764
10.1016/j.rse.2007.05.017
10.1016/j.rse.2011.09.025
10.1023/A:1007452223027
10.1080/22797254.2022.2042397
10.1016/j.isprsjprs.2016.03.008
10.5721/EuJRS20144725
10.1016/j.rse.2017.10.034
10.1080/07038992.2016.1207484
10.1016/j.rse.2009.08.011
10.3389/fclim.2020.576740
10.1590/1809-4392201500835
10.1002/2018GL077253
10.1016/j.foreco.2016.07.007
10.1016/j.rse.2021.112845
10.1038/s41893-020-00609-y
10.3390/rs10111832
10.1126/science.1155458
10.1016/j.rse.2020.112165
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22052015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (New)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1680c890b7a749e297f39249548ddc14
PMC8914649
35271161
10_3390_s22052015
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-11d71efd393399dd8cd3d2120defbdce7dcfbb5850a77b6ded0d2e1292b067383
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:38 EDT 2025
Thu Aug 21 18:12:06 EDT 2025
Thu Sep 04 16:13:31 EDT 2025
Fri Jul 25 19:50:38 EDT 2025
Wed Feb 19 02:27:30 EST 2025
Tue Jul 01 02:41:47 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords disturbance
GEDI
biomass
harvest
regeneration
Landsat
lidar
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-11d71efd393399dd8cd3d2120defbdce7dcfbb5850a77b6ded0d2e1292b067383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6991-0289
0000-0002-5334-7548
0000-0002-9772-2258
0000-0002-0669-5726
0000-0002-2341-3268
OpenAccessLink https://www.proquest.com/docview/2637791085?pq-origsite=%requestingapplication%&accountid=15518
PMID 35271161
PQID 2637791085
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1680c890b7a749e297f39249548ddc14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8914649
proquest_miscellaneous_2638712494
proquest_journals_2637791085
pubmed_primary_35271161
crossref_citationtrail_10_3390_s22052015
crossref_primary_10_3390_s22052015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220304
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 3
  year: 2022
  text: 20220304
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Trumbore (ref_6) 2015; 349
Galford (ref_50) 2008; 112
White (ref_29) 2016; 42
Senf (ref_38) 2021; 27
McRoberts (ref_72) 2016; 378
Gorelick (ref_45) 2017; 202
Barriopedro (ref_77) 2018; 45
Woodcock (ref_53) 2001; 78
Dubayah (ref_35) 2020; 1
Chirici (ref_44) 2011; 115
ref_16
White (ref_82) 2016; 116
Liang (ref_27) 2016; 115
ref_61
ref_60
Jensen (ref_51) 1995; 61
Giannetti (ref_70) 2018; 75
Bullock (ref_13) 2020; 2
Leite (ref_32) 2021; 268
ref_24
Saarela (ref_25) 2016; 73
Kennedy (ref_12) 2010; 114
Wulder (ref_48) 2008; 112
ref_67
Francini (ref_15) 2020; 53
ref_66
ref_21
Dalponte (ref_10) 2020; 93
Bottalico (ref_43) 2014; 47
ref_64
Bartolozzi (ref_76) 1999; 81
Francini (ref_19) 2021; 42
ref_62
Hansen (ref_58) 2012; 122
Marcelli (ref_79) 2020; 54
ref_28
Canadell (ref_85) 2008; 320
ref_26
Vangi (ref_40) 2021; 14
Seto (ref_52) 2002; 23
Chirici (ref_68) 2020; 77
Yang (ref_18) 2018; 178
Kubat (ref_71) 1998; 30
Seidl (ref_8) 2017; 7
White (ref_86) 2022; 271
Bonan (ref_4) 2008; 320
Duncanson (ref_33) 2020; 242
Horler (ref_63) 1986; 7
Zheng (ref_54) 2004; 93
ref_78
Woodcock (ref_47) 1987; 21
Roy (ref_57) 2010; 114
ref_31
ref_75
Griffiths (ref_59) 2013; 6
Anderson (ref_65) 2007; 112
ref_73
Senf (ref_2) 2020; 4
Hansen (ref_22) 2013; 342
Coppin (ref_49) 1996; 13
Seidl (ref_7) 2011; 17
Potapov (ref_30) 2020; 253
Reiche (ref_14) 2018; 204
ref_37
Fragal (ref_17) 2016; 46
Silva (ref_34) 2020; 253
Baumann (ref_74) 2021; 269
ref_81
ref_80
White (ref_55) 2014; 40
Hermosilla (ref_56) 2015; 170
Pflugmacher (ref_46) 2012; 122
Hunter (ref_84) 1996; 10
Francini (ref_20) 2021; 106
ref_42
ref_41
ref_1
Laurin (ref_11) 2020; 94
ref_3
Cohen (ref_69) 2018; 205
Hermosilla (ref_83) 2016; 9
Matasci (ref_23) 2018; 209
Chirici (ref_39) 2019; 84
Duncanson (ref_36) 2022; 270
ref_9
Pan (ref_5) 2011; 333
References_xml – volume: 23
  start-page: 1985
  year: 2002
  ident: ref_52
  article-title: Monitoring land-use change in the Pearl River Delta using Landsat TM
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110075532
– volume: 6
  start-page: 2088
  year: 2013
  ident: ref_59
  article-title: A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2228167
– volume: 93
  start-page: 402
  year: 2004
  ident: ref_54
  article-title: Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.08.008
– ident: ref_78
– volume: 333
  start-page: 988
  year: 2011
  ident: ref_5
  article-title: A Large and Persistent Carbon Sink in the World’s Forests
  publication-title: Science
  doi: 10.1126/science.1201609
– volume: 27
  start-page: 3605
  year: 2021
  ident: ref_38
  article-title: Storm and fire disturbances in Europe: Distribution and trends
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15679
– volume: 112
  start-page: 955
  year: 2008
  ident: ref_48
  article-title: Landsat continuity: Issues and opportunities for land cover monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.004
– ident: ref_21
  doi: 10.3390/f12060680
– volume: 7
  start-page: 405
  year: 1986
  ident: ref_63
  article-title: Forestry information content of Thematic Mapper data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168608954695
– volume: 178
  start-page: 353
  year: 2018
  ident: ref_18
  article-title: Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.050
– volume: 21
  start-page: 311
  year: 1987
  ident: ref_47
  article-title: The factor of scale in remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90015-0
– volume: 77
  start-page: 40
  year: 2020
  ident: ref_68
  article-title: Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-020-00936-2
– ident: ref_42
– ident: ref_61
– ident: ref_1
– volume: 61
  start-page: 199
  year: 1995
  ident: ref_51
  article-title: Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_24
  doi: 10.3390/rs11111275
– volume: 75
  start-page: 6
  year: 2018
  ident: ref_70
  article-title: European Forest Types: Toward an automated classification
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-017-0674-6
– volume: 242
  start-page: 111779
  year: 2020
  ident: ref_33
  article-title: Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111779
– volume: 13
  start-page: 207
  year: 1996
  ident: ref_49
  article-title: Digital change detection in forest ecosystems with remote sensing imagery
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259609532305
– volume: 78
  start-page: 194
  year: 2001
  ident: ref_53
  article-title: Monitoring Large Areas for Forest Change Using Landsat: Generalization across Space, Time and Landsat Sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00259-0
– volume: 170
  start-page: 121
  year: 2015
  ident: ref_56
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
– volume: 42
  start-page: 4693
  year: 2021
  ident: ref_19
  article-title: The Three Indices Three Dimensions (3I3D) algorithm: A new method for forest disturbance mapping and area estimation based on optical remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1899334
– volume: 209
  start-page: 90
  year: 2018
  ident: ref_23
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.020
– volume: 115
  start-page: 63
  year: 2016
  ident: ref_27
  article-title: Terrestrial laser scanning in forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.006
– volume: 205
  start-page: 131
  year: 2018
  ident: ref_69
  article-title: A LandTrendr multispectral ensemble for forest disturbance detection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.015
– volume: 40
  start-page: 192
  year: 2014
  ident: ref_55
  article-title: Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2014.945827
– volume: 122
  start-page: 66
  year: 2012
  ident: ref_58
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.024
– volume: 342
  start-page: 850
  year: 2013
  ident: ref_22
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– ident: ref_9
  doi: 10.3390/rs13081530
– ident: ref_66
– volume: 17
  start-page: 2842
  year: 2011
  ident: ref_7
  article-title: Unraveling the drivers of intensifying forest disturbance regimes in Europe
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02452.x
– ident: ref_62
– volume: 10
  start-page: 695
  year: 1996
  ident: ref_84
  article-title: Benchmarks for managing ecosystems: Are human activities natural?
  publication-title: Conserv. Biol.
  doi: 10.1046/j.1523-1739.1996.10030695.x
– volume: 94
  start-page: 407
  year: 2020
  ident: ref_11
  article-title: Satellite open data to monitor forest damage caused by extreme climate-induced events: A case study of the Vaia storm in Northern Italy
  publication-title: For. Int. J. For. Res.
– ident: ref_31
  doi: 10.3390/rs13030442
– volume: 9
  start-page: 1035
  year: 2016
  ident: ref_83
  article-title: Mass data processing of time series Landsat imagery: Pixels to data products for forest monitoring
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1187673
– volume: 73
  start-page: 895
  year: 2016
  ident: ref_25
  article-title: Hierarchical model-based inference for forest inventory utilizing three sources of information
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-016-0590-1
– volume: 114
  start-page: 2897
  year: 2010
  ident: ref_12
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 115
  start-page: 1025
  year: 2011
  ident: ref_44
  article-title: Large-scale monitoring of coppice forest clearcuts by multitemporal very high resolution satellite imagery. A case study from central Italy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.007
– volume: 53
  start-page: 233
  year: 2020
  ident: ref_15
  article-title: Near-real time forest change detection using PlanetScope imagery
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2020.1806734
– volume: 269
  start-page: 112849
  year: 2021
  ident: ref_74
  article-title: Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks
  publication-title: Remote Sens. Environ.
– ident: ref_3
– volume: 320
  start-page: 1444
  year: 2008
  ident: ref_4
  article-title: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests
  publication-title: Science
  doi: 10.1126/science.1155121
– ident: ref_28
  doi: 10.1007/978-94-017-8663-8
– volume: 271
  start-page: 112904
  year: 2022
  ident: ref_86
  article-title: Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112904
– volume: 1
  start-page: 100002
  year: 2020
  ident: ref_35
  article-title: The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2020.100002
– volume: 349
  start-page: 814
  year: 2015
  ident: ref_6
  article-title: Forest health and global change
  publication-title: Science
  doi: 10.1126/science.aac6759
– ident: ref_41
  doi: 10.3390/rs13051038
– volume: 81
  start-page: 309
  year: 1999
  ident: ref_76
  article-title: Assessment of frost tolerance in olive (Olea europaea L.)
  publication-title: Sci. Hortic.
  doi: 10.1016/S0304-4238(99)00019-9
– ident: ref_80
  doi: 10.3390/rs12223720
– ident: ref_67
– volume: 54
  start-page: 10247
  year: 2020
  ident: ref_79
  article-title: Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information
  publication-title: Silva Fenn.
  doi: 10.14214/sf.10247
– ident: ref_16
  doi: 10.1109/Multi-Temp.2013.6866024
– ident: ref_37
– volume: 106
  start-page: 102663
  year: 2021
  ident: ref_20
  article-title: An open science and open data approach for the statistically robust estimation of forest disturbance areas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  start-page: 144
  year: 2021
  ident: ref_40
  article-title: Are we ready for a National Forest Information System? State of the art of forest maps and airborne laser scanning data availability in Italy
  publication-title: iForest
  doi: 10.3832/ifor3648-014
– volume: 7
  start-page: 395
  year: 2017
  ident: ref_8
  article-title: Forest disturbances under climate change
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3303
– volume: 84
  start-page: 101959
  year: 2019
  ident: ref_39
  article-title: Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 253
  start-page: 112234
  year: 2020
  ident: ref_34
  article-title: Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112234
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_45
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 268
  start-page: 112764
  year: 2021
  ident: ref_32
  article-title: Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112764
– volume: 112
  start-page: 576
  year: 2008
  ident: ref_50
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.017
– volume: 122
  start-page: 146
  year: 2012
  ident: ref_46
  article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.025
– volume: 112
  start-page: D11
  year: 2007
  ident: ref_65
  article-title: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 30
  start-page: 195
  year: 1998
  ident: ref_71
  article-title: Machine Learning for the Detection of Oil Spills in Satellite Radar Images
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007452223027
– ident: ref_73
  doi: 10.1080/22797254.2022.2042397
– volume: 116
  start-page: 55
  year: 2016
  ident: ref_82
  article-title: Optical remotely sensed time series data for land cover classification: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.008
– ident: ref_75
– volume: 93
  start-page: 102206
  year: 2020
  ident: ref_10
  article-title: Mapping forest windthrows using high spatial resolution multispectral satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 47
  start-page: 437
  year: 2014
  ident: ref_43
  article-title: Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by Airborne Laser Scanning data
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20144725
– ident: ref_81
– volume: 204
  start-page: 147
  year: 2018
  ident: ref_14
  article-title: Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.034
– volume: 42
  start-page: 619
  year: 2016
  ident: ref_29
  article-title: Remote Sensing Technologies for Enhancing Forest Inventories: A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1207484
– volume: 114
  start-page: 35
  year: 2010
  ident: ref_57
  article-title: Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.011
– volume: 2
  start-page: 576740
  year: 2020
  ident: ref_13
  article-title: A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine
  publication-title: Front. Clim.
  doi: 10.3389/fclim.2020.576740
– volume: 46
  start-page: 13
  year: 2016
  ident: ref_17
  article-title: Reconstructing historical forest cover change in the Lower Amazon floodplains using the LandTrendr algorithm
  publication-title: Acta Amaz.
  doi: 10.1590/1809-4392201500835
– volume: 45
  start-page: 1955
  year: 2018
  ident: ref_77
  article-title: June 2017: The Earliest European Summer Mega-heatwave of Reanalysis Period
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2018GL077253
– volume: 378
  start-page: 44
  year: 2016
  ident: ref_72
  article-title: Hybrid estimators for mean aboveground carbon per unit area
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.07.007
– ident: ref_64
– volume: 270
  start-page: 112845
  year: 2022
  ident: ref_36
  article-title: Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112845
– volume: 4
  start-page: 63
  year: 2020
  ident: ref_2
  article-title: Mapping the forest disturbance regimes of Europe
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-00609-y
– ident: ref_26
  doi: 10.3390/rs10111832
– ident: ref_60
– volume: 320
  start-page: 1456
  year: 2008
  ident: ref_85
  article-title: Managing Forests for Climate Change Mitigation
  publication-title: Science
  doi: 10.1126/science.1155458
– volume: 253
  start-page: 112165
  year: 2020
  ident: ref_30
  article-title: Mapping global forest canopy height through integration of GEDI and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112165
SSID ssj0023338
Score 2.573457
Snippet Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2015
SubjectTerms Biomass
Carbon
Climate Change
Datasets
disturbance
Ecosystem
Ecosystems
Forest management
Forests
GEDI
harvest
Humans
Landsat
lidar
Mapping
regeneration
Remote sensing
Sensors
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hnuCAoHwZ2mpAHLhY9Xo3Xi83ShoaVOAAlXqz9ssiEjhV7Bz6S_p3O7N2rKSqxIVjvKPVZmfW816y84ax95iVCys4MtUyN6k0XqW2LEzqCi8nMleYZKga-dv34uxCfr2cXG61-qI7Yb08cL9xx7woM1fqzCqjpA65VrUgzoBI23sXW1jnmc42ZGqgWgKZV68jJJDUH7dUToqpbrKTfaJI_33I8u4Fya2MM3vCHg9QET71S3zKHoRmnz3aEhB8xm7mg9oDfoIvp9M5mMbDOZXvmu4j_ERCTO-TJsD5wptVHJ3hvDANdC--hWUNP67iz9kw_0tyFteAKBYQFcJGroRsqIFn28EUY2K9shQobZzrZEHXi1roaxRaWDQwRzR__ZxdzE5_fT5Lh1YLqUN-3KWce8VD7YXG_dKeWhoJj1kt86G2uA3Ku9papBaZUcoWPvjM5wGxQm6p000pXrC9ZtmEVww4d04F9I6wTiJf0ug9WVv0IjeitC5hHzYuqNygQ07tMP5UyEfIW9XorYS9G02vevGN-4xOyI-jAellxwcYRdUQRdW_oihhB5soqIZD3FZ5QWqMVJ6RsLfjMB4_-k_FNGG5jjZIOXEmnOJlHzTjShDbKo6IOmFqJ5x2lro70ix-R4nvUmMGk_r1__hub9jDnGo26OKcPGB73WodDhFJdfYoHppbQ3gcEg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AIHxLsuBS2IAxerXnvjtZEQIiShQSUgoFJv1r4MkagdYufQX8LfZcYvGlRxjHe0We3M7sxnz3wD8AK9cqwjjkg1CZUvlJW-TmLlm9iKsQglOhmqRv64jE_OxIfz8fkeLPtaGEqr7O_E5qK2paF35MdhTNR4lCv_Zv3Lp65R9HW1b6GhutYK9nVDMXYD9vFKHgcj2J_Mlp-_DBAsQkTW8gtFCPaPKyozRRc43vFKDXn_dRHnv4mTVzzR_A7c7kJI9rbV-V3Yc8U9uHWFWPA-_F50LBD4i72fTRdMFZadUlmvql-xrwiU6Z4pHDtdWbVpRuc4L5s6ypevWJmzT-vmNTdbXBDNxSXD6JZhtMh6GhOSocaeVc2maCvbjSYDqpq5JitKO6pYW7tQsVXBFhjlXz6As_ns27sTv2vB4BvEzbXPuZXc5TZKcb9SS62OIotbG1iXa9wGaU2uNUKOQEmpY-tsYEOHMUSoqQNOEj2EUVEW7gAY58ZIJxIbaSMQR6UmSUWuk8BwFSXaePCyV0FmOn5yapPxM0OcQtrKBm158HwQXbekHNcJTUiPgwDxaDcPys33rDuWGY_x_5M00FJJkbowlXlEiBRxnLWGCw-OeivIusNdZX9N0YNnwzAeS_rWogpXbhsZhKI4E07xqDWaYSUY80qOkbYHcsecdpa6O1KsfjTU30mKnk2kh_9f1mO4GVKVBqXKiSMY1Zute4KxU62fdgfiD2faG2M
  priority: 102
  providerName: ProQuest
Title Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy
URI https://www.ncbi.nlm.nih.gov/pubmed/35271161
https://www.proquest.com/docview/2637791085
https://www.proquest.com/docview/2638712494
https://pubmed.ncbi.nlm.nih.gov/PMC8914649
https://doaj.org/article/1680c890b7a749e297f39249548ddc14
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYED4r1ZlsogDlwCceLGCRJClLa7RcuCgEq9RX4FKi3pbpJK9Jfwd5lxHtqiHrhUSj11Is-4M1888w0hL8ArxypigFSTUPpcGuGrJJa-jg0f8lCAk8Fq5E8X8dmcf1wMF3uk67HZLmC1E9phP6l5efnq9_XmHWz4t4g4AbK_rrBYFBzZcJ8cumMizODj_WFCGEWuoTXWdPngD4OGYGj7p1tuybH37wo5_82cvOGKpnfJnTaGpO8bpd8je7a4T27fYBZ8QP7MWhoIuKKnk_GMysLQc6zrlfUb-g2QMv7RFJaeL40s3egU5qVjiwnzFV3l9POVe89NZ7-Q52JDIbylEC7SjscEZbCzZ1XTMRjLulRoQZWba7TEvKOKNsULFV0WdAYrvHlI5tPJ9w9nftuDwdcAnGufMSOYzU2UwnqlBnsdRQbcXWBsrmAZhNG5UoA5AimEio01gQktBBGhwhY4SfSIHBSrwh4RypjWwvLEREpzAFKpTlKeqyTQTEaJ0h552akg0y1BOfbJuMwAqKC2sl5bHnnei141rBy7hEaox14AibTdF6vyR9buy4zFcP8kDZSQgqc2TEUeISQFIGeMZtwjJ50VZJ1xZmGMNI1Yt-GRZ_0w7Es8bJGFXa2dDGBRmAmmeNwYTf8kEPQKBqG2R8SWOW096vZIsfzpuL-TFFwbT4__475PyK0QazUwYY6fkIO6XNunEEHVakD2xULAZzI9HZDD0eTiy9eBexsxcDvnL7C_HmE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8CBRYEEherfmy8NlKFCEmIaRoQtFJvZl-GSOCE2BHKL-Hf8NuYcWzToIpbj_GuJivNeGa-9cw3AM8wKocq8BCpRr50uDTCUVEoHR0a3uO-wCBD3chH03B8wt-d9k534HfTC0NllY1PrBy1mWu6I9_3Q6LGo1r5V4sfDk2Noq-rzQgNWY9WMAcVxVjd2HFo1z8RwhUHyQD1_dz3R8PjN2OnnjLgaISGpeN5Rng2MwFC-zg2NM0nMOjQXWMzZbQVRmdKYVbtSiFUaKxxjW8xTPqKhrxEAcq9BLucLlA6sNsfTj98bCFfgAhww2eEwt39gtpaMeT2tqJgNSzgvAz330LNM5FvdB2u1Skre72xsRuwY_ObcPUMkeEt-JXUrBP4i70dDhImc8Mm1EYsy5fsEwJz8mu5ZZOZkctqdYRy2cBSfX7B5hl7v6iu1VnynWg11gyzaYbZKWtoU2gPDRItSjZA21wtFRlsUcnqz6jMqWCbXomCzXKWIKpY34aTC1HGHejk89zeA-Z5WgvLIxMozRG3xTqKeaYiV3syiJTuwotGBamu-dBpLMe3FHERaStttdWFp-3WxYYE5LxNfdJju4F4u6sH8-WXtHYDqRfi_0exq4QUPLZ-LLKAEDDiRmO0x7uw11hBWjuTIv1r-l140i6jG6BvOzK381W1B6EvSkIRdzdG054Ec2zhYWbfBbFlTltH3V7JZ18rqvEoxkjK4_v_P9ZjuDw-Ppqkk2R6-ACu-NQhQmV6fA865XJlH2LeVqpH9cvB4PNFv49_AAgWWfo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVkLwgLhjKLAgkHix4svGayNViOCEmoZQQSv1zezNbSSwQ-wI5Uv4J76KGd9oUMVbH5PdTFaa2Zk59swZQl5AVA6k7wJSDT1hM6G5LcNA2CrQbMg8DkEGu5E_zoL9Y_bhZHiyRX53vTBYVtn5xNpR60LhM_KBFyA1HtbKD7K2LOIwnrxZ_LBxghS-ae3GaYh2zILeq-nG2iaPA7P-CXCu3Eti0P1Lz5uMj97t2-3EAVsBTKxs19XcNZn2AeZHkcbJPr4G5-5ok0mtDNcqkxIybEdwLgNttKM9AyHTkzjwJfRB7hWyw-HHAAR3RuPZ4ece_vmABhtuIxDuDEpscYXwO9yIiPXggIuy3X-LNs9FwclNcqNNX-nbxt5ukS2T3ybXz5Ea3iG_kpaBAj7R9-M4oSLXdIotxaJ6Tb8ASEcflxs6nWuxrFcnIJfGBmv1S1pk9NOifsROk-9IsbGmkFlTyFRpR6GCe3CoaFnRGOx0tZRovGUtazTHkqeSNn0TJZ3nNAGEsb5Lji9FGffIdl7k5gGhrqsUNyzUvlQMMFykwohlMnSUK_xQKou86lSQqpYbHUd0fEsBI6G20l5bFnneb100hCAXbRqhHvsNyOFdf1EsT9PWJaRuAP8fRo7kgrPIeBHPfETDgCG1Vi6zyG5nBWnrWMr07zWwyLN-GVwCvucRuSlW9R6AwSAJRNxvjKY_CeTb3IUs3yJ8w5w2jrq5ks_PatrxMIKoyqKH_z_WU3IV7mU6TWYHj8g1D5tFsGKP7ZLtarkyjyGFq-ST9m5Q8vWyr-MfGnVePg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+GEDI+and+Landsat%3A+Spaceborne+Lidar+and+Four+Decades+of+Optical+Imagery+for+the+Analysis+of+Forest+Disturbances+and+Biomass+Changes+in+Italy&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Francini%2C+Saverio&rft.au=D%27Amico%2C+Giovanni&rft.au=Vangi%2C+Elia&rft.au=Borghi%2C+Costanza&rft.date=2022-03-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft_id=info:doi/10.3390%2Fs22052015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon