Considerations when using the significance analysis of microarrays (SAM) algorithm
Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The im...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 6; no. 1; p. 129 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          BioMed Central
    
        29.05.2005
     BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-6-129 | 
Cover
| Abstract | Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.
We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis.
Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing. | 
    
|---|---|
| AbstractList | Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.BACKGROUNDUsers of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis.RESULTSWe have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis.Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.CONCLUSIONOur results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing. Background: Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. Results: We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-a-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Conclusions: Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing. Abstract Background Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. Results We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Conclusion Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing. Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.  | 
    
| ArticleNumber | 129 | 
    
| Author | Wahlestedt, Claes Larsson, Ola Timmons, James A  | 
    
| AuthorAffiliation | 1 Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius Väg. 35. 171 77 Stockholm, Sweden | 
    
| AuthorAffiliation_xml | – name: 1 Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius Väg. 35. 171 77 Stockholm, Sweden | 
    
| Author_xml | – sequence: 1 givenname: Ola surname: Larsson fullname: Larsson, Ola – sequence: 2 givenname: Claes surname: Wahlestedt fullname: Wahlestedt, Claes – sequence: 3 givenname: James A surname: Timmons fullname: Timmons, James A  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15921534$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkctv1DAQxi1URB9w5oZyQnAI9dvxBala8ahUhMTjbE0cJ-vKsRc7odr_nmx3VVoO9OTR-JufvvnmFB3FFB1CLwl-R0gjzwlXpKYEi1rWhOon6OSuc3SvPkanpVxjTFSDxTN0TISmRDB-gr6tUiy-cxkmv1TVzdrFai4-DtW0dlXxQ_S9txCtqyBC2BZfqtRXo7c5Qc6wLdWb7xdf3lYQhpT9tB6fo6c9hOJeHN4z9PPjhx-rz_XV10-Xq4ur2nKpdd0KxQXlyjVKK7CdVFr2UjLctR1h0CoqWesazNte8ZbrlvNea0qF46LRTrAzdLnndgmuzSb7EfLWJPDmtpHyYCBP3gZnBO8YtY0WQDvuGAfGpLOCCUwYEwIvLLxnzXED2xsI4Q5IsNlFbXZhml2YZqmpXkbe70c2czu6zro4ZQgPfDz8iX5thvR7oSmGG7kAXh8AOf2aXZnM6It1IUB0aS5GNhhrTfCjQqIEbThTi_DVfUt_VzicexGIvWA5XinZ9cb66fbyi0Mf_rPr-T9zj6XzB0eWyuM | 
    
| CitedBy_id | crossref_primary_10_1007_s12275_009_0179_6 crossref_primary_10_3892_etm_2016_3299 crossref_primary_10_1152_japplphysiol_00634_2010 crossref_primary_10_1093_nar_gkl558 crossref_primary_10_1200_JCO_2005_03_2755 crossref_primary_10_1371_journal_pone_0003686 crossref_primary_10_1007_s00439_011_1040_7 crossref_primary_10_1002_bit_21432 crossref_primary_10_1111_j_1469_8137_2010_03333_x crossref_primary_10_1007_s11060_011_0757_4 crossref_primary_10_3892_ol_2018_8668 crossref_primary_10_1111_pce_13975 crossref_primary_10_1586_14789450_2_6_847 crossref_primary_10_1007_s11103_006_9080_4 crossref_primary_10_1186_s13040_015_0052_6 crossref_primary_10_3892_mmr_2015_3363 crossref_primary_10_1002_hep_22677 crossref_primary_10_1186_1471_2105_11_510 crossref_primary_10_1016_j_brainres_2009_05_074 crossref_primary_10_1007_s10586_018_2183_2 crossref_primary_10_1158_0008_5472_CAN_07_0752 crossref_primary_10_1152_physiolgenomics_00024_2014 crossref_primary_10_1371_journal_pone_0094644 crossref_primary_10_1371_journal_pone_0038870 crossref_primary_10_3390_ijms17111808 crossref_primary_10_1007_s11239_019_01998_4 crossref_primary_10_1016_j_jprot_2019_103441 crossref_primary_10_1186_s12864_016_2400_4 crossref_primary_10_1007_s10142_006_0043_2 crossref_primary_10_1089_omi_2006_10_381 crossref_primary_10_1038_s41598_017_03650_8 crossref_primary_10_1371_journal_pone_0080099 crossref_primary_10_1073_pnas_0610615104 crossref_primary_10_1016_j_jvs_2010_05_088 crossref_primary_10_1016_j_bbrc_2018_04_186 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1007_s10142_009_0116_0 crossref_primary_10_1186_s13048_015_0176_9 crossref_primary_10_1016_j_nbd_2007_11_008 crossref_primary_10_1152_ajprenal_00619_2009 crossref_primary_10_1177_0022034510391791 crossref_primary_10_1021_acs_jproteome_6b00956 crossref_primary_10_1007_s00213_008_1232_6 crossref_primary_10_3233_THC_174257 crossref_primary_10_1007_s11060_017_2576_8 crossref_primary_10_1186_1752_0509_8_S2_S8 crossref_primary_10_7717_peerj_8349 crossref_primary_10_1142_S0219720016500293 crossref_primary_10_1371_journal_pone_0003220 crossref_primary_10_3390_plants14040606 crossref_primary_10_3892_mmr_2015_3583 crossref_primary_10_1186_1471_2105_8_359 crossref_primary_10_1667_RR13485_1 crossref_primary_10_1016_j_jaci_2009_10_024 crossref_primary_10_18632_oncotarget_12038 crossref_primary_10_1152_japplphysiol_01295_2009 crossref_primary_10_3892_mmr_2017_7717 crossref_primary_10_1186_2052_1839_14_7 crossref_primary_10_1186_1471_2105_9_46 crossref_primary_10_1186_1471_2105_8_230 crossref_primary_10_1590_1414_431x20176685 crossref_primary_10_1089_cmb_2016_0042 crossref_primary_10_3390_plants13172501 crossref_primary_10_1371_journal_pone_0000242 crossref_primary_10_1007_s00404_014_3264_y crossref_primary_10_4137_CIN_S9258 crossref_primary_10_1016_j_exger_2006_01_012 crossref_primary_10_1016_j_jbi_2016_10_012 crossref_primary_10_1152_ajplung_90555_2008 crossref_primary_10_1021_acs_jproteome_7b00170 crossref_primary_10_1080_15216540500507390 crossref_primary_10_1186_1471_2164_7_234 crossref_primary_10_3390_nu11081819 crossref_primary_10_1371_journal_pone_0128845 crossref_primary_10_4137_GRSB_S8303 crossref_primary_10_3390_molecules23010088 crossref_primary_10_1002_jso_21941 crossref_primary_10_1021_pr100699m crossref_primary_10_1096_fj_07_8520com crossref_primary_10_1016_j_bbamcr_2005_09_005 crossref_primary_10_1016_j_jpba_2012_09_030 crossref_primary_10_1093_hmg_ddm012 crossref_primary_10_1093_eep_dvx016 crossref_primary_10_1016_j_dci_2007_03_003 crossref_primary_10_1016_j_nbd_2007_02_009 crossref_primary_10_1038_s41416_022_02122_9 crossref_primary_10_1152_physiolgenomics_00169_2007 crossref_primary_10_1371_journal_pntd_0000477 crossref_primary_10_1016_j_jchromb_2016_12_020 crossref_primary_10_1186_1471_2369_14_231  | 
    
| Cites_doi | 10.1093/nar/gng015 10.1038/nature02661 10.1093/biostatistics/4.2.249 10.1093/nar/gkh066 10.1073/pnas.091062498 10.1186/gb-2001-2-10-reports0032 10.1158/0008-5472.CAN-03-1872 10.1096/fj.04-1980com 10.1093/bioinformatics/19.2.185 10.1186/gb-2003-4-10-r70  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2005 Larsson et al; licensee BioMed Central Ltd. | 
    
| Copyright_xml | – notice: Copyright © 2005 Larsson et al; licensee BioMed Central Ltd. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-6-129 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (selected full-text)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Open Access - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 129 | 
    
| ExternalDocumentID | oai_doaj_org_article_54d32c895a2d4e34a336ec5350133550 10.1186/1471-2105-6-129 PMC1173086 15921534 10_1186_1471_2105_6_129  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB -A0 ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY  | 
    
| ID | FETCH-LOGICAL-c4699-b5745247e8797acd6796f6630dbd13ab7263be804bf74b49b44f99225e4589e53 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:52:55 EDT 2025 Wed Oct 29 12:20:15 EDT 2025 Thu Aug 21 13:26:34 EDT 2025 Fri Sep 05 10:31:55 EDT 2025 Mon Oct 06 18:01:18 EDT 2025 Wed Feb 19 01:40:52 EST 2025 Wed Oct 01 01:46:23 EDT 2025 Thu Apr 24 23:03:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4699-b5745247e8797acd6796f6630dbd13ab7263be804bf74b49b44f99225e4589e53 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-6-129 | 
    
| PMID | 15921534 | 
    
| PQID | 17528437 | 
    
| PQPubID | 23462 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_54d32c895a2d4e34a336ec5350133550 unpaywall_primary_10_1186_1471_2105_6_129 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1173086 proquest_miscellaneous_68009910 proquest_miscellaneous_17528437 pubmed_primary_15921534 crossref_citationtrail_10_1186_1471_2105_6_129 crossref_primary_10_1186_1471_2105_6_129  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005-05-29 | 
    
| PublicationDateYYYYMMDD | 2005-05-29 | 
    
| PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-29 day: 29  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: London  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2005 | 
    
| Publisher | BioMed Central BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BMC  | 
    
| References | RA Irizarry (454_CR4) 2003; 31 RA Irizarry (454_CR6) 2003; 4 C Li (454_CR1) 2001; 2 O Larsson (454_CR7) 2004; 64 DA Hosack (454_CR10) 2003; 4 MA Harris (454_CR9) 2004; 32 T Lu (454_CR8) 2004; 429 BM Bolstad (454_CR5) 2003; 19 VG Tusher (454_CR2) 2001; 98 JA Timmons (454_CR3) 2005; 19 15857889 - FASEB J. 2005 May;19(7):750-60 15190254 - Nature. 2004 Jun 24;429(6994):883-91 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 12925520 - Biostatistics. 2003 Apr;4(2):249-64 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 14744760 - Cancer Res. 2004 Jan 15;64(2):482-9 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 14519205 - Genome Biol. 2003;4(10):R70 14681407 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61  | 
    
| References_xml | – volume: 31 start-page: e15 year: 2003 ident: 454_CR4 publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 429 start-page: 883 year: 2004 ident: 454_CR8 publication-title: Nature doi: 10.1038/nature02661 – volume: 4 start-page: 249 year: 2003 ident: 454_CR6 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 32 start-page: D258 year: 2004 ident: 454_CR9 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh066 – volume: 98 start-page: 5116 year: 2001 ident: 454_CR2 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.091062498 – volume: 2 start-page: RESEARCH0032 year: 2001 ident: 454_CR1 publication-title: Genome Biol doi: 10.1186/gb-2001-2-10-reports0032 – volume: 64 start-page: 482 year: 2004 ident: 454_CR7 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-1872 – volume: 19 start-page: 750 year: 2005 ident: 454_CR3 publication-title: Faseb J doi: 10.1096/fj.04-1980com – volume: 19 start-page: 185 year: 2003 ident: 454_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 4 start-page: R70 year: 2003 ident: 454_CR10 publication-title: Genome Biol doi: 10.1186/gb-2003-4-10-r70 – reference: 15857889 - FASEB J. 2005 May;19(7):750-60 – reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64 – reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 – reference: 14681407 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61 – reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 – reference: 14519205 - Genome Biol. 2003;4(10):R70 – reference: 15190254 - Nature. 2004 Jun 24;429(6994):883-91 – reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 – reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93 – reference: 14744760 - Cancer Res. 2004 Jan 15;64(2):482-9  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.1550677 | 
    
| Snippet | Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their... Background: Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes... Abstract Background Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 129 | 
    
| SubjectTerms | Adult Aged Algorithms Computational Biology - methods Correspondence Data Interpretation, Statistical Gene Expression Profiling - methods Humans Microarray Analysis Middle Aged Models, Genetic Models, Statistical Muscle, Skeletal - metabolism Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated Phenotype Research Design Software Software Design  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ (selected full-text) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLadOX-0h16CE5uFnrrWNaEkIhPbQN5CZGtpwNbLxhs0vYf98Z2bvN0oZcAsYYWTbyaOz5RjP-hrHPCkFIBFeVUQl0UCBRfBcnRCIYiMa1wmc6hpMf5vhUfT_TZ7dKfVFOWE8P3AtuX6tGitp5DaJRSSqQ0qRaUzxMoq3M3vrI-ZUzNcQPiKk__1dkqxKdGj2Q-lTO7K_bSipA4zfsUabt_x_W_Ddl8smiu4LlDUwmt-zR0XP2bACS_KB_gBfsUeq22eO-tOTyJfu5qsTZr8jxm3HqOCW5n3OEfJzSNihJiOacw0BMwqctv6QEPZjNYHnNd38dnOxxmJxPZxfz8eUrdnp0-PvbcTnUTyhrdHp9GbVVWiibnPUW6oaWjFpEGKMmNpWEaIWRMbmRiq1VUfmoVEs0tTop7XzS8jXb6qZdesu4UUlAAmujATR7CkZt01pZ1xJ3zkLBvqykGOqBXJxqXExCdjKcCST2QGIPeCx8wXbXF1z1vBp3d_1K07LuRoTYuQHVJAxqEu5Tk4J9Wk1qwBeIoiLQpeniOiB-QhMt7d09jCMcXeE93vRK8HfE2iNkkqpgdkM9Nsa6eaa7GGcS76rCb6szBdtbK9J9gnj3EIJ4z55m9lnchP_AtuazRfqIuGoed_Ir9Adm8Rj7 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRC8jDsLVz_wsD2ka-L7Y0FME9IGAiqNp8hOnLYiTaqs1VR-PcdJWlbYhJCQoihKjiNfju3v2MffAXjDEIRYo6LQshgNFOP8_i42CEUwYIXKY93QMZyeiZMR-3DOz3fg4_osjJ2ldlp1pKGeqLh_9Rh60Z5y8FEUXH00z_K20ytxFOEgG6L5wkMfVkbfgl3BEZz3YHd09mn4rTlj1El0BD_XpNqamxoK_-tw55_uk3eW5dysLk1RXJmbju_BfF2q1iXle3-5sP30x2-Ej_-x2Pdhr8OxZNgq3gPYceVDuN1Gtlw9gs_rQKDtgiC5nLiSeB_7MUHESbzXiPdR8ipHTMeLQqqczLx_oKlrs7ogB1-Gp4fEFOOqni4ms8cwOn7_9d1J2IVvCFO0uXVouWQ8ZtIpqaVJM79ilSPAGWQ2i6ixMhbUOjVgNpfMMm0Zyz1LLneMK-04fQK9sirdPhDBXGyckdIKg7MuM4M8yyVNU4o3JU0A_XXDJWnHbe5DbBRJY-MokfiKSnxFJfgc6wAONgnmLa3HzaJvvSZsxDwfd_OiqsdJ170TzjIap0pzE2fMYQYpFS7lfteWIqIbBPB6rUcJ9l-_KWNKVy0vEoRviBCovFlCKA_jI_zH01bvfuWYa0RslAUgtzRyK6_bX8rppOEQjyIc2pUI4HCju3-riGf_IPsc7jYct3jF-gX0FvXSvUT0trCvuh75E9CiPuU priority: 102 providerName: Unpaywall  | 
    
| Title | Considerations when using the significance analysis of microarrays (SAM) algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15921534 https://www.proquest.com/docview/17528437 https://www.proquest.com/docview/68009910 https://pubmed.ncbi.nlm.nih.gov/PMC1173086 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-6-129 https://doaj.org/article/54d32c895a2d4e34a336ec5350133550  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Open Access - DOAJ customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEF7ahNJeSt9VH-4eekgOSi3t-1CKWxqCwaE0NaQnsSut7IAipbJN6n_fGUm2a2pTMMbIK3vZmdF8szt8HyHvOYAQZ3UUOh5DgWI9nu-CQRiAASd1HpuGjmF0Ls_GfHgpLjdyQN0CznaWdqgnNa6Lk9-_lp8g4D82Aa_lhwgesCGULiJESRlzlxxCmjKo4zDimyMFJO_vuH123NTI8xjIf4xvZaiGyH8X-vy3ifL-oryxy1tbFH9lqNNH5GEHLemg9YXH5I4vn5B7rdjk8in5vtLmbPfo6O3UlxTb3icUQCDFRg5sG0IvoLajKqFVTq-xZc_WtV3O6NHFYHRMbTGp6qv59PoZGZ9-_fHlLOwUFcIUymATOqG4iLnyWhll0ww3kXLAHP3MZRGzTsWSOa_73OWKO24c5zkS1wrPhTZesOfkoKxK_5JQyX1svVXKSQuJkNt-nuWKpSmDN61sQE5Wq5ikHd04ql4USVN2aJmgBRK0QAKfYxOQo_UNNy3Txv6hn9Es62FIkd1cqOpJ0kVcInjG4lQbYeOMe5ggY9KnAg9SGYCsfkDerYyaQEjhOYktfbWYJYCoIGkztX-E1IisI_iNF60TbGbcOVFA1JZ7bM11-5vyatrQekcRPG21DMjx2pH-txCv9v7_a_KgIZmFV2zekIN5vfBvAT7NXY8cDgbDi2Gv2X7oNUEC18bn3wY__wCSmxZz | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRC8jDsLVz_wsD2ka-L7Y0FME9IGAiqNp8hOnLYiTaqs1VR-PcdJWlbYhJCQoihKjiNfju3v2MffAXjDEIRYo6LQshgNFOP8_i42CEUwYIXKY93QMZyeiZMR-3DOz3fg4_osjJ2ldlp1pKGeqLh_9Rh60Z5y8FEUXH00z_K20ytxFOEgG6L5wkMfVkbfgl3BEZz3YHd09mn4rTlj1El0BD_XpNqamxoK_-tw55_uk3eW5dysLk1RXJmbju_BfF2q1iXle3-5sP30x2-Ej_-x2Pdhr8OxZNgq3gPYceVDuN1Gtlw9gs_rQKDtgiC5nLiSeB_7MUHESbzXiPdR8ipHTMeLQqqczLx_oKlrs7ogB1-Gp4fEFOOqni4ms8cwOn7_9d1J2IVvCFO0uXVouWQ8ZtIpqaVJM79ilSPAGWQ2i6ixMhbUOjVgNpfMMm0Zyz1LLneMK-04fQK9sirdPhDBXGyckdIKg7MuM4M8yyVNU4o3JU0A_XXDJWnHbe5DbBRJY-MokfiKSnxFJfgc6wAONgnmLa3HzaJvvSZsxDwfd_OiqsdJ170TzjIap0pzE2fMYQYpFS7lfteWIqIbBPB6rUcJ9l-_KWNKVy0vEoRviBCovFlCKA_jI_zH01bvfuWYa0RslAUgtzRyK6_bX8rppOEQjyIc2pUI4HCju3-riGf_IPsc7jYct3jF-gX0FvXSvUT0trCvuh75E9CiPuU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+when+using+the+significance+analysis+of+microarrays+%28SAM%29+algorithm&rft.jtitle=BMC+bioinformatics&rft.au=Larsson%2C+Ola&rft.au=Wahlestedt%2C+Claes&rft.au=Timmons%2C+James+A&rft.date=2005-05-29&rft.eissn=1471-2105&rft.volume=6&rft.spage=129&rft_id=info:doi/10.1186%2F1471-2105-6-129&rft_id=info%3Apmid%2F15921534&rft.externalDocID=15921534 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |