Considerations when using the significance analysis of microarrays (SAM) algorithm

Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The im...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 6; no. 1; p. 129
Main Authors Larsson, Ola, Wahlestedt, Claes, Timmons, James A
Format Journal Article
LanguageEnglish
Published England BioMed Central 29.05.2005
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-6-129

Cover

Abstract Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.
AbstractList Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.BACKGROUNDUsers of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication.We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis.RESULTSWe have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis.Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.CONCLUSIONOur results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.
Background: Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. Results: We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-a-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Conclusions: Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.
Abstract Background Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. Results We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Conclusion Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.
Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their experiments. One of the most frequently utilised methods for gene expression data analysis is SAM (significance analysis of microarrays). The impact of selection thresholds, on the output from SAM, may critically alter the conclusion of a study, yet this consideration has not been systematically evaluated in any publication. We have examined the effect of discrete data selection criteria (qualification criteria for inclusion) and response thresholds (out-put filtering) on the number of significant genes reported by SAM. The use of a reduced data set by applying arbitrary restrictions vis-à-vis abundance calls (e.g. from D-chip) or application of the fold change (FC) option within SAM (named the FC hurdle hereafter), can substantially alter the significant gene list when running SAM in Microsoft Excel. We determined that for a given final FC criteria (e.g. 1.5 fold change) the FC hurdle applied within Microsoft Excel SAM alters the number of reported genes above the final FC criteria. The reason is that the FC hurdle changes the composition of the control data set, such that a different significance level (q-value) is obtained for any given gene. This effect can be so large that it changes subsequent post hoc analysis interpretation, such as ontology overrepresentation analysis. Our results argue for caution when using SAM. All data sets analysed with SAM could be reanalysed taking into account the potential impact of the use of arbitrary thresholds to trim data sets before significance testing.
ArticleNumber 129
Author Wahlestedt, Claes
Larsson, Ola
Timmons, James A
AuthorAffiliation 1 Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius Väg. 35. 171 77 Stockholm, Sweden
AuthorAffiliation_xml – name: 1 Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius Väg. 35. 171 77 Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Ola
  surname: Larsson
  fullname: Larsson, Ola
– sequence: 2
  givenname: Claes
  surname: Wahlestedt
  fullname: Wahlestedt, Claes
– sequence: 3
  givenname: James A
  surname: Timmons
  fullname: Timmons, James A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15921534$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQxi1URB9w5oZyQnAI9dvxBala8ahUhMTjbE0cJ-vKsRc7odr_nmx3VVoO9OTR-JufvvnmFB3FFB1CLwl-R0gjzwlXpKYEi1rWhOon6OSuc3SvPkanpVxjTFSDxTN0TISmRDB-gr6tUiy-cxkmv1TVzdrFai4-DtW0dlXxQ_S9txCtqyBC2BZfqtRXo7c5Qc6wLdWb7xdf3lYQhpT9tB6fo6c9hOJeHN4z9PPjhx-rz_XV10-Xq4ur2nKpdd0KxQXlyjVKK7CdVFr2UjLctR1h0CoqWesazNte8ZbrlvNea0qF46LRTrAzdLnndgmuzSb7EfLWJPDmtpHyYCBP3gZnBO8YtY0WQDvuGAfGpLOCCUwYEwIvLLxnzXED2xsI4Q5IsNlFbXZhml2YZqmpXkbe70c2czu6zro4ZQgPfDz8iX5thvR7oSmGG7kAXh8AOf2aXZnM6It1IUB0aS5GNhhrTfCjQqIEbThTi_DVfUt_VzicexGIvWA5XinZ9cb66fbyi0Mf_rPr-T9zj6XzB0eWyuM
CitedBy_id crossref_primary_10_1007_s12275_009_0179_6
crossref_primary_10_3892_etm_2016_3299
crossref_primary_10_1152_japplphysiol_00634_2010
crossref_primary_10_1093_nar_gkl558
crossref_primary_10_1200_JCO_2005_03_2755
crossref_primary_10_1371_journal_pone_0003686
crossref_primary_10_1007_s00439_011_1040_7
crossref_primary_10_1002_bit_21432
crossref_primary_10_1111_j_1469_8137_2010_03333_x
crossref_primary_10_1007_s11060_011_0757_4
crossref_primary_10_3892_ol_2018_8668
crossref_primary_10_1111_pce_13975
crossref_primary_10_1586_14789450_2_6_847
crossref_primary_10_1007_s11103_006_9080_4
crossref_primary_10_1186_s13040_015_0052_6
crossref_primary_10_3892_mmr_2015_3363
crossref_primary_10_1002_hep_22677
crossref_primary_10_1186_1471_2105_11_510
crossref_primary_10_1016_j_brainres_2009_05_074
crossref_primary_10_1007_s10586_018_2183_2
crossref_primary_10_1158_0008_5472_CAN_07_0752
crossref_primary_10_1152_physiolgenomics_00024_2014
crossref_primary_10_1371_journal_pone_0094644
crossref_primary_10_1371_journal_pone_0038870
crossref_primary_10_3390_ijms17111808
crossref_primary_10_1007_s11239_019_01998_4
crossref_primary_10_1016_j_jprot_2019_103441
crossref_primary_10_1186_s12864_016_2400_4
crossref_primary_10_1007_s10142_006_0043_2
crossref_primary_10_1089_omi_2006_10_381
crossref_primary_10_1038_s41598_017_03650_8
crossref_primary_10_1371_journal_pone_0080099
crossref_primary_10_1073_pnas_0610615104
crossref_primary_10_1016_j_jvs_2010_05_088
crossref_primary_10_1016_j_bbrc_2018_04_186
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1007_s10142_009_0116_0
crossref_primary_10_1186_s13048_015_0176_9
crossref_primary_10_1016_j_nbd_2007_11_008
crossref_primary_10_1152_ajprenal_00619_2009
crossref_primary_10_1177_0022034510391791
crossref_primary_10_1021_acs_jproteome_6b00956
crossref_primary_10_1007_s00213_008_1232_6
crossref_primary_10_3233_THC_174257
crossref_primary_10_1007_s11060_017_2576_8
crossref_primary_10_1186_1752_0509_8_S2_S8
crossref_primary_10_7717_peerj_8349
crossref_primary_10_1142_S0219720016500293
crossref_primary_10_1371_journal_pone_0003220
crossref_primary_10_3390_plants14040606
crossref_primary_10_3892_mmr_2015_3583
crossref_primary_10_1186_1471_2105_8_359
crossref_primary_10_1667_RR13485_1
crossref_primary_10_1016_j_jaci_2009_10_024
crossref_primary_10_18632_oncotarget_12038
crossref_primary_10_1152_japplphysiol_01295_2009
crossref_primary_10_3892_mmr_2017_7717
crossref_primary_10_1186_2052_1839_14_7
crossref_primary_10_1186_1471_2105_9_46
crossref_primary_10_1186_1471_2105_8_230
crossref_primary_10_1590_1414_431x20176685
crossref_primary_10_1089_cmb_2016_0042
crossref_primary_10_3390_plants13172501
crossref_primary_10_1371_journal_pone_0000242
crossref_primary_10_1007_s00404_014_3264_y
crossref_primary_10_4137_CIN_S9258
crossref_primary_10_1016_j_exger_2006_01_012
crossref_primary_10_1016_j_jbi_2016_10_012
crossref_primary_10_1152_ajplung_90555_2008
crossref_primary_10_1021_acs_jproteome_7b00170
crossref_primary_10_1080_15216540500507390
crossref_primary_10_1186_1471_2164_7_234
crossref_primary_10_3390_nu11081819
crossref_primary_10_1371_journal_pone_0128845
crossref_primary_10_4137_GRSB_S8303
crossref_primary_10_3390_molecules23010088
crossref_primary_10_1002_jso_21941
crossref_primary_10_1021_pr100699m
crossref_primary_10_1096_fj_07_8520com
crossref_primary_10_1016_j_bbamcr_2005_09_005
crossref_primary_10_1016_j_jpba_2012_09_030
crossref_primary_10_1093_hmg_ddm012
crossref_primary_10_1093_eep_dvx016
crossref_primary_10_1016_j_dci_2007_03_003
crossref_primary_10_1016_j_nbd_2007_02_009
crossref_primary_10_1038_s41416_022_02122_9
crossref_primary_10_1152_physiolgenomics_00169_2007
crossref_primary_10_1371_journal_pntd_0000477
crossref_primary_10_1016_j_jchromb_2016_12_020
crossref_primary_10_1186_1471_2369_14_231
Cites_doi 10.1093/nar/gng015
10.1038/nature02661
10.1093/biostatistics/4.2.249
10.1093/nar/gkh066
10.1073/pnas.091062498
10.1186/gb-2001-2-10-reports0032
10.1158/0008-5472.CAN-03-1872
10.1096/fj.04-1980com
10.1093/bioinformatics/19.2.185
10.1186/gb-2003-4-10-r70
ContentType Journal Article
Copyright Copyright © 2005 Larsson et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2005 Larsson et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-6-129
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (selected full-text)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 129
ExternalDocumentID oai_doaj_org_article_54d32c895a2d4e34a336ec5350133550
10.1186/1471-2105-6-129
PMC1173086
15921534
10_1186_1471_2105_6_129
Genre Journal Article
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
-A0
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c4699-b5745247e8797acd6796f6630dbd13ab7263be804bf74b49b44f99225e4589e53
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:52:55 EDT 2025
Wed Oct 29 12:20:15 EDT 2025
Thu Aug 21 13:26:34 EDT 2025
Fri Sep 05 10:31:55 EDT 2025
Mon Oct 06 18:01:18 EDT 2025
Wed Feb 19 01:40:52 EST 2025
Wed Oct 01 01:46:23 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4699-b5745247e8797acd6796f6630dbd13ab7263be804bf74b49b44f99225e4589e53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-6-129
PMID 15921534
PQID 17528437
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_54d32c895a2d4e34a336ec5350133550
unpaywall_primary_10_1186_1471_2105_6_129
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1173086
proquest_miscellaneous_68009910
proquest_miscellaneous_17528437
pubmed_primary_15921534
crossref_citationtrail_10_1186_1471_2105_6_129
crossref_primary_10_1186_1471_2105_6_129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-29
PublicationDateYYYYMMDD 2005-05-29
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-29
  day: 29
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2005
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References RA Irizarry (454_CR4) 2003; 31
RA Irizarry (454_CR6) 2003; 4
C Li (454_CR1) 2001; 2
O Larsson (454_CR7) 2004; 64
DA Hosack (454_CR10) 2003; 4
MA Harris (454_CR9) 2004; 32
T Lu (454_CR8) 2004; 429
BM Bolstad (454_CR5) 2003; 19
VG Tusher (454_CR2) 2001; 98
JA Timmons (454_CR3) 2005; 19
15857889 - FASEB J. 2005 May;19(7):750-60
15190254 - Nature. 2004 Jun 24;429(6994):883-91
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
12925520 - Biostatistics. 2003 Apr;4(2):249-64
11532216 - Genome Biol. 2001;2(8):RESEARCH0032
14744760 - Cancer Res. 2004 Jan 15;64(2):482-9
12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
14519205 - Genome Biol. 2003;4(10):R70
14681407 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61
References_xml – volume: 31
  start-page: e15
  year: 2003
  ident: 454_CR4
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 429
  start-page: 883
  year: 2004
  ident: 454_CR8
  publication-title: Nature
  doi: 10.1038/nature02661
– volume: 4
  start-page: 249
  year: 2003
  ident: 454_CR6
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 32
  start-page: D258
  year: 2004
  ident: 454_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh066
– volume: 98
  start-page: 5116
  year: 2001
  ident: 454_CR2
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.091062498
– volume: 2
  start-page: RESEARCH0032
  year: 2001
  ident: 454_CR1
  publication-title: Genome Biol
  doi: 10.1186/gb-2001-2-10-reports0032
– volume: 64
  start-page: 482
  year: 2004
  ident: 454_CR7
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-03-1872
– volume: 19
  start-page: 750
  year: 2005
  ident: 454_CR3
  publication-title: Faseb J
  doi: 10.1096/fj.04-1980com
– volume: 19
  start-page: 185
  year: 2003
  ident: 454_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 4
  start-page: R70
  year: 2003
  ident: 454_CR10
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-10-r70
– reference: 15857889 - FASEB J. 2005 May;19(7):750-60
– reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64
– reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
– reference: 14681407 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 14519205 - Genome Biol. 2003;4(10):R70
– reference: 15190254 - Nature. 2004 Jun 24;429(6994):883-91
– reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032
– reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
– reference: 14744760 - Cancer Res. 2004 Jan 15;64(2):482-9
SSID ssj0017805
Score 2.1550677
Snippet Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes in their...
Background: Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression changes...
Abstract Background Users of microarray technology typically strive to use universally acceptable data analysis strategies to determine significant expression...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 129
SubjectTerms Adult
Aged
Algorithms
Computational Biology - methods
Correspondence
Data Interpretation, Statistical
Gene Expression Profiling - methods
Humans
Microarray Analysis
Middle Aged
Models, Genetic
Models, Statistical
Muscle, Skeletal - metabolism
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated
Phenotype
Research Design
Software
Software Design
SummonAdditionalLinks – databaseName: DOAJ (selected full-text)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLadOX-0h16CE5uFnrrWNaEkIhPbQN5CZGtpwNbLxhs0vYf98Z2bvN0oZcAsYYWTbyaOz5RjP-hrHPCkFIBFeVUQl0UCBRfBcnRCIYiMa1wmc6hpMf5vhUfT_TZ7dKfVFOWE8P3AtuX6tGitp5DaJRSSqQ0qRaUzxMoq3M3vrI-ZUzNcQPiKk__1dkqxKdGj2Q-lTO7K_bSipA4zfsUabt_x_W_Ddl8smiu4LlDUwmt-zR0XP2bACS_KB_gBfsUeq22eO-tOTyJfu5qsTZr8jxm3HqOCW5n3OEfJzSNihJiOacw0BMwqctv6QEPZjNYHnNd38dnOxxmJxPZxfz8eUrdnp0-PvbcTnUTyhrdHp9GbVVWiibnPUW6oaWjFpEGKMmNpWEaIWRMbmRiq1VUfmoVEs0tTop7XzS8jXb6qZdesu4UUlAAmujATR7CkZt01pZ1xJ3zkLBvqykGOqBXJxqXExCdjKcCST2QGIPeCx8wXbXF1z1vBp3d_1K07LuRoTYuQHVJAxqEu5Tk4J9Wk1qwBeIoiLQpeniOiB-QhMt7d09jCMcXeE93vRK8HfE2iNkkqpgdkM9Nsa6eaa7GGcS76rCb6szBdtbK9J9gnj3EIJ4z55m9lnchP_AtuazRfqIuGoed_Ir9Adm8Rj7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRC8jDsLVz_wsD2ka-L7Y0FME9IGAiqNp8hOnLYiTaqs1VR-PcdJWlbYhJCQoihKjiNfju3v2MffAXjDEIRYo6LQshgNFOP8_i42CEUwYIXKY93QMZyeiZMR-3DOz3fg4_osjJ2ldlp1pKGeqLh_9Rh60Z5y8FEUXH00z_K20ytxFOEgG6L5wkMfVkbfgl3BEZz3YHd09mn4rTlj1El0BD_XpNqamxoK_-tw55_uk3eW5dysLk1RXJmbju_BfF2q1iXle3-5sP30x2-Ej_-x2Pdhr8OxZNgq3gPYceVDuN1Gtlw9gs_rQKDtgiC5nLiSeB_7MUHESbzXiPdR8ipHTMeLQqqczLx_oKlrs7ogB1-Gp4fEFOOqni4ms8cwOn7_9d1J2IVvCFO0uXVouWQ8ZtIpqaVJM79ilSPAGWQ2i6ixMhbUOjVgNpfMMm0Zyz1LLneMK-04fQK9sirdPhDBXGyckdIKg7MuM4M8yyVNU4o3JU0A_XXDJWnHbe5DbBRJY-MokfiKSnxFJfgc6wAONgnmLa3HzaJvvSZsxDwfd_OiqsdJ170TzjIap0pzE2fMYQYpFS7lfteWIqIbBPB6rUcJ9l-_KWNKVy0vEoRviBCovFlCKA_jI_zH01bvfuWYa0RslAUgtzRyK6_bX8rppOEQjyIc2pUI4HCju3-riGf_IPsc7jYct3jF-gX0FvXSvUT0trCvuh75E9CiPuU
  priority: 102
  providerName: Unpaywall
Title Considerations when using the significance analysis of microarrays (SAM) algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/15921534
https://www.proquest.com/docview/17528437
https://www.proquest.com/docview/68009910
https://pubmed.ncbi.nlm.nih.gov/PMC1173086
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-6-129
https://doaj.org/article/54d32c895a2d4e34a336ec5350133550
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Open Access - DOAJ
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEF7ahNJeSt9VH-4eekgOSi3t-1CKWxqCwaE0NaQnsSut7IAipbJN6n_fGUm2a2pTMMbIK3vZmdF8szt8HyHvOYAQZ3UUOh5DgWI9nu-CQRiAASd1HpuGjmF0Ls_GfHgpLjdyQN0CznaWdqgnNa6Lk9-_lp8g4D82Aa_lhwgesCGULiJESRlzlxxCmjKo4zDimyMFJO_vuH123NTI8xjIf4xvZaiGyH8X-vy3ifL-oryxy1tbFH9lqNNH5GEHLemg9YXH5I4vn5B7rdjk8in5vtLmbPfo6O3UlxTb3icUQCDFRg5sG0IvoLajKqFVTq-xZc_WtV3O6NHFYHRMbTGp6qv59PoZGZ9-_fHlLOwUFcIUymATOqG4iLnyWhll0ww3kXLAHP3MZRGzTsWSOa_73OWKO24c5zkS1wrPhTZesOfkoKxK_5JQyX1svVXKSQuJkNt-nuWKpSmDN61sQE5Wq5ikHd04ql4USVN2aJmgBRK0QAKfYxOQo_UNNy3Txv6hn9Es62FIkd1cqOpJ0kVcInjG4lQbYeOMe5ggY9KnAg9SGYCsfkDerYyaQEjhOYktfbWYJYCoIGkztX-E1IisI_iNF60TbGbcOVFA1JZ7bM11-5vyatrQekcRPG21DMjx2pH-txCv9v7_a_KgIZmFV2zekIN5vfBvAT7NXY8cDgbDi2Gv2X7oNUEC18bn3wY__wCSmxZz
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4anRC8jDsLVz_wsD2ka-L7Y0FME9IGAiqNp8hOnLYiTaqs1VR-PcdJWlbYhJCQoihKjiNfju3v2MffAXjDEIRYo6LQshgNFOP8_i42CEUwYIXKY93QMZyeiZMR-3DOz3fg4_osjJ2ldlp1pKGeqLh_9Rh60Z5y8FEUXH00z_K20ytxFOEgG6L5wkMfVkbfgl3BEZz3YHd09mn4rTlj1El0BD_XpNqamxoK_-tw55_uk3eW5dysLk1RXJmbju_BfF2q1iXle3-5sP30x2-Ej_-x2Pdhr8OxZNgq3gPYceVDuN1Gtlw9gs_rQKDtgiC5nLiSeB_7MUHESbzXiPdR8ipHTMeLQqqczLx_oKlrs7ogB1-Gp4fEFOOqni4ms8cwOn7_9d1J2IVvCFO0uXVouWQ8ZtIpqaVJM79ilSPAGWQ2i6ixMhbUOjVgNpfMMm0Zyz1LLneMK-04fQK9sirdPhDBXGyckdIKg7MuM4M8yyVNU4o3JU0A_XXDJWnHbe5DbBRJY-MokfiKSnxFJfgc6wAONgnmLa3HzaJvvSZsxDwfd_OiqsdJ170TzjIap0pzE2fMYQYpFS7lfteWIqIbBPB6rUcJ9l-_KWNKVy0vEoRviBCovFlCKA_jI_zH01bvfuWYa0RslAUgtzRyK6_bX8rppOEQjyIc2pUI4HCju3-riGf_IPsc7jYct3jF-gX0FvXSvUT0trCvuh75E9CiPuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Considerations+when+using+the+significance+analysis+of+microarrays+%28SAM%29+algorithm&rft.jtitle=BMC+bioinformatics&rft.au=Larsson%2C+Ola&rft.au=Wahlestedt%2C+Claes&rft.au=Timmons%2C+James+A&rft.date=2005-05-29&rft.eissn=1471-2105&rft.volume=6&rft.spage=129&rft_id=info:doi/10.1186%2F1471-2105-6-129&rft_id=info%3Apmid%2F15921534&rft.externalDocID=15921534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon