Evolution of a ZW sex chromosome system in willows

Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7144 - 10
Main Authors Hu, Nan, Sanderson, Brian J., Guo, Minghao, Feng, Guanqiao, Gambhir, Diksha, Hale, Haley, Wang, Deyan, Hyden, Brennan, Liu, Jianquan, Smart, Lawrence B., DiFazio, Stephen P., Ma, Tao, Olson, Matthew S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-42880-5

Cover

Abstract Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y.
AbstractList Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y.
Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y.
Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.
Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.
Abstract Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.
ArticleNumber 7144
Author Sanderson, Brian J.
Wang, Deyan
Olson, Matthew S.
Hale, Haley
Liu, Jianquan
DiFazio, Stephen P.
Gambhir, Diksha
Hu, Nan
Hyden, Brennan
Smart, Lawrence B.
Guo, Minghao
Ma, Tao
Feng, Guanqiao
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0002-7032-0558
  surname: Hu
  fullname: Hu, Nan
  organization: Department of Biological Sciences, Texas Tech University
– sequence: 2
  givenname: Brian J.
  orcidid: 0000-0002-0310-0440
  surname: Sanderson
  fullname: Sanderson, Brian J.
  organization: Department of Molecular Biosciences, University of Kansas
– sequence: 3
  givenname: Minghao
  orcidid: 0000-0002-9325-7395
  surname: Guo
  fullname: Guo, Minghao
  organization: Department of Biological Sciences, Texas Tech University
– sequence: 4
  givenname: Guanqiao
  surname: Feng
  fullname: Feng, Guanqiao
  organization: Department of Biological Sciences, Texas Tech University
– sequence: 5
  givenname: Diksha
  surname: Gambhir
  fullname: Gambhir, Diksha
  organization: Department of Biological Sciences, Texas Tech University
– sequence: 6
  givenname: Haley
  surname: Hale
  fullname: Hale, Haley
  organization: HudsonAlpha Institute for Biotechnology
– sequence: 7
  givenname: Deyan
  surname: Wang
  fullname: Wang, Deyan
  organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University
– sequence: 8
  givenname: Brennan
  surname: Hyden
  fullname: Hyden, Brennan
  organization: Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech
– sequence: 9
  givenname: Jianquan
  surname: Liu
  fullname: Liu, Jianquan
  organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University
– sequence: 10
  givenname: Lawrence B.
  orcidid: 0000-0002-7812-7736
  surname: Smart
  fullname: Smart, Lawrence B.
  organization: Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech
– sequence: 11
  givenname: Stephen P.
  orcidid: 0000-0003-4077-1590
  surname: DiFazio
  fullname: DiFazio, Stephen P.
  organization: Department of Biology, West Virginia University
– sequence: 12
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University
– sequence: 13
  givenname: Matthew S.
  orcidid: 0000-0002-0798-145X
  surname: Olson
  fullname: Olson, Matthew S.
  email: matt.olson@ttu.edu
  organization: Department of Biological Sciences, Texas Tech University
BookMark eNp9UU1P3TAQtCqqQil_oKdIvfQS6u-PU1UhCkhIXKgq9WI5zubhpySmdgLl3-O8ULVwwBev7JnZ2Z33aG-MIyD0keBjgpn-kjnhUtWYsppTrXEt3qADijmpiaJs7796Hx3lvMXlMEM05-_QPlOGUSrJAaKnd7GfpxDHKnaVq379rDL8qfxNikPMcYAqP-QJhiqM1X3o-3ifP6C3neszHD3dh-jH99Prk_P68urs4uTbZe25NLImHYiWa-GVIsIzbyg4zCko7hoGXEjSiNZIqbxvsW6alja8c0IzIakynrBDdLHqttFt7W0Kg0sPNrpgdw8xbaxLU_A9WGwazhxI75njTHOHoV0qzCg2spFF6-uqdTs3A7Qexim5_pno858x3NhNvLMES6qJEUXh85NCir9nyJMdQvbQ926EOGdbMpCGKSxUgX56Ad3GOY1lVzsUl2Xzy3h6RfkUc07QWR8mtyRRDIS-dLZL0HYN2pag7S5ou3ihL6h_B3mVxFZSLuBxA-mfq1dYjywxuT0
CitedBy_id crossref_primary_10_1111_nph_19744
crossref_primary_10_1093_jxb_erae173
Cites_doi 10.2307/2406423
10.1038/s41467-020-19559-2
10.1101/201178
10.1073/pnas.1319227111
10.1186/s13059-020-1952-4
10.1038/s41467-018-08014-y
10.1371/journal.pone.0147671
10.1038/s41437-020-00397-3
10.1111/jeb.14076
10.1086/519795
10.1111/jeb.13336
10.1186/1471-2105-10-421
10.1186/s12864-021-08021-2
10.1038/hdy.2014.125
10.1002/j.1537-2197.1988.tb14200.x
10.1093/g3journal/jkac071
10.1038/s41477-021-00884-3
10.1007/s10577-008-1227-5
10.1093/bioinformatics/bty191
10.1086/674026
10.1007/s00438-018-1473-y
10.1007/BF00986668
10.1126/science.aal3327
10.1093/bioinformatics/btaa1016
10.1534/genetics.110.118596
10.1038/s41438-021-00606-y
10.2478/sg-2021-0012
10.1371/journal.pgen.1001121
10.1016/j.cels.2016.07.002
10.1111/nph.13983
10.1111/mec.13126
10.1038/s41598-018-37412-x
10.1093/molbev/msab179
10.1007/s00035-018-0213-6
10.1111/j.1558-5646.2009.00871.x
10.1093/bioinformatics/btz891
10.1093/bioinformatics/btp352
10.1007/s001220050442
10.1002/ajb2.1704
10.1093/molbev/msaa261
10.1111/mec.16551
10.1093/nar/22.22.4673
10.1038/s41587-019-0072-8
10.1093/acprof:oso/9780199657148.001.0001
10.3732/ajb.1500143
10.1038/s41477-020-0672-9
10.1098/rstb.2021.0217
10.1093/molbev/msab120
10.3390/genes12040483
10.1093/jxb/erac260
10.1111/mec.14831
10.1038/s41437-019-0225-z
10.1371/journal.pbio.1001899
10.1098/rspb.2002.2004
10.1371/journal.pbio.1002078
10.1126/science.1174705
10.3390/genes13050804
10.1186/s13059-022-02769-w
10.3389/fpls.2020.01162
10.1093/acprof:oso/9780199657148.003.0001
10.1038/s41467-018-06517-2
10.1093/bioinformatics/btp324
10.1023/A:1009858528374
10.1038/sdata.2014.15
10.1111/evo.13543
10.1111/nph.13497
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-42880-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6
PMC10628195
10_1038_s41467_023_42880_5
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31561123001
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Science Foundation (NSF)
  grantid: 1542599; 1542479; 1542486
  funderid: https://doi.org/10.13039/100000001
– fundername: ;
  grantid: 1542599; 1542479; 1542486
– fundername: ;
  grantid: 31561123001
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4696-1fe5d485c7715c3c92ea042e74ab3e4561b5d9667ccd08bbd2b4fa58356279c13
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:48 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Fri Sep 05 02:56:03 EDT 2025
Wed Aug 13 04:55:05 EDT 2025
Tue Jul 01 02:10:43 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4696-1fe5d485c7715c3c92ea042e74ab3e4561b5d9667ccd08bbd2b4fa58356279c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0310-0440
0000-0002-9325-7395
0000-0002-7032-0558
0000-0002-7812-7736
0000-0003-4077-1590
0000-0002-0798-145X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-42880-5
PMID 37932261
PQID 2886462611
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10628195
proquest_miscellaneous_2886937057
proquest_journals_2886462611
crossref_citationtrail_10_1038_s41467_023_42880_5
crossref_primary_10_1038_s41467_023_42880_5
springer_journals_10_1038_s41467_023_42880_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-06
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SandersonBJSex determination through X-Y heterogamety in Salix nigraHeredity (Edinb.)20211266306391:CAS:528:DC%2BB3MXhtVensLrK3351046410.1038/s41437-020-00397-3
Harris, R. S. Improved pairwise alignment of genomic DNA, The Pennsylvania State University, (2007).
MiuraIIdentification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systemsMol. Ecol.202231385938701:CAS:528:DC%2BB38XitFCjsL%2FL3569101110.1111/mec.16551
OgataMLambertMEzazTMiuraIReconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog speciesMol. Ecol.201827407840891:CAS:528:DC%2BC1cXitVWjs7jJ3008619310.1111/mec.14831
YangWA General Model to Explain Repeated Turnovers of Sex Determination in the SalicaceaeMol. Biol. Evol.2021389689801:CAS:528:DC%2BB3MXhvFymsbrL3302751910.1093/molbev/msaa261
HuJFanJSunZLiuSNextPolish: a fast and efficient genome polishing tool for long-read assemblyBioinformatics202036225322551:CAS:528:DC%2BB3cXitlOlsr7K3177814410.1093/bioinformatics/btz891
SaundersPANeuenschwanderSPerrinNSex chromosome turnovers and genetic drift: a simulation studyJ. Evol. Biol.201831141314191:CAS:528:DC%2BC1cXhs1Kjsr%2FO2992324610.1111/jeb.13336
HoughJHollisterJDWangWBarrettSCWrightSIGenetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulusProc. Natl Acad. Sci. USA2014111771377181:CAS:528:DC%2BC2cXnsl2lur4%3D24825885404061310.1073/pnas.13192271112014PNAS..111.7713H
MaWJVeltsosPThe Diversity and Evolution of Sex Chromosomes in FrogsGenes (Basel)2021124831:CAS:528:DC%2BB3MXhtFyht73N3381052410.3390/genes12040483
KimGMontalvãoAPLKerstenBFladungMMüllerNAThe genetic basis of sex determination in provides molecular markers across the genus and indicates convergent evolutionSilvae Genet.20217014515510.2478/sg-2021-0012
CronkQMüllerNADefault Sex and Single Gene Sex Determination in Dioecious PlantsFront. Plant Sci.202011116232849717740321810.3389/fpls.2020.01162
Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014).
TamuraKStecherGKumarSMEGA11: Molecular Evolutionary Genetics Analysis Version 11Mol. Biol. Evol.202138302230271:CAS:528:DC%2BB3MXitlCktrfN33892491823349610.1093/molbev/msab120
ThompsonJDHigginsDGGibsonTJCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.199422467346801:CAS:528:DyaK2MXitlSgu74%3D798441730851710.1093/nar/22.22.4673
VamosiJCOttoSPWhen looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plantsProc. Biol. Sci.20022691187119412061964169100510.1098/rspb.2002.2004
ChenYWangTFangLLiXYinTConfirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage AnalysisPLoS One201611e014767126828940473466010.1371/journal.pone.0147671
AnsaiSDiversity of sex chromosomes in Sulawesian medaka fishesJ. Evol. Biol.202235175117641:CAS:528:DC%2BB38XisVOnsbjI3605450110.1111/jeb.14076
Keefover-RingKCarlsonCHHydenBAzeemMSmartLBGenetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willowJ. Exp. Bot.202273635263661:CAS:528:DC%2BB3sXlt1Ogsr8%3D3571031210.1093/jxb/erac260
VillanuevaRAMChenZJggplot2: Elegant Graphics for Data Analysis (2nd ed.)Meas.: Interdiscip. Res. Perspect.201917160167
RennerSSMullerNAPlant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degenerationNat. Plants202173924023378258110.1038/s41477-021-00884-3
UbedaFPattenMMWildGOn the origin of sex chromosomes from meiotic driveProc. Biol. Sci.201528220141932253924704262170
Argus, G. Flora of North America, vol. 7: Magnoliophyta: Salicaceae to Brassicaceae. Vol. 7 23-51 (Oxford University Press, 2010).
Alström-RapaportCLascouxMGullbergUSex determination and sex ratio in the dioecious shrub Salix viminalis LTheor. Appl. Genet.19979449349710.1007/s001220050442
BachtrogDSex determination: why so many ways of doing it?PLoS Biol.201412e100189924983465407765410.1371/journal.pbio.1001899
DudchenkoODe novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffoldsScience201735692951:CAS:528:DC%2BC2sXlsVymsbo%3D28336562563582010.1126/science.aal33272017Sci...356...92D
LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp352
BalounovaVEvolution of sex determination and heterogamety changes in section Otites of the genus SileneSci. Rep.2019930705300635584410.1038/s41598-018-37412-x2019NatSR...9.1045B
LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191
LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324
RobertsRBSerJRKocherTDSexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishesScience200932699810011:CAS:528:DC%2BD1MXhtlyls7fN19797625317426810.1126/science.11747052009Sci...326..998R
Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, 2020).
RohwerJKubitzkiKSalix martiana, a regularly hermaphrodite willowPlant Syst. Evol.19841449910110.1007/BF00986668
GeraldesARecent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus)Mol. Ecol.201524324332561:STN:280:DC%2BC2MrpvVGrtg%3D%3D2572827010.1111/mec.13126
WangDRepeated turnovers keep sex chromosomes young in willowsGenome Biol.2022231:CAS:528:DC%2BB38XisFKhtrfL36151581950264910.1186/s13059-022-02769-w
HallingbäckHRPucholtPIngvarssonPKRönnberg-WästljungACBerlinSGenome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalisBMC Genomics20212234600471848749910.1186/s12864-021-08021-2
TennessenJAGovindarajuluRListonAAshmanTLHomomorphicZWchromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining regionN. Phytol.2016211141214231:CAS:528:DC%2BC28Xht1Kku77O10.1111/nph.13983
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178. https://doi.org/10.1101/201178 (2018).
Tree of Sex: a database of sexual systems. Sci Data1, 140015, https://doi.org/10.1038/sdata.2014.15 (2014).
VicosoBBachtrogDNumerous transitions of sex chromosomes in DipteraPLoS Biol.201513e100207825879221440010210.1371/journal.pbio.1002078
LiYA chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determinationMol. Ecol.20221513661380
SaundersPANeuenschwanderSPerrinNImpact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogametyHeredity (Edinb.)20191234194283102837010.1038/s41437-019-0225-z
AugstenovaBZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicatedEvolution2018721701170710.1111/evo.13543
KolmogorovMYuanJLinYPevznerPAAssembly of long, error-prone reads using repeat graphsNat. Biotechnol.2019375405461:CAS:528:DC%2BC1MXosV2qsrs%3D3093656210.1038/s41587-019-0072-8
ZhouRA willow sex chromosome reveals convergent evolution of complex palindromic repeatsGenome Biol.20202132059685702375010.1186/s13059-020-1952-4
SalickJPfefferEThe interplay of hybridization and clonal reproduction in the evolution of willows – Experiments with hybrids of S. eriocephala[R] & S. exigua[X] and S. eriocephala & S. petiolaris[P]Plant Ecol.199914116317810.1023/A:1009858528374
XueLEvidences for a role of two Y-specific genes in sex determination in Populus deltoidesNat. Commun.2020111:CAS:528:DC%2BB3cXisVSgtL7L33208755767441110.1038/s41467-020-19559-22020NatCo..11.5893X
PucholtPRonnberg-WastljungACBerlinSSingle locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)Heredity20151145755831:CAS:528:DC%2BC2MXit1anu7s%3D25649501443424910.1038/hdy.2014.125
CharlesworthDPlant contributions to our understanding of sex chromosome evolutionN. Phytol.201520852651:CAS:528:DC%2BC2MXhsVChsrzM10.1111/nph.13497
van DoornGSKirkpatrickMTransitions between male and female heterogamety caused by sex-antagonistic selectionGenetics201018662964520628036295447610.1534/genetics.110.118596
Sanderson, B. J. et al. Phylogenomics reveals patterns of ancient hybridization and differential diversification contributing to phylogenetic conflict in willows, poplars, and close relatives. Syst. Biol. syad042. https://doi.org/10.1101/201178 (2023).
Beukeboom, L. W. & Perrin, N. What are sexes, and why are there sexes?, (Oxford Univ Press, 2014).
ZhouRCharacterization of a large sex determination region in Salix purpurea L. (Salicaceae)Mol. Genet Genomics2018293143714521:CAS:528:DC%2BC1cXhtlekt7bF3002235210.1007/s00438-018-1473-y
SerJRRobertsRBKocherTDMultiple interacting loci control sex determination in lake Malawi cichlid fishEvolution2010644865011986358710.1111/j.1558-5646.2009.00871.x
PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795
Che-CastaldoCCrisafulliCMBishopJGFaganWFWhat causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?Am. J. Bot.2015102130913221:CAS:528:DC%2BC28Xns1Kitrc%3D10.3732/ajb.1500143
NatriHMMerilaJShikanoTThe evolution of sex determination associated with a chromosomal inversionNat. Commun.20191030635564632982710.1038/s41467-018-08014-y2019NatCo..10..145N
MullerNAA single gene underlies the dynamic evolution of poplar sex determinationNat. Plants202066306373248332610.1038/s41477-020-0672-9
SmithBWThe evolving karyotype of Rumex hastatulusEvolution19643893
B Augstenova (42880_CR24) 2018; 72
C Camacho (42880_CR71) 2009; 10
R Zhou (42880_CR35) 2020; 21
R Zhou (42880_CR37) 2018; 293
PA Saunders (42880_CR21) 2019; 123
AP Leite Montalvao (42880_CR42) 2022; 377
JM Sardell (42880_CR8) 2021; 38
42880_CR27
JD Thompson (42880_CR73) 1994; 22
JA Tennessen (42880_CR12) 2016; 211
RR Wick (42880_CR58) 2017; 3
J Salick (42880_CR43) 1999; 141
H Li (42880_CR67) 2009; 25
42880_CR75
O Dudchenko (42880_CR62) 2017; 356
H Li (42880_CR66) 2009; 25
A Shumate (42880_CR65) 2021; 37
C Che-Castaldo (42880_CR52) 2015; 102
BW Smith (42880_CR10) 1964; 38
W Yang (42880_CR33) 2021; 38
WJ Ma (42880_CR17) 2021; 12
NA Muller (42880_CR26) 2020; 6
HM Natri (42880_CR9) 2019; 10
BJ Sanderson (42880_CR29) 2021; 126
DL Jeffries (42880_CR14) 2018; 9
C Alström-Rapaport (42880_CR54) 1997; 94
CF Sacchi (42880_CR55) 1988; 75
B Vicoso (42880_CR7) 2015; 13
42880_CR63
42880_CR68
HR Hallingbäck (42880_CR41) 2021; 22
42880_CR69
Y Takehana (42880_CR15) 2008; 16
RAM Villanueva (42880_CR72) 2019; 17
PA Saunders (42880_CR56) 2018; 31
42880_CR4
B Hyden (42880_CR39) 2021; 8
42880_CR5
TD Kocher (42880_CR18) 2022; 13
K Keefover-Ring (42880_CR48) 2022; 73
42880_CR3
42880_CR1
I Miura (42880_CR22) 2022; 31
SS Renner (42880_CR45) 2021; 7
G Kim (42880_CR34) 2021; 70
O Blaser (42880_CR49) 2014; 183
V Balounova (42880_CR46) 2019; 9
F Ubeda (42880_CR50) 2015; 282
K Tamura (42880_CR74) 2021; 38
P Pucholt (42880_CR36) 2015; 114
D Bachtrog (42880_CR2) 2014; 12
RB Roberts (42880_CR13) 2009; 326
S Purcell (42880_CR70) 2007; 81
M Hroneš (42880_CR53) 2018; 129
Y Li (42880_CR25) 2022; 15
A Geraldes (42880_CR32) 2015; 24
J Hough (42880_CR11) 2014; 111
D Wang (42880_CR30) 2022; 23
J Rohwer (42880_CR28) 1984; 144
RH Baker (42880_CR6) 2010; 6
D Charlesworth (42880_CR57) 2015; 208
J Hu (42880_CR60) 2020; 36
NC Durand (42880_CR61) 2016; 3
M Kolmogorov (42880_CR59) 2019; 37
DG Wilkerson (42880_CR38) 2022; 12
Y Chen (42880_CR40) 2016; 11
H Li (42880_CR64) 2018; 34
JR Ser (42880_CR16) 2010; 64
GS van Doorn (42880_CR20) 2010; 186
FE Gouker (42880_CR51) 2021; 108
S Ansai (42880_CR19) 2022; 35
Q Cronk (42880_CR44) 2020; 11
JC Vamosi (42880_CR47) 2002; 269
L Xue (42880_CR31) 2020; 11
M Ogata (42880_CR23) 2018; 27
References_xml – reference: Harris, R. S. Improved pairwise alignment of genomic DNA, The Pennsylvania State University, (2007).
– reference: WickRRJuddLMGorrieCLHoltKECompleting bacterial genome assemblies with multiplex MinION sequencingMicro. Genom.20173e000132
– reference: SaundersPANeuenschwanderSPerrinNSex chromosome turnovers and genetic drift: a simulation studyJ. Evol. Biol.201831141314191:CAS:528:DC%2BC1cXhs1Kjsr%2FO2992324610.1111/jeb.13336
– reference: LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324
– reference: Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014).
– reference: WangDRepeated turnovers keep sex chromosomes young in willowsGenome Biol.2022231:CAS:528:DC%2BB38XisFKhtrfL36151581950264910.1186/s13059-022-02769-w
– reference: SmithBWThe evolving karyotype of Rumex hastatulusEvolution1964389310410.2307/2406423
– reference: ZhouRA willow sex chromosome reveals convergent evolution of complex palindromic repeatsGenome Biol.20202132059685702375010.1186/s13059-020-1952-4
– reference: CharlesworthDPlant contributions to our understanding of sex chromosome evolutionN. Phytol.201520852651:CAS:528:DC%2BC2MXhsVChsrzM10.1111/nph.13497
– reference: AugstenovaBZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicatedEvolution2018721701170710.1111/evo.13543
– reference: VicosoBBachtrogDNumerous transitions of sex chromosomes in DipteraPLoS Biol.201513e100207825879221440010210.1371/journal.pbio.1002078
– reference: MiuraIIdentification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systemsMol. Ecol.202231385938701:CAS:528:DC%2BB38XitFCjsL%2FL3569101110.1111/mec.16551
– reference: HoughJHollisterJDWangWBarrettSCWrightSIGenetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulusProc. Natl Acad. Sci. USA2014111771377181:CAS:528:DC%2BC2cXnsl2lur4%3D24825885404061310.1073/pnas.13192271112014PNAS..111.7713H
– reference: Argus, G. Flora of North America, vol. 7: Magnoliophyta: Salicaceae to Brassicaceae. Vol. 7 23-51 (Oxford University Press, 2010).
– reference: Tree of Sex: a database of sexual systems. Sci Data1, 140015, https://doi.org/10.1038/sdata.2014.15 (2014).
– reference: LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191
– reference: ThompsonJDHigginsDGGibsonTJCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.199422467346801:CAS:528:DyaK2MXitlSgu74%3D798441730851710.1093/nar/22.22.4673
– reference: PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795
– reference: TakehanaYHamaguchiSSakaizumiMDifferent origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsiChromosome Res2008168018111:CAS:528:DC%2BD1cXps1WktrY%3D1860776110.1007/s10577-008-1227-5
– reference: SardellJMJosephsonMPDalzielACPeichelCLKirkpatrickMHeterogeneous histories of recombination suppression on stickleback sex chromosomesMol. Biol. Evol.202138440344181:CAS:528:DC%2BB38XhslKjsb%2FE34117766847617110.1093/molbev/msab179
– reference: MaWJVeltsosPThe Diversity and Evolution of Sex Chromosomes in FrogsGenes (Basel)2021124831:CAS:528:DC%2BB3MXhtFyht73N3381052410.3390/genes12040483
– reference: BalounovaVEvolution of sex determination and heterogamety changes in section Otites of the genus SileneSci. Rep.2019930705300635584410.1038/s41598-018-37412-x2019NatSR...9.1045B
– reference: CamachoCBLAST+: architecture and applicationsBMC Bioinforma.20091010.1186/1471-2105-10-421
– reference: NatriHMMerilaJShikanoTThe evolution of sex determination associated with a chromosomal inversionNat. Commun.20191030635564632982710.1038/s41467-018-08014-y2019NatCo..10..145N
– reference: ZhouRCharacterization of a large sex determination region in Salix purpurea L. (Salicaceae)Mol. Genet Genomics2018293143714521:CAS:528:DC%2BC1cXhtlekt7bF3002235210.1007/s00438-018-1473-y
– reference: van DoornGSKirkpatrickMTransitions between male and female heterogamety caused by sex-antagonistic selectionGenetics201018662964520628036295447610.1534/genetics.110.118596
– reference: OgataMLambertMEzazTMiuraIReconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog speciesMol. Ecol.201827407840891:CAS:528:DC%2BC1cXitVWjs7jJ3008619310.1111/mec.14831
– reference: HallingbäckHRPucholtPIngvarssonPKRönnberg-WästljungACBerlinSGenome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalisBMC Genomics20212234600471848749910.1186/s12864-021-08021-2
– reference: Keefover-RingKCarlsonCHHydenBAzeemMSmartLBGenetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willowJ. Exp. Bot.202273635263661:CAS:528:DC%2BB3sXlt1Ogsr8%3D3571031210.1093/jxb/erac260
– reference: RennerSSMullerNAPlant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degenerationNat. Plants202173924023378258110.1038/s41477-021-00884-3
– reference: BlaserONeuenschwanderSPerrinNSex-chromosome turnovers: the hot-potato modelAm. Nat.20141831401462433474310.1086/674026
– reference: RobertsRBSerJRKocherTDSexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishesScience200932699810011:CAS:528:DC%2BD1MXhtlyls7fN19797625317426810.1126/science.11747052009Sci...326..998R
– reference: XueLEvidences for a role of two Y-specific genes in sex determination in Populus deltoidesNat. Commun.2020111:CAS:528:DC%2BB3cXisVSgtL7L33208755767441110.1038/s41467-020-19559-22020NatCo..11.5893X
– reference: Patterson, J. T. & Stone, W. S. Evolution in the genus Drosophila. First Edition edn, (Macmillan, 1952).
– reference: HronešMHrachová MacurováSHradílekZHekeraPDuchoslavMFemale-biased sex ratio despite the absence of spatial and niche segregation between sexes in alpine populations of dioecious Salix lapponum (Salicaceae)Alp. Bot.20181291910.1007/s00035-018-0213-6
– reference: RohwerJKubitzkiKSalix martiana, a regularly hermaphrodite willowPlant Syst. Evol.19841449910110.1007/BF00986668
– reference: SacchiCFPricePWPollination of the Arroyo Willow, Salix Lasiolepis: Role of Insects and WindAm. J. Bot.1988751387139310.1002/j.1537-2197.1988.tb14200.x
– reference: ChenYWangTFangLLiXYinTConfirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage AnalysisPLoS One201611e014767126828940473466010.1371/journal.pone.0147671
– reference: SerJRRobertsRBKocherTDMultiple interacting loci control sex determination in lake Malawi cichlid fishEvolution2010644865011986358710.1111/j.1558-5646.2009.00871.x
– reference: Alström-RapaportCLascouxMGullbergUSex determination and sex ratio in the dioecious shrub Salix viminalis LTheor. Appl. Genet.19979449349710.1007/s001220050442
– reference: Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, 2020).
– reference: JeffriesDLA rapid rate of sex-chromosome turnover and non-random transitions in true frogsNat. Commun.201893029123310.1038/s41467-018-06517-22018NatCo...9.4088J
– reference: SaundersPANeuenschwanderSPerrinNImpact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogametyHeredity (Edinb.)20191234194283102837010.1038/s41437-019-0225-z
– reference: PucholtPRonnberg-WastljungACBerlinSSingle locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)Heredity20151145755831:CAS:528:DC%2BC2MXit1anu7s%3D25649501443424910.1038/hdy.2014.125
– reference: HuJFanJSunZLiuSNextPolish: a fast and efficient genome polishing tool for long-read assemblyBioinformatics202036225322551:CAS:528:DC%2BB3cXitlOlsr7K3177814410.1093/bioinformatics/btz891
– reference: Sanderson, B. J. et al. Phylogenomics reveals patterns of ancient hybridization and differential diversification contributing to phylogenetic conflict in willows, poplars, and close relatives. Syst. Biol. syad042. https://doi.org/10.1101/201178 (2023).
– reference: BachtrogDSex determination: why so many ways of doing it?PLoS Biol.201412e100189924983465407765410.1371/journal.pbio.1001899
– reference: AnsaiSDiversity of sex chromosomes in Sulawesian medaka fishesJ. Evol. Biol.202235175117641:CAS:528:DC%2BB38XisVOnsbjI3605450110.1111/jeb.14076
– reference: KimGMontalvãoAPLKerstenBFladungMMüllerNAThe genetic basis of sex determination in provides molecular markers across the genus and indicates convergent evolutionSilvae Genet.20217014515510.2478/sg-2021-0012
– reference: YangWA General Model to Explain Repeated Turnovers of Sex Determination in the SalicaceaeMol. Biol. Evol.2021389689801:CAS:528:DC%2BB3MXhvFymsbrL3302751910.1093/molbev/msaa261
– reference: LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp352
– reference: KolmogorovMYuanJLinYPevznerPAAssembly of long, error-prone reads using repeat graphsNat. Biotechnol.2019375405461:CAS:528:DC%2BC1MXosV2qsrs%3D3093656210.1038/s41587-019-0072-8
– reference: SandersonBJSex determination through X-Y heterogamety in Salix nigraHeredity (Edinb.)20211266306391:CAS:528:DC%2BB3MXhtVensLrK3351046410.1038/s41437-020-00397-3
– reference: TamuraKStecherGKumarSMEGA11: Molecular Evolutionary Genetics Analysis Version 11Mol. Biol. Evol.202138302230271:CAS:528:DC%2BB3MXitlCktrfN33892491823349610.1093/molbev/msab120
– reference: SalickJPfefferEThe interplay of hybridization and clonal reproduction in the evolution of willows – Experiments with hybrids of S. eriocephala[R] & S. exigua[X] and S. eriocephala & S. petiolaris[P]Plant Ecol.199914116317810.1023/A:1009858528374
– reference: LiYA chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determinationMol. Ecol.20221513661380
– reference: MullerNAA single gene underlies the dynamic evolution of poplar sex determinationNat. Plants202066306373248332610.1038/s41477-020-0672-9
– reference: ShumateASalzbergSLLiftoff: accurate mapping of gene annotationsBioinformatics202137163916431:CAS:528:DC%2BB3MXitlGgt7bE33320174828937410.1093/bioinformatics/btaa1016
– reference: GoukerFESexual dimorphism in the dioecious willow Salix purpureaAm. J. Bot.2021108137413871:CAS:528:DC%2BB38Xot1Sqsw%3D%3D3440665810.1002/ajb2.1704
– reference: Che-CastaldoCCrisafulliCMBishopJGFaganWFWhat causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?Am. J. Bot.2015102130913221:CAS:528:DC%2BC28Xns1Kitrc%3D10.3732/ajb.1500143
– reference: VamosiJCOttoSPWhen looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plantsProc. Biol. Sci.20022691187119412061964169100510.1098/rspb.2002.2004
– reference: VillanuevaRAMChenZJggplot2: Elegant Graphics for Data Analysis (2nd ed.)Meas.: Interdiscip. Res. Perspect.201917160167
– reference: BakerRHWilkinsonGSComparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis)PLoS Genet.20106e100112120862308294073410.1371/journal.pgen.1001121
– reference: DurandNCJuicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C ExperimentsCell Syst.2016395981:CAS:528:DC%2BC2sXhtFKksbk%3D27467249584646510.1016/j.cels.2016.07.002
– reference: HydenBIntegrative genomics reveals paths to sex dimorphism in Salix purpurea LHorticulture Res.2021811410.1038/s41438-021-00606-y
– reference: CronkQMüllerNADefault Sex and Single Gene Sex Determination in Dioecious PlantsFront. Plant Sci.202011116232849717740321810.3389/fpls.2020.01162
– reference: GeraldesARecent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus)Mol. Ecol.201524324332561:STN:280:DC%2BC2MrpvVGrtg%3D%3D2572827010.1111/mec.13126
– reference: DudchenkoODe novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffoldsScience201735692951:CAS:528:DC%2BC2sXlsVymsbo%3D28336562563582010.1126/science.aal33272017Sci...356...92D
– reference: Beukeboom, L. W. & Perrin, N. What are sexes, and why are there sexes?, (Oxford Univ Press, 2014).
– reference: WilkersonDGTaskiranBCarlsonCHSmartLBMapping the sex determination region in the Salix F1 hybrid common parent population confirms a ZW system in six diverse speciesG3 (Bethesda)202212jkac0711:CAS:528:DC%2BB38XitV2is7%2FP10.1093/g3journal/jkac071
– reference: Leite MontalvaoAPKerstenBKimGFladungMMullerNAARR17 controls dioecy in Populus by repressing B-class MADS-box gene expressionPhilos. Trans. R. Soc. Lond. B Biol. Sci.20223772021021735306887893531210.1098/rstb.2021.0217
– reference: TennessenJAGovindarajuluRListonAAshmanTLHomomorphicZWchromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining regionN. Phytol.2016211141214231:CAS:528:DC%2BC28Xht1Kku77O10.1111/nph.13983
– reference: Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178. https://doi.org/10.1101/201178 (2018).
– reference: KocherTDNew Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini)Genes (Basel)2022138041:CAS:528:DC%2BB38XhsVent73O3562718910.3390/genes13050804
– reference: UbedaFPattenMMWildGOn the origin of sex chromosomes from meiotic driveProc. Biol. Sci.201528220141932253924704262170
– volume: 38
  start-page: 93
  year: 1964
  ident: 42880_CR10
  publication-title: Evolution
  doi: 10.2307/2406423
– volume: 11
  year: 2020
  ident: 42880_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19559-2
– volume: 282
  start-page: 20141932
  year: 2015
  ident: 42880_CR50
  publication-title: Proc. Biol. Sci.
– ident: 42880_CR69
  doi: 10.1101/201178
– volume: 15
  start-page: 1366
  year: 2022
  ident: 42880_CR25
  publication-title: Mol. Ecol.
– volume: 111
  start-page: 7713
  year: 2014
  ident: 42880_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319227111
– volume: 21
  year: 2020
  ident: 42880_CR35
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1952-4
– ident: 42880_CR75
  doi: 10.1101/201178
– volume: 10
  year: 2019
  ident: 42880_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08014-y
– volume: 11
  start-page: e0147671
  year: 2016
  ident: 42880_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147671
– volume: 126
  start-page: 630
  year: 2021
  ident: 42880_CR29
  publication-title: Heredity (Edinb.)
  doi: 10.1038/s41437-020-00397-3
– volume: 35
  start-page: 1751
  year: 2022
  ident: 42880_CR19
  publication-title: J. Evol. Biol.
  doi: 10.1111/jeb.14076
– volume: 81
  start-page: 559
  year: 2007
  ident: 42880_CR70
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/519795
– volume: 31
  start-page: 1413
  year: 2018
  ident: 42880_CR56
  publication-title: J. Evol. Biol.
  doi: 10.1111/jeb.13336
– volume: 10
  year: 2009
  ident: 42880_CR71
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-10-421
– volume: 22
  year: 2021
  ident: 42880_CR41
  publication-title: BMC Genomics
  doi: 10.1186/s12864-021-08021-2
– ident: 42880_CR5
– volume: 114
  start-page: 575
  year: 2015
  ident: 42880_CR36
  publication-title: Heredity
  doi: 10.1038/hdy.2014.125
– ident: 42880_CR27
– volume: 75
  start-page: 1387
  year: 1988
  ident: 42880_CR55
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1988.tb14200.x
– volume: 12
  start-page: jkac071
  year: 2022
  ident: 42880_CR38
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkac071
– volume: 7
  start-page: 392
  year: 2021
  ident: 42880_CR45
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00884-3
– volume: 16
  start-page: 801
  year: 2008
  ident: 42880_CR15
  publication-title: Chromosome Res
  doi: 10.1007/s10577-008-1227-5
– volume: 34
  start-page: 3094
  year: 2018
  ident: 42880_CR64
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 183
  start-page: 140
  year: 2014
  ident: 42880_CR49
  publication-title: Am. Nat.
  doi: 10.1086/674026
– volume: 293
  start-page: 1437
  year: 2018
  ident: 42880_CR37
  publication-title: Mol. Genet Genomics
  doi: 10.1007/s00438-018-1473-y
– volume: 144
  start-page: 99
  year: 1984
  ident: 42880_CR28
  publication-title: Plant Syst. Evol.
  doi: 10.1007/BF00986668
– volume: 356
  start-page: 92
  year: 2017
  ident: 42880_CR62
  publication-title: Science
  doi: 10.1126/science.aal3327
– volume: 37
  start-page: 1639
  year: 2021
  ident: 42880_CR65
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa1016
– volume: 186
  start-page: 629
  year: 2010
  ident: 42880_CR20
  publication-title: Genetics
  doi: 10.1534/genetics.110.118596
– volume: 8
  start-page: 1
  year: 2021
  ident: 42880_CR39
  publication-title: Horticulture Res.
  doi: 10.1038/s41438-021-00606-y
– volume: 70
  start-page: 145
  year: 2021
  ident: 42880_CR34
  publication-title: Silvae Genet.
  doi: 10.2478/sg-2021-0012
– volume: 6
  start-page: e1001121
  year: 2010
  ident: 42880_CR6
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001121
– volume: 3
  start-page: 95
  year: 2016
  ident: 42880_CR61
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.07.002
– volume: 211
  start-page: 1412
  year: 2016
  ident: 42880_CR12
  publication-title: N. Phytol.
  doi: 10.1111/nph.13983
– volume: 24
  start-page: 3243
  year: 2015
  ident: 42880_CR32
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13126
– volume: 9
  year: 2019
  ident: 42880_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37412-x
– volume: 38
  start-page: 4403
  year: 2021
  ident: 42880_CR8
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msab179
– volume: 129
  start-page: 1
  year: 2018
  ident: 42880_CR53
  publication-title: Alp. Bot.
  doi: 10.1007/s00035-018-0213-6
– volume: 64
  start-page: 486
  year: 2010
  ident: 42880_CR16
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00871.x
– volume: 36
  start-page: 2253
  year: 2020
  ident: 42880_CR60
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz891
– volume: 25
  start-page: 2078
  year: 2009
  ident: 42880_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 94
  start-page: 493
  year: 1997
  ident: 42880_CR54
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220050442
– volume: 108
  start-page: 1374
  year: 2021
  ident: 42880_CR51
  publication-title: Am. J. Bot.
  doi: 10.1002/ajb2.1704
– volume: 38
  start-page: 968
  year: 2021
  ident: 42880_CR33
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa261
– volume: 17
  start-page: 160
  year: 2019
  ident: 42880_CR72
  publication-title: Meas.: Interdiscip. Res. Perspect.
– volume: 31
  start-page: 3859
  year: 2022
  ident: 42880_CR22
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.16551
– volume: 22
  start-page: 4673
  year: 1994
  ident: 42880_CR73
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 37
  start-page: 540
  year: 2019
  ident: 42880_CR59
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0072-8
– ident: 42880_CR1
  doi: 10.1093/acprof:oso/9780199657148.001.0001
– volume: 102
  start-page: 1309
  year: 2015
  ident: 42880_CR52
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1500143
– volume: 3
  start-page: e000132
  year: 2017
  ident: 42880_CR58
  publication-title: Micro. Genom.
– volume: 6
  start-page: 630
  year: 2020
  ident: 42880_CR26
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-0672-9
– volume: 377
  start-page: 20210217
  year: 2022
  ident: 42880_CR42
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2021.0217
– volume: 38
  start-page: 3022
  year: 2021
  ident: 42880_CR74
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msab120
– volume: 12
  start-page: 483
  year: 2021
  ident: 42880_CR17
  publication-title: Genes (Basel)
  doi: 10.3390/genes12040483
– volume: 73
  start-page: 6352
  year: 2022
  ident: 42880_CR48
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erac260
– volume: 27
  start-page: 4078
  year: 2018
  ident: 42880_CR23
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14831
– volume: 123
  start-page: 419
  year: 2019
  ident: 42880_CR21
  publication-title: Heredity (Edinb.)
  doi: 10.1038/s41437-019-0225-z
– ident: 42880_CR63
– volume: 12
  start-page: e1001899
  year: 2014
  ident: 42880_CR2
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001899
– volume: 269
  start-page: 1187
  year: 2002
  ident: 42880_CR47
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2002.2004
– volume: 13
  start-page: e1002078
  year: 2015
  ident: 42880_CR7
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002078
– ident: 42880_CR68
– volume: 326
  start-page: 998
  year: 2009
  ident: 42880_CR13
  publication-title: Science
  doi: 10.1126/science.1174705
– volume: 13
  start-page: 804
  year: 2022
  ident: 42880_CR18
  publication-title: Genes (Basel)
  doi: 10.3390/genes13050804
– volume: 23
  year: 2022
  ident: 42880_CR30
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02769-w
– volume: 11
  start-page: 1162
  year: 2020
  ident: 42880_CR44
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01162
– ident: 42880_CR4
  doi: 10.1093/acprof:oso/9780199657148.003.0001
– volume: 9
  year: 2018
  ident: 42880_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06517-2
– volume: 25
  start-page: 1754
  year: 2009
  ident: 42880_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 141
  start-page: 163
  year: 1999
  ident: 42880_CR43
  publication-title: Plant Ecol.
  doi: 10.1023/A:1009858528374
– ident: 42880_CR3
  doi: 10.1038/sdata.2014.15
– volume: 72
  start-page: 1701
  year: 2018
  ident: 42880_CR24
  publication-title: Evolution
  doi: 10.1111/evo.13543
– volume: 208
  start-page: 52
  year: 2015
  ident: 42880_CR57
  publication-title: N. Phytol.
  doi: 10.1111/nph.13497
SSID ssj0000391844
Score 2.4533298
Snippet Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the...
Abstract Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7144
SubjectTerms 45
45/23
45/43
631/181/2474
631/208/182
631/449/2491
Chromosomes
Genetic load
Genomes
Homology
Humanities and Social Sciences
multidisciplinary
Salix
Science
Science (multidisciplinary)
Sex
Sex chromosomes
Sex determination
Willow
Y chromosomes
Z chromosomes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsWmSNjmqKIugJ0XxEpI0xYW1Fevz3ztJu-tWUC_eSpK2yUwm-YZkvkFor8glMTIVnujWxgwAayyd0bHHBoSUjkvqg5MvLrPBNTu_5bdTqb78nbCWHrgV3GEiDaPaZdZSzahgOnGFf_KJv2VmAtl2IpMpZyqswVSC68K6KJmEisOGhTUBtqgYELdIYt7biQJhfw9lfr8j-e2gNOw_Z4tooQOO-Kjt8BKacdUymmtTSX6soPT0tZtEuC6xxnc3uHHv2N7763ZN_eBwy9mMhxUGeDyq35pVdH12enUyiLt8CLEFJzaLvegKJrjNc8IttTJ1GmzO5Uwb6jwSMrwA9yW3tkiEMUVqWKk5YKwszaUldA3NVnXl1hG2NHdQ5lLr_S9jhBWUFDLnpixKS9IIkbFslO3Iwn3OipEKh9ZUqFaeCuSpgjwVj9D-5J3Hlirj19bHXuSTlp7mOhSA8lWnfPWX8iO0NVaY6myvUfD9jIGfRkiEdifVYDX-KERXrn5p2wAwgwkZIdFTdK9D_ZpqeB_4t4mPOyUShnAwnhNff_95xBv_MeJNNO8T3odoyGwLzT4_vbhtgEXPZidYwCeICAWW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MOwRfxE-sTongm5Y1TdImDyJO7hiCFxGHw5eQr26D2c51U_ffLydt7-jAvZUkpc3JOckvOTm_A_DG14paVUokunU5j4A1V8GaHLEBpU0QimFw8pdVtbfPPx-Igw1YTbEweK1ymhPTRO07h2fk26WUFY_om9IPp79zzBqF3tUphYYZUyv494li7A5sxilZFAvY3Fmuvn5bn7ogH7rkfIyeKZjc7nmaK-LSlUckLotczFaoROQ_Q583707ecKCmdWn3AdwfASX5OGjAQ9gI7SO4O6SYvHwM5fLPqFyka4ghP3-QPvwj7giv4fXdr0AGLmdy3JIIm0-6v_0T2N9dfv-0l495EnIXN7dVjiL1XApX11Q45lQZTLTFUHNjWUCEZIWP25raOV9Ia31peWNExF5VWStH2VNYtF0bngFxrA6xLJQO92XWSicZ9aoWtvGNo2UGdJKNdiOJOOayONHJmc2kHuSpozx1kqcWGbxdv3M6UGjc2noHRb5uifTXqaA7O9SjNelCWc5MqJxjhjPJTRE8PmE2eFXZKoOtacD0aJO9vtagDF6vq6M1oYvEtKG7GNpEwBYVNQM5G-jZD81r2uOjxMtNMR6VqtiFd5NOXH_9_z1-fvvPvoB7mOI-xT9WW7A4P7sILyMQOrevRu2-AmFKBBs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwED_mhuCL6KZYnRLBNy02ze9H_bIxBH1yOPYSkjR1g9nKuvnjvzeXtt_RMQd7K2nSJpdL87nm7nMAbxplqDe1RqLbUPIEWEsTvSsRG1DaRmEYBid__iIPDvmnI3G0AfUcC5Od9jOlZf5Mz95h7weel3TaYcoEmHVVinuwpRUTqNUruVr_V0HGc835FB9TMX1D08UelKn6F_jyunfktSPSvPPsP4KHE2QkH8ZOPoaN2G3D_TGJ5N8dqPd-TepD-pY4cvyNDPEPCSfoaDf0PyIZ2ZrJaUcSMD7rfw9P4HB_7-vqoJwyIZQhma-yRKE1XIugFBWBBVNHl1ZbVNx5FhEDedEkw0WF0FTa-6b2vHUioStZKxMoewqbXd_FZ0ACUzGVxTqg5eW9DprRxijh26YNtC6AzrKxYaIJx2wVZzYfVzNtR3naJE-b5WlFAW_XbX6OJBm31v6IIl_XRILrXNCff7fThNvKeM5clCEwx5nmrooNXmG-dyO9LGB3njA7rbrBpudLniw0Sgt4vb6d1gsegrgu9pdjnQTJkioWoBcTvejQ8k53epKZtylGnFKThvBu1omrt_9_xM_vVv0FPMCk9jniUe7C5sX5ZXyZoM-Ff5V1_R8uoftL
  priority: 102
  providerName: Springer Nature
Title Evolution of a ZW sex chromosome system in willows
URI https://link.springer.com/article/10.1038/s41467-023-42880-5
https://www.proquest.com/docview/2886462611
https://www.proquest.com/docview/2886937057
https://pubmed.ncbi.nlm.nih.gov/PMC10628195
https://doaj.org/article/09b43ae6cc3a4384a0ed3a43032096b6
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8ID5FYFRG4g0CdezE9gNCXdUyVWJCQEXFixU7DptUEmg22P57zk5SlGnwxEsS2c6Hz3fx73y-O4BnhVDUqET6QLc25ghYY-VMHntsQGnpUsW8c_K74-xoyRerdLUDfbqjjoDNtaqdzye13KxfXvy4fIMC_7p1GZevGh7EHWefGMG0HMfpLuwHe5HfytfB_fBnZgoVGt75zlx_62B-CmH8B9jz6s7JK-bTMCvNb8OtDk6SSTv-d2DHVXfhRptg8vIeJLOfHWuRuiQ5-fKZNO6C2BO_Ca-pvznSRnImpxVB0LyufzX3YTmffZoexV2WhNiiapvFnqAFl6kVgqaWWZW4HCXRCZ4b5jw-MmmBSo2wthhLY4rE8DJPEXlliVCWsgewV9WVewjEMuGwzCXWa2XGSCsZLZRITVmUliYR0J422nYhxH0mi7UOpmwmdUtPjfTUgZ46jeD59p7vbQCNf7Y-9CTftvTBr0NBvfmqO1nSY2U4y11mLcs5kzwfu8Jf-VzwKjNZBAf9gOmeoTQ-P-OovVEawdNtNcqSN5DklavP2zYI15BNI5CDgR580LCmOj0JUbmp90alCrvwoueJP2__e48f_Y8eP4abiedhv9ydHcDe2ebcPUGwdGZGsCtWAo9y_nYE-5PJ4uMCz4ez4_cfsHSaTUdhGWIUJOU3F3MUQg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9UwFD_BS4y-GD_jELUm-qQL68e29oEY0UsuAjfGQCS-1LXrhAQ2ZCDyz_m32bN1l1wSeeNtabutPT3n9NfTnnMAXpe5okYxiYFubSw8YI2VM0WM2IDSyqWKo3Py9jSb7IrPe-neAvwdfGHwWuWgEztFXTYWbeQrTMpMePRN6fvjXzFmjcLT1SGFRhFSK5SrXYix4Nix6S7O_RauXd345Of7DWPr452PkzhkGYit3xpmMXaoFDK1eU5Ty61irvCc7HJRGO4QX5i09JuC3NoykcaUzIiqSD1yyViuLOX-u7dgUaABZQSLa-Ppl68zKw_GX5dCBG-dhMuVVnS6yS-VsUf-MonTuRWxSxwwh3av3tW8cmDbrYPr9-FeALDkQ89xD2DB1Q_hdp_S8uIRsPHvwMykqUhBvn8jrftD7D5e-2ubI0f62NHkoCYeph825-1j2L0Rij2BUd3U7ikQy3PnyxyzuA80RlrJaany1FRlZSmLgA600TYELcfcGYe6OzznUvf01J6euqOnTiN4O3vnuA_ZcW3rNST5rCWG2-4KmpOfOkivTpQRvHCZtbwQXIoicSU-YfZ5lZksguVhwnTQAa2-5NgIXs2qvfTikUxRu-asb-MBoheMCOTcRM91aL6mPtjv4oBT9H-lyg_h3cATl3___4iXru_sS7gz2dne0lsb081ncJchp6IZPVuG0enJmXvuQdipeRE4ncCPmxaufxXGQGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFOkFDASnCDa-JHYOSAEtKuWQsWBihUXEzsOrdQmpWkp_Wv8Omby2Gor0Vtvke0k9njG_saeB8CLUufc5cJQoFsfKwSscR5cERM24LwKaS7JOfnzdraxoz7O0tkS_B19YcisclwTu4W6bDydkU-EMZlC9M35pBrMIr6sTd8e_oopgxTdtI7pNHoW2Qpnp6i-tW8213CuXwoxXf_6YSMeMgzEHtXCLKbOlMqkXmueeulzEQrk4qBV4WQgbOHSEhUC7X2ZGOdK4VRVpIhaMqFzzyV-9xpc11IpShuhZ3p-vkOR141Sg59OIs2kVd2qhJtkjJjfJHG6sBd2KQMWcO5FK80LV7XdDji9A7cH6Mre9bx2F5ZCfQ9u9Mksz-6DWP89sDFrKlaw799YG_4wv0sGf21zEFgfNZrt1QwB-n5z2j6AnSuh10NYrps6PALmpQ5YFoQnDdA5443kZa5TV5WV5yICPtLG-iFcOWXN2Lfdtbk0tqenRXrajp42jeDV_J3DPljHpa3fE8nnLSnQdlfQHP20g9zaJHdKFiHzXhZKGlUkoaQnyjufZy6LYHWcMDtIf2vPeTWC5_NqlFu6jCnq0Jz0bRAaokhEYBYmeqFDizX13m4XAZyT5yvPcQivR544__v_R7xyeWefwU0UKftpc3vrMdwSxKh0fp6twvLx0Ul4gujr2D3t2JzBj6uWq39J7T4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+a+ZW+sex+chromosome+system+in+willows&rft.jtitle=Nature+communications&rft.au=Nan+Hu&rft.au=Brian+J.+Sanderson&rft.au=Minghao+Guo&rft.au=Guanqiao+Feng&rft.date=2023-11-06&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-42880-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon