Evolution of a ZW sex chromosome system in willows
Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7144 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-42880-5 |
Cover
Abstract | Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for
Salix exigua
, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.
Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y. |
---|---|
AbstractList | Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y. Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. Investigation of heterogametic transitions in sex chromosomes is challenging but fascinating from an evolutionary perspective. Here, Hu et al. have identified a transition from an XY to a ZW system in the genus Salix (willows) where both the Z and W chromosomes have originated from the ancestral Y. Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. Abstract Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. |
ArticleNumber | 7144 |
Author | Sanderson, Brian J. Wang, Deyan Olson, Matthew S. Hale, Haley Liu, Jianquan DiFazio, Stephen P. Gambhir, Diksha Hu, Nan Hyden, Brennan Smart, Lawrence B. Guo, Minghao Ma, Tao Feng, Guanqiao |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0002-7032-0558 surname: Hu fullname: Hu, Nan organization: Department of Biological Sciences, Texas Tech University – sequence: 2 givenname: Brian J. orcidid: 0000-0002-0310-0440 surname: Sanderson fullname: Sanderson, Brian J. organization: Department of Molecular Biosciences, University of Kansas – sequence: 3 givenname: Minghao orcidid: 0000-0002-9325-7395 surname: Guo fullname: Guo, Minghao organization: Department of Biological Sciences, Texas Tech University – sequence: 4 givenname: Guanqiao surname: Feng fullname: Feng, Guanqiao organization: Department of Biological Sciences, Texas Tech University – sequence: 5 givenname: Diksha surname: Gambhir fullname: Gambhir, Diksha organization: Department of Biological Sciences, Texas Tech University – sequence: 6 givenname: Haley surname: Hale fullname: Hale, Haley organization: HudsonAlpha Institute for Biotechnology – sequence: 7 givenname: Deyan surname: Wang fullname: Wang, Deyan organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University – sequence: 8 givenname: Brennan surname: Hyden fullname: Hyden, Brennan organization: Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech – sequence: 9 givenname: Jianquan surname: Liu fullname: Liu, Jianquan organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University – sequence: 10 givenname: Lawrence B. orcidid: 0000-0002-7812-7736 surname: Smart fullname: Smart, Lawrence B. organization: Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech – sequence: 11 givenname: Stephen P. orcidid: 0000-0003-4077-1590 surname: DiFazio fullname: DiFazio, Stephen P. organization: Department of Biology, West Virginia University – sequence: 12 givenname: Tao surname: Ma fullname: Ma, Tao organization: Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University – sequence: 13 givenname: Matthew S. orcidid: 0000-0002-0798-145X surname: Olson fullname: Olson, Matthew S. email: matt.olson@ttu.edu organization: Department of Biological Sciences, Texas Tech University |
BookMark | eNp9UU1P3TAQtCqqQil_oKdIvfQS6u-PU1UhCkhIXKgq9WI5zubhpySmdgLl3-O8ULVwwBev7JnZ2Z33aG-MIyD0keBjgpn-kjnhUtWYsppTrXEt3qADijmpiaJs7796Hx3lvMXlMEM05-_QPlOGUSrJAaKnd7GfpxDHKnaVq379rDL8qfxNikPMcYAqP-QJhiqM1X3o-3ifP6C3neszHD3dh-jH99Prk_P68urs4uTbZe25NLImHYiWa-GVIsIzbyg4zCko7hoGXEjSiNZIqbxvsW6alja8c0IzIakynrBDdLHqttFt7W0Kg0sPNrpgdw8xbaxLU_A9WGwazhxI75njTHOHoV0qzCg2spFF6-uqdTs3A7Qexim5_pno858x3NhNvLMES6qJEUXh85NCir9nyJMdQvbQ926EOGdbMpCGKSxUgX56Ad3GOY1lVzsUl2Xzy3h6RfkUc07QWR8mtyRRDIS-dLZL0HYN2pag7S5ou3ihL6h_B3mVxFZSLuBxA-mfq1dYjywxuT0 |
CitedBy_id | crossref_primary_10_1111_nph_19744 crossref_primary_10_1093_jxb_erae173 |
Cites_doi | 10.2307/2406423 10.1038/s41467-020-19559-2 10.1101/201178 10.1073/pnas.1319227111 10.1186/s13059-020-1952-4 10.1038/s41467-018-08014-y 10.1371/journal.pone.0147671 10.1038/s41437-020-00397-3 10.1111/jeb.14076 10.1086/519795 10.1111/jeb.13336 10.1186/1471-2105-10-421 10.1186/s12864-021-08021-2 10.1038/hdy.2014.125 10.1002/j.1537-2197.1988.tb14200.x 10.1093/g3journal/jkac071 10.1038/s41477-021-00884-3 10.1007/s10577-008-1227-5 10.1093/bioinformatics/bty191 10.1086/674026 10.1007/s00438-018-1473-y 10.1007/BF00986668 10.1126/science.aal3327 10.1093/bioinformatics/btaa1016 10.1534/genetics.110.118596 10.1038/s41438-021-00606-y 10.2478/sg-2021-0012 10.1371/journal.pgen.1001121 10.1016/j.cels.2016.07.002 10.1111/nph.13983 10.1111/mec.13126 10.1038/s41598-018-37412-x 10.1093/molbev/msab179 10.1007/s00035-018-0213-6 10.1111/j.1558-5646.2009.00871.x 10.1093/bioinformatics/btz891 10.1093/bioinformatics/btp352 10.1007/s001220050442 10.1002/ajb2.1704 10.1093/molbev/msaa261 10.1111/mec.16551 10.1093/nar/22.22.4673 10.1038/s41587-019-0072-8 10.1093/acprof:oso/9780199657148.001.0001 10.3732/ajb.1500143 10.1038/s41477-020-0672-9 10.1098/rstb.2021.0217 10.1093/molbev/msab120 10.3390/genes12040483 10.1093/jxb/erac260 10.1111/mec.14831 10.1038/s41437-019-0225-z 10.1371/journal.pbio.1001899 10.1098/rspb.2002.2004 10.1371/journal.pbio.1002078 10.1126/science.1174705 10.3390/genes13050804 10.1186/s13059-022-02769-w 10.3389/fpls.2020.01162 10.1093/acprof:oso/9780199657148.003.0001 10.1038/s41467-018-06517-2 10.1093/bioinformatics/btp324 10.1023/A:1009858528374 10.1038/sdata.2014.15 10.1111/evo.13543 10.1111/nph.13497 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-42880-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6 PMC10628195 10_1038_s41467_023_42880_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31561123001 funderid: https://doi.org/10.13039/501100001809 – fundername: National Science Foundation (NSF) grantid: 1542599; 1542479; 1542486 funderid: https://doi.org/10.13039/100000001 – fundername: ; grantid: 1542599; 1542479; 1542486 – fundername: ; grantid: 31561123001 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4696-1fe5d485c7715c3c92ea042e74ab3e4561b5d9667ccd08bbd2b4fa58356279c13 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:48 EDT 2025 Thu Aug 21 18:36:18 EDT 2025 Fri Sep 05 02:56:03 EDT 2025 Wed Aug 13 04:55:05 EDT 2025 Tue Jul 01 02:10:43 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4696-1fe5d485c7715c3c92ea042e74ab3e4561b5d9667ccd08bbd2b4fa58356279c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0310-0440 0000-0002-9325-7395 0000-0002-7032-0558 0000-0002-7812-7736 0000-0003-4077-1590 0000-0002-0798-145X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-42880-5 |
PMID | 37932261 |
PQID | 2886462611 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10628195 proquest_miscellaneous_2886937057 proquest_journals_2886462611 crossref_citationtrail_10_1038_s41467_023_42880_5 crossref_primary_10_1038_s41467_023_42880_5 springer_journals_10_1038_s41467_023_42880_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-06 |
PublicationDateYYYYMMDD | 2023-11-06 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | SandersonBJSex determination through X-Y heterogamety in Salix nigraHeredity (Edinb.)20211266306391:CAS:528:DC%2BB3MXhtVensLrK3351046410.1038/s41437-020-00397-3 Harris, R. S. Improved pairwise alignment of genomic DNA, The Pennsylvania State University, (2007). MiuraIIdentification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systemsMol. Ecol.202231385938701:CAS:528:DC%2BB38XitFCjsL%2FL3569101110.1111/mec.16551 OgataMLambertMEzazTMiuraIReconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog speciesMol. Ecol.201827407840891:CAS:528:DC%2BC1cXitVWjs7jJ3008619310.1111/mec.14831 YangWA General Model to Explain Repeated Turnovers of Sex Determination in the SalicaceaeMol. Biol. Evol.2021389689801:CAS:528:DC%2BB3MXhvFymsbrL3302751910.1093/molbev/msaa261 HuJFanJSunZLiuSNextPolish: a fast and efficient genome polishing tool for long-read assemblyBioinformatics202036225322551:CAS:528:DC%2BB3cXitlOlsr7K3177814410.1093/bioinformatics/btz891 SaundersPANeuenschwanderSPerrinNSex chromosome turnovers and genetic drift: a simulation studyJ. Evol. Biol.201831141314191:CAS:528:DC%2BC1cXhs1Kjsr%2FO2992324610.1111/jeb.13336 HoughJHollisterJDWangWBarrettSCWrightSIGenetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulusProc. Natl Acad. Sci. USA2014111771377181:CAS:528:DC%2BC2cXnsl2lur4%3D24825885404061310.1073/pnas.13192271112014PNAS..111.7713H MaWJVeltsosPThe Diversity and Evolution of Sex Chromosomes in FrogsGenes (Basel)2021124831:CAS:528:DC%2BB3MXhtFyht73N3381052410.3390/genes12040483 KimGMontalvãoAPLKerstenBFladungMMüllerNAThe genetic basis of sex determination in provides molecular markers across the genus and indicates convergent evolutionSilvae Genet.20217014515510.2478/sg-2021-0012 CronkQMüllerNADefault Sex and Single Gene Sex Determination in Dioecious PlantsFront. Plant Sci.202011116232849717740321810.3389/fpls.2020.01162 Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014). TamuraKStecherGKumarSMEGA11: Molecular Evolutionary Genetics Analysis Version 11Mol. Biol. Evol.202138302230271:CAS:528:DC%2BB3MXitlCktrfN33892491823349610.1093/molbev/msab120 ThompsonJDHigginsDGGibsonTJCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.199422467346801:CAS:528:DyaK2MXitlSgu74%3D798441730851710.1093/nar/22.22.4673 VamosiJCOttoSPWhen looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plantsProc. Biol. Sci.20022691187119412061964169100510.1098/rspb.2002.2004 ChenYWangTFangLLiXYinTConfirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage AnalysisPLoS One201611e014767126828940473466010.1371/journal.pone.0147671 AnsaiSDiversity of sex chromosomes in Sulawesian medaka fishesJ. Evol. Biol.202235175117641:CAS:528:DC%2BB38XisVOnsbjI3605450110.1111/jeb.14076 Keefover-RingKCarlsonCHHydenBAzeemMSmartLBGenetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willowJ. Exp. Bot.202273635263661:CAS:528:DC%2BB3sXlt1Ogsr8%3D3571031210.1093/jxb/erac260 VillanuevaRAMChenZJggplot2: Elegant Graphics for Data Analysis (2nd ed.)Meas.: Interdiscip. Res. Perspect.201917160167 RennerSSMullerNAPlant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degenerationNat. Plants202173924023378258110.1038/s41477-021-00884-3 UbedaFPattenMMWildGOn the origin of sex chromosomes from meiotic driveProc. Biol. Sci.201528220141932253924704262170 Argus, G. Flora of North America, vol. 7: Magnoliophyta: Salicaceae to Brassicaceae. Vol. 7 23-51 (Oxford University Press, 2010). Alström-RapaportCLascouxMGullbergUSex determination and sex ratio in the dioecious shrub Salix viminalis LTheor. Appl. Genet.19979449349710.1007/s001220050442 BachtrogDSex determination: why so many ways of doing it?PLoS Biol.201412e100189924983465407765410.1371/journal.pbio.1001899 DudchenkoODe novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffoldsScience201735692951:CAS:528:DC%2BC2sXlsVymsbo%3D28336562563582010.1126/science.aal33272017Sci...356...92D LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp352 BalounovaVEvolution of sex determination and heterogamety changes in section Otites of the genus SileneSci. Rep.2019930705300635584410.1038/s41598-018-37412-x2019NatSR...9.1045B LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191 LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324 RobertsRBSerJRKocherTDSexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishesScience200932699810011:CAS:528:DC%2BD1MXhtlyls7fN19797625317426810.1126/science.11747052009Sci...326..998R Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, 2020). RohwerJKubitzkiKSalix martiana, a regularly hermaphrodite willowPlant Syst. Evol.19841449910110.1007/BF00986668 GeraldesARecent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus)Mol. Ecol.201524324332561:STN:280:DC%2BC2MrpvVGrtg%3D%3D2572827010.1111/mec.13126 WangDRepeated turnovers keep sex chromosomes young in willowsGenome Biol.2022231:CAS:528:DC%2BB38XisFKhtrfL36151581950264910.1186/s13059-022-02769-w HallingbäckHRPucholtPIngvarssonPKRönnberg-WästljungACBerlinSGenome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalisBMC Genomics20212234600471848749910.1186/s12864-021-08021-2 TennessenJAGovindarajuluRListonAAshmanTLHomomorphicZWchromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining regionN. Phytol.2016211141214231:CAS:528:DC%2BC28Xht1Kku77O10.1111/nph.13983 Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178. https://doi.org/10.1101/201178 (2018). Tree of Sex: a database of sexual systems. Sci Data1, 140015, https://doi.org/10.1038/sdata.2014.15 (2014). VicosoBBachtrogDNumerous transitions of sex chromosomes in DipteraPLoS Biol.201513e100207825879221440010210.1371/journal.pbio.1002078 LiYA chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determinationMol. Ecol.20221513661380 SaundersPANeuenschwanderSPerrinNImpact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogametyHeredity (Edinb.)20191234194283102837010.1038/s41437-019-0225-z AugstenovaBZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicatedEvolution2018721701170710.1111/evo.13543 KolmogorovMYuanJLinYPevznerPAAssembly of long, error-prone reads using repeat graphsNat. Biotechnol.2019375405461:CAS:528:DC%2BC1MXosV2qsrs%3D3093656210.1038/s41587-019-0072-8 ZhouRA willow sex chromosome reveals convergent evolution of complex palindromic repeatsGenome Biol.20202132059685702375010.1186/s13059-020-1952-4 SalickJPfefferEThe interplay of hybridization and clonal reproduction in the evolution of willows – Experiments with hybrids of S. eriocephala[R] & S. exigua[X] and S. eriocephala & S. petiolaris[P]Plant Ecol.199914116317810.1023/A:1009858528374 XueLEvidences for a role of two Y-specific genes in sex determination in Populus deltoidesNat. Commun.2020111:CAS:528:DC%2BB3cXisVSgtL7L33208755767441110.1038/s41467-020-19559-22020NatCo..11.5893X PucholtPRonnberg-WastljungACBerlinSSingle locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)Heredity20151145755831:CAS:528:DC%2BC2MXit1anu7s%3D25649501443424910.1038/hdy.2014.125 CharlesworthDPlant contributions to our understanding of sex chromosome evolutionN. Phytol.201520852651:CAS:528:DC%2BC2MXhsVChsrzM10.1111/nph.13497 van DoornGSKirkpatrickMTransitions between male and female heterogamety caused by sex-antagonistic selectionGenetics201018662964520628036295447610.1534/genetics.110.118596 Sanderson, B. J. et al. Phylogenomics reveals patterns of ancient hybridization and differential diversification contributing to phylogenetic conflict in willows, poplars, and close relatives. Syst. Biol. syad042. https://doi.org/10.1101/201178 (2023). Beukeboom, L. W. & Perrin, N. What are sexes, and why are there sexes?, (Oxford Univ Press, 2014). ZhouRCharacterization of a large sex determination region in Salix purpurea L. (Salicaceae)Mol. Genet Genomics2018293143714521:CAS:528:DC%2BC1cXhtlekt7bF3002235210.1007/s00438-018-1473-y SerJRRobertsRBKocherTDMultiple interacting loci control sex determination in lake Malawi cichlid fishEvolution2010644865011986358710.1111/j.1558-5646.2009.00871.x PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795 Che-CastaldoCCrisafulliCMBishopJGFaganWFWhat causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?Am. J. Bot.2015102130913221:CAS:528:DC%2BC28Xns1Kitrc%3D10.3732/ajb.1500143 NatriHMMerilaJShikanoTThe evolution of sex determination associated with a chromosomal inversionNat. Commun.20191030635564632982710.1038/s41467-018-08014-y2019NatCo..10..145N MullerNAA single gene underlies the dynamic evolution of poplar sex determinationNat. Plants202066306373248332610.1038/s41477-020-0672-9 SmithBWThe evolving karyotype of Rumex hastatulusEvolution19643893 B Augstenova (42880_CR24) 2018; 72 C Camacho (42880_CR71) 2009; 10 R Zhou (42880_CR35) 2020; 21 R Zhou (42880_CR37) 2018; 293 PA Saunders (42880_CR21) 2019; 123 AP Leite Montalvao (42880_CR42) 2022; 377 JM Sardell (42880_CR8) 2021; 38 42880_CR27 JD Thompson (42880_CR73) 1994; 22 JA Tennessen (42880_CR12) 2016; 211 RR Wick (42880_CR58) 2017; 3 J Salick (42880_CR43) 1999; 141 H Li (42880_CR67) 2009; 25 42880_CR75 O Dudchenko (42880_CR62) 2017; 356 H Li (42880_CR66) 2009; 25 A Shumate (42880_CR65) 2021; 37 C Che-Castaldo (42880_CR52) 2015; 102 BW Smith (42880_CR10) 1964; 38 W Yang (42880_CR33) 2021; 38 WJ Ma (42880_CR17) 2021; 12 NA Muller (42880_CR26) 2020; 6 HM Natri (42880_CR9) 2019; 10 BJ Sanderson (42880_CR29) 2021; 126 DL Jeffries (42880_CR14) 2018; 9 C Alström-Rapaport (42880_CR54) 1997; 94 CF Sacchi (42880_CR55) 1988; 75 B Vicoso (42880_CR7) 2015; 13 42880_CR63 42880_CR68 HR Hallingbäck (42880_CR41) 2021; 22 42880_CR69 Y Takehana (42880_CR15) 2008; 16 RAM Villanueva (42880_CR72) 2019; 17 PA Saunders (42880_CR56) 2018; 31 42880_CR4 B Hyden (42880_CR39) 2021; 8 42880_CR5 TD Kocher (42880_CR18) 2022; 13 K Keefover-Ring (42880_CR48) 2022; 73 42880_CR3 42880_CR1 I Miura (42880_CR22) 2022; 31 SS Renner (42880_CR45) 2021; 7 G Kim (42880_CR34) 2021; 70 O Blaser (42880_CR49) 2014; 183 V Balounova (42880_CR46) 2019; 9 F Ubeda (42880_CR50) 2015; 282 K Tamura (42880_CR74) 2021; 38 P Pucholt (42880_CR36) 2015; 114 D Bachtrog (42880_CR2) 2014; 12 RB Roberts (42880_CR13) 2009; 326 S Purcell (42880_CR70) 2007; 81 M Hroneš (42880_CR53) 2018; 129 Y Li (42880_CR25) 2022; 15 A Geraldes (42880_CR32) 2015; 24 J Hough (42880_CR11) 2014; 111 D Wang (42880_CR30) 2022; 23 J Rohwer (42880_CR28) 1984; 144 RH Baker (42880_CR6) 2010; 6 D Charlesworth (42880_CR57) 2015; 208 J Hu (42880_CR60) 2020; 36 NC Durand (42880_CR61) 2016; 3 M Kolmogorov (42880_CR59) 2019; 37 DG Wilkerson (42880_CR38) 2022; 12 Y Chen (42880_CR40) 2016; 11 H Li (42880_CR64) 2018; 34 JR Ser (42880_CR16) 2010; 64 GS van Doorn (42880_CR20) 2010; 186 FE Gouker (42880_CR51) 2021; 108 S Ansai (42880_CR19) 2022; 35 Q Cronk (42880_CR44) 2020; 11 JC Vamosi (42880_CR47) 2002; 269 L Xue (42880_CR31) 2020; 11 M Ogata (42880_CR23) 2018; 27 |
References_xml | – reference: Harris, R. S. Improved pairwise alignment of genomic DNA, The Pennsylvania State University, (2007). – reference: WickRRJuddLMGorrieCLHoltKECompleting bacterial genome assemblies with multiplex MinION sequencingMicro. Genom.20173e000132 – reference: SaundersPANeuenschwanderSPerrinNSex chromosome turnovers and genetic drift: a simulation studyJ. Evol. Biol.201831141314191:CAS:528:DC%2BC1cXhs1Kjsr%2FO2992324610.1111/jeb.13336 – reference: LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324 – reference: Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination. (Oxford University Press, 2014). – reference: WangDRepeated turnovers keep sex chromosomes young in willowsGenome Biol.2022231:CAS:528:DC%2BB38XisFKhtrfL36151581950264910.1186/s13059-022-02769-w – reference: SmithBWThe evolving karyotype of Rumex hastatulusEvolution1964389310410.2307/2406423 – reference: ZhouRA willow sex chromosome reveals convergent evolution of complex palindromic repeatsGenome Biol.20202132059685702375010.1186/s13059-020-1952-4 – reference: CharlesworthDPlant contributions to our understanding of sex chromosome evolutionN. Phytol.201520852651:CAS:528:DC%2BC2MXhsVChsrzM10.1111/nph.13497 – reference: AugstenovaBZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicatedEvolution2018721701170710.1111/evo.13543 – reference: VicosoBBachtrogDNumerous transitions of sex chromosomes in DipteraPLoS Biol.201513e100207825879221440010210.1371/journal.pbio.1002078 – reference: MiuraIIdentification of ancestral sex chromosomes in the frog Glandirana rugosa bearing XX-XY and ZZ-ZW sex-determining systemsMol. Ecol.202231385938701:CAS:528:DC%2BB38XitFCjsL%2FL3569101110.1111/mec.16551 – reference: HoughJHollisterJDWangWBarrettSCWrightSIGenetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulusProc. Natl Acad. Sci. USA2014111771377181:CAS:528:DC%2BC2cXnsl2lur4%3D24825885404061310.1073/pnas.13192271112014PNAS..111.7713H – reference: Argus, G. Flora of North America, vol. 7: Magnoliophyta: Salicaceae to Brassicaceae. Vol. 7 23-51 (Oxford University Press, 2010). – reference: Tree of Sex: a database of sexual systems. Sci Data1, 140015, https://doi.org/10.1038/sdata.2014.15 (2014). – reference: LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191 – reference: ThompsonJDHigginsDGGibsonTJCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.199422467346801:CAS:528:DyaK2MXitlSgu74%3D798441730851710.1093/nar/22.22.4673 – reference: PurcellSPLINK: a tool set for whole-genome association and population-based linkage analysesAm. J. Hum. Genet2007815595751:CAS:528:DC%2BD2sXhtVSqurrL17701901195083810.1086/519795 – reference: TakehanaYHamaguchiSSakaizumiMDifferent origins of ZZ/ZW sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. hubbsiChromosome Res2008168018111:CAS:528:DC%2BD1cXps1WktrY%3D1860776110.1007/s10577-008-1227-5 – reference: SardellJMJosephsonMPDalzielACPeichelCLKirkpatrickMHeterogeneous histories of recombination suppression on stickleback sex chromosomesMol. Biol. Evol.202138440344181:CAS:528:DC%2BB38XhslKjsb%2FE34117766847617110.1093/molbev/msab179 – reference: MaWJVeltsosPThe Diversity and Evolution of Sex Chromosomes in FrogsGenes (Basel)2021124831:CAS:528:DC%2BB3MXhtFyht73N3381052410.3390/genes12040483 – reference: BalounovaVEvolution of sex determination and heterogamety changes in section Otites of the genus SileneSci. Rep.2019930705300635584410.1038/s41598-018-37412-x2019NatSR...9.1045B – reference: CamachoCBLAST+: architecture and applicationsBMC Bioinforma.20091010.1186/1471-2105-10-421 – reference: NatriHMMerilaJShikanoTThe evolution of sex determination associated with a chromosomal inversionNat. Commun.20191030635564632982710.1038/s41467-018-08014-y2019NatCo..10..145N – reference: ZhouRCharacterization of a large sex determination region in Salix purpurea L. (Salicaceae)Mol. Genet Genomics2018293143714521:CAS:528:DC%2BC1cXhtlekt7bF3002235210.1007/s00438-018-1473-y – reference: van DoornGSKirkpatrickMTransitions between male and female heterogamety caused by sex-antagonistic selectionGenetics201018662964520628036295447610.1534/genetics.110.118596 – reference: OgataMLambertMEzazTMiuraIReconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex-chromosome systems within a frog speciesMol. Ecol.201827407840891:CAS:528:DC%2BC1cXitVWjs7jJ3008619310.1111/mec.14831 – reference: HallingbäckHRPucholtPIngvarssonPKRönnberg-WästljungACBerlinSGenome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalisBMC Genomics20212234600471848749910.1186/s12864-021-08021-2 – reference: Keefover-RingKCarlsonCHHydenBAzeemMSmartLBGenetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willowJ. Exp. Bot.202273635263661:CAS:528:DC%2BB3sXlt1Ogsr8%3D3571031210.1093/jxb/erac260 – reference: RennerSSMullerNAPlant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degenerationNat. Plants202173924023378258110.1038/s41477-021-00884-3 – reference: BlaserONeuenschwanderSPerrinNSex-chromosome turnovers: the hot-potato modelAm. Nat.20141831401462433474310.1086/674026 – reference: RobertsRBSerJRKocherTDSexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishesScience200932699810011:CAS:528:DC%2BD1MXhtlyls7fN19797625317426810.1126/science.11747052009Sci...326..998R – reference: XueLEvidences for a role of two Y-specific genes in sex determination in Populus deltoidesNat. Commun.2020111:CAS:528:DC%2BB3cXisVSgtL7L33208755767441110.1038/s41467-020-19559-22020NatCo..11.5893X – reference: Patterson, J. T. & Stone, W. S. Evolution in the genus Drosophila. First Edition edn, (Macmillan, 1952). – reference: HronešMHrachová MacurováSHradílekZHekeraPDuchoslavMFemale-biased sex ratio despite the absence of spatial and niche segregation between sexes in alpine populations of dioecious Salix lapponum (Salicaceae)Alp. Bot.20181291910.1007/s00035-018-0213-6 – reference: RohwerJKubitzkiKSalix martiana, a regularly hermaphrodite willowPlant Syst. Evol.19841449910110.1007/BF00986668 – reference: SacchiCFPricePWPollination of the Arroyo Willow, Salix Lasiolepis: Role of Insects and WindAm. J. Bot.1988751387139310.1002/j.1537-2197.1988.tb14200.x – reference: ChenYWangTFangLLiXYinTConfirmation of Single-Locus Sex Determination and Female Heterogamety in Willow Based on Linkage AnalysisPLoS One201611e014767126828940473466010.1371/journal.pone.0147671 – reference: SerJRRobertsRBKocherTDMultiple interacting loci control sex determination in lake Malawi cichlid fishEvolution2010644865011986358710.1111/j.1558-5646.2009.00871.x – reference: Alström-RapaportCLascouxMGullbergUSex determination and sex ratio in the dioecious shrub Salix viminalis LTheor. Appl. Genet.19979449349710.1007/s001220050442 – reference: Van der Auwera, G. & O’Connor, B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). (O’Reilly Media, 2020). – reference: JeffriesDLA rapid rate of sex-chromosome turnover and non-random transitions in true frogsNat. Commun.201893029123310.1038/s41467-018-06517-22018NatCo...9.4088J – reference: SaundersPANeuenschwanderSPerrinNImpact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogametyHeredity (Edinb.)20191234194283102837010.1038/s41437-019-0225-z – reference: PucholtPRonnberg-WastljungACBerlinSSingle locus sex determination and female heterogamety in the basket willow (Salix viminalis L.)Heredity20151145755831:CAS:528:DC%2BC2MXit1anu7s%3D25649501443424910.1038/hdy.2014.125 – reference: HuJFanJSunZLiuSNextPolish: a fast and efficient genome polishing tool for long-read assemblyBioinformatics202036225322551:CAS:528:DC%2BB3cXitlOlsr7K3177814410.1093/bioinformatics/btz891 – reference: Sanderson, B. J. et al. Phylogenomics reveals patterns of ancient hybridization and differential diversification contributing to phylogenetic conflict in willows, poplars, and close relatives. Syst. Biol. syad042. https://doi.org/10.1101/201178 (2023). – reference: BachtrogDSex determination: why so many ways of doing it?PLoS Biol.201412e100189924983465407765410.1371/journal.pbio.1001899 – reference: AnsaiSDiversity of sex chromosomes in Sulawesian medaka fishesJ. Evol. Biol.202235175117641:CAS:528:DC%2BB38XisVOnsbjI3605450110.1111/jeb.14076 – reference: KimGMontalvãoAPLKerstenBFladungMMüllerNAThe genetic basis of sex determination in provides molecular markers across the genus and indicates convergent evolutionSilvae Genet.20217014515510.2478/sg-2021-0012 – reference: YangWA General Model to Explain Repeated Turnovers of Sex Determination in the SalicaceaeMol. Biol. Evol.2021389689801:CAS:528:DC%2BB3MXhvFymsbrL3302751910.1093/molbev/msaa261 – reference: LiHThe Sequence Alignment/Map format and SAMtoolsBioinformatics2009252078207919505943272300210.1093/bioinformatics/btp352 – reference: KolmogorovMYuanJLinYPevznerPAAssembly of long, error-prone reads using repeat graphsNat. Biotechnol.2019375405461:CAS:528:DC%2BC1MXosV2qsrs%3D3093656210.1038/s41587-019-0072-8 – reference: SandersonBJSex determination through X-Y heterogamety in Salix nigraHeredity (Edinb.)20211266306391:CAS:528:DC%2BB3MXhtVensLrK3351046410.1038/s41437-020-00397-3 – reference: TamuraKStecherGKumarSMEGA11: Molecular Evolutionary Genetics Analysis Version 11Mol. Biol. Evol.202138302230271:CAS:528:DC%2BB3MXitlCktrfN33892491823349610.1093/molbev/msab120 – reference: SalickJPfefferEThe interplay of hybridization and clonal reproduction in the evolution of willows – Experiments with hybrids of S. eriocephala[R] & S. exigua[X] and S. eriocephala & S. petiolaris[P]Plant Ecol.199914116317810.1023/A:1009858528374 – reference: LiYA chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determinationMol. Ecol.20221513661380 – reference: MullerNAA single gene underlies the dynamic evolution of poplar sex determinationNat. Plants202066306373248332610.1038/s41477-020-0672-9 – reference: ShumateASalzbergSLLiftoff: accurate mapping of gene annotationsBioinformatics202137163916431:CAS:528:DC%2BB3MXitlGgt7bE33320174828937410.1093/bioinformatics/btaa1016 – reference: GoukerFESexual dimorphism in the dioecious willow Salix purpureaAm. J. Bot.2021108137413871:CAS:528:DC%2BB38Xot1Sqsw%3D%3D3440665810.1002/ajb2.1704 – reference: Che-CastaldoCCrisafulliCMBishopJGFaganWFWhat causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?Am. J. Bot.2015102130913221:CAS:528:DC%2BC28Xns1Kitrc%3D10.3732/ajb.1500143 – reference: VamosiJCOttoSPWhen looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plantsProc. Biol. Sci.20022691187119412061964169100510.1098/rspb.2002.2004 – reference: VillanuevaRAMChenZJggplot2: Elegant Graphics for Data Analysis (2nd ed.)Meas.: Interdiscip. Res. Perspect.201917160167 – reference: BakerRHWilkinsonGSComparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis)PLoS Genet.20106e100112120862308294073410.1371/journal.pgen.1001121 – reference: DurandNCJuicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C ExperimentsCell Syst.2016395981:CAS:528:DC%2BC2sXhtFKksbk%3D27467249584646510.1016/j.cels.2016.07.002 – reference: HydenBIntegrative genomics reveals paths to sex dimorphism in Salix purpurea LHorticulture Res.2021811410.1038/s41438-021-00606-y – reference: CronkQMüllerNADefault Sex and Single Gene Sex Determination in Dioecious PlantsFront. Plant Sci.202011116232849717740321810.3389/fpls.2020.01162 – reference: GeraldesARecent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus)Mol. Ecol.201524324332561:STN:280:DC%2BC2MrpvVGrtg%3D%3D2572827010.1111/mec.13126 – reference: DudchenkoODe novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffoldsScience201735692951:CAS:528:DC%2BC2sXlsVymsbo%3D28336562563582010.1126/science.aal33272017Sci...356...92D – reference: Beukeboom, L. W. & Perrin, N. What are sexes, and why are there sexes?, (Oxford Univ Press, 2014). – reference: WilkersonDGTaskiranBCarlsonCHSmartLBMapping the sex determination region in the Salix F1 hybrid common parent population confirms a ZW system in six diverse speciesG3 (Bethesda)202212jkac0711:CAS:528:DC%2BB38XitV2is7%2FP10.1093/g3journal/jkac071 – reference: Leite MontalvaoAPKerstenBKimGFladungMMullerNAARR17 controls dioecy in Populus by repressing B-class MADS-box gene expressionPhilos. Trans. R. Soc. Lond. B Biol. Sci.20223772021021735306887893531210.1098/rstb.2021.0217 – reference: TennessenJAGovindarajuluRListonAAshmanTLHomomorphicZWchromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining regionN. Phytol.2016211141214231:CAS:528:DC%2BC28Xht1Kku77O10.1111/nph.13983 – reference: Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 201178. https://doi.org/10.1101/201178 (2018). – reference: KocherTDNew Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini)Genes (Basel)2022138041:CAS:528:DC%2BB38XhsVent73O3562718910.3390/genes13050804 – reference: UbedaFPattenMMWildGOn the origin of sex chromosomes from meiotic driveProc. Biol. Sci.201528220141932253924704262170 – volume: 38 start-page: 93 year: 1964 ident: 42880_CR10 publication-title: Evolution doi: 10.2307/2406423 – volume: 11 year: 2020 ident: 42880_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19559-2 – volume: 282 start-page: 20141932 year: 2015 ident: 42880_CR50 publication-title: Proc. Biol. Sci. – ident: 42880_CR69 doi: 10.1101/201178 – volume: 15 start-page: 1366 year: 2022 ident: 42880_CR25 publication-title: Mol. Ecol. – volume: 111 start-page: 7713 year: 2014 ident: 42880_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319227111 – volume: 21 year: 2020 ident: 42880_CR35 publication-title: Genome Biol. doi: 10.1186/s13059-020-1952-4 – ident: 42880_CR75 doi: 10.1101/201178 – volume: 10 year: 2019 ident: 42880_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08014-y – volume: 11 start-page: e0147671 year: 2016 ident: 42880_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0147671 – volume: 126 start-page: 630 year: 2021 ident: 42880_CR29 publication-title: Heredity (Edinb.) doi: 10.1038/s41437-020-00397-3 – volume: 35 start-page: 1751 year: 2022 ident: 42880_CR19 publication-title: J. Evol. Biol. doi: 10.1111/jeb.14076 – volume: 81 start-page: 559 year: 2007 ident: 42880_CR70 publication-title: Am. J. Hum. Genet doi: 10.1086/519795 – volume: 31 start-page: 1413 year: 2018 ident: 42880_CR56 publication-title: J. Evol. Biol. doi: 10.1111/jeb.13336 – volume: 10 year: 2009 ident: 42880_CR71 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-10-421 – volume: 22 year: 2021 ident: 42880_CR41 publication-title: BMC Genomics doi: 10.1186/s12864-021-08021-2 – ident: 42880_CR5 – volume: 114 start-page: 575 year: 2015 ident: 42880_CR36 publication-title: Heredity doi: 10.1038/hdy.2014.125 – ident: 42880_CR27 – volume: 75 start-page: 1387 year: 1988 ident: 42880_CR55 publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1988.tb14200.x – volume: 12 start-page: jkac071 year: 2022 ident: 42880_CR38 publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkac071 – volume: 7 start-page: 392 year: 2021 ident: 42880_CR45 publication-title: Nat. Plants doi: 10.1038/s41477-021-00884-3 – volume: 16 start-page: 801 year: 2008 ident: 42880_CR15 publication-title: Chromosome Res doi: 10.1007/s10577-008-1227-5 – volume: 34 start-page: 3094 year: 2018 ident: 42880_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 183 start-page: 140 year: 2014 ident: 42880_CR49 publication-title: Am. Nat. doi: 10.1086/674026 – volume: 293 start-page: 1437 year: 2018 ident: 42880_CR37 publication-title: Mol. Genet Genomics doi: 10.1007/s00438-018-1473-y – volume: 144 start-page: 99 year: 1984 ident: 42880_CR28 publication-title: Plant Syst. Evol. doi: 10.1007/BF00986668 – volume: 356 start-page: 92 year: 2017 ident: 42880_CR62 publication-title: Science doi: 10.1126/science.aal3327 – volume: 37 start-page: 1639 year: 2021 ident: 42880_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa1016 – volume: 186 start-page: 629 year: 2010 ident: 42880_CR20 publication-title: Genetics doi: 10.1534/genetics.110.118596 – volume: 8 start-page: 1 year: 2021 ident: 42880_CR39 publication-title: Horticulture Res. doi: 10.1038/s41438-021-00606-y – volume: 70 start-page: 145 year: 2021 ident: 42880_CR34 publication-title: Silvae Genet. doi: 10.2478/sg-2021-0012 – volume: 6 start-page: e1001121 year: 2010 ident: 42880_CR6 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001121 – volume: 3 start-page: 95 year: 2016 ident: 42880_CR61 publication-title: Cell Syst. doi: 10.1016/j.cels.2016.07.002 – volume: 211 start-page: 1412 year: 2016 ident: 42880_CR12 publication-title: N. Phytol. doi: 10.1111/nph.13983 – volume: 24 start-page: 3243 year: 2015 ident: 42880_CR32 publication-title: Mol. Ecol. doi: 10.1111/mec.13126 – volume: 9 year: 2019 ident: 42880_CR46 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37412-x – volume: 38 start-page: 4403 year: 2021 ident: 42880_CR8 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msab179 – volume: 129 start-page: 1 year: 2018 ident: 42880_CR53 publication-title: Alp. Bot. doi: 10.1007/s00035-018-0213-6 – volume: 64 start-page: 486 year: 2010 ident: 42880_CR16 publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00871.x – volume: 36 start-page: 2253 year: 2020 ident: 42880_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz891 – volume: 25 start-page: 2078 year: 2009 ident: 42880_CR67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 94 start-page: 493 year: 1997 ident: 42880_CR54 publication-title: Theor. Appl. Genet. doi: 10.1007/s001220050442 – volume: 108 start-page: 1374 year: 2021 ident: 42880_CR51 publication-title: Am. J. Bot. doi: 10.1002/ajb2.1704 – volume: 38 start-page: 968 year: 2021 ident: 42880_CR33 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa261 – volume: 17 start-page: 160 year: 2019 ident: 42880_CR72 publication-title: Meas.: Interdiscip. Res. Perspect. – volume: 31 start-page: 3859 year: 2022 ident: 42880_CR22 publication-title: Mol. Ecol. doi: 10.1111/mec.16551 – volume: 22 start-page: 4673 year: 1994 ident: 42880_CR73 publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.22.4673 – volume: 37 start-page: 540 year: 2019 ident: 42880_CR59 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – ident: 42880_CR1 doi: 10.1093/acprof:oso/9780199657148.001.0001 – volume: 102 start-page: 1309 year: 2015 ident: 42880_CR52 publication-title: Am. J. Bot. doi: 10.3732/ajb.1500143 – volume: 3 start-page: e000132 year: 2017 ident: 42880_CR58 publication-title: Micro. Genom. – volume: 6 start-page: 630 year: 2020 ident: 42880_CR26 publication-title: Nat. Plants doi: 10.1038/s41477-020-0672-9 – volume: 377 start-page: 20210217 year: 2022 ident: 42880_CR42 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2021.0217 – volume: 38 start-page: 3022 year: 2021 ident: 42880_CR74 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msab120 – volume: 12 start-page: 483 year: 2021 ident: 42880_CR17 publication-title: Genes (Basel) doi: 10.3390/genes12040483 – volume: 73 start-page: 6352 year: 2022 ident: 42880_CR48 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erac260 – volume: 27 start-page: 4078 year: 2018 ident: 42880_CR23 publication-title: Mol. Ecol. doi: 10.1111/mec.14831 – volume: 123 start-page: 419 year: 2019 ident: 42880_CR21 publication-title: Heredity (Edinb.) doi: 10.1038/s41437-019-0225-z – ident: 42880_CR63 – volume: 12 start-page: e1001899 year: 2014 ident: 42880_CR2 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001899 – volume: 269 start-page: 1187 year: 2002 ident: 42880_CR47 publication-title: Proc. Biol. Sci. doi: 10.1098/rspb.2002.2004 – volume: 13 start-page: e1002078 year: 2015 ident: 42880_CR7 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002078 – ident: 42880_CR68 – volume: 326 start-page: 998 year: 2009 ident: 42880_CR13 publication-title: Science doi: 10.1126/science.1174705 – volume: 13 start-page: 804 year: 2022 ident: 42880_CR18 publication-title: Genes (Basel) doi: 10.3390/genes13050804 – volume: 23 year: 2022 ident: 42880_CR30 publication-title: Genome Biol. doi: 10.1186/s13059-022-02769-w – volume: 11 start-page: 1162 year: 2020 ident: 42880_CR44 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01162 – ident: 42880_CR4 doi: 10.1093/acprof:oso/9780199657148.003.0001 – volume: 9 year: 2018 ident: 42880_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06517-2 – volume: 25 start-page: 1754 year: 2009 ident: 42880_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 141 start-page: 163 year: 1999 ident: 42880_CR43 publication-title: Plant Ecol. doi: 10.1023/A:1009858528374 – ident: 42880_CR3 doi: 10.1038/sdata.2014.15 – volume: 72 start-page: 1701 year: 2018 ident: 42880_CR24 publication-title: Evolution doi: 10.1111/evo.13543 – volume: 208 start-page: 52 year: 2015 ident: 42880_CR57 publication-title: N. Phytol. doi: 10.1111/nph.13497 |
SSID | ssj0000391844 |
Score | 2.4533298 |
Snippet | Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the... Abstract Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7144 |
SubjectTerms | 45 45/23 45/43 631/181/2474 631/208/182 631/449/2491 Chromosomes Genetic load Genomes Homology Humanities and Social Sciences multidisciplinary Salix Science Science (multidisciplinary) Sex Sex chromosomes Sex determination Willow Y chromosomes Z chromosomes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsWmSNjmqKIugJ0XxEpI0xYW1Fevz3ztJu-tWUC_eSpK2yUwm-YZkvkFor8glMTIVnujWxgwAayyd0bHHBoSUjkvqg5MvLrPBNTu_5bdTqb78nbCWHrgV3GEiDaPaZdZSzahgOnGFf_KJv2VmAtl2IpMpZyqswVSC68K6KJmEisOGhTUBtqgYELdIYt7biQJhfw9lfr8j-e2gNOw_Z4tooQOO-Kjt8BKacdUymmtTSX6soPT0tZtEuC6xxnc3uHHv2N7763ZN_eBwy9mMhxUGeDyq35pVdH12enUyiLt8CLEFJzaLvegKJrjNc8IttTJ1GmzO5Uwb6jwSMrwA9yW3tkiEMUVqWKk5YKwszaUldA3NVnXl1hG2NHdQ5lLr_S9jhBWUFDLnpixKS9IIkbFslO3Iwn3OipEKh9ZUqFaeCuSpgjwVj9D-5J3Hlirj19bHXuSTlp7mOhSA8lWnfPWX8iO0NVaY6myvUfD9jIGfRkiEdifVYDX-KERXrn5p2wAwgwkZIdFTdK9D_ZpqeB_4t4mPOyUShnAwnhNff_95xBv_MeJNNO8T3odoyGwLzT4_vbhtgEXPZidYwCeICAWW priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MOwRfxE-sTongm5Y1TdImDyJO7hiCFxGHw5eQr26D2c51U_ffLydt7-jAvZUkpc3JOckvOTm_A_DG14paVUokunU5j4A1V8GaHLEBpU0QimFw8pdVtbfPPx-Igw1YTbEweK1ymhPTRO07h2fk26WUFY_om9IPp79zzBqF3tUphYYZUyv494li7A5sxilZFAvY3Fmuvn5bn7ogH7rkfIyeKZjc7nmaK-LSlUckLotczFaoROQ_Q583707ecKCmdWn3AdwfASX5OGjAQ9gI7SO4O6SYvHwM5fLPqFyka4ghP3-QPvwj7giv4fXdr0AGLmdy3JIIm0-6v_0T2N9dfv-0l495EnIXN7dVjiL1XApX11Q45lQZTLTFUHNjWUCEZIWP25raOV9Ia31peWNExF5VWStH2VNYtF0bngFxrA6xLJQO92XWSicZ9aoWtvGNo2UGdJKNdiOJOOayONHJmc2kHuSpozx1kqcWGbxdv3M6UGjc2noHRb5uifTXqaA7O9SjNelCWc5MqJxjhjPJTRE8PmE2eFXZKoOtacD0aJO9vtagDF6vq6M1oYvEtKG7GNpEwBYVNQM5G-jZD81r2uOjxMtNMR6VqtiFd5NOXH_9_z1-fvvPvoB7mOI-xT9WW7A4P7sILyMQOrevRu2-AmFKBBs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwED_mhuCL6KZYnRLBNy02ze9H_bIxBH1yOPYSkjR1g9nKuvnjvzeXtt_RMQd7K2nSJpdL87nm7nMAbxplqDe1RqLbUPIEWEsTvSsRG1DaRmEYBid__iIPDvmnI3G0AfUcC5Od9jOlZf5Mz95h7weel3TaYcoEmHVVinuwpRUTqNUruVr_V0HGc835FB9TMX1D08UelKn6F_jyunfktSPSvPPsP4KHE2QkH8ZOPoaN2G3D_TGJ5N8dqPd-TepD-pY4cvyNDPEPCSfoaDf0PyIZ2ZrJaUcSMD7rfw9P4HB_7-vqoJwyIZQhma-yRKE1XIugFBWBBVNHl1ZbVNx5FhEDedEkw0WF0FTa-6b2vHUioStZKxMoewqbXd_FZ0ACUzGVxTqg5eW9DprRxijh26YNtC6AzrKxYaIJx2wVZzYfVzNtR3naJE-b5WlFAW_XbX6OJBm31v6IIl_XRILrXNCff7fThNvKeM5clCEwx5nmrooNXmG-dyO9LGB3njA7rbrBpudLniw0Sgt4vb6d1gsegrgu9pdjnQTJkioWoBcTvejQ8k53epKZtylGnFKThvBu1omrt_9_xM_vVv0FPMCk9jniUe7C5sX5ZXyZoM-Ff5V1_R8uoftL priority: 102 providerName: Springer Nature |
Title | Evolution of a ZW sex chromosome system in willows |
URI | https://link.springer.com/article/10.1038/s41467-023-42880-5 https://www.proquest.com/docview/2886462611 https://www.proquest.com/docview/2886937057 https://pubmed.ncbi.nlm.nih.gov/PMC10628195 https://doaj.org/article/09b43ae6cc3a4384a0ed3a43032096b6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8ID5FYFRG4g0CdezE9gNCXdUyVWJCQEXFixU7DptUEmg22P57zk5SlGnwxEsS2c6Hz3fx73y-O4BnhVDUqET6QLc25ghYY-VMHntsQGnpUsW8c_K74-xoyRerdLUDfbqjjoDNtaqdzye13KxfXvy4fIMC_7p1GZevGh7EHWefGMG0HMfpLuwHe5HfytfB_fBnZgoVGt75zlx_62B-CmH8B9jz6s7JK-bTMCvNb8OtDk6SSTv-d2DHVXfhRptg8vIeJLOfHWuRuiQ5-fKZNO6C2BO_Ca-pvznSRnImpxVB0LyufzX3YTmffZoexV2WhNiiapvFnqAFl6kVgqaWWZW4HCXRCZ4b5jw-MmmBSo2wthhLY4rE8DJPEXlliVCWsgewV9WVewjEMuGwzCXWa2XGSCsZLZRITVmUliYR0J422nYhxH0mi7UOpmwmdUtPjfTUgZ46jeD59p7vbQCNf7Y-9CTftvTBr0NBvfmqO1nSY2U4y11mLcs5kzwfu8Jf-VzwKjNZBAf9gOmeoTQ-P-OovVEawdNtNcqSN5DklavP2zYI15BNI5CDgR580LCmOj0JUbmp90alCrvwoueJP2__e48f_Y8eP4abiedhv9ydHcDe2ebcPUGwdGZGsCtWAo9y_nYE-5PJ4uMCz4ez4_cfsHSaTUdhGWIUJOU3F3MUQg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9UwFD_BS4y-GD_jELUm-qQL68e29oEY0UsuAjfGQCS-1LXrhAQ2ZCDyz_m32bN1l1wSeeNtabutPT3n9NfTnnMAXpe5okYxiYFubSw8YI2VM0WM2IDSyqWKo3Py9jSb7IrPe-neAvwdfGHwWuWgEztFXTYWbeQrTMpMePRN6fvjXzFmjcLT1SGFRhFSK5SrXYix4Nix6S7O_RauXd345Of7DWPr452PkzhkGYit3xpmMXaoFDK1eU5Ty61irvCc7HJRGO4QX5i09JuC3NoykcaUzIiqSD1yyViuLOX-u7dgUaABZQSLa-Ppl68zKw_GX5dCBG-dhMuVVnS6yS-VsUf-MonTuRWxSxwwh3av3tW8cmDbrYPr9-FeALDkQ89xD2DB1Q_hdp_S8uIRsPHvwMykqUhBvn8jrftD7D5e-2ubI0f62NHkoCYeph825-1j2L0Rij2BUd3U7ikQy3PnyxyzuA80RlrJaany1FRlZSmLgA600TYELcfcGYe6OzznUvf01J6euqOnTiN4O3vnuA_ZcW3rNST5rCWG2-4KmpOfOkivTpQRvHCZtbwQXIoicSU-YfZ5lZksguVhwnTQAa2-5NgIXs2qvfTikUxRu-asb-MBoheMCOTcRM91aL6mPtjv4oBT9H-lyg_h3cATl3___4iXru_sS7gz2dne0lsb081ncJchp6IZPVuG0enJmXvuQdipeRE4ncCPmxaufxXGQGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFOkFDASnCDa-JHYOSAEtKuWQsWBihUXEzsOrdQmpWkp_Wv8Omby2Gor0Vtvke0k9njG_saeB8CLUufc5cJQoFsfKwSscR5cERM24LwKaS7JOfnzdraxoz7O0tkS_B19YcisclwTu4W6bDydkU-EMZlC9M35pBrMIr6sTd8e_oopgxTdtI7pNHoW2Qpnp6i-tW8213CuXwoxXf_6YSMeMgzEHtXCLKbOlMqkXmueeulzEQrk4qBV4WQgbOHSEhUC7X2ZGOdK4VRVpIhaMqFzzyV-9xpc11IpShuhZ3p-vkOR141Sg59OIs2kVd2qhJtkjJjfJHG6sBd2KQMWcO5FK80LV7XdDji9A7cH6Mre9bx2F5ZCfQ9u9Mksz-6DWP89sDFrKlaw799YG_4wv0sGf21zEFgfNZrt1QwB-n5z2j6AnSuh10NYrps6PALmpQ5YFoQnDdA5443kZa5TV5WV5yICPtLG-iFcOWXN2Lfdtbk0tqenRXrajp42jeDV_J3DPljHpa3fE8nnLSnQdlfQHP20g9zaJHdKFiHzXhZKGlUkoaQnyjufZy6LYHWcMDtIf2vPeTWC5_NqlFu6jCnq0Jz0bRAaokhEYBYmeqFDizX13m4XAZyT5yvPcQivR544__v_R7xyeWefwU0UKftpc3vrMdwSxKh0fp6twvLx0Ul4gujr2D3t2JzBj6uWq39J7T4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+a+ZW+sex+chromosome+system+in+willows&rft.jtitle=Nature+communications&rft.au=Nan+Hu&rft.au=Brian+J.+Sanderson&rft.au=Minghao+Guo&rft.au=Guanqiao+Feng&rft.date=2023-11-06&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-42880-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_09b43ae6cc3a4384a0ed3a43032096b6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |