Visual change detection on tunnel linings

We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel...

Full description

Saved in:
Bibliographic Details
Published inMachine vision and applications Vol. 27; no. 3; pp. 319 - 330
Main Authors Stent, Simon, Gherardi, Riccardo, Stenger, Björn, Soga, Kenichi, Cipolla, Roberto
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0932-8092
1432-1769
DOI10.1007/s00138-014-0648-8

Cover

Abstract We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost.
AbstractList We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost.
Author Gherardi, Riccardo
Stent, Simon
Stenger, Björn
Soga, Kenichi
Cipolla, Roberto
Author_xml – sequence: 1
  givenname: Simon
  surname: Stent
  fullname: Stent, Simon
  email: sais2@cam.ac.uk, sistent@cantab.net
  organization: Department of Engineering, University of Cambridge
– sequence: 2
  givenname: Riccardo
  surname: Gherardi
  fullname: Gherardi, Riccardo
  organization: Cambridge Research Laboratory, Toshiba Research Europe Ltd
– sequence: 3
  givenname: Björn
  surname: Stenger
  fullname: Stenger, Björn
  organization: Cambridge Research Laboratory, Toshiba Research Europe Ltd
– sequence: 4
  givenname: Kenichi
  surname: Soga
  fullname: Soga, Kenichi
  organization: Department of Engineering, University of Cambridge
– sequence: 5
  givenname: Roberto
  surname: Cipolla
  fullname: Cipolla, Roberto
  organization: Department of Engineering, University of Cambridge
BookMark eNp9kE1LxDAQhoOs4K76A7wVvOihmkm6-TjK4hcseFGvIU2TNUs3XZP24L83pYKwoMzAzOF9Z16eBZqFLliELgDfAMb8NmEMVJQYqhKzSpTiCM2hoqQEzuQMzbHMu8CSnKBFSluMccV5NUfX7z4Nui3Mhw4bWzS2t6b3XShy90MIti1aH3zYpDN07HSb7PnPPEVvD_evq6dy_fL4vLpbl6Zioi-dbLirqWOirmWjuRTcmqa2jDU1MdQtLUjOoFk64DUhjsglxdwAEIMprQU9RVfT3X3sPgeberXzydi21cF2Q1IgJBVSVECz9PJAuu2GGHI6RQjLJYEuswomlYldStE6tY9-p-OXAqxGeGqCpzI8NcJTYwh-4DG-1yOYPmrf_uskkzPlLxlp_M30t-kbDzuDhw
CitedBy_id crossref_primary_10_1016_j_tust_2018_09_026
crossref_primary_10_1061_AJRUA6_0001134
crossref_primary_10_1111_mice_12230
crossref_primary_10_1186_s43251_023_00106_0
crossref_primary_10_1111_mice_12293
crossref_primary_10_1080_15376494_2021_1979141
crossref_primary_10_3390_s23010178
crossref_primary_10_1016_j_autcon_2022_104299
crossref_primary_10_1093_iti_liad005
crossref_primary_10_3390_s23229140
crossref_primary_10_1098_rsfs_2016_0023
crossref_primary_10_3390_s20102778
crossref_primary_10_1016_j_isprsjprs_2018_07_010
crossref_primary_10_3390_s21175725
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_1177_1475921720972416
crossref_primary_10_1061__ASCE_CP_1943_5487_0000516
crossref_primary_10_1016_j_autcon_2018_03_020
crossref_primary_10_1007_s12205_023_1775_4
crossref_primary_10_1080_17499518_2023_2172187
crossref_primary_10_1016_j_enggeo_2021_106232
crossref_primary_10_1016_j_autcon_2017_06_008
crossref_primary_10_1007_s00138_014_0648_8
crossref_primary_10_1016_j_tust_2021_104072
crossref_primary_10_1177_14759217221083647
crossref_primary_10_1590_s1983_41952023000100003
crossref_primary_10_1016_j_autcon_2018_10_019
crossref_primary_10_1016_j_cad_2019_05_033
crossref_primary_10_3390_en13153916
crossref_primary_10_1016_j_tust_2020_103587
crossref_primary_10_3390_s20226669
crossref_primary_10_1177_0361198119845656
crossref_primary_10_1051_e3sconf_201913501048
crossref_primary_10_1016_j_tust_2020_103677
crossref_primary_10_1016_j_eng_2018_11_030
crossref_primary_10_3390_s21217197
crossref_primary_10_1177_1475921720921135
crossref_primary_10_1016_j_autcon_2021_103708
crossref_primary_10_1088_1757_899X_371_1_012015
crossref_primary_10_1177_1729881419847926
crossref_primary_10_1016_j_undsp_2022_02_004
crossref_primary_10_3390_s22030873
Cites_doi 10.1016/j.autcon.2006.05.003
10.1109/TIP.2004.838698
10.1109/CVPR.2007.383073
10.1007/s00138-011-0394-0
10.1109/LGRS.2009.2031686
10.1080/0143116031000139863
10.1109/34.1000236
10.1007/s00138-014-0648-8
10.2219/rtriqr.48.94
10.1007/s11263-007-0107-3
10.1109/CVPR.2013.25
10.1023/B:VISI.0000029664.99615.94
10.1109/ICIP.2009.5413902
10.1109/83.597272
10.1109/ICCV.2011.6126515
10.1007/978-3-642-33709-3_24
10.1007/s00138-009-0189-8
10.1109/OCEANSKOBE.2008.4531004
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Machine Vision and Applications is a copyright of Springer, (2014). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Machine Vision and Applications is a copyright of Springer, (2014). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00138-014-0648-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1432-1769
EndPage 330
ExternalDocumentID 10_1007_s00138_014_0648_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7SC
8FD
JQ2
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c468t-f9d7fb3f68bb9da7987ecdbe66db2c3f5e19761d5f17b22f295307c112c033b83
IEDL.DBID 8FG
ISSN 0932-8092
IngestDate Fri Sep 05 13:05:22 EDT 2025
Fri Jul 25 11:12:05 EDT 2025
Tue Jul 01 01:58:24 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Fri Feb 21 02:32:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Infrastructure inspection
Structure from motion
Structural health monitoring
Tunnel inspection
Change detection
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-f9d7fb3f68bb9da7987ecdbe66db2c3f5e19761d5f17b22f295307c112c033b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2262629135
PQPubID 2043753
PageCount 12
ParticipantIDs proquest_miscellaneous_1893898413
proquest_journals_2262629135
crossref_primary_10_1007_s00138_014_0648_8
crossref_citationtrail_10_1007_s00138_014_0648_8
springer_journals_10_1007_s00138_014_0648_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationTitle Machine vision and applications
PublicationTitleAbbrev Machine Vision and Applications
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ComaniciuDMeerPMean shift: a robust approach toward feature space analysisTrans. PAMI200224560361910.1109/34.1000236
JobsonDJRahmanZWoodellGAA multiscale retinex for bridging the gap between color images and the human observation of scenesIEEE Trans. Image Process.1997679657610.1109/83.597272
tCrack system by terra vermessungen ag (2012)
RadkeRJAndraSAl-KofahiORoysamBImage change detection algorithms: a systematic surveyIEEE Trans. Image Process.2005143294307212066410.1109/TIP.2004.838698
Wu, C.: VisualSFM: a visual structure from motion system (2011)
YuS-GJangJ-HHanC-SAuto inspection system using a mobile robot for detecting concrete cracks in a tunnelAutom. Constr.200716325526110.1016/j.autcon.2006.05.003
Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007)
Ortner, T., Paar, G., Hesina, G., Tobler, R.F., Nauschnegg, B.: Towards true underground infrastructure surface documentation. Real Corp Proceedings 2010, Vienna, pp. 18–20 (2010)
Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: ICCV pp. 2336–2343 (2011)
UkaiMAdvanced inspection system of tunnel wall deformation using image processingQ. Rep. RTRI2007482949810.2219/rtriqr.48.94
Delaunoy, O., Gracias, N., Garcia, R.: Towards detecting changes in underwater image sequences. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean (2008)
Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: CVPR (2013)
Stent, S., Gherardi, R., Stenger, B., Soga, K., Cipolla,R.: An image-based system for change detection ontunnel linings. In: MVA (2013)
SPACETEC (2012)
YamaguchiTHashimotoSFast crack detection method for large-size concrete surface images using percolation-based image processingMach. Vis. Appl.20102179780910.1007/s00138-009-0189-8
Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008)
Pollard, T., Mundy, J.L.: Change detection in a 3-d world. In: CVPR (2007)
Chaiyasarn, K., Kim, T.-K., Viola, F., Cipolla, R., Soga, K.: Image mosaicing via quadric surface estimation with priors for tunnel inspection. In: ICIP, pp. 537–540 (2009)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. EPFL Tech. Report No. 149300 (2010)
LoweDGDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94
Ravichandran, A., Soatto, S.: Long-range spatio-temporal modeling of video with application to fire detection. ECCV, pp. 329–342 (2012)
JahanshahiMRMasriSFPadgettCWSukhatmeGSAn innovative methodology for detection and quantification of cracks through incorporation of depth perceptionMach. Vis. Appl.20132422724110.1007/s00138-011-0394-0
DianatRKasaeiSChange detection in optical remote sensing images using difference-based methods and spatial informationGeosci. Remote Sens. Lett. IEEE20107121521910.1109/LGRS.2009.2031686
SnavelyNSeitzSMSzeliskiRModeling the world from internet photo collectionsInt. J. Comput. Vis.200880218921010.1007/s11263-007-0107-3
LuDMauselPBrondízioEMoranEChange detection techniquesInt. J. Remote Sens.200425122365240710.1080/0143116031000139863
D Lu (648_CR9) 2004; 25
M Ukai (648_CR20) 2007; 48
648_CR1
DJ Jobson (648_CR7) 1997; 6
648_CR19
648_CR2
648_CR16
648_CR18
S-G Yu (648_CR25) 2007; 16
648_CR17
648_CR11
N Snavely (648_CR15) 2008; 80
648_CR14
648_CR13
648_CR10
RJ Radke (648_CR12) 2005; 14
MR Jahanshahi (648_CR6) 2013; 24
T Yamaguchi (648_CR24) 2010; 21
DG Lowe (648_CR8) 2004; 60
D Comaniciu (648_CR3) 2002; 24
648_CR4
R Dianat (648_CR5) 2010; 7
648_CR23
648_CR22
648_CR21
References_xml – reference: DianatRKasaeiSChange detection in optical remote sensing images using difference-based methods and spatial informationGeosci. Remote Sens. Lett. IEEE20107121521910.1109/LGRS.2009.2031686
– reference: UkaiMAdvanced inspection system of tunnel wall deformation using image processingQ. Rep. RTRI2007482949810.2219/rtriqr.48.94
– reference: LoweDGDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Delaunoy, O., Gracias, N., Garcia, R.: Towards detecting changes in underwater image sequences. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean (2008)
– reference: Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008)
– reference: Chaiyasarn, K., Kim, T.-K., Viola, F., Cipolla, R., Soga, K.: Image mosaicing via quadric surface estimation with priors for tunnel inspection. In: ICIP, pp. 537–540 (2009)
– reference: Ravichandran, A., Soatto, S.: Long-range spatio-temporal modeling of video with application to fire detection. ECCV, pp. 329–342 (2012)
– reference: YuS-GJangJ-HHanC-SAuto inspection system using a mobile robot for detecting concrete cracks in a tunnelAutom. Constr.200716325526110.1016/j.autcon.2006.05.003
– reference: Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007)
– reference: Wu, C.: VisualSFM: a visual structure from motion system (2011)
– reference: ComaniciuDMeerPMean shift: a robust approach toward feature space analysisTrans. PAMI200224560361910.1109/34.1000236
– reference: JahanshahiMRMasriSFPadgettCWSukhatmeGSAn innovative methodology for detection and quantification of cracks through incorporation of depth perceptionMach. Vis. Appl.20132422724110.1007/s00138-011-0394-0
– reference: RadkeRJAndraSAl-KofahiORoysamBImage change detection algorithms: a systematic surveyIEEE Trans. Image Process.2005143294307212066410.1109/TIP.2004.838698
– reference: Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. EPFL Tech. Report No. 149300 (2010)
– reference: Pollard, T., Mundy, J.L.: Change detection in a 3-d world. In: CVPR (2007)
– reference: tCrack system by terra vermessungen ag (2012)
– reference: Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: CVPR (2013)
– reference: SnavelyNSeitzSMSzeliskiRModeling the world from internet photo collectionsInt. J. Comput. Vis.200880218921010.1007/s11263-007-0107-3
– reference: SPACETEC (2012)
– reference: Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: ICCV pp. 2336–2343 (2011)
– reference: YamaguchiTHashimotoSFast crack detection method for large-size concrete surface images using percolation-based image processingMach. Vis. Appl.20102179780910.1007/s00138-009-0189-8
– reference: Stent, S., Gherardi, R., Stenger, B., Soga, K., Cipolla,R.: An image-based system for change detection ontunnel linings. In: MVA (2013)
– reference: JobsonDJRahmanZWoodellGAA multiscale retinex for bridging the gap between color images and the human observation of scenesIEEE Trans. Image Process.1997679657610.1109/83.597272
– reference: Ortner, T., Paar, G., Hesina, G., Tobler, R.F., Nauschnegg, B.: Towards true underground infrastructure surface documentation. Real Corp Proceedings 2010, Vienna, pp. 18–20 (2010)
– reference: LuDMauselPBrondízioEMoranEChange detection techniquesInt. J. Remote Sens.200425122365240710.1080/0143116031000139863
– volume: 16
  start-page: 255
  issue: 3
  year: 2007
  ident: 648_CR25
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2006.05.003
– volume: 14
  start-page: 294
  issue: 3
  year: 2005
  ident: 648_CR12
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.838698
– ident: 648_CR11
  doi: 10.1109/CVPR.2007.383073
– volume: 24
  start-page: 227
  year: 2013
  ident: 648_CR6
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0394-0
– ident: 648_CR19
– volume: 7
  start-page: 215
  issue: 1
  year: 2010
  ident: 648_CR5
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2009.2031686
– ident: 648_CR1
– volume: 25
  start-page: 2365
  issue: 12
  year: 2004
  ident: 648_CR9
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000139863
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 648_CR3
  publication-title: Trans. PAMI
  doi: 10.1109/34.1000236
– ident: 648_CR17
  doi: 10.1007/s00138-014-0648-8
– volume: 48
  start-page: 94
  issue: 2
  year: 2007
  ident: 648_CR20
  publication-title: Q. Rep. RTRI
  doi: 10.2219/rtriqr.48.94
– ident: 648_CR22
– volume: 80
  start-page: 189
  issue: 2
  year: 2008
  ident: 648_CR15
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0107-3
– ident: 648_CR14
  doi: 10.1109/CVPR.2013.25
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 648_CR8
  publication-title: IJCV
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 648_CR16
– ident: 648_CR2
  doi: 10.1109/ICIP.2009.5413902
– volume: 6
  start-page: 965
  issue: 7
  year: 1997
  ident: 648_CR7
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
– ident: 648_CR10
– ident: 648_CR18
  doi: 10.1109/ICCV.2011.6126515
– ident: 648_CR13
  doi: 10.1007/978-3-642-33709-3_24
– ident: 648_CR23
– volume: 21
  start-page: 797
  year: 2010
  ident: 648_CR24
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-009-0189-8
– ident: 648_CR21
– ident: 648_CR4
  doi: 10.1109/OCEANSKOBE.2008.4531004
SSID ssj0004774
Score 2.3649864
Snippet We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms Change detection
Clustering
Communications Engineering
Computer Science
Devices
Feature maps
Ground truth
Image detection
Image Processing and Computer Vision
Lighting
Mathematical models
Motion perception
Networks
Nuisance
Parallax
Pattern Recognition
Ranking
Special Issue Paper
Structural health monitoring
Three dimensional models
Tunnel linings
Tunnels (transportation)
Vision systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYX1TwohLYpk2bHBdxWTx4cmVvoUkaEJau2Pb_O02bXRUVpD2laQIzSeYLM_MNwHWScstUkpDIsIQkilqi0iwnmVAqNdTRjrXRFk_pdJY8ztm8z-OufLS7d0m6k3qV7Oacanj1TQiaUU74Jmyxlk4KF_GMjtfJkFlHvYzABI9fQb0r86chvhqjNcL85hR1tmayD7s9SAzHnVYPYKMoh7DXA8aw344VNvmaDL5tCDufCAYP4ebltWpwpC69NzRF7SKvyhDfumlDXMKFqxBRHcFs8vB8PyV9cQSiUb41scJkVsU25UoJk2eCZ4U2qkjbAlE6tqyIEGmgBmyUKUotFQy3s0Z4pUdxrHh8DINyWRYnEOqYaWoznluOtsoIBAVc5AavelYIppMARl5KUvfM4W0Bi4VccR47wUoUrGwFK3kAt6tf3jrajL86n3vRy34HVRJhIT4iilkAV6vPuPZbh0ZeFsumkhGCLS442uEA7rzK1kP8OuHpv3qfwTaipLQL1zmHQf3eFBeIRGp16VbeB6940c8
  priority: 102
  providerName: Springer Nature
Title Visual change detection on tunnel linings
URI https://link.springer.com/article/10.1007/s00138-014-0648-8
https://www.proquest.com/docview/2262629135
https://www.proquest.com/docview/1893898413
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qIP3sXpHBV8UQmu6S15kim7oCAiTuZTaZIGhNFN2_1_T9p0U0FpodA2DXy5nK85J98BOPdDpgPh-8RVgU98QTURYZSQiAsRKlrKjploi8dwNPbvJ8HELrjlNqyynhPLiVrNpFkjv0aagAd3veBm_kFM1ijjXbUpNNah6VK0tWan-GC42hcZVSrMyFFwJua09mp2SxFR1zNhXD5Bo8wI-2mXVmTzl3-0NDuDHdiyfNHpVQ28C2tptgfbljs6dmTme7D5TVhwHy5e3_MFFqu29ToqLcqIq8zBs1iY0BZnWmaGyA9gPOi_3I2ITYpAJOJaEM1VpIWnQyYEV0nEWZRKJdLQJIaSng5SFxkGIq_dSFCqKQ9wGEukVbLreYJ5h9DIZll6BI70Akl1xBLN0EYpjmSA8UThL57mPJB-C7o1JLG0iuEmccU0XmodlyjGiGJsUIxZCy6XReaVXMZ_L7drnGM7cvJ41c4tOFs-xj5vHBlJls4WeewiyWKcof1twVXdPqtP_Fnh8f8VnsAG0qGwistpQ6P4XKSnSDkK0Sn7VQeaveHbQx-vt_3Hp2e8O6a9L3sU0wM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeoECrLqVtkMoBKqsbx0nsA6r6AC0FVggB4ubGL6kSytImq6p_rr-NceLsFiS4oeSW2E7Gj_nsmfkG4D3LuEsVYyQ2KSNMUUdUlhckF0plhja0Y97bYpQNL9j3q_RqDv51sTDerbJbE5uF2oy1PyP_iDABLxEn6aebX8RnjfLW1S6FRhFSK5i9hmIsBHYc2b9_cAtX7R1-w_7epvRg__zrkIQsA0Tjh9bECZM7lbiMKyVMkeMm3GqjbOYzLenEpTZGlY2_4uJcUeqoSHFeaMQpepAkiidY7zwsMH-A0oOFL_uj07NZZGbe8kAjSkJdIGhnVx00NKZx4h3JGEFYwAm_qxlncPeehbZRfAfPYTkg1uhzO8RWYc6Wa7AS0GsU1oZqDZ79R224DjuXP6sJFmsDiyNj68bnq4zwrifeuSa6bnJTVC_g4kkE9hJ65bi0ryDSSaqpy3nhOGpJIxCOcFEY3GQ6IVLN-jDoRCJ14Cz3qTOu5ZRtuZGiRClKL0XJ-7A7LXLTEnY89vJmJ2cZ5m4lZyOtD1vTxzjrvCmlKO14UskYYR4XHBFAHz50_TOr4sEGNx5v8B0sDs9PjuXx4ejoNSwhOMtaL6FN6NW_J_YNAqBavQ2jLIIfTz2wbwFqwhMm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD6xPXZwUvKlltm7bJUdT1iXhQ0VNskgZEqYttL_56p4_sqqgg0p7SNGkzSeYLM_MNwCYNmQkkpcTVASVUeobIMIpJxKUMtVfRjpXeFpfhyQ09uwvumjynmfV2tybJOqahZGlK892-NruDwLfKwIbHYEpQpTLCRmGMlikkWjC2f3x_fjQMjYxqImaEKbgZc88aNr9r5LNqGuLNLybSSvP02vBgv7l2OHnqFrnsqrcvdI7_-KlpmGpQqbNfT6MZGEnSWWg3CNVp1n-GRTYJhC2bhckPjIZzsHX7mBXYUh1P7Ogkr1y9UgfvvCh9apznKiVFNg83vaPrgxPSZGMgCgWaE8N1ZKRvQiYl13HEWZQoLZOwzEilfBMkLkIbFLlxI-l5xuMB7h8K8Zza833J_AVopS9psgiO8gPlmYjFhqFy1BxRCOOxxrOl4TxQtAN7VhBCNVTlZcaMZzEgWa7GSuBYiXKsBOvA9uCVfs3T8VvlFStd0SzZTCAOxYu7ftCBjcFjXGylBSVOk5ciEy6iO8YZKv4O7FiBDpv4scOlP9Veh_Grw564OL08X4YJRGhh7Sq0Aq38tUhWEQXlcq2Z6e_WbPpY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+change+detection+on+tunnel+linings&rft.jtitle=Machine+vision+and+applications&rft.au=Stent%2C+Simon&rft.au=Gherardi%2C+Riccardo&rft.au=Stenger%2C+Bjorn&rft.au=Soga%2C+Kenichi&rft.date=2016-04-01&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=27&rft.issue=3&rft.spage=319&rft.epage=330&rft_id=info:doi/10.1007%2Fs00138-014-0648-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon