Visual change detection on tunnel linings
We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel...
Saved in:
Published in | Machine vision and applications Vol. 27; no. 3; pp. 319 - 330 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0932-8092 1432-1769 |
DOI | 10.1007/s00138-014-0648-8 |
Cover
Abstract | We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost. |
---|---|
AbstractList | We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide assistance to expert human inspectors carrying out structural health monitoring and maintenance on ageing tunnel networks. A three-dimensional tunnel surface model is first recovered from a set of reference images using Structure from Motion techniques. New images are localised accurately within the model and changes are detected versus the reference images and model geometry. We formulate the problem of detecting changes probabilistically and evaluate the use of different feature maps and a novel geometric prior to achieve invariance to noise and nuisance sources such as parallax and lighting changes. A clustering and ranking method is proposed which efficiently presents detected changes and further improves the inspection efficiency. System performance is assessed on a real data set collected using a low-cost prototype capture device and labelled with ground truth. Results demonstrate that our system is a step towards higher frequency visual inspection at a reduced cost. |
Author | Gherardi, Riccardo Stent, Simon Stenger, Björn Soga, Kenichi Cipolla, Roberto |
Author_xml | – sequence: 1 givenname: Simon surname: Stent fullname: Stent, Simon email: sais2@cam.ac.uk, sistent@cantab.net organization: Department of Engineering, University of Cambridge – sequence: 2 givenname: Riccardo surname: Gherardi fullname: Gherardi, Riccardo organization: Cambridge Research Laboratory, Toshiba Research Europe Ltd – sequence: 3 givenname: Björn surname: Stenger fullname: Stenger, Björn organization: Cambridge Research Laboratory, Toshiba Research Europe Ltd – sequence: 4 givenname: Kenichi surname: Soga fullname: Soga, Kenichi organization: Department of Engineering, University of Cambridge – sequence: 5 givenname: Roberto surname: Cipolla fullname: Cipolla, Roberto organization: Department of Engineering, University of Cambridge |
BookMark | eNp9kE1LxDAQhoOs4K76A7wVvOihmkm6-TjK4hcseFGvIU2TNUs3XZP24L83pYKwoMzAzOF9Z16eBZqFLliELgDfAMb8NmEMVJQYqhKzSpTiCM2hoqQEzuQMzbHMu8CSnKBFSluMccV5NUfX7z4Nui3Mhw4bWzS2t6b3XShy90MIti1aH3zYpDN07HSb7PnPPEVvD_evq6dy_fL4vLpbl6Zioi-dbLirqWOirmWjuRTcmqa2jDU1MdQtLUjOoFk64DUhjsglxdwAEIMprQU9RVfT3X3sPgeberXzydi21cF2Q1IgJBVSVECz9PJAuu2GGHI6RQjLJYEuswomlYldStE6tY9-p-OXAqxGeGqCpzI8NcJTYwh-4DG-1yOYPmrf_uskkzPlLxlp_M30t-kbDzuDhw |
CitedBy_id | crossref_primary_10_1016_j_tust_2018_09_026 crossref_primary_10_1061_AJRUA6_0001134 crossref_primary_10_1111_mice_12230 crossref_primary_10_1186_s43251_023_00106_0 crossref_primary_10_1111_mice_12293 crossref_primary_10_1080_15376494_2021_1979141 crossref_primary_10_3390_s23010178 crossref_primary_10_1016_j_autcon_2022_104299 crossref_primary_10_1093_iti_liad005 crossref_primary_10_3390_s23229140 crossref_primary_10_1098_rsfs_2016_0023 crossref_primary_10_3390_s20102778 crossref_primary_10_1016_j_isprsjprs_2018_07_010 crossref_primary_10_3390_s21175725 crossref_primary_10_1016_j_aei_2024_102650 crossref_primary_10_1177_1475921720972416 crossref_primary_10_1061__ASCE_CP_1943_5487_0000516 crossref_primary_10_1016_j_autcon_2018_03_020 crossref_primary_10_1007_s12205_023_1775_4 crossref_primary_10_1080_17499518_2023_2172187 crossref_primary_10_1016_j_enggeo_2021_106232 crossref_primary_10_1016_j_autcon_2017_06_008 crossref_primary_10_1007_s00138_014_0648_8 crossref_primary_10_1016_j_tust_2021_104072 crossref_primary_10_1177_14759217221083647 crossref_primary_10_1590_s1983_41952023000100003 crossref_primary_10_1016_j_autcon_2018_10_019 crossref_primary_10_1016_j_cad_2019_05_033 crossref_primary_10_3390_en13153916 crossref_primary_10_1016_j_tust_2020_103587 crossref_primary_10_3390_s20226669 crossref_primary_10_1177_0361198119845656 crossref_primary_10_1051_e3sconf_201913501048 crossref_primary_10_1016_j_tust_2020_103677 crossref_primary_10_1016_j_eng_2018_11_030 crossref_primary_10_3390_s21217197 crossref_primary_10_1177_1475921720921135 crossref_primary_10_1016_j_autcon_2021_103708 crossref_primary_10_1088_1757_899X_371_1_012015 crossref_primary_10_1177_1729881419847926 crossref_primary_10_1016_j_undsp_2022_02_004 crossref_primary_10_3390_s22030873 |
Cites_doi | 10.1016/j.autcon.2006.05.003 10.1109/TIP.2004.838698 10.1109/CVPR.2007.383073 10.1007/s00138-011-0394-0 10.1109/LGRS.2009.2031686 10.1080/0143116031000139863 10.1109/34.1000236 10.1007/s00138-014-0648-8 10.2219/rtriqr.48.94 10.1007/s11263-007-0107-3 10.1109/CVPR.2013.25 10.1023/B:VISI.0000029664.99615.94 10.1109/ICIP.2009.5413902 10.1109/83.597272 10.1109/ICCV.2011.6126515 10.1007/978-3-642-33709-3_24 10.1007/s00138-009-0189-8 10.1109/OCEANSKOBE.2008.4531004 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Machine Vision and Applications is a copyright of Springer, (2014). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Machine Vision and Applications is a copyright of Springer, (2014). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s00138-014-0648-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1432-1769 |
EndPage | 330 |
ExternalDocumentID | 10_1007_s00138_014_0648_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7SC 8FD JQ2 L7M L~C L~D PUEGO |
ID | FETCH-LOGICAL-c468t-f9d7fb3f68bb9da7987ecdbe66db2c3f5e19761d5f17b22f295307c112c033b83 |
IEDL.DBID | 8FG |
ISSN | 0932-8092 |
IngestDate | Fri Sep 05 13:05:22 EDT 2025 Fri Jul 25 11:12:05 EDT 2025 Tue Jul 01 01:58:24 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Fri Feb 21 02:32:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Infrastructure inspection Structure from motion Structural health monitoring Tunnel inspection Change detection Anomaly detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-f9d7fb3f68bb9da7987ecdbe66db2c3f5e19761d5f17b22f295307c112c033b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2262629135 |
PQPubID | 2043753 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1893898413 proquest_journals_2262629135 crossref_primary_10_1007_s00138_014_0648_8 crossref_citationtrail_10_1007_s00138_014_0648_8 springer_journals_10_1007_s00138_014_0648_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
PublicationTitle | Machine vision and applications |
PublicationTitleAbbrev | Machine Vision and Applications |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ComaniciuDMeerPMean shift: a robust approach toward feature space analysisTrans. PAMI200224560361910.1109/34.1000236 JobsonDJRahmanZWoodellGAA multiscale retinex for bridging the gap between color images and the human observation of scenesIEEE Trans. Image Process.1997679657610.1109/83.597272 tCrack system by terra vermessungen ag (2012) RadkeRJAndraSAl-KofahiORoysamBImage change detection algorithms: a systematic surveyIEEE Trans. Image Process.2005143294307212066410.1109/TIP.2004.838698 Wu, C.: VisualSFM: a visual structure from motion system (2011) YuS-GJangJ-HHanC-SAuto inspection system using a mobile robot for detecting concrete cracks in a tunnelAutom. Constr.200716325526110.1016/j.autcon.2006.05.003 Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007) Ortner, T., Paar, G., Hesina, G., Tobler, R.F., Nauschnegg, B.: Towards true underground infrastructure surface documentation. Real Corp Proceedings 2010, Vienna, pp. 18–20 (2010) Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: ICCV pp. 2336–2343 (2011) UkaiMAdvanced inspection system of tunnel wall deformation using image processingQ. Rep. RTRI2007482949810.2219/rtriqr.48.94 Delaunoy, O., Gracias, N., Garcia, R.: Towards detecting changes in underwater image sequences. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean (2008) Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: CVPR (2013) Stent, S., Gherardi, R., Stenger, B., Soga, K., Cipolla,R.: An image-based system for change detection ontunnel linings. In: MVA (2013) SPACETEC (2012) YamaguchiTHashimotoSFast crack detection method for large-size concrete surface images using percolation-based image processingMach. Vis. Appl.20102179780910.1007/s00138-009-0189-8 Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008) Pollard, T., Mundy, J.L.: Change detection in a 3-d world. In: CVPR (2007) Chaiyasarn, K., Kim, T.-K., Viola, F., Cipolla, R., Soga, K.: Image mosaicing via quadric surface estimation with priors for tunnel inspection. In: ICIP, pp. 537–540 (2009) Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. EPFL Tech. Report No. 149300 (2010) LoweDGDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94 Ravichandran, A., Soatto, S.: Long-range spatio-temporal modeling of video with application to fire detection. ECCV, pp. 329–342 (2012) JahanshahiMRMasriSFPadgettCWSukhatmeGSAn innovative methodology for detection and quantification of cracks through incorporation of depth perceptionMach. Vis. Appl.20132422724110.1007/s00138-011-0394-0 DianatRKasaeiSChange detection in optical remote sensing images using difference-based methods and spatial informationGeosci. Remote Sens. Lett. IEEE20107121521910.1109/LGRS.2009.2031686 SnavelyNSeitzSMSzeliskiRModeling the world from internet photo collectionsInt. J. Comput. Vis.200880218921010.1007/s11263-007-0107-3 LuDMauselPBrondízioEMoranEChange detection techniquesInt. J. Remote Sens.200425122365240710.1080/0143116031000139863 D Lu (648_CR9) 2004; 25 M Ukai (648_CR20) 2007; 48 648_CR1 DJ Jobson (648_CR7) 1997; 6 648_CR19 648_CR2 648_CR16 648_CR18 S-G Yu (648_CR25) 2007; 16 648_CR17 648_CR11 N Snavely (648_CR15) 2008; 80 648_CR14 648_CR13 648_CR10 RJ Radke (648_CR12) 2005; 14 MR Jahanshahi (648_CR6) 2013; 24 T Yamaguchi (648_CR24) 2010; 21 DG Lowe (648_CR8) 2004; 60 D Comaniciu (648_CR3) 2002; 24 648_CR4 R Dianat (648_CR5) 2010; 7 648_CR23 648_CR22 648_CR21 |
References_xml | – reference: DianatRKasaeiSChange detection in optical remote sensing images using difference-based methods and spatial informationGeosci. Remote Sens. Lett. IEEE20107121521910.1109/LGRS.2009.2031686 – reference: UkaiMAdvanced inspection system of tunnel wall deformation using image processingQ. Rep. RTRI2007482949810.2219/rtriqr.48.94 – reference: LoweDGDistinctive image features from scale-invariant keypointsIJCV20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Delaunoy, O., Gracias, N., Garcia, R.: Towards detecting changes in underwater image sequences. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean (2008) – reference: Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008) – reference: Chaiyasarn, K., Kim, T.-K., Viola, F., Cipolla, R., Soga, K.: Image mosaicing via quadric surface estimation with priors for tunnel inspection. In: ICIP, pp. 537–540 (2009) – reference: Ravichandran, A., Soatto, S.: Long-range spatio-temporal modeling of video with application to fire detection. ECCV, pp. 329–342 (2012) – reference: YuS-GJangJ-HHanC-SAuto inspection system using a mobile robot for detecting concrete cracks in a tunnelAutom. Constr.200716325526110.1016/j.autcon.2006.05.003 – reference: Wu, C.: SiftGPU: a GPU implementation of scale invariant feature transform (SIFT) (2007) – reference: Wu, C.: VisualSFM: a visual structure from motion system (2011) – reference: ComaniciuDMeerPMean shift: a robust approach toward feature space analysisTrans. PAMI200224560361910.1109/34.1000236 – reference: JahanshahiMRMasriSFPadgettCWSukhatmeGSAn innovative methodology for detection and quantification of cracks through incorporation of depth perceptionMach. Vis. Appl.20132422724110.1007/s00138-011-0394-0 – reference: RadkeRJAndraSAl-KofahiORoysamBImage change detection algorithms: a systematic surveyIEEE Trans. Image Process.2005143294307212066410.1109/TIP.2004.838698 – reference: Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels. EPFL Tech. Report No. 149300 (2010) – reference: Pollard, T., Mundy, J.L.: Change detection in a 3-d world. In: CVPR (2007) – reference: tCrack system by terra vermessungen ag (2012) – reference: Sakurada, K., Okatani, T., Deguchi, K.: Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: CVPR (2013) – reference: SnavelyNSeitzSMSzeliskiRModeling the world from internet photo collectionsInt. J. Comput. Vis.200880218921010.1007/s11263-007-0107-3 – reference: SPACETEC (2012) – reference: Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: ICCV pp. 2336–2343 (2011) – reference: YamaguchiTHashimotoSFast crack detection method for large-size concrete surface images using percolation-based image processingMach. Vis. Appl.20102179780910.1007/s00138-009-0189-8 – reference: Stent, S., Gherardi, R., Stenger, B., Soga, K., Cipolla,R.: An image-based system for change detection ontunnel linings. In: MVA (2013) – reference: JobsonDJRahmanZWoodellGAA multiscale retinex for bridging the gap between color images and the human observation of scenesIEEE Trans. Image Process.1997679657610.1109/83.597272 – reference: Ortner, T., Paar, G., Hesina, G., Tobler, R.F., Nauschnegg, B.: Towards true underground infrastructure surface documentation. Real Corp Proceedings 2010, Vienna, pp. 18–20 (2010) – reference: LuDMauselPBrondízioEMoranEChange detection techniquesInt. J. Remote Sens.200425122365240710.1080/0143116031000139863 – volume: 16 start-page: 255 issue: 3 year: 2007 ident: 648_CR25 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2006.05.003 – volume: 14 start-page: 294 issue: 3 year: 2005 ident: 648_CR12 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.838698 – ident: 648_CR11 doi: 10.1109/CVPR.2007.383073 – volume: 24 start-page: 227 year: 2013 ident: 648_CR6 publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-011-0394-0 – ident: 648_CR19 – volume: 7 start-page: 215 issue: 1 year: 2010 ident: 648_CR5 publication-title: Geosci. Remote Sens. Lett. IEEE doi: 10.1109/LGRS.2009.2031686 – ident: 648_CR1 – volume: 25 start-page: 2365 issue: 12 year: 2004 ident: 648_CR9 publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000139863 – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 648_CR3 publication-title: Trans. PAMI doi: 10.1109/34.1000236 – ident: 648_CR17 doi: 10.1007/s00138-014-0648-8 – volume: 48 start-page: 94 issue: 2 year: 2007 ident: 648_CR20 publication-title: Q. Rep. RTRI doi: 10.2219/rtriqr.48.94 – ident: 648_CR22 – volume: 80 start-page: 189 issue: 2 year: 2008 ident: 648_CR15 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0107-3 – ident: 648_CR14 doi: 10.1109/CVPR.2013.25 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 648_CR8 publication-title: IJCV doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 648_CR16 – ident: 648_CR2 doi: 10.1109/ICIP.2009.5413902 – volume: 6 start-page: 965 issue: 7 year: 1997 ident: 648_CR7 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.597272 – ident: 648_CR10 – ident: 648_CR18 doi: 10.1109/ICCV.2011.6126515 – ident: 648_CR13 doi: 10.1007/978-3-642-33709-3_24 – ident: 648_CR23 – volume: 21 start-page: 797 year: 2010 ident: 648_CR24 publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-009-0189-8 – ident: 648_CR21 – ident: 648_CR4 doi: 10.1109/OCEANSKOBE.2008.4531004 |
SSID | ssj0004774 |
Score | 2.3649864 |
Snippet | We describe an automated system for detecting, localising, clustering and ranking visual changes on tunnel surfaces. The system is designed to provide... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 319 |
SubjectTerms | Change detection Clustering Communications Engineering Computer Science Devices Feature maps Ground truth Image detection Image Processing and Computer Vision Lighting Mathematical models Motion perception Networks Nuisance Parallax Pattern Recognition Ranking Special Issue Paper Structural health monitoring Three dimensional models Tunnel linings Tunnels (transportation) Vision systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBx6pYX1TwohLYpk2bHBdxWTx4cmVvoUkaEJau2Pb_O02bXRUVpD2laQIzSeYLM_MNwHWScstUkpDIsIQkilqi0iwnmVAqNdTRjrXRFk_pdJY8ztm8z-OufLS7d0m6k3qV7Oacanj1TQiaUU74Jmyxlk4KF_GMjtfJkFlHvYzABI9fQb0r86chvhqjNcL85hR1tmayD7s9SAzHnVYPYKMoh7DXA8aw344VNvmaDL5tCDufCAYP4ebltWpwpC69NzRF7SKvyhDfumlDXMKFqxBRHcFs8vB8PyV9cQSiUb41scJkVsU25UoJk2eCZ4U2qkjbAlE6tqyIEGmgBmyUKUotFQy3s0Z4pUdxrHh8DINyWRYnEOqYaWoznluOtsoIBAVc5AavelYIppMARl5KUvfM4W0Bi4VccR47wUoUrGwFK3kAt6tf3jrajL86n3vRy34HVRJhIT4iilkAV6vPuPZbh0ZeFsumkhGCLS442uEA7rzK1kP8OuHpv3qfwTaipLQL1zmHQf3eFBeIRGp16VbeB6940c8 priority: 102 providerName: Springer Nature |
Title | Visual change detection on tunnel linings |
URI | https://link.springer.com/article/10.1007/s00138-014-0648-8 https://www.proquest.com/docview/2262629135 https://www.proquest.com/docview/1893898413 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qIP3sXpHBV8UQmu6S15kim7oCAiTuZTaZIGhNFN2_1_T9p0U0FpodA2DXy5nK85J98BOPdDpgPh-8RVgU98QTURYZSQiAsRKlrKjploi8dwNPbvJ8HELrjlNqyynhPLiVrNpFkjv0aagAd3veBm_kFM1ijjXbUpNNah6VK0tWan-GC42hcZVSrMyFFwJua09mp2SxFR1zNhXD5Bo8wI-2mXVmTzl3-0NDuDHdiyfNHpVQ28C2tptgfbljs6dmTme7D5TVhwHy5e3_MFFqu29ToqLcqIq8zBs1iY0BZnWmaGyA9gPOi_3I2ITYpAJOJaEM1VpIWnQyYEV0nEWZRKJdLQJIaSng5SFxkGIq_dSFCqKQ9wGEukVbLreYJ5h9DIZll6BI70Akl1xBLN0EYpjmSA8UThL57mPJB-C7o1JLG0iuEmccU0XmodlyjGiGJsUIxZCy6XReaVXMZ_L7drnGM7cvJ41c4tOFs-xj5vHBlJls4WeewiyWKcof1twVXdPqtP_Fnh8f8VnsAG0qGwistpQ6P4XKSnSDkK0Sn7VQeaveHbQx-vt_3Hp2e8O6a9L3sU0wM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAeoECrLqVtkMoBKqsbx0nsA6r6AC0FVggB4ubGL6kSytImq6p_rr-NceLsFiS4oeSW2E7Gj_nsmfkG4D3LuEsVYyQ2KSNMUUdUlhckF0plhja0Y97bYpQNL9j3q_RqDv51sTDerbJbE5uF2oy1PyP_iDABLxEn6aebX8RnjfLW1S6FRhFSK5i9hmIsBHYc2b9_cAtX7R1-w_7epvRg__zrkIQsA0Tjh9bECZM7lbiMKyVMkeMm3GqjbOYzLenEpTZGlY2_4uJcUeqoSHFeaMQpepAkiidY7zwsMH-A0oOFL_uj07NZZGbe8kAjSkJdIGhnVx00NKZx4h3JGEFYwAm_qxlncPeehbZRfAfPYTkg1uhzO8RWYc6Wa7AS0GsU1oZqDZ79R224DjuXP6sJFmsDiyNj68bnq4zwrifeuSa6bnJTVC_g4kkE9hJ65bi0ryDSSaqpy3nhOGpJIxCOcFEY3GQ6IVLN-jDoRCJ14Cz3qTOu5ZRtuZGiRClKL0XJ-7A7LXLTEnY89vJmJ2cZ5m4lZyOtD1vTxzjrvCmlKO14UskYYR4XHBFAHz50_TOr4sEGNx5v8B0sDs9PjuXx4ejoNSwhOMtaL6FN6NW_J_YNAqBavQ2jLIIfTz2wbwFqwhMm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD6xPXZwUvKlltm7bJUdT1iXhQ0VNskgZEqYttL_56p4_sqqgg0p7SNGkzSeYLM_MNwCYNmQkkpcTVASVUeobIMIpJxKUMtVfRjpXeFpfhyQ09uwvumjynmfV2tybJOqahZGlK892-NruDwLfKwIbHYEpQpTLCRmGMlikkWjC2f3x_fjQMjYxqImaEKbgZc88aNr9r5LNqGuLNLybSSvP02vBgv7l2OHnqFrnsqrcvdI7_-KlpmGpQqbNfT6MZGEnSWWg3CNVp1n-GRTYJhC2bhckPjIZzsHX7mBXYUh1P7Ogkr1y9UgfvvCh9apznKiVFNg83vaPrgxPSZGMgCgWaE8N1ZKRvQiYl13HEWZQoLZOwzEilfBMkLkIbFLlxI-l5xuMB7h8K8Zza833J_AVopS9psgiO8gPlmYjFhqFy1BxRCOOxxrOl4TxQtAN7VhBCNVTlZcaMZzEgWa7GSuBYiXKsBOvA9uCVfs3T8VvlFStd0SzZTCAOxYu7ftCBjcFjXGylBSVOk5ciEy6iO8YZKv4O7FiBDpv4scOlP9Veh_Grw564OL08X4YJRGhh7Sq0Aq38tUhWEQXlcq2Z6e_WbPpY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+change+detection+on+tunnel+linings&rft.jtitle=Machine+vision+and+applications&rft.au=Stent%2C+Simon&rft.au=Gherardi%2C+Riccardo&rft.au=Stenger%2C+Bjorn&rft.au=Soga%2C+Kenichi&rft.date=2016-04-01&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=27&rft.issue=3&rft.spage=319&rft.epage=330&rft_id=info:doi/10.1007%2Fs00138-014-0648-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon |