Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning

Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical p...

Full description

Saved in:
Bibliographic Details
Published inAdvances in aerodynamics Vol. 3; no. 1; pp. 1 - 14
Main Authors Gao, Qi, Pan, Shaowu, Wang, Hongping, Wei, Runjie, Wang, Jinjun
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 23.09.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2524-6992
2524-6992
DOI10.1186/s42774-021-00087-6

Cover

Abstract Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage.
AbstractList Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage.
Abstract Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage.
ArticleNumber 28
Author Gao, Qi
Wang, Jinjun
Wang, Hongping
Pan, Shaowu
Wei, Runjie
Author_xml – sequence: 1
  givenname: Qi
  surname: Gao
  fullname: Gao, Qi
  organization: School of Aeronautics and Astronautics, Zhejiang University
– sequence: 2
  givenname: Shaowu
  orcidid: 0000-0002-2462-362X
  surname: Pan
  fullname: Pan, Shaowu
  email: shawnpan@umich.edu
  organization: Department of Aerospace Engineering, University of Michigan
– sequence: 3
  givenname: Hongping
  surname: Wang
  fullname: Wang, Hongping
  organization: State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, School of Engineering Science, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Runjie
  surname: Wei
  fullname: Wei, Runjie
  organization: MicroVec. Inc
– sequence: 5
  givenname: Jinjun
  surname: Wang
  fullname: Wang, Jinjun
  organization: Key Laboratory of Fluid Mechanics of Ministry of Education, Beihang University
BookMark eNqNkM1u3CAUhVGVSEmTvEBWSF27BYzBLKuoP5EipYt2jW6Yi4eRB6YYJ5q3LxNPm6qLqCsQnHPuud9bchJTREKuOXvPea8-TFJoLRsmeMMY63Wj3pBz0QnZKGPEyV_3M3I1TZsqEtpIxs058d8gl-BGpBldilPJsyshRZo8fUzjvMWSg6O736qwhQHpI47JhcPfnj6FsqZljbR6oeCwP1i34NYhIh0RcgxxuCSnHsYJr47nBfnx-dP3m6_N3f2X25uPd42Tqi-NV5zzlVo55Vth2AMA6p6hA9dK3rfAtRPGMwmd1qJj0nhUihvtV6A5oGwvyO2Su0qwsbtc6-a9TRDs80PKgz1uYh-YF2C8NAK8dJr3nQAlEI0G6LnUNatdsua4g_0TjOOfQM7sgbxdyNtK3j6Tt6q63i2uXU4_Z5yK3aQ5x7q0FbplShrWsarqF5XLaZoyeutCgQP4CjGMrw8Q_1j_q9Vxl6mK44D5pdUrrl_AzbeH
CitedBy_id crossref_primary_10_1088_1361_6501_ac9991
crossref_primary_10_1109_TIM_2021_3120127
crossref_primary_10_7498_aps_73_20231902
crossref_primary_10_1088_1361_6501_ad6624
crossref_primary_10_3390_inventions9020027
crossref_primary_10_1186_s42774_024_00186_0
crossref_primary_10_1016_j_partic_2024_06_016
crossref_primary_10_3788_AOS240721
crossref_primary_10_1063_5_0218516
crossref_primary_10_1142_S2529807022500026
crossref_primary_10_1007_s00348_022_03444_3
crossref_primary_10_1186_s42774_022_00118_w
crossref_primary_10_1016_j_optcom_2024_130439
crossref_primary_10_1016_j_optlaseng_2024_108309
crossref_primary_10_1146_annurev_fluid_031822_041721
crossref_primary_10_1063_5_0237067
crossref_primary_10_1063_5_0252483
crossref_primary_10_1016_j_flowmeasinst_2025_102888
crossref_primary_10_1016_j_flowmeasinst_2024_102666
Cites_doi 10.1007/s11431-015-5909-x
10.1007/s00466-019-01740-0
10.1016/0146-664X(79)90034-0
10.1007/s10409-020-00983-y
10.1007/s00348-013-1505-7
10.1162/neco_a_00990
10.1007/s00348-016-2176-y
10.1007/s00348-019-2717-2
10.1088/0957-0233/24/1/012001
10.1088/0031-9155/22/3/012
10.1016/j.jcp.2019.108973
10.1007/s00348-015-1934-6
10.1109/TIM.2019.2932649
10.1007/s00348-008-0504-6
10.1088/0957-0233/21/3/035401
10.1007/s11434-013-6081-y
10.1007/s00348-006-0212-z
10.1007/s10851-018-0800-6
10.1109/MSP.2017.2739299
10.1007/s00348-008-0521-5
10.1007/s00348-009-0728-0
10.1088/0957-0233/25/8/084004
10.1049/iet-csr.2019.0040
10.1088/0957-0233/24/2/024008
10.1007/s10409-020-00934-7
10.1073/pnas.71.12.4884
10.1088/0957-0233/24/2/024010
10.1007/s00348-016-2157-1
10.1007/s00348-017-2373-3
10.1109/CVPR.2016.251
10.1109/3DV.2016.79
10.1145/2939672.2939738
10.23919/ChiCC.2017.8029130
10.1109/ICCSP.2017.8286426
ContentType Journal Article
Copyright The Author(s) 2021. , Article corrected in 2022.
The Author(s) 2021. , Article corrected in 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. , Article corrected in 2022.
– notice: The Author(s) 2021. , Article corrected in 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1186/s42774-021-00087-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
PROQUEST
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-6992
EndPage 14
ExternalDocumentID oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147
10.1186/s42774-021-00087-6
10_1186_s42774_021_00087_6
GrantInformation_xml – fundername: program of state key laboratory of marine equipment
  grantid: SKLMEA-K201910
– fundername: national key r & d program of china
  grantid: 2020YFA040070
– fundername: national natural science foundation of china
  grantid: 11721202
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
AAKKN
ABEEZ
ACACY
ACULB
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARCSS
BAPOH
BENPR
C24
C6C
CCPQU
EBS
GROUPED_DOAJ
IAO
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
-SC
-S~
ADTOC
CAJEC
EJD
H13
Q--
U1G
U5M
UNPAY
ID FETCH-LOGICAL-c468t-f6111d6dc6f3290baae780ecac34183a17c29f04a57725049fe66197fda71ae43
IEDL.DBID DOA
ISSN 2524-6992
IngestDate Fri Oct 03 12:50:56 EDT 2025
Tue Aug 19 18:28:28 EDT 2025
Tue Sep 30 18:36:06 EDT 2025
Wed Oct 01 03:47:52 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 21 02:45:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Particle reconstruction
Convolutional neural network
Volumetric particle image velocimetry
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-f6111d6dc6f3290baae780ecac34183a17c29f04a57725049fe66197fda71ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2462-362X
OpenAccessLink https://doaj.org/article/b0f2a9f492af4c71852a62ee97aa8147
PQID 2730649050
PQPubID 4402864
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147
unpaywall_primary_10_1186_s42774_021_00087_6
proquest_journals_2730649050
crossref_citationtrail_10_1186_s42774_021_00087_6
crossref_primary_10_1186_s42774_021_00087_6
springer_journals_10_1186_s42774_021_00087_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-23
PublicationDateYYYYMMDD 2021-09-23
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-23
  day: 23
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Advances in aerodynamics
PublicationTitleAbbrev Adv. Aerodyn
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Atkinson, Soria (CR8) 2009; 47
Wang, Gao, Wei, Wang (CR16) 2016; 57
CR39
Worth, Nickels (CR7) 2008; 45
CR35
Baxes (CR41) 1994
CR32
CR31
CR30
Discetti, Natale, Astarita (CR47) 2013; 54
Hong, Abraham (CR2) 2020; 36
Elsinga, Tokgoz (CR9) 2014; 25
Minerbo (CR26) 1979; 10
Liang, Cai, Xu, Chu (CR24) 2020; 2
Guenther, Kerber, Killian, Smith, Wagner (CR27) 1974; 71
Goodfellow, Bengio, Courville (CR37) 2016
Lynch, Scarano (CR14) 2015; 56
CR49
Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (CR34) 2019; 64
CR45
CR44
CR43
CR42
CR40
Cai, Liang, Gao, Xu, Wei (CR22) 2019; 69
Novara, Batenburg, Scarano (CR15) 2010; 21
Scarano (CR4) 2012; 24
Wieneke (CR13) 2013; 24
Bajpayee, Techet (CR19) 2017; 58
Gao, Wang, Shen (CR5) 2013; 58
Ben Salah, Alata, Tremblais, Thomas, David (CR20) 2018; 60
Wang, Tang, Zhang, Wang, An, Tong, Li (CR1) 2020; 36
CR17
CR11
Cai, Zhou, Xu, Gao (CR21) 2019; 60
McCann, Jin, Unser (CR33) 2017; 34
Huesman (CR28) 1977; 22
Rawat, Wang (CR38) 2017; 29
de Silva, Baidya, Marusic (CR10) 2013; 24
Wieneke (CR48) 2008; 45
Discetti, Natale, Astarita (CR6) 2013; 54
Lee, Carlberg (CR36) 2019; 404
CR29
CR23
Schanz, Gesemann, Schröder (CR12) 2016; 57
Elsinga, Scarano, Wieneke, van Oudheusden (CR3) 2006; 41
LeCun, Bengio (CR25) 1995; 3361
Cai, Liang, Gao, Xu, Wei (CR46) 2019; 69
Ye, Gao, Wang, Wei, Wang (CR18) 2015; 58
A Bajpayee (87_CR19) 2017; 58
87_CR17
CM de Silva (87_CR10) 2013; 24
GE Elsinga (87_CR9) 2014; 25
M Novara (87_CR15) 2010; 21
GE Elsinga (87_CR3) 2006; 41
S Cai (87_CR21) 2019; 60
J Liang (87_CR24) 2020; 2
87_CR11
B Wieneke (87_CR13) 2013; 24
87_CR23
87_CR29
K Lee (87_CR36) 2019; 404
R Huesman (87_CR28) 1977; 22
KP Lynch (87_CR14) 2015; 56
G Minerbo (87_CR26) 1979; 10
S Discetti (87_CR6) 2013; 54
87_CR35
H Wang (87_CR16) 2016; 57
Q Gao (87_CR5) 2013; 58
Y LeCun (87_CR25) 1995; 3361
D Schanz (87_CR12) 2016; 57
87_CR39
C Atkinson (87_CR8) 2009; 47
S Cai (87_CR22) 2019; 69
R Guenther (87_CR27) 1974; 71
ZJ Ye (87_CR18) 2015; 58
MT McCann (87_CR33) 2017; 34
87_CR31
87_CR30
R Ben Salah (87_CR20) 2018; 60
87_CR32
87_CR45
87_CR49
NA Worth (87_CR7) 2008; 45
S Cai (87_CR46) 2019; 69
S Discetti (87_CR47) 2013; 54
GA Baxes (87_CR41) 1994
W Wang (87_CR1) 2020; 36
S Bhatnagar (87_CR34) 2019; 64
W Rawat (87_CR38) 2017; 29
J Hong (87_CR2) 2020; 36
B Wieneke (87_CR48) 2008; 45
F Scarano (87_CR4) 2012; 24
87_CR40
87_CR42
87_CR44
I Goodfellow (87_CR37) 2016
87_CR43
References_xml – volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: CR25
  article-title: Convolutional networks for images, speech, and time series
  publication-title: Handb Brain Theory Neural Netw
– ident: CR45
– volume: 58
  start-page: 1963
  issue: 11
  year: 2015
  end-page: 1970
  ident: CR18
  article-title: Dual-basis reconstruction techniques for tomographic PIV
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-015-5909-x
– volume: 64
  start-page: 525
  year: 2019
  end-page: 545
  ident: CR34
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01740-0
– volume: 10
  start-page: 48
  issue: 1
  year: 1979
  end-page: 68
  ident: CR26
  article-title: Ment: A maximum entropy algorithm for reconstructing a source from projection data
  publication-title: Comput Graph Image Process
  doi: 10.1016/0146-664X(79)90034-0
– ident: CR49
– volume: 36
  start-page: 999
  issue: 5
  year: 2020
  end-page: 1017
  ident: CR1
  article-title: Effect of water injection on the cavitation control: experiments on a NACA66 (MOD) hydrofoil
  publication-title: Acta Mech Sinica
  doi: 10.1007/s10409-020-00983-y
– ident: CR39
– volume: 54
  start-page: 1
  issue: 4
  year: 2013
  end-page: 13
  ident: CR47
  article-title: Spatial filtering improved tomographic PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-013-1505-7
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  end-page: 2449
  ident: CR38
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– ident: CR35
– ident: CR29
– volume: 54
  start-page: 1505
  issue: 4
  year: 2013
  ident: CR6
  article-title: Spatial filtering improved tomographic PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-013-1505-7
– volume: 57
  start-page: 87
  issue: 5
  year: 2016
  ident: CR16
  article-title: Intensity-enhanced mart for tomographic PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2176-y
– volume: 60
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR21
  article-title: Dense motion estimation of particle images via a convolutional neural network
  publication-title: Exp Fluids
  doi: 10.1007/s00348-019-2717-2
– ident: CR42
– ident: CR11
– volume: 24
  start-page: 012001
  issue: 1
  year: 2012
  ident: CR4
  article-title: Tomographic PIV: principles and practice
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/1/012001
– ident: CR32
– volume: 22
  start-page: 511
  issue: 3
  year: 1977
  ident: CR28
  article-title: The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/22/3/012
– volume: 404
  start-page: 108973
  year: 2019
  ident: CR36
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.108973
– ident: CR43
– volume: 56
  start-page: 1
  issue: 3
  year: 2015
  end-page: 16
  ident: CR14
  article-title: An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-1934-6
– ident: CR30
– volume: 69
  start-page: 3538
  issue: 6
  year: 2019
  end-page: 3554
  ident: CR46
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2932649
– volume: 45
  start-page: 847
  issue: 5
  year: 2008
  end-page: 856
  ident: CR7
  article-title: Acceleration of Tomo-PIV by estimating the initial volume intensity distribution
  publication-title: Exp Fluids
  doi: 10.1007/s00348-008-0504-6
– volume: 21
  start-page: 035401
  issue: 3
  year: 2010
  ident: CR15
  article-title: Motion tracking-enhanced MART for tomographic PIV
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/21/3/035401
– volume: 58
  start-page: 4541
  issue: 36
  year: 2013
  end-page: 4556
  ident: CR5
  article-title: Review on development of volumetric particle image velocimetry
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-013-6081-y
– year: 2016
  ident: CR37
  publication-title: Deep Learning
– volume: 41
  start-page: 933
  year: 2006
  end-page: 947
  ident: CR3
  article-title: Tomographic particle image velocimetry
  publication-title: Exp Fluids
  doi: 10.1007/s00348-006-0212-z
– ident: CR40
– volume: 69
  start-page: 3538
  issue: 6
  year: 2019
  end-page: 3554
  ident: CR22
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2932649
– year: 1994
  ident: CR41
  publication-title: Digital Image Processing: Principles and Applications
– ident: CR23
– ident: CR44
– volume: 60
  start-page: 1132
  issue: 7
  year: 2018
  end-page: 1149
  ident: CR20
  article-title: Tomographic reconstruction of 3D objects using marked point process framework
  publication-title: J Math Imaging Vision
  doi: 10.1007/s10851-018-0800-6
– volume: 34
  start-page: 85
  issue: 6
  year: 2017
  end-page: 95
  ident: CR33
  article-title: Convolutional neural networks for inverse problems in imaging: A review
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2739299
– volume: 45
  start-page: 549
  issue: 4
  year: 2008
  end-page: 556
  ident: CR48
  article-title: Volume self-calibration for 3D particle image velocimetry
  publication-title: Exp Fluids
  doi: 10.1007/s00348-008-0521-5
– volume: 47
  start-page: 553
  issue: 4
  year: 2009
  end-page: 568
  ident: CR8
  article-title: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry
  publication-title: Exp Fluids
  doi: 10.1007/s00348-009-0728-0
– volume: 25
  start-page: 084004
  issue: 8
  year: 2014
  ident: CR9
  article-title: Ghost hunting-an assessment of ghost particle detection and removal methods for tomographic-PIV
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/25/8/084004
– ident: CR17
– volume: 2
  start-page: 43
  issue: 1
  year: 2020
  end-page: 52
  ident: CR24
  article-title: Filtering enhanced tomographic PIV reconstruction based on deep neural networks
  publication-title: IET Cyber-Syst Robot
  doi: 10.1049/iet-csr.2019.0040
– ident: CR31
– volume: 24
  start-page: 024008
  issue: 2
  year: 2013
  ident: CR13
  article-title: Iterative reconstruction of volumetric particle distribution
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/2/024008
– volume: 36
  start-page: 339
  issue: 2
  year: 2020
  end-page: 355
  ident: CR2
  article-title: Snow-powered research on utility-scale wind turbine flows
  publication-title: Acta Mech Sinica
  doi: 10.1007/s10409-020-00934-7
– volume: 71
  start-page: 4884
  issue: 12
  year: 1974
  end-page: 4886
  ident: CR27
  article-title: Reconstruction of objects from radiographs and the location of brain tumors
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.71.12.4884
– volume: 24
  start-page: 024010
  issue: 2
  year: 2013
  ident: CR10
  article-title: Enhancing Tomo-PIV reconstruction quality by reducing ghost particles
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/2/024010
– volume: 57
  start-page: 70
  issue: 5
  year: 2016
  ident: CR12
  article-title: Shake-the-box: Lagrangian particle tracking at high particle image densities
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2157-1
– volume: 58
  start-page: 95
  issue: 8
  year: 2017
  ident: CR19
  article-title: Fast volume reconstruction for 3D PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-017-2373-3
– volume: 60
  start-page: 1
  year: 2019
  ident: 87_CR21
  publication-title: Exp Fluids
  doi: 10.1007/s00348-019-2717-2
– ident: 87_CR23
– volume: 24
  start-page: 024008
  issue: 2
  year: 2013
  ident: 87_CR13
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/2/024008
– volume: 71
  start-page: 4884
  issue: 12
  year: 1974
  ident: 87_CR27
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.71.12.4884
– volume: 58
  start-page: 4541
  issue: 36
  year: 2013
  ident: 87_CR5
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-013-6081-y
– volume: 58
  start-page: 1963
  issue: 11
  year: 2015
  ident: 87_CR18
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-015-5909-x
– volume-title: Digital Image Processing: Principles and Applications
  year: 1994
  ident: 87_CR41
– ident: 87_CR43
– volume: 24
  start-page: 012001
  issue: 1
  year: 2012
  ident: 87_CR4
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/1/012001
– ident: 87_CR29
  doi: 10.1109/CVPR.2016.251
– volume: 41
  start-page: 933
  year: 2006
  ident: 87_CR3
  publication-title: Exp Fluids
  doi: 10.1007/s00348-006-0212-z
– ident: 87_CR32
  doi: 10.1109/3DV.2016.79
– volume: 57
  start-page: 87
  issue: 5
  year: 2016
  ident: 87_CR16
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2176-y
– volume: 54
  start-page: 1
  issue: 4
  year: 2013
  ident: 87_CR47
  publication-title: Exp Fluids
  doi: 10.1007/s00348-013-1505-7
– volume: 2
  start-page: 43
  issue: 1
  year: 2020
  ident: 87_CR24
  publication-title: IET Cyber-Syst Robot
  doi: 10.1049/iet-csr.2019.0040
– volume: 69
  start-page: 3538
  issue: 6
  year: 2019
  ident: 87_CR46
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2932649
– volume: 69
  start-page: 3538
  issue: 6
  year: 2019
  ident: 87_CR22
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2932649
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 87_CR25
  publication-title: Handb Brain Theory Neural Netw
– ident: 87_CR42
– volume: 58
  start-page: 95
  issue: 8
  year: 2017
  ident: 87_CR19
  publication-title: Exp Fluids
  doi: 10.1007/s00348-017-2373-3
– volume: 36
  start-page: 339
  issue: 2
  year: 2020
  ident: 87_CR2
  publication-title: Acta Mech Sinica
  doi: 10.1007/s10409-020-00934-7
– ident: 87_CR11
– volume-title: Deep Learning
  year: 2016
  ident: 87_CR37
– volume: 45
  start-page: 549
  issue: 4
  year: 2008
  ident: 87_CR48
  publication-title: Exp Fluids
  doi: 10.1007/s00348-008-0521-5
– ident: 87_CR31
– volume: 45
  start-page: 847
  issue: 5
  year: 2008
  ident: 87_CR7
  publication-title: Exp Fluids
  doi: 10.1007/s00348-008-0504-6
– volume: 56
  start-page: 1
  issue: 3
  year: 2015
  ident: 87_CR14
  publication-title: Exp Fluids
  doi: 10.1007/s00348-015-1934-6
– volume: 60
  start-page: 1132
  issue: 7
  year: 2018
  ident: 87_CR20
  publication-title: J Math Imaging Vision
  doi: 10.1007/s10851-018-0800-6
– volume: 57
  start-page: 70
  issue: 5
  year: 2016
  ident: 87_CR12
  publication-title: Exp Fluids
  doi: 10.1007/s00348-016-2157-1
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 87_CR38
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 404
  start-page: 108973
  year: 2019
  ident: 87_CR36
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.108973
– ident: 87_CR45
– volume: 54
  start-page: 1505
  issue: 4
  year: 2013
  ident: 87_CR6
  publication-title: Exp Fluids
  doi: 10.1007/s00348-013-1505-7
– volume: 22
  start-page: 511
  issue: 3
  year: 1977
  ident: 87_CR28
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/22/3/012
– volume: 64
  start-page: 525
  year: 2019
  ident: 87_CR34
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01740-0
– ident: 87_CR49
– volume: 10
  start-page: 48
  issue: 1
  year: 1979
  ident: 87_CR26
  publication-title: Comput Graph Image Process
  doi: 10.1016/0146-664X(79)90034-0
– ident: 87_CR30
– ident: 87_CR35
  doi: 10.1145/2939672.2939738
– volume: 25
  start-page: 084004
  issue: 8
  year: 2014
  ident: 87_CR9
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/25/8/084004
– ident: 87_CR40
  doi: 10.23919/ChiCC.2017.8029130
– volume: 36
  start-page: 999
  issue: 5
  year: 2020
  ident: 87_CR1
  publication-title: Acta Mech Sinica
  doi: 10.1007/s10409-020-00983-y
– volume: 34
  start-page: 85
  issue: 6
  year: 2017
  ident: 87_CR33
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2739299
– volume: 21
  start-page: 035401
  issue: 3
  year: 2010
  ident: 87_CR15
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/21/3/035401
– ident: 87_CR17
– volume: 24
  start-page: 024010
  issue: 2
  year: 2013
  ident: 87_CR10
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/24/2/024010
– ident: 87_CR44
– volume: 47
  start-page: 553
  issue: 4
  year: 2009
  ident: 87_CR8
  publication-title: Exp Fluids
  doi: 10.1007/s00348-009-0728-0
– ident: 87_CR39
  doi: 10.1109/ICCSP.2017.8286426
SSID ssj0002794019
Score 2.3276765
Snippet Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often...
Abstract Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aerospace Technology and Astronautics
Algorithms
Convolutional neural network
Engineering
Ghosts
Inverse problems
Machine learning
Neural networks
Particle reconstruction
Volumetric particle image velocimetry
SummonAdditionalLinks – databaseName: PROQUEST
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6QDzVhYJ84EatJo5fOSBEUasKiVWFqNSbNfGjqrTdXdgitP8e23HS9rLiGttK4m88M7ZnvgH40AnhdcrMDUooyjumaGc1Uo3CqUp6bl3KHf4-k2cX_NuluNyB2ZALk8IqB52YFbVb2nRGfhTNbLSebSWqz6tfNFWNSrerQwkNLKUV3KdMMfYIdllixprA7vHJ7PzHeOrCovhFp2bIntHyaM1Z9IBoilRI9lBR-cBCZSL_B97neGG6B4__LFa4-Yvz-T2bdPoMnhZnknzp0X8OO37xAvbuUQy-hHBeZIPkre9IF0uWgfSaKVH0k9XQ6_omKhiSAonsdWrbkHRSS6KbSNY9ke0mDb3JMZielKITV6_g4vTk59czWmorUMulvqVBRiXnpLMyNKytOkSvdOUt2mjWdIO1sqwNFUcR3W8RtxHBR0vequBQ1eh58xomi-XC7wOpubWuqRsZRMex9p3rhPdYWae81MFOoR7m09hCPJ7qX8xN3oBoaXoMTMTAZAyMnMLHccyqp93Y2vs4wTT2TJTZ-cHy95Up82e6KjBsA28ZBm5VShpHybxvFaKuuZrCwQCyKet4be6kbgqHA_B3zds-6XAUjv_4gzfbX_4WnrAsoS1lzQFMoqz4d9EZuu3eFwn_Bw_YBzM
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPVXmJ7QP5wI1aJI6fx1JRVUggDlTqzRo7dlW03V11i9D-e2zHCa2EKrgmdpR4xjPfxDPfALxzQgSdK3OjEopyxxR1XiPVKHrVyMB9n2uHv3yVZ-f884W4qEVh6zHbfTySLJa6bGstP6w5S1CF5pSC7LgUlY_hScIfLDdsOKk1Dj_KUZpJQYMZK2T-OvWeFypk_fcQ5nQoug1Pfy5WuPmF8_kdv3O6CzsVMJLjQcLP4VFYvIDtOzSCLyF-q_InJbydKGHJMpLB-mQafrIaR11dJyNCcrKQv8r3NiT_jSUJCpL1QFa7yVOvS55lILWxxOUrOD_99P3kjNb-CdRzqW9plMmQ9bL3MnbMNA4xKN0Ejz65Lt1hqzwzseEoEsQWKVSIIXlro2KPqsXAu9ewtVguwhsgLfe-79pORuE4tsH1ToSAje9VkDr6GbTjelpfycVzj4u5LUGGlnaQgU0ysEUGVs7g_TRnNVBrPDj6YxbTNDLTYpcLy5tLW9fPuiYyNJEbhpF7lQvDUbIQjELULVczOBiFbOteXdsE4BIuM41oZnA0Cv7P7Yde6WhSjn_4gr3_e_o-PGNFYw1l3QFsJd0JhwkA3bq3Rd9_AyNc_Ws
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeeFcECvKBG3W66_XzWBBVhUTVA5HgZI29dhU1TSKSCoVfj70vWoQqENe1LXlnxzPfrGe-AXjjhAg6V-ZGJRTljinqvEaqUdSqkIH7OtcOfzqVJ1P-8YvoswlzLQzOcNLfSOb-UY2xTjG_vzhc1bE941oerjlLuIXm_ILsxRSVd2FHigTHR7AzPT07-pqbygnGqTSG9cUyf1x4wyE1vP03wOZwP7oL964WK9x-x_n8mgs6fgiu33ybeXIxudq4if_xG6_jf73dI3jQAVRy1GrUY7gTFk9g9xpt4VOIZ52-kSacHihoyTKS1tpl2n-y6mfNLpPRIjk5yc_y2Jbkv78kQU-ybslxt3npZZPXGUjXyOL8GUyPP3x-f0K7fg3Uc6k3NMpkOGtZexkrZgqHGJQugkefXKWusFSemVhwFAnSixSaxJDQgVGxRlVi4NUejBbLRXgOpOTe11VZySgcxzK42okQsPC1ClJHP4ay_2jWd2TmuafG3DZBjZa2laFNMrSNDK0cw9thzaql8rh19rusC8PMTMPdPFh-O7ed_KwrIkMTuWEYuVe5EB0lC8EoRF1yNYb9XpNsZxvWNgHGhANNIYoxHPTa8Gv4ti0dDBr4F2_w4t-mv4T7rNE4Q1m1D6OkO-FVAlwb97o7Uj8Bd3ojVg
  priority: 102
  providerName: Unpaywall
Title Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning
URI https://link.springer.com/article/10.1186/s42774-021-00087-6
https://www.proquest.com/docview/2730649050
https://aia.springeropen.com/track/pdf/10.1186/s42774-021-00087-6
https://doaj.org/article/b0f2a9f492af4c71852a62ee97aa8147
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2524-6992
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002794019
  issn: 2524-6992
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2524-6992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794019
  issn: 2524-6992
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2524-6992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794019
  issn: 2524-6992
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2524-6992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794019
  issn: 2524-6992
  databaseCode: C6C
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2524-6992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794019
  issn: 2524-6992
  databaseCode: C24
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtemhzKH1SJ6nRobdGRKvV85iYhBCIMaWG9CRGWqmkOI7BKcH_PpL2UeeS9tDLHlYSrDQjzTermW8Q-uKECDpn5kYlFOGOKeK8BqJBNIrKwH2Tc4cvp_J8zi-uxNVWqa8cE9bSA7cLd-RoZGAiNwwi9yrn-oJkIRgFoCte8sipNlvO1K9ynWaS42D6LBktj9acJaRDckRCtnuKyEeWqBD2P0KZw8XoLnr5e7mCzT0sFlu25-wNet2BRnzcfuxb9Cws36HdLSrB9yjOuqng4uIOtLD4NuL2BMpU_HjV97q-SQcJzgFD_jq3bXD-I4sTHMTrlrB2k4felFjLgLviEj8_oPnZ6ffJOelqKBDPpb4jUabDrJGNl7FmhjqAoDQNHnwyX7qGSnlmIuUgEswWyV2IIVlso2IDqoLA649oZ3m7DJ8Qrrj3TV3VMgrHoQqucSIEoL5RQeroR6jq19P6jmA817lY2OJoaGlbGdgkA1tkYOUIfR3GrFp6jSd7n2QxDT0zNXZ5kRTGdutn_6YwI3TQC9l2-3VtE4hL2MxQQUfosBf8n-anPulwUI5_mMHe_5jBPnrFih4bwuoDtJM0KnxO0OjOjdGLk9Pp7NsYPZ8wnp9yMi47I7XMp7PjHw_r0Q5R
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9iC6U-tKdikTh-5YAQUNBSYIUqkLi5jh8IadndslRo_1x_W-3ECXBZ9cI1tvPwfJn5xvbMAHypGHMyRuZ6wQSmFRG4MlJjqZkVGXfU2Bg7fDrg_Qv645JdLsDfNhYmHqtsdWKtqO3YxDXyrWBmg_UsM5btTH7jWDUq7q62JTR0Kq1gt-sUYymw49jN7oMLN90--h7k_ZWQw4Pz_T5OVQawoVzeYc_D7265NdwXpMwqrZ2QmTPaBAUvC50LQ0qfUc0CEWWBUHsXbFopvNUi144W4b4vYIkWtAzO39LeweDsZ7fKQwLcA4lqo3Uk35pSEhgXjicjov0VmD-xiHXhgCdst9ugXYHlP6OJnt3r4fCRDTx8Da8SeUW7DdrewIIbvYWVRykN34E_S1hEtavdpadFY48aTRhLAqBJ2-v6Jig0FA8umevYNkNxZRgFWoqmTeLcWRx6U5_5dCgVubh6DxfPMssfYHE0HrlVQDk1xhZ5wT2rqM5dZSvmnM6MFY5Lb3qQt_OpTEp0HuttDFXt8EiuGhmoIANVy0DxHnzrxkyaNB9ze-9FMXU9Y4ru-sL49kql-VNV5okuPS2J9tSIGKSuOXGuFFrLnIoerLdCVklvTNUDynuw2Qr-oXneK2124PiPL_g4_-GfYbl_fnqiTo4Gx2vwktRoLTEp1mEx4MZ9CkTsrtpIaEfw67l_sH_jlEPx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVgJ6QLwqAgV8gBNdZdfr1x4qRGmjlkIUISr1Zrx-VJXSJJCiKn-RX8V44922l4hLr7v2Pjzjmc_2zHwA72rOvYqZuUFymbGayqy2ymTKcCdz4Zl1MXf421AcnrAvp_x0Df62uTAxrLK1iY2hdlMb98j76GbRe1Y5z_shhUWM9gcfZ7-yyCAVT1pbOg2TaBbcblNuLCV5HPvFFS7n5rtH-yj795QODn58PswS40BmmVCXWRA49Z1wVoSSVnltjJcq99ZYNPaqNIW0tAo5MxxBKUdwHTz6t0oGZ2RhPCvxufdgIx5-oZHY2DsYjr53Oz4UVR8BVZu5o0R_ziiiryxGSURfLDNxyzs2JAK3kG93WLsJD_5MZmZxZcbjG_5w8BgeJSBLPi017wms-clT2LxR3vAZhFHSS9Isu7tStWQayNIqRnoAMmtbnV-gcSMxiMmex3sLEneJCUJUMl8W0V3ErhdN_KcnifDi7Dmc3Mkob8H6ZDrxL4AUzFpXFqUIvGam8LWrufcmt056oYLtQdGOp7ap6Hnk3hjrZvGjhF7KQKMMdCMDLXrwoeszW5b8WNl6L4qpaxnLdTcXpr_PdBo_XeeBmiqwiprArIwJ60ZQ7ytpjCqY7MF2K2SdbMhcX2t8D3ZawV_fXvVJO51y_McfvFz98rdwHyea_no0PH4FD2mjrFVGy21YR7XxrxGTXdZvkrIT-HnX8-sf9HtIIA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeeFcECvKBG3W66_XzWBBVhUTVA5HgZI29dhU1TSKSCoVfj70vWoQqENe1LXlnxzPfrGe-AXjjhAg6V-ZGJRTljinqvEaqUdSqkIH7OtcOfzqVJ1P-8YvoswlzLQzOcNLfSOb-UY2xTjG_vzhc1bE941oerjlLuIXm_ILsxRSVd2FHigTHR7AzPT07-pqbygnGqTSG9cUyf1x4wyE1vP03wOZwP7oL964WK9x-x_n8mgs6fgiu33ybeXIxudq4if_xG6_jf73dI3jQAVRy1GrUY7gTFk9g9xpt4VOIZ52-kSacHihoyTKS1tpl2n-y6mfNLpPRIjk5yc_y2Jbkv78kQU-ybslxt3npZZPXGUjXyOL8GUyPP3x-f0K7fg3Uc6k3NMpkOGtZexkrZgqHGJQugkefXKWusFSemVhwFAnSixSaxJDQgVGxRlVi4NUejBbLRXgOpOTe11VZySgcxzK42okQsPC1ClJHP4ay_2jWd2TmuafG3DZBjZa2laFNMrSNDK0cw9thzaql8rh19rusC8PMTMPdPFh-O7ed_KwrIkMTuWEYuVe5EB0lC8EoRF1yNYb9XpNsZxvWNgHGhANNIYoxHPTa8Gv4ti0dDBr4F2_w4t-mv4T7rNE4Q1m1D6OkO-FVAlwb97o7Uj8Bd3ojVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+reconstruction+of+volumetric+particle+image+velocimetry+with+the+strategy+of+machine+learning&rft.jtitle=Advances+in+aerodynamics&rft.au=Qi+Gao&rft.au=Shaowu+Pan&rft.au=Hongping+Wang&rft.au=Runjie+Wei&rft.date=2021-09-23&rft.pub=SpringerOpen&rft.eissn=2524-6992&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs42774-021-00087-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-6992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-6992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-6992&client=summon