Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning
Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical p...
Saved in:
| Published in | Advances in aerodynamics Vol. 3; no. 1; pp. 1 - 14 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
23.09.2021
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2524-6992 2524-6992 |
| DOI | 10.1186/s42774-021-00087-6 |
Cover
| Abstract | Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage. |
|---|---|
| AbstractList | Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage. Abstract Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained. In general, approximate solutions can be obtained by iterative optimization methods. In the current work, a practical particle reconstruction method based on a convolutional neural network (CNN) with geometry-informed features is proposed. The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique (ART) based methods. Compared with available ART-based algorithms, the novel technique makes significant improvements in terms of reconstruction quality, robustness to noise, and at least an order of magnitude faster in the offline stage. |
| ArticleNumber | 28 |
| Author | Gao, Qi Wang, Jinjun Wang, Hongping Pan, Shaowu Wei, Runjie |
| Author_xml | – sequence: 1 givenname: Qi surname: Gao fullname: Gao, Qi organization: School of Aeronautics and Astronautics, Zhejiang University – sequence: 2 givenname: Shaowu orcidid: 0000-0002-2462-362X surname: Pan fullname: Pan, Shaowu email: shawnpan@umich.edu organization: Department of Aerospace Engineering, University of Michigan – sequence: 3 givenname: Hongping surname: Wang fullname: Wang, Hongping organization: State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, School of Engineering Science, University of Chinese Academy of Sciences – sequence: 4 givenname: Runjie surname: Wei fullname: Wei, Runjie organization: MicroVec. Inc – sequence: 5 givenname: Jinjun surname: Wang fullname: Wang, Jinjun organization: Key Laboratory of Fluid Mechanics of Ministry of Education, Beihang University |
| BookMark | eNqNkM1u3CAUhVGVSEmTvEBWSF27BYzBLKuoP5EipYt2jW6Yi4eRB6YYJ5q3LxNPm6qLqCsQnHPuud9bchJTREKuOXvPea8-TFJoLRsmeMMY63Wj3pBz0QnZKGPEyV_3M3I1TZsqEtpIxs058d8gl-BGpBldilPJsyshRZo8fUzjvMWSg6O736qwhQHpI47JhcPfnj6FsqZljbR6oeCwP1i34NYhIh0RcgxxuCSnHsYJr47nBfnx-dP3m6_N3f2X25uPd42Tqi-NV5zzlVo55Vth2AMA6p6hA9dK3rfAtRPGMwmd1qJj0nhUihvtV6A5oGwvyO2Su0qwsbtc6-a9TRDs80PKgz1uYh-YF2C8NAK8dJr3nQAlEI0G6LnUNatdsua4g_0TjOOfQM7sgbxdyNtK3j6Tt6q63i2uXU4_Z5yK3aQ5x7q0FbplShrWsarqF5XLaZoyeutCgQP4CjGMrw8Q_1j_q9Vxl6mK44D5pdUrrl_AzbeH |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ac9991 crossref_primary_10_1109_TIM_2021_3120127 crossref_primary_10_7498_aps_73_20231902 crossref_primary_10_1088_1361_6501_ad6624 crossref_primary_10_3390_inventions9020027 crossref_primary_10_1186_s42774_024_00186_0 crossref_primary_10_1016_j_partic_2024_06_016 crossref_primary_10_3788_AOS240721 crossref_primary_10_1063_5_0218516 crossref_primary_10_1142_S2529807022500026 crossref_primary_10_1007_s00348_022_03444_3 crossref_primary_10_1186_s42774_022_00118_w crossref_primary_10_1016_j_optcom_2024_130439 crossref_primary_10_1016_j_optlaseng_2024_108309 crossref_primary_10_1146_annurev_fluid_031822_041721 crossref_primary_10_1063_5_0237067 crossref_primary_10_1063_5_0252483 crossref_primary_10_1016_j_flowmeasinst_2025_102888 crossref_primary_10_1016_j_flowmeasinst_2024_102666 |
| Cites_doi | 10.1007/s11431-015-5909-x 10.1007/s00466-019-01740-0 10.1016/0146-664X(79)90034-0 10.1007/s10409-020-00983-y 10.1007/s00348-013-1505-7 10.1162/neco_a_00990 10.1007/s00348-016-2176-y 10.1007/s00348-019-2717-2 10.1088/0957-0233/24/1/012001 10.1088/0031-9155/22/3/012 10.1016/j.jcp.2019.108973 10.1007/s00348-015-1934-6 10.1109/TIM.2019.2932649 10.1007/s00348-008-0504-6 10.1088/0957-0233/21/3/035401 10.1007/s11434-013-6081-y 10.1007/s00348-006-0212-z 10.1007/s10851-018-0800-6 10.1109/MSP.2017.2739299 10.1007/s00348-008-0521-5 10.1007/s00348-009-0728-0 10.1088/0957-0233/25/8/084004 10.1049/iet-csr.2019.0040 10.1088/0957-0233/24/2/024008 10.1007/s10409-020-00934-7 10.1073/pnas.71.12.4884 10.1088/0957-0233/24/2/024010 10.1007/s00348-016-2157-1 10.1007/s00348-017-2373-3 10.1109/CVPR.2016.251 10.1109/3DV.2016.79 10.1145/2939672.2939738 10.23919/ChiCC.2017.8029130 10.1109/ICCSP.2017.8286426 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. , Article corrected in 2022. The Author(s) 2021. , Article corrected in 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021. , Article corrected in 2022. – notice: The Author(s) 2021. , Article corrected in 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1186/s42774-021-00087-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials PROQUEST ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2524-6992 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147 10.1186/s42774-021-00087-6 10_1186_s42774_021_00087_6 |
| GrantInformation_xml | – fundername: program of state key laboratory of marine equipment grantid: SKLMEA-K201910 – fundername: national key r & d program of china grantid: 2020YFA040070 – fundername: national natural science foundation of china grantid: 11721202 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | 0R~ AAKKN ABEEZ ACACY ACULB AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARCSS BAPOH BENPR C24 C6C CCPQU EBS GROUPED_DOAJ IAO ITC M~E OK1 PIMPY RSV SOJ AAYXX CITATION PHGZM PHGZT PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS -SC -S~ ADTOC CAJEC EJD H13 Q-- U1G U5M UNPAY |
| ID | FETCH-LOGICAL-c468t-f6111d6dc6f3290baae780ecac34183a17c29f04a57725049fe66197fda71ae43 |
| IEDL.DBID | DOA |
| ISSN | 2524-6992 |
| IngestDate | Fri Oct 03 12:50:56 EDT 2025 Tue Aug 19 18:28:28 EDT 2025 Tue Sep 30 18:36:06 EDT 2025 Wed Oct 01 03:47:52 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 21 02:45:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Particle reconstruction Convolutional neural network Volumetric particle image velocimetry |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-f6111d6dc6f3290baae780ecac34183a17c29f04a57725049fe66197fda71ae43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2462-362X |
| OpenAccessLink | https://doaj.org/article/b0f2a9f492af4c71852a62ee97aa8147 |
| PQID | 2730649050 |
| PQPubID | 4402864 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147 unpaywall_primary_10_1186_s42774_021_00087_6 proquest_journals_2730649050 crossref_citationtrail_10_1186_s42774_021_00087_6 crossref_primary_10_1186_s42774_021_00087_6 springer_journals_10_1186_s42774_021_00087_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-23 |
| PublicationDateYYYYMMDD | 2021-09-23 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Advances in aerodynamics |
| PublicationTitleAbbrev | Adv. Aerodyn |
| PublicationYear | 2021 |
| Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
| References | Atkinson, Soria (CR8) 2009; 47 Wang, Gao, Wei, Wang (CR16) 2016; 57 CR39 Worth, Nickels (CR7) 2008; 45 CR35 Baxes (CR41) 1994 CR32 CR31 CR30 Discetti, Natale, Astarita (CR47) 2013; 54 Hong, Abraham (CR2) 2020; 36 Elsinga, Tokgoz (CR9) 2014; 25 Minerbo (CR26) 1979; 10 Liang, Cai, Xu, Chu (CR24) 2020; 2 Guenther, Kerber, Killian, Smith, Wagner (CR27) 1974; 71 Goodfellow, Bengio, Courville (CR37) 2016 Lynch, Scarano (CR14) 2015; 56 CR49 Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (CR34) 2019; 64 CR45 CR44 CR43 CR42 CR40 Cai, Liang, Gao, Xu, Wei (CR22) 2019; 69 Novara, Batenburg, Scarano (CR15) 2010; 21 Scarano (CR4) 2012; 24 Wieneke (CR13) 2013; 24 Bajpayee, Techet (CR19) 2017; 58 Gao, Wang, Shen (CR5) 2013; 58 Ben Salah, Alata, Tremblais, Thomas, David (CR20) 2018; 60 Wang, Tang, Zhang, Wang, An, Tong, Li (CR1) 2020; 36 CR17 CR11 Cai, Zhou, Xu, Gao (CR21) 2019; 60 McCann, Jin, Unser (CR33) 2017; 34 Huesman (CR28) 1977; 22 Rawat, Wang (CR38) 2017; 29 de Silva, Baidya, Marusic (CR10) 2013; 24 Wieneke (CR48) 2008; 45 Discetti, Natale, Astarita (CR6) 2013; 54 Lee, Carlberg (CR36) 2019; 404 CR29 CR23 Schanz, Gesemann, Schröder (CR12) 2016; 57 Elsinga, Scarano, Wieneke, van Oudheusden (CR3) 2006; 41 LeCun, Bengio (CR25) 1995; 3361 Cai, Liang, Gao, Xu, Wei (CR46) 2019; 69 Ye, Gao, Wang, Wei, Wang (CR18) 2015; 58 A Bajpayee (87_CR19) 2017; 58 87_CR17 CM de Silva (87_CR10) 2013; 24 GE Elsinga (87_CR9) 2014; 25 M Novara (87_CR15) 2010; 21 GE Elsinga (87_CR3) 2006; 41 S Cai (87_CR21) 2019; 60 J Liang (87_CR24) 2020; 2 87_CR11 B Wieneke (87_CR13) 2013; 24 87_CR23 87_CR29 K Lee (87_CR36) 2019; 404 R Huesman (87_CR28) 1977; 22 KP Lynch (87_CR14) 2015; 56 G Minerbo (87_CR26) 1979; 10 S Discetti (87_CR6) 2013; 54 87_CR35 H Wang (87_CR16) 2016; 57 Q Gao (87_CR5) 2013; 58 Y LeCun (87_CR25) 1995; 3361 D Schanz (87_CR12) 2016; 57 87_CR39 C Atkinson (87_CR8) 2009; 47 S Cai (87_CR22) 2019; 69 R Guenther (87_CR27) 1974; 71 ZJ Ye (87_CR18) 2015; 58 MT McCann (87_CR33) 2017; 34 87_CR31 87_CR30 R Ben Salah (87_CR20) 2018; 60 87_CR32 87_CR45 87_CR49 NA Worth (87_CR7) 2008; 45 S Cai (87_CR46) 2019; 69 S Discetti (87_CR47) 2013; 54 GA Baxes (87_CR41) 1994 W Wang (87_CR1) 2020; 36 S Bhatnagar (87_CR34) 2019; 64 W Rawat (87_CR38) 2017; 29 J Hong (87_CR2) 2020; 36 B Wieneke (87_CR48) 2008; 45 F Scarano (87_CR4) 2012; 24 87_CR40 87_CR42 87_CR44 I Goodfellow (87_CR37) 2016 87_CR43 |
| References_xml | – volume: 3361 start-page: 1995 issue: 10 year: 1995 ident: CR25 article-title: Convolutional networks for images, speech, and time series publication-title: Handb Brain Theory Neural Netw – ident: CR45 – volume: 58 start-page: 1963 issue: 11 year: 2015 end-page: 1970 ident: CR18 article-title: Dual-basis reconstruction techniques for tomographic PIV publication-title: Sci China Technol Sci doi: 10.1007/s11431-015-5909-x – volume: 64 start-page: 525 year: 2019 end-page: 545 ident: CR34 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput Mech doi: 10.1007/s00466-019-01740-0 – volume: 10 start-page: 48 issue: 1 year: 1979 end-page: 68 ident: CR26 article-title: Ment: A maximum entropy algorithm for reconstructing a source from projection data publication-title: Comput Graph Image Process doi: 10.1016/0146-664X(79)90034-0 – ident: CR49 – volume: 36 start-page: 999 issue: 5 year: 2020 end-page: 1017 ident: CR1 article-title: Effect of water injection on the cavitation control: experiments on a NACA66 (MOD) hydrofoil publication-title: Acta Mech Sinica doi: 10.1007/s10409-020-00983-y – ident: CR39 – volume: 54 start-page: 1 issue: 4 year: 2013 end-page: 13 ident: CR47 article-title: Spatial filtering improved tomographic PIV publication-title: Exp Fluids doi: 10.1007/s00348-013-1505-7 – volume: 29 start-page: 2352 issue: 9 year: 2017 end-page: 2449 ident: CR38 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput doi: 10.1162/neco_a_00990 – ident: CR35 – ident: CR29 – volume: 54 start-page: 1505 issue: 4 year: 2013 ident: CR6 article-title: Spatial filtering improved tomographic PIV publication-title: Exp Fluids doi: 10.1007/s00348-013-1505-7 – volume: 57 start-page: 87 issue: 5 year: 2016 ident: CR16 article-title: Intensity-enhanced mart for tomographic PIV publication-title: Exp Fluids doi: 10.1007/s00348-016-2176-y – volume: 60 start-page: 1 year: 2019 end-page: 16 ident: CR21 article-title: Dense motion estimation of particle images via a convolutional neural network publication-title: Exp Fluids doi: 10.1007/s00348-019-2717-2 – ident: CR42 – ident: CR11 – volume: 24 start-page: 012001 issue: 1 year: 2012 ident: CR4 article-title: Tomographic PIV: principles and practice publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/1/012001 – ident: CR32 – volume: 22 start-page: 511 issue: 3 year: 1977 ident: CR28 article-title: The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction publication-title: Phys Med Biol doi: 10.1088/0031-9155/22/3/012 – volume: 404 start-page: 108973 year: 2019 ident: CR36 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.108973 – ident: CR43 – volume: 56 start-page: 1 issue: 3 year: 2015 end-page: 16 ident: CR14 article-title: An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV publication-title: Exp Fluids doi: 10.1007/s00348-015-1934-6 – ident: CR30 – volume: 69 start-page: 3538 issue: 6 year: 2019 end-page: 3554 ident: CR46 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2932649 – volume: 45 start-page: 847 issue: 5 year: 2008 end-page: 856 ident: CR7 article-title: Acceleration of Tomo-PIV by estimating the initial volume intensity distribution publication-title: Exp Fluids doi: 10.1007/s00348-008-0504-6 – volume: 21 start-page: 035401 issue: 3 year: 2010 ident: CR15 article-title: Motion tracking-enhanced MART for tomographic PIV publication-title: Meas Sci Technol doi: 10.1088/0957-0233/21/3/035401 – volume: 58 start-page: 4541 issue: 36 year: 2013 end-page: 4556 ident: CR5 article-title: Review on development of volumetric particle image velocimetry publication-title: Chin Sci Bull doi: 10.1007/s11434-013-6081-y – year: 2016 ident: CR37 publication-title: Deep Learning – volume: 41 start-page: 933 year: 2006 end-page: 947 ident: CR3 article-title: Tomographic particle image velocimetry publication-title: Exp Fluids doi: 10.1007/s00348-006-0212-z – ident: CR40 – volume: 69 start-page: 3538 issue: 6 year: 2019 end-page: 3554 ident: CR22 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2932649 – year: 1994 ident: CR41 publication-title: Digital Image Processing: Principles and Applications – ident: CR23 – ident: CR44 – volume: 60 start-page: 1132 issue: 7 year: 2018 end-page: 1149 ident: CR20 article-title: Tomographic reconstruction of 3D objects using marked point process framework publication-title: J Math Imaging Vision doi: 10.1007/s10851-018-0800-6 – volume: 34 start-page: 85 issue: 6 year: 2017 end-page: 95 ident: CR33 article-title: Convolutional neural networks for inverse problems in imaging: A review publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2017.2739299 – volume: 45 start-page: 549 issue: 4 year: 2008 end-page: 556 ident: CR48 article-title: Volume self-calibration for 3D particle image velocimetry publication-title: Exp Fluids doi: 10.1007/s00348-008-0521-5 – volume: 47 start-page: 553 issue: 4 year: 2009 end-page: 568 ident: CR8 article-title: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry publication-title: Exp Fluids doi: 10.1007/s00348-009-0728-0 – volume: 25 start-page: 084004 issue: 8 year: 2014 ident: CR9 article-title: Ghost hunting-an assessment of ghost particle detection and removal methods for tomographic-PIV publication-title: Meas Sci Technol doi: 10.1088/0957-0233/25/8/084004 – ident: CR17 – volume: 2 start-page: 43 issue: 1 year: 2020 end-page: 52 ident: CR24 article-title: Filtering enhanced tomographic PIV reconstruction based on deep neural networks publication-title: IET Cyber-Syst Robot doi: 10.1049/iet-csr.2019.0040 – ident: CR31 – volume: 24 start-page: 024008 issue: 2 year: 2013 ident: CR13 article-title: Iterative reconstruction of volumetric particle distribution publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/2/024008 – volume: 36 start-page: 339 issue: 2 year: 2020 end-page: 355 ident: CR2 article-title: Snow-powered research on utility-scale wind turbine flows publication-title: Acta Mech Sinica doi: 10.1007/s10409-020-00934-7 – volume: 71 start-page: 4884 issue: 12 year: 1974 end-page: 4886 ident: CR27 article-title: Reconstruction of objects from radiographs and the location of brain tumors publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.71.12.4884 – volume: 24 start-page: 024010 issue: 2 year: 2013 ident: CR10 article-title: Enhancing Tomo-PIV reconstruction quality by reducing ghost particles publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/2/024010 – volume: 57 start-page: 70 issue: 5 year: 2016 ident: CR12 article-title: Shake-the-box: Lagrangian particle tracking at high particle image densities publication-title: Exp Fluids doi: 10.1007/s00348-016-2157-1 – volume: 58 start-page: 95 issue: 8 year: 2017 ident: CR19 article-title: Fast volume reconstruction for 3D PIV publication-title: Exp Fluids doi: 10.1007/s00348-017-2373-3 – volume: 60 start-page: 1 year: 2019 ident: 87_CR21 publication-title: Exp Fluids doi: 10.1007/s00348-019-2717-2 – ident: 87_CR23 – volume: 24 start-page: 024008 issue: 2 year: 2013 ident: 87_CR13 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/2/024008 – volume: 71 start-page: 4884 issue: 12 year: 1974 ident: 87_CR27 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.71.12.4884 – volume: 58 start-page: 4541 issue: 36 year: 2013 ident: 87_CR5 publication-title: Chin Sci Bull doi: 10.1007/s11434-013-6081-y – volume: 58 start-page: 1963 issue: 11 year: 2015 ident: 87_CR18 publication-title: Sci China Technol Sci doi: 10.1007/s11431-015-5909-x – volume-title: Digital Image Processing: Principles and Applications year: 1994 ident: 87_CR41 – ident: 87_CR43 – volume: 24 start-page: 012001 issue: 1 year: 2012 ident: 87_CR4 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/1/012001 – ident: 87_CR29 doi: 10.1109/CVPR.2016.251 – volume: 41 start-page: 933 year: 2006 ident: 87_CR3 publication-title: Exp Fluids doi: 10.1007/s00348-006-0212-z – ident: 87_CR32 doi: 10.1109/3DV.2016.79 – volume: 57 start-page: 87 issue: 5 year: 2016 ident: 87_CR16 publication-title: Exp Fluids doi: 10.1007/s00348-016-2176-y – volume: 54 start-page: 1 issue: 4 year: 2013 ident: 87_CR47 publication-title: Exp Fluids doi: 10.1007/s00348-013-1505-7 – volume: 2 start-page: 43 issue: 1 year: 2020 ident: 87_CR24 publication-title: IET Cyber-Syst Robot doi: 10.1049/iet-csr.2019.0040 – volume: 69 start-page: 3538 issue: 6 year: 2019 ident: 87_CR46 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2932649 – volume: 69 start-page: 3538 issue: 6 year: 2019 ident: 87_CR22 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2932649 – volume: 3361 start-page: 1995 issue: 10 year: 1995 ident: 87_CR25 publication-title: Handb Brain Theory Neural Netw – ident: 87_CR42 – volume: 58 start-page: 95 issue: 8 year: 2017 ident: 87_CR19 publication-title: Exp Fluids doi: 10.1007/s00348-017-2373-3 – volume: 36 start-page: 339 issue: 2 year: 2020 ident: 87_CR2 publication-title: Acta Mech Sinica doi: 10.1007/s10409-020-00934-7 – ident: 87_CR11 – volume-title: Deep Learning year: 2016 ident: 87_CR37 – volume: 45 start-page: 549 issue: 4 year: 2008 ident: 87_CR48 publication-title: Exp Fluids doi: 10.1007/s00348-008-0521-5 – ident: 87_CR31 – volume: 45 start-page: 847 issue: 5 year: 2008 ident: 87_CR7 publication-title: Exp Fluids doi: 10.1007/s00348-008-0504-6 – volume: 56 start-page: 1 issue: 3 year: 2015 ident: 87_CR14 publication-title: Exp Fluids doi: 10.1007/s00348-015-1934-6 – volume: 60 start-page: 1132 issue: 7 year: 2018 ident: 87_CR20 publication-title: J Math Imaging Vision doi: 10.1007/s10851-018-0800-6 – volume: 57 start-page: 70 issue: 5 year: 2016 ident: 87_CR12 publication-title: Exp Fluids doi: 10.1007/s00348-016-2157-1 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 87_CR38 publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 404 start-page: 108973 year: 2019 ident: 87_CR36 publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.108973 – ident: 87_CR45 – volume: 54 start-page: 1505 issue: 4 year: 2013 ident: 87_CR6 publication-title: Exp Fluids doi: 10.1007/s00348-013-1505-7 – volume: 22 start-page: 511 issue: 3 year: 1977 ident: 87_CR28 publication-title: Phys Med Biol doi: 10.1088/0031-9155/22/3/012 – volume: 64 start-page: 525 year: 2019 ident: 87_CR34 publication-title: Comput Mech doi: 10.1007/s00466-019-01740-0 – ident: 87_CR49 – volume: 10 start-page: 48 issue: 1 year: 1979 ident: 87_CR26 publication-title: Comput Graph Image Process doi: 10.1016/0146-664X(79)90034-0 – ident: 87_CR30 – ident: 87_CR35 doi: 10.1145/2939672.2939738 – volume: 25 start-page: 084004 issue: 8 year: 2014 ident: 87_CR9 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/25/8/084004 – ident: 87_CR40 doi: 10.23919/ChiCC.2017.8029130 – volume: 36 start-page: 999 issue: 5 year: 2020 ident: 87_CR1 publication-title: Acta Mech Sinica doi: 10.1007/s10409-020-00983-y – volume: 34 start-page: 85 issue: 6 year: 2017 ident: 87_CR33 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2017.2739299 – volume: 21 start-page: 035401 issue: 3 year: 2010 ident: 87_CR15 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/21/3/035401 – ident: 87_CR17 – volume: 24 start-page: 024010 issue: 2 year: 2013 ident: 87_CR10 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/24/2/024010 – ident: 87_CR44 – volume: 47 start-page: 553 issue: 4 year: 2009 ident: 87_CR8 publication-title: Exp Fluids doi: 10.1007/s00348-009-0728-0 – ident: 87_CR39 doi: 10.1109/ICCSP.2017.8286426 |
| SSID | ssj0002794019 |
| Score | 2.3276765 |
| Snippet | Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often... Abstract Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Aerospace Technology and Astronautics Algorithms Convolutional neural network Engineering Ghosts Inverse problems Machine learning Neural networks Particle reconstruction Volumetric particle image velocimetry |
| SummonAdditionalLinks | – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6QDzVhYJ84EatJo5fOSBEUasKiVWFqNSbNfGjqrTdXdgitP8e23HS9rLiGttK4m88M7ZnvgH40AnhdcrMDUooyjumaGc1Uo3CqUp6bl3KHf4-k2cX_NuluNyB2ZALk8IqB52YFbVb2nRGfhTNbLSebSWqz6tfNFWNSrerQwkNLKUV3KdMMfYIdllixprA7vHJ7PzHeOrCovhFp2bIntHyaM1Z9IBoilRI9lBR-cBCZSL_B97neGG6B4__LFa4-Yvz-T2bdPoMnhZnknzp0X8OO37xAvbuUQy-hHBeZIPkre9IF0uWgfSaKVH0k9XQ6_omKhiSAonsdWrbkHRSS6KbSNY9ke0mDb3JMZielKITV6_g4vTk59czWmorUMulvqVBRiXnpLMyNKytOkSvdOUt2mjWdIO1sqwNFUcR3W8RtxHBR0vequBQ1eh58xomi-XC7wOpubWuqRsZRMex9p3rhPdYWae81MFOoR7m09hCPJ7qX8xN3oBoaXoMTMTAZAyMnMLHccyqp93Y2vs4wTT2TJTZ-cHy95Up82e6KjBsA28ZBm5VShpHybxvFaKuuZrCwQCyKet4be6kbgqHA_B3zds-6XAUjv_4gzfbX_4WnrAsoS1lzQFMoqz4d9EZuu3eFwn_Bw_YBzM priority: 102 providerName: ProQuest – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPVXmJ7QP5wI1aJI6fx1JRVUggDlTqzRo7dlW03V11i9D-e2zHCa2EKrgmdpR4xjPfxDPfALxzQgSdK3OjEopyxxR1XiPVKHrVyMB9n2uHv3yVZ-f884W4qEVh6zHbfTySLJa6bGstP6w5S1CF5pSC7LgUlY_hScIfLDdsOKk1Dj_KUZpJQYMZK2T-OvWeFypk_fcQ5nQoug1Pfy5WuPmF8_kdv3O6CzsVMJLjQcLP4VFYvIDtOzSCLyF-q_InJbydKGHJMpLB-mQafrIaR11dJyNCcrKQv8r3NiT_jSUJCpL1QFa7yVOvS55lILWxxOUrOD_99P3kjNb-CdRzqW9plMmQ9bL3MnbMNA4xKN0Ejz65Lt1hqzwzseEoEsQWKVSIIXlro2KPqsXAu9ewtVguwhsgLfe-79pORuE4tsH1ToSAje9VkDr6GbTjelpfycVzj4u5LUGGlnaQgU0ysEUGVs7g_TRnNVBrPDj6YxbTNDLTYpcLy5tLW9fPuiYyNJEbhpF7lQvDUbIQjELULVczOBiFbOteXdsE4BIuM41oZnA0Cv7P7Yde6WhSjn_4gr3_e_o-PGNFYw1l3QFsJd0JhwkA3bq3Rd9_AyNc_Ws priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeeFcECvKBG3W66_XzWBBVhUTVA5HgZI29dhU1TSKSCoVfj70vWoQqENe1LXlnxzPfrGe-AXjjhAg6V-ZGJRTljinqvEaqUdSqkIH7OtcOfzqVJ1P-8YvoswlzLQzOcNLfSOb-UY2xTjG_vzhc1bE941oerjlLuIXm_ILsxRSVd2FHigTHR7AzPT07-pqbygnGqTSG9cUyf1x4wyE1vP03wOZwP7oL964WK9x-x_n8mgs6fgiu33ybeXIxudq4if_xG6_jf73dI3jQAVRy1GrUY7gTFk9g9xpt4VOIZ52-kSacHihoyTKS1tpl2n-y6mfNLpPRIjk5yc_y2Jbkv78kQU-ybslxt3npZZPXGUjXyOL8GUyPP3x-f0K7fg3Uc6k3NMpkOGtZexkrZgqHGJQugkefXKWusFSemVhwFAnSixSaxJDQgVGxRlVi4NUejBbLRXgOpOTe11VZySgcxzK42okQsPC1ClJHP4ay_2jWd2TmuafG3DZBjZa2laFNMrSNDK0cw9thzaql8rh19rusC8PMTMPdPFh-O7ed_KwrIkMTuWEYuVe5EB0lC8EoRF1yNYb9XpNsZxvWNgHGhANNIYoxHPTa8Gv4ti0dDBr4F2_w4t-mv4T7rNE4Q1m1D6OkO-FVAlwb97o7Uj8Bd3ojVg priority: 102 providerName: Unpaywall |
| Title | Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning |
| URI | https://link.springer.com/article/10.1186/s42774-021-00087-6 https://www.proquest.com/docview/2730649050 https://aia.springeropen.com/track/pdf/10.1186/s42774-021-00087-6 https://doaj.org/article/b0f2a9f492af4c71852a62ee97aa8147 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2524-6992 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002794019 issn: 2524-6992 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2524-6992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794019 issn: 2524-6992 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2524-6992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794019 issn: 2524-6992 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2524-6992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794019 issn: 2524-6992 databaseCode: C6C dateStart: 20191201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 2524-6992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794019 issn: 2524-6992 databaseCode: C24 dateStart: 20191201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtemhzKH1SJ6nRobdGRKvV85iYhBCIMaWG9CRGWqmkOI7BKcH_PpL2UeeS9tDLHlYSrDQjzTermW8Q-uKECDpn5kYlFOGOKeK8BqJBNIrKwH2Tc4cvp_J8zi-uxNVWqa8cE9bSA7cLd-RoZGAiNwwi9yrn-oJkIRgFoCte8sipNlvO1K9ynWaS42D6LBktj9acJaRDckRCtnuKyEeWqBD2P0KZw8XoLnr5e7mCzT0sFlu25-wNet2BRnzcfuxb9Cws36HdLSrB9yjOuqng4uIOtLD4NuL2BMpU_HjV97q-SQcJzgFD_jq3bXD-I4sTHMTrlrB2k4felFjLgLviEj8_oPnZ6ffJOelqKBDPpb4jUabDrJGNl7FmhjqAoDQNHnwyX7qGSnlmIuUgEswWyV2IIVlso2IDqoLA649oZ3m7DJ8Qrrj3TV3VMgrHoQqucSIEoL5RQeroR6jq19P6jmA817lY2OJoaGlbGdgkA1tkYOUIfR3GrFp6jSd7n2QxDT0zNXZ5kRTGdutn_6YwI3TQC9l2-3VtE4hL2MxQQUfosBf8n-anPulwUI5_mMHe_5jBPnrFih4bwuoDtJM0KnxO0OjOjdGLk9Pp7NsYPZ8wnp9yMi47I7XMp7PjHw_r0Q5R |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9iC6U-tKdikTh-5YAQUNBSYIUqkLi5jh8IadndslRo_1x_W-3ECXBZ9cI1tvPwfJn5xvbMAHypGHMyRuZ6wQSmFRG4MlJjqZkVGXfU2Bg7fDrg_Qv645JdLsDfNhYmHqtsdWKtqO3YxDXyrWBmg_UsM5btTH7jWDUq7q62JTR0Kq1gt-sUYymw49jN7oMLN90--h7k_ZWQw4Pz_T5OVQawoVzeYc_D7265NdwXpMwqrZ2QmTPaBAUvC50LQ0qfUc0CEWWBUHsXbFopvNUi144W4b4vYIkWtAzO39LeweDsZ7fKQwLcA4lqo3Uk35pSEhgXjicjov0VmD-xiHXhgCdst9ugXYHlP6OJnt3r4fCRDTx8Da8SeUW7DdrewIIbvYWVRykN34E_S1hEtavdpadFY48aTRhLAqBJ2-v6Jig0FA8umevYNkNxZRgFWoqmTeLcWRx6U5_5dCgVubh6DxfPMssfYHE0HrlVQDk1xhZ5wT2rqM5dZSvmnM6MFY5Lb3qQt_OpTEp0HuttDFXt8EiuGhmoIANVy0DxHnzrxkyaNB9ze-9FMXU9Y4ru-sL49kql-VNV5okuPS2J9tSIGKSuOXGuFFrLnIoerLdCVklvTNUDynuw2Qr-oXneK2124PiPL_g4_-GfYbl_fnqiTo4Gx2vwktRoLTEp1mEx4MZ9CkTsrtpIaEfw67l_sH_jlEPx |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVgJ6QLwqAgV8gBNdZdfr1x4qRGmjlkIUISr1Zrx-VJXSJJCiKn-RX8V44922l4hLr7v2Pjzjmc_2zHwA72rOvYqZuUFymbGayqy2ymTKcCdz4Zl1MXf421AcnrAvp_x0Df62uTAxrLK1iY2hdlMb98j76GbRe1Y5z_shhUWM9gcfZ7-yyCAVT1pbOg2TaBbcblNuLCV5HPvFFS7n5rtH-yj795QODn58PswS40BmmVCXWRA49Z1wVoSSVnltjJcq99ZYNPaqNIW0tAo5MxxBKUdwHTz6t0oGZ2RhPCvxufdgIx5-oZHY2DsYjr53Oz4UVR8BVZu5o0R_ziiiryxGSURfLDNxyzs2JAK3kG93WLsJD_5MZmZxZcbjG_5w8BgeJSBLPi017wms-clT2LxR3vAZhFHSS9Isu7tStWQayNIqRnoAMmtbnV-gcSMxiMmex3sLEneJCUJUMl8W0V3ErhdN_KcnifDi7Dmc3Mkob8H6ZDrxL4AUzFpXFqUIvGam8LWrufcmt056oYLtQdGOp7ap6Hnk3hjrZvGjhF7KQKMMdCMDLXrwoeszW5b8WNl6L4qpaxnLdTcXpr_PdBo_XeeBmiqwiprArIwJ60ZQ7ytpjCqY7MF2K2SdbMhcX2t8D3ZawV_fXvVJO51y_McfvFz98rdwHyea_no0PH4FD2mjrFVGy21YR7XxrxGTXdZvkrIT-HnX8-sf9HtIIA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BeoAeeFcECvKBG3W66_XzWBBVhUTVA5HgZI29dhU1TSKSCoVfj70vWoQqENe1LXlnxzPfrGe-AXjjhAg6V-ZGJRTljinqvEaqUdSqkIH7OtcOfzqVJ1P-8YvoswlzLQzOcNLfSOb-UY2xTjG_vzhc1bE941oerjlLuIXm_ILsxRSVd2FHigTHR7AzPT07-pqbygnGqTSG9cUyf1x4wyE1vP03wOZwP7oL964WK9x-x_n8mgs6fgiu33ybeXIxudq4if_xG6_jf73dI3jQAVRy1GrUY7gTFk9g9xpt4VOIZ52-kSacHihoyTKS1tpl2n-y6mfNLpPRIjk5yc_y2Jbkv78kQU-ybslxt3npZZPXGUjXyOL8GUyPP3x-f0K7fg3Uc6k3NMpkOGtZexkrZgqHGJQugkefXKWusFSemVhwFAnSixSaxJDQgVGxRlVi4NUejBbLRXgOpOTe11VZySgcxzK42okQsPC1ClJHP4ay_2jWd2TmuafG3DZBjZa2laFNMrSNDK0cw9thzaql8rh19rusC8PMTMPdPFh-O7ed_KwrIkMTuWEYuVe5EB0lC8EoRF1yNYb9XpNsZxvWNgHGhANNIYoxHPTa8Gv4ti0dDBr4F2_w4t-mv4T7rNE4Q1m1D6OkO-FVAlwb97o7Uj8Bd3ojVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+reconstruction+of+volumetric+particle+image+velocimetry+with+the+strategy+of+machine+learning&rft.jtitle=Advances+in+aerodynamics&rft.au=Qi+Gao&rft.au=Shaowu+Pan&rft.au=Hongping+Wang&rft.au=Runjie+Wei&rft.date=2021-09-23&rft.pub=SpringerOpen&rft.eissn=2524-6992&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs42774-021-00087-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0f2a9f492af4c71852a62ee97aa8147 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-6992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-6992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-6992&client=summon |