Latent Model-Based Clustering for Biological Discovery
LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an...
        Saved in:
      
    
          | Published in | iScience Vol. 14; pp. 125 - 135 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier
    
        26.04.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2589-0042 2589-0042  | 
| DOI | 10.1016/j.isci.2019.03.018 | 
Cover
| Abstract | LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. | 
    
|---|---|
| AbstractList | LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. • LOVE is a robust, scalable, and versatile latent model-based clustering method • Has theoretical guarantees, and can generate overlapping and non-overlapping clusters • Generates meaningful clusters from datasets spanning a range of biological domains • Using established benchmarks, outperforms 13 state-of-the-art methods across datasets Biological Sciences, Bioinformatics, Statistical Computing LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. : Biological Sciences, Bioinformatics, Statistical Computing Subject Areas: Biological Sciences, Bioinformatics, Statistical Computing LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.  | 
    
| Author | Bunea, Florentina Bing, Xin Das, Jishnu Royer, Martin  | 
    
| AuthorAffiliation | 4 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 1 Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA 2 Department of Mathematics, Universite Paris-Sud, 91405 Orsay, France 3 Ragon Institute of MGH, Harvard, MIT, Cambridge, MA 02139, USA  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Mathematics, Universite Paris-Sud, 91405 Orsay, France – name: 4 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 3 Ragon Institute of MGH, Harvard, MIT, Cambridge, MA 02139, USA – name: 1 Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Bing fullname: Bing, Xin – sequence: 2 givenname: Florentina surname: Bunea fullname: Bunea, Florentina – sequence: 3 givenname: Martin surname: Royer fullname: Royer, Martin – sequence: 4 givenname: Jishnu orcidid: 0000-0002-5747-064X surname: Das fullname: Das, Jishnu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30954780$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUU1vFCEYJqbGftg_4MHM0cuMfM9wMbGr1SZrvOiZMPCysmGHFWbb7L-XdWvTejAmJJCX54uHc3QypQkQekVwRzCRb9ddKDZ0FBPVYdZhMjxDZ1QMqsWY05NH51N0WcoaY0zr4kq-QKcMK8H7AZ8huTQzTHPzJTmI7ZUp4JpF3JUZcphWjU-5uQopplWwJjYfqme6hbx_iZ57Ewtc3u8X6Pv1x2-Lz-3y66ebxftla7kc5hbIoBwVMIrBjFRYS_pRghi5cbInbrSECmkk9l4y2xPjfD8OcpQD7o1XDrMLdHPUdcms9TaHjcl7nUzQvwcpr7TJc7ARtONYcQHArFKcCGZ8r5SzY-8Zt8RD1WJHrd20Nfs7E-ODIMH6UKpe60Op-lCqxkzXUivr3ZG13Y0bcLaWlU18EuXpzRR-6FW61ZJz1XNRBd7cC-T0cwdl1ptqAjGaCdKuaEqxqNElYRX6-rHXg8mf76oAegTYnErJ4P_vBcNfJBtmM4d0yBviv6i_ANxtvZQ | 
    
| CitedBy_id | crossref_primary_10_1038_s41592_024_02175_z crossref_primary_10_1038_s41592_024_02176_y crossref_primary_10_3390_d12080297 crossref_primary_10_1172_jci_insight_180239  | 
    
| Cites_doi | 10.1038/s41591-018-0161-0 10.1093/bioinformatics/bts283 10.1126/science.1158684 10.1097/QAD.0000000000001716 10.1186/s12864-015-1465-9 10.1016/j.tig.2013.05.010 10.1126/scisignal.2003350 10.1038/35019019 10.1093/nar/gkt439 10.1038/35036627 10.1038/nmeth.1938 10.1038/75556 10.1038/nmeth.3583 10.1016/j.cell.2015.11.037 10.15252/msb.20177881 10.1186/1752-0509-6-92 10.1016/j.cell.2014.10.050 10.1016/0098-3004(84)90020-7  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. 2019 The Authors 2019  | 
    
| Copyright_xml | – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2019 The Authors 2019  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.isci.2019.03.018 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2589-0042 | 
    
| EndPage | 135 | 
    
| ExternalDocumentID | oai_doaj_org_article_d40945ee3c994153af799dcb7f34c1fe 10.1016/j.isci.2019.03.018 PMC6449745 30954780 10_1016_j_isci_2019_03_018  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AACTN NCXOZ NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c468t-e189d25eb58ab25cc17b6e5b4ad671dbc1256a60ff63c71adf7b86b6807af9d03 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2589-0042 | 
    
| IngestDate | Fri Oct 03 12:51:26 EDT 2025 Sun Oct 26 04:08:16 EDT 2025 Tue Sep 30 16:51:09 EDT 2025 Fri Jul 11 15:23:14 EDT 2025 Thu Jan 02 22:58:50 EST 2025 Tue Jul 01 01:03:25 EDT 2025 Thu Apr 24 22:57:52 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Biological Sciences Statistical Computing Bioinformatics  | 
    
| Language | English | 
    
| License | Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c468t-e189d25eb58ab25cc17b6e5b4ad671dbc1256a60ff63c71adf7b86b6807af9d03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact  | 
    
| ORCID | 0000-0002-5747-064X | 
    
| OpenAccessLink | https://doaj.org/article/d40945ee3c994153af799dcb7f34c1fe | 
    
| PMID | 30954780 | 
    
| PQID | 2205409613 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d40945ee3c994153af799dcb7f34c1fe unpaywall_primary_10_1016_j_isci_2019_03_018 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449745 proquest_miscellaneous_2205409613 pubmed_primary_30954780 crossref_primary_10_1016_j_isci_2019_03_018 crossref_citationtrail_10_1016_j_isci_2019_03_018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-04-26 | 
    
| PublicationDateYYYYMMDD | 2019-04-26 | 
    
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-26 day: 26  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | iScience | 
    
| PublicationTitleAlternate | iScience | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier | 
    
| Publisher_xml | – name: Elsevier | 
    
| References | Ackerman (10.1016/j.isci.2019.03.018_bib1) 2018; 24 Jeong (10.1016/j.isci.2019.03.018_bib11) 2000; 407 Vo (10.1016/j.isci.2019.03.018_bib15) 2016; 164 Sadanand (10.1016/j.isci.2019.03.018_bib14) 2018; 32 Das (10.1016/j.isci.2019.03.018_bib7) 2012; 28 Alter (10.1016/j.isci.2019.03.018_bib3) 2018; 14 Eisenberg (10.1016/j.isci.2019.03.018_bib10) 2013; 29 Das (10.1016/j.isci.2019.03.018_bib8) 2013; 6 Wang (10.1016/j.isci.2019.03.018_bib16) 2013; 41 Das (10.1016/j.isci.2019.03.018_bib9) 2012; 6 Albert (10.1016/j.isci.2019.03.018_bib2) 2000; 406 Nepusz (10.1016/j.isci.2019.03.018_bib12) 2012; 9 Wiwie (10.1016/j.isci.2019.03.018_bib17) 2015; 12 Bezdek (10.1016/j.isci.2019.03.018_bib5) 1984; 10 Rolland (10.1016/j.isci.2019.03.018_bib13) 2014; 159 Yu (10.1016/j.isci.2019.03.018_bib18) 2008; 322 Das (10.1016/j.isci.2019.03.018_bib6) 2015; 16 Ashburner (10.1016/j.isci.2019.03.018_bib4) 2000; 25  | 
    
| References_xml | – volume: 24 start-page: 1590 year: 2018 ident: 10.1016/j.isci.2019.03.018_bib1 article-title: Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV publication-title: Nat. Med. doi: 10.1038/s41591-018-0161-0 – volume: 28 start-page: 1873 year: 2012 ident: 10.1016/j.isci.2019.03.018_bib7 article-title: Genome-scale analysis of interaction dynamics reveals organization of biological networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts283 – volume: 322 start-page: 104 year: 2008 ident: 10.1016/j.isci.2019.03.018_bib18 article-title: High-quality binary protein interaction map of the yeast interactome network publication-title: Science doi: 10.1126/science.1158684 – volume: 32 start-page: 443 year: 2018 ident: 10.1016/j.isci.2019.03.018_bib14 article-title: Temporal variation in HIV-specific IgG subclass antibodies during acute infection differentiates spontaneous controllers from chronic progressors publication-title: AIDS doi: 10.1097/QAD.0000000000001716 – volume: 16 start-page: 263 year: 2015 ident: 10.1016/j.isci.2019.03.018_bib6 article-title: ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers publication-title: BMC Genomics doi: 10.1186/s12864-015-1465-9 – volume: 29 start-page: 569 year: 2013 ident: 10.1016/j.isci.2019.03.018_bib10 article-title: Human housekeeping genes, revisited publication-title: Trends Genet. doi: 10.1016/j.tig.2013.05.010 – volume: 6 start-page: ra38 year: 2013 ident: 10.1016/j.isci.2019.03.018_bib8 article-title: Cross-species protein interactome mapping reveals species-specific wiring of stress response pathways publication-title: Sci. Signal. doi: 10.1126/scisignal.2003350 – volume: 406 start-page: 378 year: 2000 ident: 10.1016/j.isci.2019.03.018_bib2 article-title: Error and attack tolerance of complex networks publication-title: Nature doi: 10.1038/35019019 – volume: 41 start-page: W77 year: 2013 ident: 10.1016/j.isci.2019.03.018_bib16 article-title: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt439 – volume: 407 start-page: 651 year: 2000 ident: 10.1016/j.isci.2019.03.018_bib11 article-title: The large-scale organization of metabolic networks publication-title: Nature doi: 10.1038/35036627 – volume: 9 start-page: 471 year: 2012 ident: 10.1016/j.isci.2019.03.018_bib12 article-title: Detecting overlapping protein complexes in protein-protein interaction networks publication-title: Nat. Methods doi: 10.1038/nmeth.1938 – volume: 25 start-page: 25 year: 2000 ident: 10.1016/j.isci.2019.03.018_bib4 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 12 start-page: 1033 year: 2015 ident: 10.1016/j.isci.2019.03.018_bib17 article-title: Comparing the performance of biomedical clustering methods publication-title: Nat. Methods doi: 10.1038/nmeth.3583 – volume: 164 start-page: 310 year: 2016 ident: 10.1016/j.isci.2019.03.018_bib15 article-title: A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human publication-title: Cell doi: 10.1016/j.cell.2015.11.037 – volume: 14 start-page: e7881 year: 2018 ident: 10.1016/j.isci.2019.03.018_bib3 article-title: High-resolution definition of humoral immune response correlates of effective immunity against HIV publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20177881 – volume: 6 start-page: 92 year: 2012 ident: 10.1016/j.isci.2019.03.018_bib9 article-title: HINT: high-quality protein interactomes and their applications in understanding human disease publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-92 – volume: 159 start-page: 1212 year: 2014 ident: 10.1016/j.isci.2019.03.018_bib13 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 – volume: 10 start-page: 191 year: 1984 ident: 10.1016/j.isci.2019.03.018_bib5 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7  | 
    
| SSID | ssj0002002496 | 
    
| Score | 2.1110017 | 
    
| Snippet | LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 125 | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb5VAEJ7U0wd98RJveAsmviktsOwu-9hWm8ZoY9ST1KfNXuuFcE4qxNRf78wBTnpSY-ojMAR2Z2C-hZnvA3jh6zoitBeZ9ypklWEhU7mpMoOrEVk4nuee-p3fH4ujefX2hJ9swSRcSFWV9MV69Y4e5273U8lrRdGFYIP43-Xu0sdrsC04wu8ZbM-PP-x9IRE5TuU_aDc2xwx1XNTcSiVcA5kpiXtcSEArnv6_gcvLNZLX-3Zpzn-ZprmQgA5vwcepjWeoO_mx03d2x_2-zOp49bHdhpsjHE33Brs7sBXauyDeIQBtu5R00ppsH_OcTw-anigVMNGlCHPTQcKSHJy-xqFTHej5PZgfvvl8cJSN-gqZq0TdZaGolS95sLw2tuTOFdKKwG1lvJCFtw7BjzAij1EwJwvjo7S1sKLOpYnK5-w-zNpFGx5Cyj0ih1wxF0kovPSmCLn0DKPAWqVsmUAxTbp2I_k4aWA0eqoy-67JUZocpXOm0VEJvFyfsxyoN_5pvU--XFsSbfZqx-LsVI-zrT2tZnkIzCmFyIWZKJXyzsrIKlfEkMDzKRI0PmbkLdOGRf9TUz9yRfI4LIEHQ2SsL8UQplayzhOQGzGzcS-bR9pvX1dU3ohGcUHHE3i1jq4rjPXR_5k_hhu0Rf_ASvEEZt1ZH54ilOrss_Hh-QPfMRvE priority: 102 providerName: Unpaywall  | 
    
| Title | Latent Model-Based Clustering for Biological Discovery | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30954780 https://www.proquest.com/docview/2205409613 https://pubmed.ncbi.nlm.nih.gov/PMC6449745 http://www.cell.com/article/S2589004219300847/pdf https://doaj.org/article/d40945ee3c994153af799dcb7f34c1fe  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h9gAXRFUeKVAFiRtEOHH8OvapCkHFgZXKyfJTUEVpBbuq-u87k2RXuwIBh14TJ7FnxpnP8vj7AN5GrTNCe1nFaFLVOp4qw1xbOVyNqDoIxiKdd_58Ls9m7ccLcbEm9UU1YSM98Gi4D5EWICIlHozBZMNdVsbE4FXmbahzor8v02ZtMXU5bK8RFd6gLCeoJghDczoxMxZ30YlXqusaGU5J8WMtKw3k_X9CnL8XTj5c9Nfu9sZ13VpWOn0Cjyc4WR6Mw9iBB6nfBfkJAWQ_L0nnrKsOMU_F8qhbECUCJqoSYWo5SlCSg8pj7CXVcd4-hdnpydejs2rSR6hCK_W8SrU2sRHJC-18I0KolZdJ-NZFqeroA4IX6STLWfKgahez8lp6qZly2UTGn8FWf9WnF1CKiJmfGR4yCX030dWJqcjRi94b45sC6qV9bJjIw0nDorPLKrFLSza1ZFPLuEWbFvBu9cz1SJ3x19aHZPZVS6K9Hi5gMNgpGOy_gqGAN0unWZwmtPfh-nS1-GXpPHFL8ja8gOejE1ef4ggzW6VZAWrDvRt92bzT__g-UHEjmsQFmSjg_SoQ_mOse_cx1pfwiF5JO1uNfAVb85-L9BoB0tzvD3NhH7Zn518Ovt0BTNUOYA | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb5VAEJ7U0wd98RJveAsmviktsOwu-9hWm8ZoY9ST1KfNXuuFcE4qxNRf78wBTnpSY-ojMAR2Z2C-hZnvA3jh6zoitBeZ9ypklWEhU7mpMoOrEVk4nuee-p3fH4ujefX2hJ9swSRcSFWV9MV69Y4e5273U8lrRdGFYIP43-Xu0sdrsC04wu8ZbM-PP-x9IRE5TuU_aDc2xwx1XNTcSiVcA5kpiXtcSEArnv6_gcvLNZLX-3Zpzn-ZprmQgA5vwcepjWeoO_mx03d2x_2-zOp49bHdhpsjHE33Brs7sBXauyDeIQBtu5R00ppsH_OcTw-anigVMNGlCHPTQcKSHJy-xqFTHej5PZgfvvl8cJSN-gqZq0TdZaGolS95sLw2tuTOFdKKwG1lvJCFtw7BjzAij1EwJwvjo7S1sKLOpYnK5-w-zNpFGx5Cyj0ih1wxF0kovPSmCLn0DKPAWqVsmUAxTbp2I_k4aWA0eqoy-67JUZocpXOm0VEJvFyfsxyoN_5pvU--XFsSbfZqx-LsVI-zrT2tZnkIzCmFyIWZKJXyzsrIKlfEkMDzKRI0PmbkLdOGRf9TUz9yRfI4LIEHQ2SsL8UQplayzhOQGzGzcS-bR9pvX1dU3ohGcUHHE3i1jq4rjPXR_5k_hhu0Rf_ASvEEZt1ZH54ilOrss_Hh-QPfMRvE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Model-Based+Clustering+for+Biological+Discovery&rft.jtitle=iScience&rft.au=Bing%2C+Xin&rft.au=Bunea%2C+Florentina&rft.au=Royer%2C+Martin&rft.au=Das%2C+Jishnu&rft.date=2019-04-26&rft.eissn=2589-0042&rft.volume=14&rft.spage=125&rft_id=info:doi/10.1016%2Fj.isci.2019.03.018&rft_id=info%3Apmid%2F30954780&rft.externalDocID=30954780 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |