Latent Model-Based Clustering for Biological Discovery

LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 14; pp. 125 - 135
Main Authors Bing, Xin, Bunea, Florentina, Royer, Martin, Das, Jishnu
Format Journal Article
LanguageEnglish
Published United States Elsevier 26.04.2019
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.03.018

Cover

Abstract LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.
AbstractList LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.
LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. • LOVE is a robust, scalable, and versatile latent model-based clustering method • Has theoretical guarantees, and can generate overlapping and non-overlapping clusters • Generates meaningful clusters from datasets spanning a range of biological domains • Using established benchmarks, outperforms 13 state-of-the-art methods across datasets Biological Sciences, Bioinformatics, Statistical Computing
LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters. : Biological Sciences, Bioinformatics, Statistical Computing Subject Areas: Biological Sciences, Bioinformatics, Statistical Computing
LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and non-overlapping clusters. In our formulation, a cluster comprises variables associated with the same latent factor and is determined from an allocation matrix that indexes our latent model. We prove that the allocation matrix and corresponding clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune responses) resulting in meaningful biological output. For all three datasets, the clusters generated by LOVE remain stable across tuning parameters. Finally, we compared LOVE's performance to that of 13 state-of-the-art methods using previously established benchmarks and found that LOVE outperformed these methods across datasets. Our results demonstrate that LOVE can be broadly used across large-scale biological datasets to generate accurate and meaningful overlapping and non-overlapping clusters.
Author Bunea, Florentina
Bing, Xin
Das, Jishnu
Royer, Martin
AuthorAffiliation 4 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
1 Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA
2 Department of Mathematics, Universite Paris-Sud, 91405 Orsay, France
3 Ragon Institute of MGH, Harvard, MIT, Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: 2 Department of Mathematics, Universite Paris-Sud, 91405 Orsay, France
– name: 4 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 3 Ragon Institute of MGH, Harvard, MIT, Cambridge, MA 02139, USA
– name: 1 Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA
Author_xml – sequence: 1
  givenname: Xin
  surname: Bing
  fullname: Bing, Xin
– sequence: 2
  givenname: Florentina
  surname: Bunea
  fullname: Bunea, Florentina
– sequence: 3
  givenname: Martin
  surname: Royer
  fullname: Royer, Martin
– sequence: 4
  givenname: Jishnu
  orcidid: 0000-0002-5747-064X
  surname: Das
  fullname: Das, Jishnu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30954780$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1vFCEYJqbGftg_4MHM0cuMfM9wMbGr1SZrvOiZMPCysmGHFWbb7L-XdWvTejAmJJCX54uHc3QypQkQekVwRzCRb9ddKDZ0FBPVYdZhMjxDZ1QMqsWY05NH51N0WcoaY0zr4kq-QKcMK8H7AZ8huTQzTHPzJTmI7ZUp4JpF3JUZcphWjU-5uQopplWwJjYfqme6hbx_iZ57Ewtc3u8X6Pv1x2-Lz-3y66ebxftla7kc5hbIoBwVMIrBjFRYS_pRghi5cbInbrSECmkk9l4y2xPjfD8OcpQD7o1XDrMLdHPUdcms9TaHjcl7nUzQvwcpr7TJc7ARtONYcQHArFKcCGZ8r5SzY-8Zt8RD1WJHrd20Nfs7E-ODIMH6UKpe60Op-lCqxkzXUivr3ZG13Y0bcLaWlU18EuXpzRR-6FW61ZJz1XNRBd7cC-T0cwdl1ptqAjGaCdKuaEqxqNElYRX6-rHXg8mf76oAegTYnErJ4P_vBcNfJBtmM4d0yBviv6i_ANxtvZQ
CitedBy_id crossref_primary_10_1038_s41592_024_02175_z
crossref_primary_10_1038_s41592_024_02176_y
crossref_primary_10_3390_d12080297
crossref_primary_10_1172_jci_insight_180239
Cites_doi 10.1038/s41591-018-0161-0
10.1093/bioinformatics/bts283
10.1126/science.1158684
10.1097/QAD.0000000000001716
10.1186/s12864-015-1465-9
10.1016/j.tig.2013.05.010
10.1126/scisignal.2003350
10.1038/35019019
10.1093/nar/gkt439
10.1038/35036627
10.1038/nmeth.1938
10.1038/75556
10.1038/nmeth.3583
10.1016/j.cell.2015.11.037
10.15252/msb.20177881
10.1186/1752-0509-6-92
10.1016/j.cell.2014.10.050
10.1016/0098-3004(84)90020-7
ContentType Journal Article
Copyright Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Authors 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.isci.2019.03.018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 135
ExternalDocumentID oai_doaj_org_article_d40945ee3c994153af799dcb7f34c1fe
10.1016/j.isci.2019.03.018
PMC6449745
30954780
10_1016_j_isci_2019_03_018
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AACTN
NCXOZ
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c468t-e189d25eb58ab25cc17b6e5b4ad671dbc1256a60ff63c71adf7b86b6807af9d03
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Fri Oct 03 12:51:26 EDT 2025
Sun Oct 26 04:08:16 EDT 2025
Tue Sep 30 16:51:09 EDT 2025
Fri Jul 11 15:23:14 EDT 2025
Thu Jan 02 22:58:50 EST 2025
Tue Jul 01 01:03:25 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biological Sciences
Statistical Computing
Bioinformatics
Language English
License Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-e189d25eb58ab25cc17b6e5b4ad671dbc1256a60ff63c71adf7b86b6807af9d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ORCID 0000-0002-5747-064X
OpenAccessLink https://doaj.org/article/d40945ee3c994153af799dcb7f34c1fe
PMID 30954780
PQID 2205409613
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d40945ee3c994153af799dcb7f34c1fe
unpaywall_primary_10_1016_j_isci_2019_03_018
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6449745
proquest_miscellaneous_2205409613
pubmed_primary_30954780
crossref_primary_10_1016_j_isci_2019_03_018
crossref_citationtrail_10_1016_j_isci_2019_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-26
PublicationDateYYYYMMDD 2019-04-26
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
References Ackerman (10.1016/j.isci.2019.03.018_bib1) 2018; 24
Jeong (10.1016/j.isci.2019.03.018_bib11) 2000; 407
Vo (10.1016/j.isci.2019.03.018_bib15) 2016; 164
Sadanand (10.1016/j.isci.2019.03.018_bib14) 2018; 32
Das (10.1016/j.isci.2019.03.018_bib7) 2012; 28
Alter (10.1016/j.isci.2019.03.018_bib3) 2018; 14
Eisenberg (10.1016/j.isci.2019.03.018_bib10) 2013; 29
Das (10.1016/j.isci.2019.03.018_bib8) 2013; 6
Wang (10.1016/j.isci.2019.03.018_bib16) 2013; 41
Das (10.1016/j.isci.2019.03.018_bib9) 2012; 6
Albert (10.1016/j.isci.2019.03.018_bib2) 2000; 406
Nepusz (10.1016/j.isci.2019.03.018_bib12) 2012; 9
Wiwie (10.1016/j.isci.2019.03.018_bib17) 2015; 12
Bezdek (10.1016/j.isci.2019.03.018_bib5) 1984; 10
Rolland (10.1016/j.isci.2019.03.018_bib13) 2014; 159
Yu (10.1016/j.isci.2019.03.018_bib18) 2008; 322
Das (10.1016/j.isci.2019.03.018_bib6) 2015; 16
Ashburner (10.1016/j.isci.2019.03.018_bib4) 2000; 25
References_xml – volume: 24
  start-page: 1590
  year: 2018
  ident: 10.1016/j.isci.2019.03.018_bib1
  article-title: Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0161-0
– volume: 28
  start-page: 1873
  year: 2012
  ident: 10.1016/j.isci.2019.03.018_bib7
  article-title: Genome-scale analysis of interaction dynamics reveals organization of biological networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts283
– volume: 322
  start-page: 104
  year: 2008
  ident: 10.1016/j.isci.2019.03.018_bib18
  article-title: High-quality binary protein interaction map of the yeast interactome network
  publication-title: Science
  doi: 10.1126/science.1158684
– volume: 32
  start-page: 443
  year: 2018
  ident: 10.1016/j.isci.2019.03.018_bib14
  article-title: Temporal variation in HIV-specific IgG subclass antibodies during acute infection differentiates spontaneous controllers from chronic progressors
  publication-title: AIDS
  doi: 10.1097/QAD.0000000000001716
– volume: 16
  start-page: 263
  year: 2015
  ident: 10.1016/j.isci.2019.03.018_bib6
  article-title: ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1465-9
– volume: 29
  start-page: 569
  year: 2013
  ident: 10.1016/j.isci.2019.03.018_bib10
  article-title: Human housekeeping genes, revisited
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2013.05.010
– volume: 6
  start-page: ra38
  year: 2013
  ident: 10.1016/j.isci.2019.03.018_bib8
  article-title: Cross-species protein interactome mapping reveals species-specific wiring of stress response pathways
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2003350
– volume: 406
  start-page: 378
  year: 2000
  ident: 10.1016/j.isci.2019.03.018_bib2
  article-title: Error and attack tolerance of complex networks
  publication-title: Nature
  doi: 10.1038/35019019
– volume: 41
  start-page: W77
  year: 2013
  ident: 10.1016/j.isci.2019.03.018_bib16
  article-title: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt439
– volume: 407
  start-page: 651
  year: 2000
  ident: 10.1016/j.isci.2019.03.018_bib11
  article-title: The large-scale organization of metabolic networks
  publication-title: Nature
  doi: 10.1038/35036627
– volume: 9
  start-page: 471
  year: 2012
  ident: 10.1016/j.isci.2019.03.018_bib12
  article-title: Detecting overlapping protein complexes in protein-protein interaction networks
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1938
– volume: 25
  start-page: 25
  year: 2000
  ident: 10.1016/j.isci.2019.03.018_bib4
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 12
  start-page: 1033
  year: 2015
  ident: 10.1016/j.isci.2019.03.018_bib17
  article-title: Comparing the performance of biomedical clustering methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3583
– volume: 164
  start-page: 310
  year: 2016
  ident: 10.1016/j.isci.2019.03.018_bib15
  article-title: A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.037
– volume: 14
  start-page: e7881
  year: 2018
  ident: 10.1016/j.isci.2019.03.018_bib3
  article-title: High-resolution definition of humoral immune response correlates of effective immunity against HIV
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20177881
– volume: 6
  start-page: 92
  year: 2012
  ident: 10.1016/j.isci.2019.03.018_bib9
  article-title: HINT: high-quality protein interactomes and their applications in understanding human disease
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-92
– volume: 159
  start-page: 1212
  year: 2014
  ident: 10.1016/j.isci.2019.03.018_bib13
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.isci.2019.03.018_bib5
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
SSID ssj0002002496
Score 2.1110017
Snippet LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used across a range of datasets to generate both overlapping and...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 125
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb5VAEJ7U0wd98RJveAsmviktsOwu-9hWm8ZoY9ST1KfNXuuFcE4qxNRf78wBTnpSY-ojMAR2Z2C-hZnvA3jh6zoitBeZ9ypklWEhU7mpMoOrEVk4nuee-p3fH4ujefX2hJ9swSRcSFWV9MV69Y4e5273U8lrRdGFYIP43-Xu0sdrsC04wu8ZbM-PP-x9IRE5TuU_aDc2xwx1XNTcSiVcA5kpiXtcSEArnv6_gcvLNZLX-3Zpzn-ZprmQgA5vwcepjWeoO_mx03d2x_2-zOp49bHdhpsjHE33Brs7sBXauyDeIQBtu5R00ppsH_OcTw-anigVMNGlCHPTQcKSHJy-xqFTHej5PZgfvvl8cJSN-gqZq0TdZaGolS95sLw2tuTOFdKKwG1lvJCFtw7BjzAij1EwJwvjo7S1sKLOpYnK5-w-zNpFGx5Cyj0ih1wxF0kovPSmCLn0DKPAWqVsmUAxTbp2I_k4aWA0eqoy-67JUZocpXOm0VEJvFyfsxyoN_5pvU--XFsSbfZqx-LsVI-zrT2tZnkIzCmFyIWZKJXyzsrIKlfEkMDzKRI0PmbkLdOGRf9TUz9yRfI4LIEHQ2SsL8UQplayzhOQGzGzcS-bR9pvX1dU3ohGcUHHE3i1jq4rjPXR_5k_hhu0Rf_ASvEEZt1ZH54ilOrss_Hh-QPfMRvE
  priority: 102
  providerName: Unpaywall
Title Latent Model-Based Clustering for Biological Discovery
URI https://www.ncbi.nlm.nih.gov/pubmed/30954780
https://www.proquest.com/docview/2205409613
https://pubmed.ncbi.nlm.nih.gov/PMC6449745
http://www.cell.com/article/S2589004219300847/pdf
https://doaj.org/article/d40945ee3c994153af799dcb7f34c1fe
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h9gAXRFUeKVAFiRtEOHH8OvapCkHFgZXKyfJTUEVpBbuq-u87k2RXuwIBh14TJ7FnxpnP8vj7AN5GrTNCe1nFaFLVOp4qw1xbOVyNqDoIxiKdd_58Ls9m7ccLcbEm9UU1YSM98Gi4D5EWICIlHozBZMNdVsbE4FXmbahzor8v02ZtMXU5bK8RFd6gLCeoJghDczoxMxZ30YlXqusaGU5J8WMtKw3k_X9CnL8XTj5c9Nfu9sZ13VpWOn0Cjyc4WR6Mw9iBB6nfBfkJAWQ_L0nnrKsOMU_F8qhbECUCJqoSYWo5SlCSg8pj7CXVcd4-hdnpydejs2rSR6hCK_W8SrU2sRHJC-18I0KolZdJ-NZFqeroA4IX6STLWfKgahez8lp6qZly2UTGn8FWf9WnF1CKiJmfGR4yCX030dWJqcjRi94b45sC6qV9bJjIw0nDorPLKrFLSza1ZFPLuEWbFvBu9cz1SJ3x19aHZPZVS6K9Hi5gMNgpGOy_gqGAN0unWZwmtPfh-nS1-GXpPHFL8ja8gOejE1ef4ggzW6VZAWrDvRt92bzT__g-UHEjmsQFmSjg_SoQ_mOse_cx1pfwiF5JO1uNfAVb85-L9BoB0tzvD3NhH7Zn518Ovt0BTNUOYA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb5VAEJ7U0wd98RJveAsmviktsOwu-9hWm8ZoY9ST1KfNXuuFcE4qxNRf78wBTnpSY-ojMAR2Z2C-hZnvA3jh6zoitBeZ9ypklWEhU7mpMoOrEVk4nuee-p3fH4ujefX2hJ9swSRcSFWV9MV69Y4e5273U8lrRdGFYIP43-Xu0sdrsC04wu8ZbM-PP-x9IRE5TuU_aDc2xwx1XNTcSiVcA5kpiXtcSEArnv6_gcvLNZLX-3Zpzn-ZprmQgA5vwcepjWeoO_mx03d2x_2-zOp49bHdhpsjHE33Brs7sBXauyDeIQBtu5R00ppsH_OcTw-anigVMNGlCHPTQcKSHJy-xqFTHej5PZgfvvl8cJSN-gqZq0TdZaGolS95sLw2tuTOFdKKwG1lvJCFtw7BjzAij1EwJwvjo7S1sKLOpYnK5-w-zNpFGx5Cyj0ih1wxF0kovPSmCLn0DKPAWqVsmUAxTbp2I_k4aWA0eqoy-67JUZocpXOm0VEJvFyfsxyoN_5pvU--XFsSbfZqx-LsVI-zrT2tZnkIzCmFyIWZKJXyzsrIKlfEkMDzKRI0PmbkLdOGRf9TUz9yRfI4LIEHQ2SsL8UQplayzhOQGzGzcS-bR9pvX1dU3ohGcUHHE3i1jq4rjPXR_5k_hhu0Rf_ASvEEZt1ZH54ilOrss_Hh-QPfMRvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Model-Based+Clustering+for+Biological+Discovery&rft.jtitle=iScience&rft.au=Bing%2C+Xin&rft.au=Bunea%2C+Florentina&rft.au=Royer%2C+Martin&rft.au=Das%2C+Jishnu&rft.date=2019-04-26&rft.eissn=2589-0042&rft.volume=14&rft.spage=125&rft_id=info:doi/10.1016%2Fj.isci.2019.03.018&rft_id=info%3Apmid%2F30954780&rft.externalDocID=30954780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon