An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 9; no. 7; pp. 5558 - 5579 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.07.2009
Molecular Diversity Preservation International (MDPI) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s90705558 |
Cover
| Abstract | The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. |
|---|---|
| AbstractList | The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. |
| Author | Xia, Jun Liu, Yu Shi, Chun-Xiang Hong, Yang |
| AuthorAffiliation | 3 National Satellite Meteorological Center, Beijing 100081, China; E-Mail: shicx@cma.gov.cm 4 School of Civil Engineering and Environmental Sciences, University of Oklahoma, National Weather Center Suite 3630, Norman, OK 73019, USA; E-Mail: yanghong@ou.edu 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; E-Mail: liuyu950@126.com 2 Graduate School of the Chinese Academy of Science, CAS, Beijing, 100039, China |
| AuthorAffiliation_xml | – name: 2 Graduate School of the Chinese Academy of Science, CAS, Beijing, 100039, China – name: 3 National Satellite Meteorological Center, Beijing 100081, China; E-Mail: shicx@cma.gov.cm – name: 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; E-Mail: liuyu950@126.com – name: 4 School of Civil Engineering and Environmental Sciences, University of Oklahoma, National Weather Center Suite 3630, Norman, OK 73019, USA; E-Mail: yanghong@ou.edu |
| Author_xml | – sequence: 1 givenname: Yu surname: Liu fullname: Liu, Yu – sequence: 2 givenname: Jun surname: Xia fullname: Xia, Jun – sequence: 3 givenname: Chun-Xiang surname: Shi fullname: Shi, Chun-Xiang – sequence: 4 givenname: Yang surname: Hong fullname: Hong, Yang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22346714$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1DAQxy1URD_gwAugSBwQSKH-dvaCtIoorFTgQg-cLMd2sl689mInrXrjNfp6fRKS3bJqK7h4RuO___rNjI_BQYjBAvASwfeEzOBpnkEBGWPVE3CEKKZlhTE8uJcfguOcVxBiQkj1DBxiTCgXiB6BPA_FYr1J8dKaovZxmE6Vs2udVr2LoZj7LibXL9dFG1NRL11Qt79vcnH2o8R18WXwvSvrpQrB-tFJdTYXF9mFrpinfnJxyhdf7ZC2ob-K6edz8LRVPtsXd_EEXJx9_F5_Ls-_fVrU8_NSU171pWmMJQ0V1DBIG6MMQS1qecthg6A1nDLccKYIrnBDGOOmsg21mlSMtQZDTk7AYudrolrJTXJrla5lVE5uCzF1Uo2M2ltJoaa6FQhxbmnLmwqLMdNGKUMbqtXo9W7nNYSNur5S3u8NEZTTFuR-C6P4w068GZq1NdqGfmz_AcHDm-CWsouXkmBBEZnI39wZpPhrsLmXa5e19V4FG4csZxgLJgidjcrXj5SrOKQwjlUiRgRngosJ6NV9oD3J338wCk53Ap1izsm2Urt-u_-Rz_l_9vj20Yv_z-MPRjrShg |
| CitedBy_id | crossref_primary_10_1515_eces_2017_0003 crossref_primary_10_1080_01431161_2020_1871098 crossref_primary_10_1142_S2737480723500188 crossref_primary_10_3103_S1068373921110029 crossref_primary_10_3390_atmos14091410 crossref_primary_10_1016_j_neucom_2015_02_022 crossref_primary_10_1109_ACCESS_2018_2890295 crossref_primary_10_3390_s20092606 crossref_primary_10_1007_s11760_017_1145_0 crossref_primary_10_1371_journal_pone_0119082 crossref_primary_10_3390_rs15102673 crossref_primary_10_1134_S0001433816090061 crossref_primary_10_1142_S0218001420590235 crossref_primary_10_1002_jgrd_50790 crossref_primary_10_3390_rs12182991 crossref_primary_10_1175_JCLI_D_17_0801_1 crossref_primary_10_3390_atmos5020211 crossref_primary_10_3390_rs15245630 crossref_primary_10_3390_s16122153 crossref_primary_10_3390_rs14010104 crossref_primary_10_3390_rs17030519 crossref_primary_10_5194_acp_16_2543_2016 crossref_primary_10_1016_j_solener_2012_11_015 crossref_primary_10_1007_s00024_019_02168_6 crossref_primary_10_26634_jfet_13_3_14229 crossref_primary_10_1029_2012JD018125 crossref_primary_10_1080_19475705_2011_578263 crossref_primary_10_1155_2014_478419 crossref_primary_10_1002_met_288 crossref_primary_10_1109_ACCESS_2019_2925565 crossref_primary_10_1080_2150704X_2012_698320 crossref_primary_10_3390_rs70201529 crossref_primary_10_1007_s00376_021_1223_7 crossref_primary_10_1016_j_adapen_2023_100150 crossref_primary_10_1080_19479832_2016_1141240 crossref_primary_10_3390_en9080607 crossref_primary_10_1002_joc_5696 crossref_primary_10_2166_hydro_2024_272 crossref_primary_10_3390_s91008126 crossref_primary_10_1134_S0001433819090482 crossref_primary_10_3390_rs14102314 crossref_primary_10_1049_iet_rsn_2018_5121 crossref_primary_10_1007_s40808_024_01958_9 crossref_primary_10_1080_01431161_2019_1594438 crossref_primary_10_1109_TGRS_2016_2554116 crossref_primary_10_3390_rs11242944 crossref_primary_10_1007_s13351_020_0051_5 crossref_primary_10_1016_j_rsase_2018_08_002 |
| Cites_doi | 10.1175/1520-0426(1999)016<0117:ABCMFS>2.0.CO;2 10.1175/1520-0450(1990)029<0994:SDWMSM>2.0.CO;2 10.1109/36.142926 10.1029/1998JD200032 10.1109/WKDD.2008.61 10.1029/JD095iD06p07661 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2 10.1029/98JD02584 10.3402/tellusa.v34i1.10784 10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2 10.1117/12.792688 10.1175/1520-0442(1988)001<0020:AROOCP>2.0.CO;2 10.1016/0273-1177(85)90314-X 10.1016/j.patcog.2007.09.015 10.1175/1520-0442(2004)017<3921:TEOAAC>2.0.CO;2 10.1109/36.58972 10.7551/mitpress/4937.001.0001 10.1175/1520-0450(2003)042<0204:HSRSAC>2.0.CO;2 10.1175/1520-0450(1989)028<0382:AOPCFS>2.0.CO;2 10.1109/72.950147 10.1175/1520-0450(1987)026<1412:APRTFD>2.0.CO;2 10.1029/2008JD010287 10.1175/1520-0450(1994)033<0909:CCOAII>2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2009 2009 by the authors; licensee MDPI, Basel, Switzerland 2009 |
| Copyright_xml | – notice: Copyright MDPI AG 2009 – notice: 2009 by the authors; licensee MDPI, Basel, Switzerland 2009 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s90705558 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| EndPage | 5579 |
| ExternalDocumentID | oai_doaj_org_article_40c4cf71166e4f6b82766ecdaad4b4ca 10.3390/s90705558 PMC3274136 3340601521 22346714 10_3390_s90705558 |
| Genre | Journal Article |
| GeographicLocations | Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ IAO ITC KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c468t-dbde3b474d504bdad31f1f6f60b10ed6452b65a3282b3556d8eb4ec3855fd2063 |
| IEDL.DBID | DOA |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:05:27 EDT 2025 Sun Oct 26 04:17:15 EDT 2025 Tue Sep 30 16:18:04 EDT 2025 Thu Oct 02 10:06:39 EDT 2025 Tue Oct 07 06:24:36 EDT 2025 Wed Feb 19 01:55:00 EST 2025 Thu Apr 24 23:13:06 EDT 2025 Thu Oct 16 04:34:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | multi-channel satellite image FY-2C ANN cloud classification |
| Language | English |
| License | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-dbde3b474d504bdad31f1f6f60b10ed6452b65a3282b3556d8eb4ec3855fd2063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/40c4cf71166e4f6b82766ecdaad4b4ca |
| PMID | 22346714 |
| PQID | 1537657678 |
| PQPubID | 2032333 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_40c4cf71166e4f6b82766ecdaad4b4ca unpaywall_primary_10_3390_s90705558 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3274136 proquest_miscellaneous_922757349 proquest_journals_1537657678 pubmed_primary_22346714 crossref_citationtrail_10_3390_s90705558 crossref_primary_10_3390_s90705558 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-07-01 |
| PublicationDateYYYYMMDD | 2009-07-01 |
| PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2009 |
| Publisher | MDPI AG Molecular Diversity Preservation International (MDPI) |
| Publisher_xml | – name: MDPI AG – name: Molecular Diversity Preservation International (MDPI) |
| References | Armstrong (ref_4) 2004; 17 Shi (ref_19) 2002; 13 Zekavatl (ref_31) 2000; 2 Gao (ref_20) 2001; 12 Wang (ref_22) 2001; 3 ref_32 Allen (ref_34) 1990; 29 Ruprecht (ref_11) 1985; 5 ref_16 Lee (ref_18) 1990; 28 Key (ref_12) 1989; 55 Uddstrom (ref_13) 1999; 16 Zhang (ref_25) 2007; 1 Baum (ref_6) 1997; 36 Ranganath (ref_24) 2008; 41 Berendes (ref_15) 1999; 104 Jiang (ref_23) 2003; 26 Rumelhart (ref_33) 1986; 7 Hunt (ref_2) 1982; 34 Ebert (ref_27) 1987; 26 Aha (ref_5) 1997; 11 ref_1 Key (ref_8) 1990; 95 Liou (ref_3) 1986; 114 ref_29 Bankert (ref_21) 1994; 33 ref_26 Bischof (ref_17) 1992; 30 Ackerman (ref_7) 1998; 103 Li (ref_14) 2003; 42 Bajwa (ref_30) 2005; 1 Garand (ref_28) 1988; 1 Berendes (ref_9) 2008; 113 Ebert (ref_10) 1989; 28 18249945 - IEEE Trans Neural Netw. 2001;12(5):1196-203 |
| References_xml | – volume: 16 start-page: 117 year: 1999 ident: ref_13 article-title: A Bayesian cloud mask for sea surface temperature retrieval publication-title: J. Atmos. Ocean. Technol doi: 10.1175/1520-0426(1999)016<0117:ABCMFS>2.0.CO;2 – volume: 29 start-page: 994 year: 1990 ident: ref_34 article-title: Snow/cloud discrimination with multispectral satellite measurements publication-title: J. Appl. Meteorol doi: 10.1175/1520-0450(1990)029<0994:SDWMSM>2.0.CO;2 – volume: 7 start-page: 149 year: 1986 ident: ref_33 article-title: Learning representation by BP Errors publication-title: Nature (London) – volume: 13 start-page: 250 year: 2002 ident: ref_19 article-title: NOAA-AVHRR cloud classification using neural networks publication-title: Acta Meteorol. Sin – volume: 30 start-page: 482 year: 1992 ident: ref_17 article-title: Multispectral classification of Landsat-images using neural networks publication-title: IEEE Trans .Geosci. Remote Sens doi: 10.1109/36.142926 – volume: 103 start-page: 141 year: 1998 ident: ref_7 article-title: Discriminating clear sky from clouds with MODIS publication-title: J. Geophys. Res doi: 10.1029/1998JD200032 – ident: ref_26 doi: 10.1109/WKDD.2008.61 – volume: 95 start-page: 7661 year: 1990 ident: ref_8 article-title: Cloud cover analysis with Arctic advanced very high resolution radiometer data. 2: Classification with spectral and textural measures publication-title: J. Geophys. Res doi: 10.1029/JD095iD06p07661 – volume: 114 start-page: 1167 year: 1986 ident: ref_3 article-title: Influence of cirrus clouds on weather and climate processes: a global perspective publication-title: Mon. Weather Rev doi: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2 – volume: 11 start-page: 13 year: 1997 ident: ref_5 article-title: Cloud classification using error-correcting output codes publication-title: Ai Applications – ident: ref_16 – volume: 104 start-page: 6199 year: 1999 ident: ref_15 article-title: A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using AVHRR imagery publication-title: J. Geophys. Res. Atmos doi: 10.1029/98JD02584 – volume: 34 start-page: 29 year: 1982 ident: ref_2 article-title: On the sensitivity of a general circulation model climatology to changes in cloud structure and radiative properties publication-title: Tellus doi: 10.3402/tellusa.v34i1.10784 – ident: ref_1 – volume: 36 start-page: 1519 year: 1997 ident: ref_6 article-title: Automated cloud classification of global AVHRR data using a fuzzy logic approach publication-title: J. Appl. Meteorol doi: 10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2 – ident: ref_32 doi: 10.1117/12.792688 – volume: 1 start-page: 20 year: 1988 ident: ref_28 article-title: Automated recognition of oceanic cloud patterns. Part I: Methodology and application to cloud climatology publication-title: J. Climate doi: 10.1175/1520-0442(1988)001<0020:AROOCP>2.0.CO;2 – volume: 5 start-page: 151 year: 1985 ident: ref_11 article-title: Statistical approaches to cloud classification publication-title: Adv. Space Res doi: 10.1016/0273-1177(85)90314-X – volume: 2 start-page: 669 year: 2000 ident: ref_31 article-title: Cloud classification using support vector machines publication-title: Geosci. Remote Sens. Sym – volume: 41 start-page: 1241 year: 2008 ident: ref_24 article-title: Cloud basis function neural network: a modified RBF network architecture for holistic facial expression recognition publication-title: Patt. Recogn doi: 10.1016/j.patcog.2007.09.015 – volume: 17 start-page: 3921 year: 2004 ident: ref_4 article-title: The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures publication-title: J. Climate doi: 10.1175/1520-0442(2004)017<3921:TEOAAC>2.0.CO;2 – volume: 1 start-page: 3 year: 2005 ident: ref_30 article-title: PCA based image classification of single-layered cloud types publication-title: J. Market Forces – volume: 28 start-page: 846 year: 1990 ident: ref_18 article-title: A neural network approach to cloud classification publication-title: IEEE Trans .Geosci. Remote Sens doi: 10.1109/36.58972 – ident: ref_29 doi: 10.7551/mitpress/4937.001.0001 – volume: 55 start-page: 1331 year: 1989 ident: ref_12 article-title: Classification of merged AVHRR/3 and SMMR Arctic data with neural networks publication-title: Photogram. Eng. Remote Sens – volume: 42 start-page: 204 year: 2003 ident: ref_14 article-title: Highspatial- resolution surface and cloud-type classification from MODIS multispectral band measurements publication-title: J. Appl. Meteorol doi: 10.1175/1520-0450(2003)042<0204:HSRSAC>2.0.CO;2 – volume: 28 start-page: 382 year: 1989 ident: ref_10 article-title: Analysis of polar clouds from satellite imagery using pattern recognition and a statistical cloud analysis scheme publication-title: J. Appl. Meteor doi: 10.1175/1520-0450(1989)028<0382:AOPCFS>2.0.CO;2 – volume: 12 start-page: 1196 year: 2001 ident: ref_20 article-title: Temporal updating scheme for probabilistic neural network with application to satellite cloud classification - further results publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.950147 – volume: 26 start-page: 89 year: 2003 ident: ref_23 article-title: A Neural network approach to the automated cloud classification of GMS imagery over South-east China maritime regions publication-title: J. Nanjing Inst. Meteorol – volume: 26 start-page: 1412 year: 1987 ident: ref_27 article-title: A pattern recognition technique for distinguishing surface and cloud types in Polar Regions publication-title: J. Climate Appl. Meter doi: 10.1175/1520-0450(1987)026<1412:APRTFD>2.0.CO;2 – volume: 113 start-page: D20207 year: 2008 ident: ref_9 article-title: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering publication-title: J. Geophys. Res doi: 10.1029/2008JD010287 – volume: 33 start-page: 909 year: 1994 ident: ref_21 article-title: Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network publication-title: J. Appl. Meteor doi: 10.1175/1520-0450(1994)033<0909:CCOAII>2.0.CO;2 – volume: 3 start-page: 1625 year: 2001 ident: ref_22 article-title: A multi-channel temporally adaptable system for continuous cloud classification from satellite imagery publication-title: IEEE Trans. Neural Networks – volume: 1 start-page: 392 year: 2007 ident: ref_25 article-title: China’s current and future metorolical satellite systems publication-title: Earth Science Remote Sensing – reference: 18249945 - IEEE Trans Neural Netw. 2001;12(5):1196-203 |
| SSID | ssj0023338 |
| Score | 2.1885133 |
| Snippet | The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5558 |
| SubjectTerms | Algorithms ANN Automation Classification cloud classification Clouds Clustering FY-2C Meteorological satellites multi-channel satellite image Neural networks Performance evaluation Radiation Sensors Statistical methods Support vector machines Temperature |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QDzbQEEWIMElahI7jnNAaLvqqkJihRCVyinys0UKybbZFeLfM3ayoSsKlySKrcTJeDzf2ONvAN5oz-KUlyzmAodAVnIXS06TWDglZY743mq_wfnTgp-esY_n-fkOLDZ7YXxY5WZMDAO1abWfIz9KPe8IguNCfFhexT5rlF9d3aTQkENqBfM-UIzdgd3MM2NNYPf4ZPH5y-iCUfTIen4his7-UYeuYWC82rJKgbz_NsT5d-Dk3XWzlL9-yrq-YZXmD-D-ACfJtJf_Q9ixzSPYu0Ey-Biupg3ppw6sIbO6XfsjQmYfIxTEQqb1BX7p6vIHQQRLQkbttx2Zf4uzGQkbdGO_B6GxNT4Hh5-OhDiD8NKef4J4io9wCjHlT-BsfvJ1dhoPiRZizbhYxUYZSxUrmMkTpow0NHWp444nKk2s8WufiueSonumEJ9wI6xiVlOR585kCHKewqRpG3sAxGTK5AJxXckStI9MOtRrkzFhnHJSuAjebX50pQcWcp8Mo67QG_EyqUaZRPBqrLrsqTduq3TspTVW8GzZ4UZ7fVENylexRDPtijTl3DLHlcgKvNJGSsMU0zKCw42sq0GFu-pPh4uAjMWofH5FRTa2XXdVmWVFXlBWRrDf94yxIQi70AalLIJiq89stXS7pPl-Gfi9qacUojyC12Pv-vcPePb_tj-He_36lw8wPoTJ6nptXyCMWqmXg278BpOzHpI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjpRAEK6s60E9GH9XdDUd9eAFBbpo4GDMOHGyMVlPTrKeSDfdvbsJwjrMRPfma_h6PonVDUOWON68AIGGJl1V1Fd09VcALyvH4pQWGIqcPoFYCBtKwaMwt0rKlPC9qdwC5-NP4miJH0_Skz3Y1tgcBrDbGdq5elLLVf36x7fLd2Twb13ESSH7m44CPM9bdQ2uk4MqXAWHYxwnExLOfUFrt6YrJH8Y9QRD01snbsmz9--CnH9nTt7YNBfy8rus6ytuaXEHbg94ks16BbgLe6a5B7eusAzeh27WsP7fgdFsXrcbtyXM7JKEvFzYrD5tV-frs6-MICzzJbV___zVscWXMJkzv0Y3dMsQGlPTk-gL1DGfauC77SkomGP58DufVv4AlosPn-dH4VBrIaxQ5OtQK224wgx1GqHSUvPYxlZYEak4MtpNfyqRSk4RmiKIInRuFJqK52lqdUI45yHsN21jHgHTidJpTtCuwIhcJEpLpq0TzLVVVuY2gFfboS6rgYjc1cOoSwpInFTKUSoBPB-bXvTsG7savXfyGhs4wmx_ol2dloP9lRhVWNksjoUwaIXKk4yOKi2lRoWVDOBwK-1yq4Rl7LhuKCDLqA82Xib7c5MqsjHtpiuLJMnSjGMRwEGvG-OLEPIiNxRjANlEayZvOr3SnJ95im_uWIW4CODFqF__HoDH_2MAnsDNfqLMZSIfwv56tTFPCW-t1TNvTX8A0FsqpQ priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZQ9wAcln8ILMgCDlyyTeKfJCdUKqoVEisOVNo9RXZs71aEpGqSRXDiNXg9noSx40ZbWCTEJY0ap3Ez45lv7JnPCL0sLYsTy2nIMzCBNOcmFJxEYWakEAzwvS5tgfP7Y360pO9O2ImfcGt9WiWE4itnpG0VVggeLJrmU4jbGcuma2VeX_iZJEs1R-KYWy7JPc4Ai0_Q3vL4w-zUlRT5ewc6IQKx_bSFSNARXO04IcfVfxXA_DNP8npfr8XXL6KqLjmhxS1UbLs_5J58Ouw7eVh--43Z8f__32207_Epng0KdQdd0_VddPMSa-E91M5qPMxFaIXnVdPbI2Bwm3Tk5Ixn1VmzWXXnnzFAYuy26P75_UeLF6dhMseu5je0ZQ21ruCXwKK12KUuuMcOlBbYsoa4D5emfh8tF28_zo9Cv3dDWFKedaGSShNJU6pYRKUSisQmNtzwSMaRVnY5VXImCER8EiAPV5mWVJckY8yoBHDTAzSpm1o_QlglUrEMoGJOI3C5VBgwFSqhmTLSiMwE6NVWmEXpic3t_hpVAQGOlXsxyj1Az8em64HN46pGb6xGjA0sAbf7otmcFX48FzQqaWlSkA7X1HCZJSmclUoIRSUtRYAOtvpUeKvQFrHlzoEAL4Vn4PEyjGe7SCNq3fRtkSdJylJC8wA9HLRv7AggOXBrMQ1QuqOXOz3dvVKvzh1lOLEsRYQH6MWowX9_AY__qdUTdGNYWbOpywdo0m16_RQAWief-VH4C01ZNxU priority: 102 providerName: Unpaywall |
| Title | An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22346714 https://www.proquest.com/docview/1537657678 https://www.proquest.com/docview/922757349 https://pubmed.ncbi.nlm.nih.gov/PMC3274136 https://www.mdpi.com/1424-8220/9/7/5558/pdf?version=1403311602 https://doaj.org/article/40c4cf71166e4f6b82766ecdaad4b4ca |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BOUAPiH8CZWUBBy5Rk9ixneN21aVC6qpCrLQ9RXZs00ohWzW7qrjxGrweT8LYyUa7oogLFyeKrcTyjD3fxONvAN5XnsUpL1jMJS6BrOAuVpwmsXRaqRzxva38AefTGT-Zs0-LfLGV6svHhHX0wN3AHbKkYpUTacq5ZY5rmQm8q4xShmlWBWiUyGLjTPWuFqUhh7U_xhWjCUw6TiGKDv5hi-5gYLnasUSBsP82lPlnsOT9dXOlvt-out6yRNNH8LCHkGTcdf0x3LHNE9jfIhZ8Cu24Id3vAmvIpF6ufYkw2ccFBVGQcf11eX25uvhGELWSkEX714-fLZmex9mEhGO5sT950Nga34SLTktCdEH4bMc6QTyxR7iESPJnMJ8ef5mcxH16hbhiXK5io42lmglm8oRpowxNXeq444lOE2v8jqfmuaLolGlEJdxIq5mtqMxzZzKENs9hr1k29iUQk2mTS0RzBUvQKjLlcDabjEnjtFPSRfBhM9Rl1XOP-xQYdYk-iJdKOUglgrdD06uOcOO2RkdeXkMDz5EdHqDmlL3mlP_SnAgONtIu-4nblqmnt0EfTOA3yFCNU87vo6jGLtdtWWSZyAVlRQQvOt0YOoJgCy1PyiIQO1qz09PdmubyIrB6U08kRHkE7wb9-vsAvPofA_AaHnR7Yz74-AD2Vtdr-wYh1kqP4K5YCCzl9OMI7h0dz84-j8IMw_KUSXw2n52Nz38Dvu0rPw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBSwegkvUJHac5IDQsrDa0seplZZTasd2ixSSbbOrqn-K38jYebQrCrdedleJlXg945lv7PE3AO8Ky-IUZ8znKZpAlnHjC04DPzVSiBjxvS7sAee9fT49ZN9n8WwNfvdnYWxaZW8TnaFWdWHXyLdCyzuC4DhJP89PfVs1yu6u9iU0WrXY0RfnGLI1n7a_onzfR9Hk28F46ndVBfyC8XThK6k0lSxhKg6YVELR0ISGGx7IMNDKbvRJHguKsYhEZ8xVqiXTBU3j2KgIPTo-9xbcZvgnbcWEZHYZ4FGM91r2IkqzYKvBwNPxaa34PFca4Do8-3da5saymouLc1GWV3ze5D7c68AqGbXa9QDWdPUQ7l6hMHwEp6OKtAsTWpFxWS_tJwJym4HkhE5G5TGO4-LkF0F8TFy97g8NmfzwozFxx399e8Kh0iU-B41bQ1wWg3tpy25BLIGI-3IZ64_h8EYG_AmsV3WlnwFRkVRxiqgxYwF6XyYMWg0VsVQZaURqPPjYD3RedBznttRGmWOsY2WSDzLx4M3QdN4Se1zX6IuV1tDAcnG7C_XZcd5N7ZwFBStMEoaca2a4TKMEfxVKCMUkK4QHm72s885ANPmlOntAhts4te1-jah0vWzyLIqSOKEs8-BpqxlDRxDUoYcLmQfJis6s9HT1TvXzxLGHU0tYRLkHbwft-vcAPP9_31_DxvRgbzff3d7feQF32p02m8q8CeuLs6V-iYBtIV-5WULg6Kan5R-W21VP |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWI5IPYGClgsgks0Sew4yQGhYcqopVBxoNJwCnZst5VCMm1mVPWv8et4dpZ2ROHWSxLFVmL57fbz9wBeFxbFKc6Yz1NUgSzjxhecBn5qpBAx-ve6sAecv-7x7X32eRbP1uB3fxbGplX2OtEpalUXdo18FFrcEXSOk3RkurSIb1vTD_Nj31aQsjutfTmNlkV29dkphm_N-50tpPWbKJp--j7Z9rsKA37BeLrwlVSaSpYwFQdMKqFoaELDDQ9kGGhlN_0kjwXFuESiYeYq1ZLpgqZxbFSE1h2_ew2uJ5RmNp0wmZ0HexRjvxbJCBuDUYNBqMPWWrF_rkzAZb7t3ymaN5fVXJydirK8YP-md-FO57iScctp92BNV_fh9gU4wwdwPK5Iu0ihFZmU9dJe0Tm32UiOAci4PMB5XBz-IugrE1e7-21Dpj_8aELcUWDfnnaodInfQUXXEJfR4H7aIl0QCybibi57_SHsX8mEP4L1qq70BhAVSRWn6EFmLEBLzIRBDaIiliojjUiNB-_6ic6LDu_clt0oc4x7LE3ygSYevBy6zluQj8s6fbTUGjpYXG73oj45yDsxz1lQsMIkYci5ZobLNErwqVBCKCZZITzY7Gmdd8qiyc9Z2wMyNKOY270bUel62eRZFCVxQlnmweOWM4aBoIOH1i5kHiQrPLMy0tWW6ujQIYlTC15EuQevBu769wQ8-f_YX8ANFMj8y87e7lO41W662azmTVhfnCz1M_TdFvK5ExICP69aKv8AhKdZkg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZQ9wAcln8ILMgCDlyyTeKfJCdUKqoVEisOVNo9RXZs71aEpGqSRXDiNXg9noSx40ZbWCTEJY0ap3Ez45lv7JnPCL0sLYsTy2nIMzCBNOcmFJxEYWakEAzwvS5tgfP7Y360pO9O2ImfcGt9WiWE4itnpG0VVggeLJrmU4jbGcuma2VeX_iZJEs1R-KYWy7JPc4Ai0_Q3vL4w-zUlRT5ewc6IQKx_bSFSNARXO04IcfVfxXA_DNP8npfr8XXL6KqLjmhxS1UbLs_5J58Ouw7eVh--43Z8f__32207_Epng0KdQdd0_VddPMSa-E91M5qPMxFaIXnVdPbI2Bwm3Tk5Ixn1VmzWXXnnzFAYuy26P75_UeLF6dhMseu5je0ZQ21ruCXwKK12KUuuMcOlBbYsoa4D5emfh8tF28_zo9Cv3dDWFKedaGSShNJU6pYRKUSisQmNtzwSMaRVnY5VXImCER8EiAPV5mWVJckY8yoBHDTAzSpm1o_QlglUrEMoGJOI3C5VBgwFSqhmTLSiMwE6NVWmEXpic3t_hpVAQGOlXsxyj1Az8em64HN46pGb6xGjA0sAbf7otmcFX48FzQqaWlSkA7X1HCZJSmclUoIRSUtRYAOtvpUeKvQFrHlzoEAL4Vn4PEyjGe7SCNq3fRtkSdJylJC8wA9HLRv7AggOXBrMQ1QuqOXOz3dvVKvzh1lOLEsRYQH6MWowX9_AY__qdUTdGNYWbOpywdo0m16_RQAWief-VH4C01ZNxU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Cloud+Classification+Algorithm+for+China%E2%80%99s+FY-2C+Multi-Channel+Images+Using+Artificial+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chun-Xiang+Shi&rft.au=Yang+Hong&rft.au=Yu+Liu&rft.au=Jun+Xia&rft.date=2009-07-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=9&rft.issue=7&rft.spage=5558&rft.epage=5579&rft_id=info:doi/10.3390%2Fs90705558&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_40c4cf71166e4f6b82766ecdaad4b4ca |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |