Intrusion detection system combined enhanced random forest with SMOTE algorithm

Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2022; no. 1; pp. 1 - 20
Main Authors Wu, Tao, Fan, Honghui, Zhu, Hongjin, You, Congzhe, Zhou, Hongyan, Huang, Xianzhen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 07.05.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-6180
1687-6172
1687-6180
DOI10.1186/s13634-022-00871-6

Cover

Abstract Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection.
AbstractList Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection.
Abstract Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection.
ArticleNumber 39
Audience Academic
Author You, Congzhe
Wu, Tao
Zhou, Hongyan
Zhu, Hongjin
Fan, Honghui
Huang, Xianzhen
Author_xml – sequence: 1
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  organization: School of Mechanical Engineering, Jiangsu University of Technology
– sequence: 2
  givenname: Honghui
  surname: Fan
  fullname: Fan, Honghui
  organization: School of Computer Engineering, Jiangsu University of Technology
– sequence: 3
  givenname: Hongjin
  surname: Zhu
  fullname: Zhu, Hongjin
  email: zhuhongjin@jsut.edu.cn
  organization: School of Computer Engineering, Jiangsu University of Technology
– sequence: 4
  givenname: Congzhe
  surname: You
  fullname: You, Congzhe
  organization: School of Computer Engineering, Jiangsu University of Technology
– sequence: 5
  givenname: Hongyan
  surname: Zhou
  fullname: Zhou, Hongyan
  organization: School of Mechanical Engineering, Jiangsu University of Technology
– sequence: 6
  givenname: Xianzhen
  surname: Huang
  fullname: Huang, Xianzhen
  organization: School of Mechanical Engineering, Jiangsu University of Technology
BookMark eNqNkUtrGzEUhUVJoUnaP9DVQNeT6j2aZQhpYkjwou5aaPSwZWYkV5IJ_veRPaYtWYSiha4u9zvcc3QFLkIMFoCvCN4gJPj3jAgntIUYtxCKDrX8A7hEXHQtRwJe_FN_Alc5byFkHEN8CZaLUNI--xgaY4vV5VjlQy52anScBh-saWzYqKBrkVQwcWpcTDaX5sWXTfPzebm6b9S4jqk-p8_go1Njtl_O9zX49eN-dffYPi0fFne3T62mXJRWI0EN6ginWDjoNBfCDYz0A-YGW6iQYpyigQ7MCo07h4nDA-W905AJSBC5BotZ10S1lbvkJ5UOMiovT42Y1lKl4vVoJWEDIpR17ihonO35YBjqKXPIQGP7qkVmrX3YqcOLGsc_ggjKY75yzlfWfOUpX8kr9W2mdin-3tc85DbuU6imJeYc0p7RHtepm3lqreoqPrhYktL1GDt5XT_R-dq_7SAlJ2cVEDOgU8w5WSe1L-r4LRX04_sb4Tfof9k4m891OKxt-mvjHeoVAJO8kQ
CitedBy_id crossref_primary_10_1038_s41598_024_80021_0
crossref_primary_10_1038_s41598_025_88243_6
crossref_primary_10_1093_comjnl_bxad105
crossref_primary_10_3390_s24010127
crossref_primary_10_1016_j_jnca_2024_103954
crossref_primary_10_3390_app122211662
crossref_primary_10_1007_s10115_024_02126_2
crossref_primary_10_3390_app14083283
crossref_primary_10_3390_app132413019
crossref_primary_10_1016_j_apenergy_2024_122725
crossref_primary_10_3390_app112311283
crossref_primary_10_1016_j_comcom_2023_10_018
crossref_primary_10_3390_s24196335
crossref_primary_10_3390_s24186035
crossref_primary_10_1016_j_procs_2022_12_076
crossref_primary_10_48084_etasr_8244
crossref_primary_10_59324_ejtas_2024_2_1__15
crossref_primary_10_1088_1742_6596_2670_1_012025
crossref_primary_10_53759_7669_jmc202202009
crossref_primary_10_32604_cmc_2023_046478
crossref_primary_10_3390_electronics13153014
crossref_primary_10_1007_s41870_024_02129_w
crossref_primary_10_1038_s41598_025_86118_4
crossref_primary_10_3390_fi16080264
crossref_primary_10_3390_s24247883
Cites_doi 10.1109/TSE.1987.232894
10.14569/IJACSA.2017.080651
10.1016/j.neucom.2017.03.011
10.18489/sacj.v52i0.200
10.1109/ACCESS.2018.2810267
10.1145/1007730.1007735
10.3906/elk-1504-234
10.1016/j.cose.2018.11.005
10.3390/electronics9040577
10.1186/s40537-018-0151-6
10.1109/TNSE.2020.3004312
10.1007/s11235-018-0475-8
10.3390/en12071223
10.3390/s18082491
10.1016/j.asej.2013.01.003
10.1016/j.comnet.2018.11.010
10.1016/j.eswa.2010.06.066
10.1109/ACCESS.2018.2810198
10.1016/j.jisa.2018.11.007
10.1007/11538059_9
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s13634-022-00871-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 20
ExternalDocumentID oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9
10.1186/s13634-022-00871-6
A704305803
10_1186_s13634_022_00871_6
GrantInformation_xml – fundername: National Science Fund of ChinaNational Science Fund of China, QingLan Project of Jiangsu Province
  grantid: Nos.61806088; 61902160
– fundername: Natural Science Research Project of Higher Education Institutions in Jiangsu Province
  grantid: No. 20KJA520007
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
2VQ
ADTOC
AFWIH
AHSBF
C1A
EJD
HGAVV
HZ~
IL9
IPNFZ
O9-
RIG
UNPAY
ID FETCH-LOGICAL-c468t-c184d1736428f0fc688fb539b26d2e0a1a5641b4b5e8c27f23f2b469fc0580313
IEDL.DBID UNPAY
ISSN 1687-6180
1687-6172
IngestDate Fri Oct 03 12:38:52 EDT 2025
Wed Oct 01 16:27:33 EDT 2025
Sat Oct 11 05:43:51 EDT 2025
Mon Oct 20 16:24:03 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Wed Oct 01 02:37:56 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SMOTE algorithm
NSL-KDD
Similarity
Network intrusion detection
Data imbalance
Enhanced random forest
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-c184d1736428f0fc688fb539b26d2e0a1a5641b4b5e8c27f23f2b469fc0580313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-022-00871-6
PQID 2660495492
PQPubID 237299
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9
unpaywall_primary_10_1186_s13634_022_00871_6
proquest_journals_2660495492
gale_infotracacademiconefile_A704305803
crossref_citationtrail_10_1186_s13634_022_00871_6
crossref_primary_10_1186_s13634_022_00871_6
springer_journals_10_1186_s13634_022_00871_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-07
PublicationDateYYYYMMDD 2022-05-07
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-07
  day: 07
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Denning (CR3) 1987; 2
Leevy, Khoshgoftaar, Bauder (CR9) 2018; 5
Yan, Han, Huang (CR12) 2018; 38
Selvakumar, Muneeswaran (CR17) 2019; 81
Golrang, Golrang, Yayilgan (CR19) 2020; 9
Batista, Prati, Monard (CR13) 2004; 6
Zhao (CR4) 2015; 21
Ma, Shi (CR11) 2020
Mohammadi, Mirvaziri, Ghazizadeh-Ahsaee (CR16) 2019; 44
Ofek, Rokach, Stern (CR10) 2017; 243
Salo, Nassif, Essex (CR22) 2019; 148
Ramotsoela, Abu-Mahfouz, Hancke (CR2) 2018; 18
CR14
Staudemeyer, Omlin (CR18) 2014; 52
Gao, Chai, Zhang (CR20) 2019; 12
Tao, Sun, Sun (CR6) 2018; 6
Peng, Leung, Huang (CR7) 2018; 6
Elbasiony, Sallam, Eltobely (CR8) 2013; 4
Horng, Su, Chen (CR5) 2011; 38
Fernandes, Rodrigues, Carvalho (CR1) 2019; 70
Bakirli, Birant (CR15) 2017; 25
Belouch, El Hadaj, Idhammad (CR21) 2017; 8
N Ofek (871_CR10) 2017; 243
G Bakirli (871_CR15) 2017; 25
B Selvakumar (871_CR17) 2019; 81
B Yan (871_CR12) 2018; 38
GE Batista (871_CR13) 2004; 6
F Zhao (871_CR4) 2015; 21
S Mohammadi (871_CR16) 2019; 44
RC Staudemeyer (871_CR18) 2014; 52
J Gao (871_CR20) 2019; 12
M Belouch (871_CR21) 2017; 8
JL Leevy (871_CR9) 2018; 5
X Ma (871_CR11) 2020
RM Elbasiony (871_CR8) 2013; 4
871_CR14
D Ramotsoela (871_CR2) 2018; 18
P Tao (871_CR6) 2018; 6
F Salo (871_CR22) 2019; 148
G Fernandes (871_CR1) 2019; 70
K Peng (871_CR7) 2018; 6
A Golrang (871_CR19) 2020; 9
DE Denning (871_CR3) 1987; 2
SJ Horng (871_CR5) 2011; 38
References_xml – volume: 2
  start-page: 222
  year: 1987
  end-page: 232
  ident: CR3
  article-title: An intrusion–detection model
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1987.232894
– volume: 8
  start-page: 389
  issue: 6
  year: 2017
  end-page: 394
  ident: CR21
  article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2017.080651
– volume: 243
  start-page: 88
  year: 2017
  end-page: 102
  ident: CR10
  article-title: Fast-CBUS: a fast clustering-based undersampling method for addressing the class imbalance problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.011
– volume: 52
  start-page: 82
  issue: 1
  year: 2014
  end-page: 96
  ident: CR18
  article-title: Extracting salient features for network intrusion detection using machine learning methods
  publication-title: S. Afr. Comput. J.
  doi: 10.18489/sacj.v52i0.200
– volume: 6
  start-page: 11897
  year: 2018
  end-page: 11906
  ident: CR7
  article-title: Clustering approach based on mini batch kmeans for intrusion detection system over big data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810267
– volume: 21
  start-page: 027
  year: 2015
  ident: CR4
  article-title: Detection method of LSSVM network intrusion based on hybrid kernel function
  publication-title: Mod. Electron. Tech.
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  end-page: 29
  ident: CR13
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– ident: CR14
– volume: 25
  start-page: 108
  issue: 1
  year: 2017
  end-page: 125
  ident: CR15
  article-title: DTreeSim: a new approach to compute decision tree similarity using re-mining
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1504-234
– volume: 81
  start-page: 148
  year: 2019
  end-page: 155
  ident: CR17
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.005
– volume: 9
  start-page: 577
  issue: 4
  year: 2020
  ident: CR19
  article-title: A novel hybrid IDS based on modified NSGAII-ANN and random forest
  publication-title: Electronics
  doi: 10.3390/electronics9040577
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  end-page: 30
  ident: CR9
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0151-6
– year: 2020
  ident: CR11
  article-title: AESMOTE: adversarial reinforcement learning with SMOTE for anomaly detection
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3004312
– volume: 70
  start-page: 447
  issue: 3
  year: 2019
  end-page: 489
  ident: CR1
  article-title: A comprehensive survey on network anomaly detection
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-018-0475-8
– volume: 12
  start-page: 1223
  issue: 7
  year: 2019
  ident: CR20
  article-title: Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis
  publication-title: Energies
  doi: 10.3390/en12071223
– volume: 18
  start-page: 2491
  issue: 8
  year: 2018
  ident: CR2
  article-title: A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study
  publication-title: Sensors
  doi: 10.3390/s18082491
– volume: 4
  start-page: 753
  issue: 4
  year: 2013
  end-page: 762
  ident: CR8
  article-title: A hybrid network intrusion detection framework based on random forests and weighted K-means
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.01.003
– volume: 38
  start-page: 20
  issue: 1
  year: 2018
  end-page: 25
  ident: CR12
  article-title: New traffic classification method for imbalanced network data
  publication-title: J. Comput. Appl.
– volume: 148
  start-page: 164
  year: 2019
  end-page: 175
  ident: CR22
  article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.11.010
– volume: 38
  start-page: 306
  issue: 1
  year: 2011
  end-page: 313
  ident: CR5
  article-title: A novel intrusion detection system based on hierarchical clustering and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.066
– volume: 6
  start-page: 13624
  year: 2018
  end-page: 13631
  ident: CR6
  article-title: An improved intrusion detection algorithm based on GA and SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810198
– volume: 44
  start-page: 80
  year: 2019
  end-page: 88
  ident: CR16
  article-title: Cyber intrusion detection by combined feature selection algorithm
  publication-title: J. Inf. Secur. Appl.
  doi: 10.1016/j.jisa.2018.11.007
– volume: 81
  start-page: 148
  year: 2019
  ident: 871_CR17
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.005
– volume: 38
  start-page: 20
  issue: 1
  year: 2018
  ident: 871_CR12
  publication-title: J. Comput. Appl.
– volume: 2
  start-page: 222
  year: 1987
  ident: 871_CR3
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1987.232894
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 871_CR9
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0151-6
– volume: 52
  start-page: 82
  issue: 1
  year: 2014
  ident: 871_CR18
  publication-title: S. Afr. Comput. J.
  doi: 10.18489/sacj.v52i0.200
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 871_CR13
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– volume: 148
  start-page: 164
  year: 2019
  ident: 871_CR22
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.11.010
– volume: 38
  start-page: 306
  issue: 1
  year: 2011
  ident: 871_CR5
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.066
– volume: 12
  start-page: 1223
  issue: 7
  year: 2019
  ident: 871_CR20
  publication-title: Energies
  doi: 10.3390/en12071223
– volume: 21
  start-page: 027
  year: 2015
  ident: 871_CR4
  publication-title: Mod. Electron. Tech.
– volume: 8
  start-page: 389
  issue: 6
  year: 2017
  ident: 871_CR21
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2017.080651
– volume: 6
  start-page: 11897
  year: 2018
  ident: 871_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810267
– volume: 25
  start-page: 108
  issue: 1
  year: 2017
  ident: 871_CR15
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1504-234
– ident: 871_CR14
  doi: 10.1007/11538059_9
– year: 2020
  ident: 871_CR11
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3004312
– volume: 44
  start-page: 80
  year: 2019
  ident: 871_CR16
  publication-title: J. Inf. Secur. Appl.
  doi: 10.1016/j.jisa.2018.11.007
– volume: 9
  start-page: 577
  issue: 4
  year: 2020
  ident: 871_CR19
  publication-title: Electronics
  doi: 10.3390/electronics9040577
– volume: 6
  start-page: 13624
  year: 2018
  ident: 871_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810198
– volume: 243
  start-page: 88
  year: 2017
  ident: 871_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.011
– volume: 70
  start-page: 447
  issue: 3
  year: 2019
  ident: 871_CR1
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-018-0475-8
– volume: 18
  start-page: 2491
  issue: 8
  year: 2018
  ident: 871_CR2
  publication-title: Sensors
  doi: 10.3390/s18082491
– volume: 4
  start-page: 753
  issue: 4
  year: 2013
  ident: 871_CR8
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.01.003
SSID ssj0056202
Score 2.5220764
Snippet Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During...
Abstract Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network...
SourceID doaj
unpaywall
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classification
Cluster analysis
Clustering
Data imbalance
Datasets
Detectors
Engineering
Enhanced random forest
Intrusion detection systems
Network intrusion detection
NSL-KDD
Oversampling
Quantum Information Technology
Security
Security software
Signal,Image and Speech Processing
Similarity
SMOTE algorithm
Spintronics
Training
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHVF4iUJAPSBxoVDt-xHssqFVBKj3QSr1ZfsJhm63aRaj_nhknuyxCKhw4JnGkmfHnzEw88xngTe6yz76ntg9hWpW4bW3h1LGcROSyCKWp3_nkszk-V58u9MXGUV9UEzbSA4-G25c6CKl0X5QIKpU8MyFh1KF0EYmnXFv3uJ2tkqnxG4xOnep2xhYZa_ZvhDRStVS5ThxsojW_uaHK1v_nN3ljc3Qb7n8frvztDz-fb_ifox14OAWO7GAU-BHcy8Nj2N6gE3wCpx8HaqFAS7OUl7XGamAjVTNDYGEOnBPLw7e66c_QSaXFJcOgFYVg9D-WfTk5PTtkfv51cY2Xl0_h_Ojw7MNxOx2Y0EZl7LKNmK4l0UvKKQov0Vhbgpaz0JnUZe6F14bMGHS2setLJ0sXMD8ukWtLJI7PYGtYDPk5MC09BlK9iTp71fk4S6HIPpgQeczB2AbEyn4uTmzidKjF3NWswho32tyhzV21uTMNvFu_czVyadw5-j1Ny3ok8WDXG4gON6HD_Q0dDbylSXW0WlG86KemA1SSeK_cQV85z1D5BnZX8-6mZXzjMHrBDIpI7BrYW2Hh1-O7hN9b4-UfdH3xP3R9CQ-6inDd8n4XthBx-RVGTMvwui6OnxkcDVs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gA9IJ5qoCAfkDjQqLEdO94DQi3aqiB1i6CVerP8bA_b7EIXIf49M06yXYS04po4imc8noc98w0hbyKPNtoGyz6YKutQ6VKnCiuWA_OVSKyWWO98OlUnF_XnS3m5RaZDLQymVQ46MSvqMPd4Rn4AhgScWcQT-7D4XmLXKLxdHVpo2L61QnifIcbukW2OyFgjsn00mX75OuhmMPZdFqLSuTiOD2U0Wh3cMqFEXWJ2O-K0sVL9Zaoyov-_envtAnWH3P_ZLuzvX3Y2W7NRx4_Iw965pIedNDwmW7F9QnbWIAefkrNPLZZZwGrQEJc5D6ulHZwzBUZAnBwDje11TgygYMjC_IaCYwuToHhmS7-dnp1PqJ1dAXOW1zfPyMXx5PzjSdk3VSh9rfSy9BDSBdYIjDtSlbzSOjkpxo6rwGNlmZWqZq52MmrPm8RF4g5i6OQrqRHo8TkZtfM27hIqhQVnq1FeRltz68fBJdE45Xzlo1O6IGzgn_E94jg2vpiZHHloZTqeG-C5yTw3qiDvVt8sOryNjaOPcFlWIxErOz-Y_7gy_dYzQjomatkkJCukOFYugN9ay8RCFeK4IG9xUQ3uaJiet31hAhCJ2FjmsMm4aEB8QfaGdTf9Vr81d4JZkP1BFu5eb5r8_kpe_oPWF5t__pI84Fl2ZVk1e2QEshRfgb-0dK_7TfAHs2QNJA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHKAHxFOkFOQDEgca4Xe8x1K1KkilB1qpN8vPcthmq-4ixL9nxkmWRYgKjkmcyPPyzMQznwl5k0X22XfY9sFNqxKzrS0MO5YTj0wWrjT2O598Nsfn6tOFvhibwpZTtfu0JVlX6mrW1rxfcmmkarH6HHHUeGvuknsQfwg8sOEAexyG9RccOtbs7Pz9vd9cUEXq_3M93tgY3Sb3v_XX_sd3P59v-J6jR-ThGDTS_UHKj8md3D8h2xtQgk_J6cce2yeAyzTlVa2v6ukA00yBPsh_c6K5_1o3_Ck4qLS4ohCwwiQo_oulX05Ozw6pn18ubuDy6hk5Pzo8Ozhux8MS2qiMXbURUrXEO4n5RGElGmtL0HIWhEkiM8-9NooHFXS2UXRFyCIC5MYlMm0RwPE52eoXfX5BqJYegqjORJ29Ej7OUiiyCyZEFnMwtiF84p-LI5I4HmgxdzWjsMYNPHfAc1d57kxD3q3fuR5wNG4d_QHFsh6JGNj1xuLm0o0m5aQOXCrdFSQrlTwzIYE-KF14YinPGvIWherQUmF60Y8NB0AkYl65_a7inQHxDdmd5O5GE146iFwge0IAu4bsTbrw6_Ftk99b68s_0Lrzf19_SR6Iqsu6Zd0u2QLdyq8gLlqF19UMfgL-qAFp
  priority: 102
  providerName: Springer Nature
Title Intrusion detection system combined enhanced random forest with SMOTE algorithm
URI https://link.springer.com/article/10.1186/s13634-022-00871-6
https://www.proquest.com/docview/2660495492
https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-022-00871-6
https://doaj.org/article/35b13457f41b4dfe96bd51945f1d0de9
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 8FG
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C6C
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxFLba5AA9sCMCpZoDEgc6qT1je5xjGhIKImmhjVROlteCmk6iLELw63meJQ2LKpC4vNk8y3vz2X5vxu8zQi9c4pRTWUj7IDymFotYeBwyli0xOPWEspDvPBzxozF9d87Ot9CHOhdGLWaxW83V4susMuaiXf-hDPNJFY33cq7M5cHM-rLOC36wIClPaRyGpgeSNRLzbdTkDNzzBmqORyfdTyHw4qJIiUuu1wWuE2n-eJGfOquC0__3lnvjF-oOurXKZ-rbVzWZbPRSg7toXutXDk65bK-Wum2-_0L9-F8NcA_dqXzaqFuC8D7acvkDtLPBdPgQHb_NQ3YHgCCyblkM_8qjkkU6gltBeO5s5PLPxXiECPpPO72KwJ8GzaPwqTg6HR6f9SM1uZjOYfPqERoP-me9o7iayyE2lItlbCCStCRLQ7jjsTdcCK9Z2tEJt4nDiijGKdFUMydMkvkk9YmG0N0bzETgl3yMGvk0d09QxFIFPl7GDXOKJsp0rPZpprk22DjNRQuR-qVJUxGdh_k2JrIIeASXpbEkGEsWxpK8hV6tz5mVNB83lj4MWFiXDBTdxY7p_EJWNV6mTJOUsswHtax3Ha4tuMuUeWKxdZ0WehmQJENDEt6nqvIhQMlAySW7WUHHBsq30G4NNlljQoJjBcFd4Ndrof0aINeHb3r4_TVI_0LXp_9W_Bm6nRQgZDHOdlEDsOWeg9u21Htom-I3IMUAZLP7evj-FJaH_dHJR9jbS2iQvLdXfBYBOU5AlpX3BwSWP6M
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyg9IJ4iUMAHEAe66vq5m0OFWkiV0CZFkEq9uX62h3QTSFDVP8dvY-zspkFIEZde92nPjD0zu_N9g9BbT732uoiwDyIz7vIyK0MeEcuO2JwFwkXEO_cHsnvKv5yJszX0u8HCxLLKZk9MG7Ub2_iNfBccCQSzkU_s4-RHFrtGxb-rTQsNXbdWcHuJYqwGdhz5m2tI4aZ7vc-g73eUHnaGn7pZ3WUgs1yWs8xCjuNIwWIgHvJgZVkGI1jbUOmozzXRQnJiuBG-tLQIlAVqIKkMNhdlZD6E595DG5zxNiR_GwedwddvjS-A4GJe9SjLBMajDWynlLtTwiTjWaymj7xwJJN_ucbUQeBfP7H0w3YLbf6qJvrmWo9GSz7x8CF6UAezeH9ufY_Qmq8eo60lisMn6KRXRVgHaB87P0t1XxWe00djEDzk5d5hX12mQgQMjtONrzAE0jAIHL8R4-_9k2EH69EFKGN2efUUnd6JeJ-h9Wpc-ecIC6YhuCukFV5zqm3bmcAKI43NrTeybCHSyE_ZmuE8NtoYqZTplFLNZa5A5irJXMkW-rC4ZzLn91h59UFUy-LKyM2dDox_Xqh6qSsmDGFcFCFOywXflsZBnMxFIC53vt1C76NSVdxBYHhW10AImGTk4lL7ReJhg8m30Hajd1VvLVN1uxBaaKexhdvTqwa_s7CX_5jri9Uvf4M2u8P-sTruDY5eovs02bHI8mIbrYNd-VcQq83M63pBYHR-12vwDy-ISMY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPIA7UinftXW8OCBXa0FDaItFKvS37bA-pE0hQ1b_Gr2NmbadBSBWXXhM72Z3Hzow93zeEvAo8mGAqhH0wmZU-V5mKOSKWPXN5EVkpEO-8ty93jsrPx-J4hfzusDDYVtmdiemg9hOHz8j7EEggmUU-sX5s2yK-bg3fT39kOEEK37R24zQaE9kNF-dQvs3ejbZA1685H24fftzJ2gkDmSulmmcO6hvPqgKT8JhHJ5WKVhQDy6XnITfMCFkyW1oRlONV5EXkFgrK6HKhkPUQfvcGuVkhizui1IefuigAaUXT7yhVguHxDrCjZH_GClmUGfbRIyMcy-RfQTHNDvg3Qiy9ql0jt3_VU3NxbsbjpWg4vEfutmks3Wzs7j5ZCfUDsrZEbviQHIxqBHSA3qkP89TxVdOGOJqCyKEiD56G-jS1IFAImX5yRiGFhkVQfDpMv-0dHG5TMz4B0c9Pzx6Ro2sR7mOyWk_q8IRQURhI6yrpRDAlN27gbSwqK63LXbBS9Qjr5Kddy22OIzbGOtU4SupG5hpkrpPMteyRt4t7pg2zx5VXf0C1LK5EVu70weTniW6dXBfCsqIUVcRt-RgG0nrIkEsRmc99GPTIG1SqxrMDludMC4GATSILl96sEgMbbL5H1ju96_ZQmelLF-iRjc4WLr--avEbC3v5j70-vfrPX5Jb4Hn6y2h_9xm5w5MZiyyv1skqmFV4Dkna3L5I3kDJ9-t2vz8Qq0Zg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFH4q0wP0UHaRUpAPSBxopnFiO57jgFoVpLYgOlI5WV4L6jQTZWaE4NdjO8l0WFSBxC2Ls7yXz_Z7sb_PAC9sbqWVZaB9YJYSk_GUuywwlg3WWeEwoYHvfHzCjibk3Tk934APPRdGzuvULhs5_1J3zpwP-xHKsJ5UbLwXjdSX-7VxbZ3nbH-OC1aQNExNDyJrOGW3YJNRH54PYHNy8n78KSRejEdKXH69zbOeSPPHm_zUWUVN_99b7rUh1C24vaxq-e2rnE7XeqnDu9D09rWTUy6Hy4Ua6u-_SD_-Vwfcg-0upkXjFoT3YcNWD2BrTenwIZy-rQK7w4MAGbuI078q1KpII_8on55bg2z1Oc5HQL7_NLMr5ONpbzkKv4rRx-PTswMkpxezxu9ePYLJ4cHZm6O0W8sh1YTxRap9JmlwWYR0x2VOM86dosVI5czkNpNYUkawIoparvPS5YXLlU_dnc4oD_qSj2FQzSr7BBAtpI_xSqaplSSXemSUK0rFlM60VYwngPuPJnQndB7W25iKmPBwJlpnCe8sEZ0lWAKvVtfUrczHjaVfByysSgaJ7nhg1lyIrsaLgipcEFq6YJZxdsSU8eEyoQ6bzNhRAi8DkkRoSML3lB0fwhsZJLnEuIxybN74BHZ7sIkeE8IHVj65C_p6Cez1ALk-fdPL761A-he27vxb8adwJ48gpGlW7sLAY8s-82HbQj3vKuIPCCk3Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+system+combined+enhanced+random+forest+with+SMOTE+algorithm&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Tao+Wu&rft.au=Honghui+Fan&rft.au=Hongjin+Zhu&rft.au=Congzhe+You&rft.date=2022-05-07&rft.pub=SpringerOpen&rft.eissn=1687-6180&rft.volume=2022&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs13634-022-00871-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon