Intrusion detection system combined enhanced random forest with SMOTE algorithm
Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage...
Saved in:
| Published in | EURASIP journal on advances in signal processing Vol. 2022; no. 1; pp. 1 - 20 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
07.05.2022
Springer Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-6180 1687-6172 1687-6180 |
| DOI | 10.1186/s13634-022-00871-6 |
Cover
| Abstract | Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection. |
|---|---|
| AbstractList | Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection. Abstract Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During the training of intrusion detection models, the detection results generally have relatively large false detection rates due to the shortage of training data caused by data imbalance. To address the existing sample imbalance problem, this paper proposes a network intrusion detection algorithm based on the enhanced random forest and synthetic minority oversampling technique (SMOTE) algorithm. First, the method used a hybrid algorithm combining the K-means clustering algorithm with the SMOTE sampling algorithm to increase the number of minor samples and thus achieved a balanced dataset, by which the sample features of minor samples could be learned more effectively. Second, preliminary prediction results were obtained by using enhanced random forest, and then the similarity matrix of network attacks was used to correct the prediction results of voting processing by analyzing the type of network attacks. In this paper, the performance was tested using the NSL-KDD dataset with a classification accuracy of 99.72% on the training set and 78.47% on the test set. Compared with other related papers, our method has some improvement in the classification accuracy of detection. |
| ArticleNumber | 39 |
| Audience | Academic |
| Author | You, Congzhe Wu, Tao Zhou, Hongyan Zhu, Hongjin Fan, Honghui Huang, Xianzhen |
| Author_xml | – sequence: 1 givenname: Tao surname: Wu fullname: Wu, Tao organization: School of Mechanical Engineering, Jiangsu University of Technology – sequence: 2 givenname: Honghui surname: Fan fullname: Fan, Honghui organization: School of Computer Engineering, Jiangsu University of Technology – sequence: 3 givenname: Hongjin surname: Zhu fullname: Zhu, Hongjin email: zhuhongjin@jsut.edu.cn organization: School of Computer Engineering, Jiangsu University of Technology – sequence: 4 givenname: Congzhe surname: You fullname: You, Congzhe organization: School of Computer Engineering, Jiangsu University of Technology – sequence: 5 givenname: Hongyan surname: Zhou fullname: Zhou, Hongyan organization: School of Mechanical Engineering, Jiangsu University of Technology – sequence: 6 givenname: Xianzhen surname: Huang fullname: Huang, Xianzhen organization: School of Mechanical Engineering, Jiangsu University of Technology |
| BookMark | eNqNkUtrGzEUhUVJoUnaP9DVQNeT6j2aZQhpYkjwou5aaPSwZWYkV5IJ_veRPaYtWYSiha4u9zvcc3QFLkIMFoCvCN4gJPj3jAgntIUYtxCKDrX8A7hEXHQtRwJe_FN_Alc5byFkHEN8CZaLUNI--xgaY4vV5VjlQy52anScBh-saWzYqKBrkVQwcWpcTDaX5sWXTfPzebm6b9S4jqk-p8_go1Njtl_O9zX49eN-dffYPi0fFne3T62mXJRWI0EN6ginWDjoNBfCDYz0A-YGW6iQYpyigQ7MCo07h4nDA-W905AJSBC5BotZ10S1lbvkJ5UOMiovT42Y1lKl4vVoJWEDIpR17ihonO35YBjqKXPIQGP7qkVmrX3YqcOLGsc_ggjKY75yzlfWfOUpX8kr9W2mdin-3tc85DbuU6imJeYc0p7RHtepm3lqreoqPrhYktL1GDt5XT_R-dq_7SAlJ2cVEDOgU8w5WSe1L-r4LRX04_sb4Tfof9k4m891OKxt-mvjHeoVAJO8kQ |
| CitedBy_id | crossref_primary_10_1038_s41598_024_80021_0 crossref_primary_10_1038_s41598_025_88243_6 crossref_primary_10_1093_comjnl_bxad105 crossref_primary_10_3390_s24010127 crossref_primary_10_1016_j_jnca_2024_103954 crossref_primary_10_3390_app122211662 crossref_primary_10_1007_s10115_024_02126_2 crossref_primary_10_3390_app14083283 crossref_primary_10_3390_app132413019 crossref_primary_10_1016_j_apenergy_2024_122725 crossref_primary_10_3390_app112311283 crossref_primary_10_1016_j_comcom_2023_10_018 crossref_primary_10_3390_s24196335 crossref_primary_10_3390_s24186035 crossref_primary_10_1016_j_procs_2022_12_076 crossref_primary_10_48084_etasr_8244 crossref_primary_10_59324_ejtas_2024_2_1__15 crossref_primary_10_1088_1742_6596_2670_1_012025 crossref_primary_10_53759_7669_jmc202202009 crossref_primary_10_32604_cmc_2023_046478 crossref_primary_10_3390_electronics13153014 crossref_primary_10_1007_s41870_024_02129_w crossref_primary_10_1038_s41598_025_86118_4 crossref_primary_10_3390_fi16080264 crossref_primary_10_3390_s24247883 |
| Cites_doi | 10.1109/TSE.1987.232894 10.14569/IJACSA.2017.080651 10.1016/j.neucom.2017.03.011 10.18489/sacj.v52i0.200 10.1109/ACCESS.2018.2810267 10.1145/1007730.1007735 10.3906/elk-1504-234 10.1016/j.cose.2018.11.005 10.3390/electronics9040577 10.1186/s40537-018-0151-6 10.1109/TNSE.2020.3004312 10.1007/s11235-018-0475-8 10.3390/en12071223 10.3390/s18082491 10.1016/j.asej.2013.01.003 10.1016/j.comnet.2018.11.010 10.1016/j.eswa.2010.06.066 10.1109/ACCESS.2018.2810198 10.1016/j.jisa.2018.11.007 10.1007/11538059_9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.1186/s13634-022-00871-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-6180 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9 10.1186/s13634-022-00871-6 A704305803 10_1186_s13634_022_00871_6 |
| GrantInformation_xml | – fundername: National Science Fund of ChinaNational Science Fund of China, QingLan Project of Jiangsu Province grantid: Nos.61806088; 61902160 – fundername: Natural Science Research Project of Higher Education Institutions in Jiangsu Province grantid: No. 20KJA520007 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT PUEGO 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U 2VQ ADTOC AFWIH AHSBF C1A EJD HGAVV HZ~ IL9 IPNFZ O9- RIG UNPAY |
| ID | FETCH-LOGICAL-c468t-c184d1736428f0fc688fb539b26d2e0a1a5641b4b5e8c27f23f2b469fc0580313 |
| IEDL.DBID | UNPAY |
| ISSN | 1687-6180 1687-6172 |
| IngestDate | Fri Oct 03 12:38:52 EDT 2025 Wed Oct 01 16:27:33 EDT 2025 Sat Oct 11 05:43:51 EDT 2025 Mon Oct 20 16:24:03 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Wed Oct 01 02:37:56 EDT 2025 Fri Feb 21 02:47:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | SMOTE algorithm NSL-KDD Similarity Network intrusion detection Data imbalance Enhanced random forest |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c468t-c184d1736428f0fc688fb539b26d2e0a1a5641b4b5e8c27f23f2b469fc0580313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-022-00871-6 |
| PQID | 2660495492 |
| PQPubID | 237299 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9 unpaywall_primary_10_1186_s13634_022_00871_6 proquest_journals_2660495492 gale_infotracacademiconefile_A704305803 crossref_citationtrail_10_1186_s13634_022_00871_6 crossref_primary_10_1186_s13634_022_00871_6 springer_journals_10_1186_s13634_022_00871_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-07 |
| PublicationDateYYYYMMDD | 2022-05-07 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on advances in signal processing |
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Denning (CR3) 1987; 2 Leevy, Khoshgoftaar, Bauder (CR9) 2018; 5 Yan, Han, Huang (CR12) 2018; 38 Selvakumar, Muneeswaran (CR17) 2019; 81 Golrang, Golrang, Yayilgan (CR19) 2020; 9 Batista, Prati, Monard (CR13) 2004; 6 Zhao (CR4) 2015; 21 Ma, Shi (CR11) 2020 Mohammadi, Mirvaziri, Ghazizadeh-Ahsaee (CR16) 2019; 44 Ofek, Rokach, Stern (CR10) 2017; 243 Salo, Nassif, Essex (CR22) 2019; 148 Ramotsoela, Abu-Mahfouz, Hancke (CR2) 2018; 18 CR14 Staudemeyer, Omlin (CR18) 2014; 52 Gao, Chai, Zhang (CR20) 2019; 12 Tao, Sun, Sun (CR6) 2018; 6 Peng, Leung, Huang (CR7) 2018; 6 Elbasiony, Sallam, Eltobely (CR8) 2013; 4 Horng, Su, Chen (CR5) 2011; 38 Fernandes, Rodrigues, Carvalho (CR1) 2019; 70 Bakirli, Birant (CR15) 2017; 25 Belouch, El Hadaj, Idhammad (CR21) 2017; 8 N Ofek (871_CR10) 2017; 243 G Bakirli (871_CR15) 2017; 25 B Selvakumar (871_CR17) 2019; 81 B Yan (871_CR12) 2018; 38 GE Batista (871_CR13) 2004; 6 F Zhao (871_CR4) 2015; 21 S Mohammadi (871_CR16) 2019; 44 RC Staudemeyer (871_CR18) 2014; 52 J Gao (871_CR20) 2019; 12 M Belouch (871_CR21) 2017; 8 JL Leevy (871_CR9) 2018; 5 X Ma (871_CR11) 2020 RM Elbasiony (871_CR8) 2013; 4 871_CR14 D Ramotsoela (871_CR2) 2018; 18 P Tao (871_CR6) 2018; 6 F Salo (871_CR22) 2019; 148 G Fernandes (871_CR1) 2019; 70 K Peng (871_CR7) 2018; 6 A Golrang (871_CR19) 2020; 9 DE Denning (871_CR3) 1987; 2 SJ Horng (871_CR5) 2011; 38 |
| References_xml | – volume: 2 start-page: 222 year: 1987 end-page: 232 ident: CR3 article-title: An intrusion–detection model publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1987.232894 – volume: 8 start-page: 389 issue: 6 year: 2017 end-page: 394 ident: CR21 article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/IJACSA.2017.080651 – volume: 243 start-page: 88 year: 2017 end-page: 102 ident: CR10 article-title: Fast-CBUS: a fast clustering-based undersampling method for addressing the class imbalance problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.011 – volume: 52 start-page: 82 issue: 1 year: 2014 end-page: 96 ident: CR18 article-title: Extracting salient features for network intrusion detection using machine learning methods publication-title: S. Afr. Comput. J. doi: 10.18489/sacj.v52i0.200 – volume: 6 start-page: 11897 year: 2018 end-page: 11906 ident: CR7 article-title: Clustering approach based on mini batch kmeans for intrusion detection system over big data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810267 – volume: 21 start-page: 027 year: 2015 ident: CR4 article-title: Detection method of LSSVM network intrusion based on hybrid kernel function publication-title: Mod. Electron. Tech. – volume: 6 start-page: 20 issue: 1 year: 2004 end-page: 29 ident: CR13 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007735 – ident: CR14 – volume: 25 start-page: 108 issue: 1 year: 2017 end-page: 125 ident: CR15 article-title: DTreeSim: a new approach to compute decision tree similarity using re-mining publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1504-234 – volume: 81 start-page: 148 year: 2019 end-page: 155 ident: CR17 article-title: Firefly algorithm based feature selection for network intrusion detection publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.11.005 – volume: 9 start-page: 577 issue: 4 year: 2020 ident: CR19 article-title: A novel hybrid IDS based on modified NSGAII-ANN and random forest publication-title: Electronics doi: 10.3390/electronics9040577 – volume: 5 start-page: 1 issue: 1 year: 2018 end-page: 30 ident: CR9 article-title: A survey on addressing high-class imbalance in big data publication-title: J. Big Data doi: 10.1186/s40537-018-0151-6 – year: 2020 ident: CR11 article-title: AESMOTE: adversarial reinforcement learning with SMOTE for anomaly detection publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.3004312 – volume: 70 start-page: 447 issue: 3 year: 2019 end-page: 489 ident: CR1 article-title: A comprehensive survey on network anomaly detection publication-title: Telecommun. Syst. doi: 10.1007/s11235-018-0475-8 – volume: 12 start-page: 1223 issue: 7 year: 2019 ident: CR20 article-title: Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis publication-title: Energies doi: 10.3390/en12071223 – volume: 18 start-page: 2491 issue: 8 year: 2018 ident: CR2 article-title: A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study publication-title: Sensors doi: 10.3390/s18082491 – volume: 4 start-page: 753 issue: 4 year: 2013 end-page: 762 ident: CR8 article-title: A hybrid network intrusion detection framework based on random forests and weighted K-means publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.01.003 – volume: 38 start-page: 20 issue: 1 year: 2018 end-page: 25 ident: CR12 article-title: New traffic classification method for imbalanced network data publication-title: J. Comput. Appl. – volume: 148 start-page: 164 year: 2019 end-page: 175 ident: CR22 article-title: Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.11.010 – volume: 38 start-page: 306 issue: 1 year: 2011 end-page: 313 ident: CR5 article-title: A novel intrusion detection system based on hierarchical clustering and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.066 – volume: 6 start-page: 13624 year: 2018 end-page: 13631 ident: CR6 article-title: An improved intrusion detection algorithm based on GA and SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810198 – volume: 44 start-page: 80 year: 2019 end-page: 88 ident: CR16 article-title: Cyber intrusion detection by combined feature selection algorithm publication-title: J. Inf. Secur. Appl. doi: 10.1016/j.jisa.2018.11.007 – volume: 81 start-page: 148 year: 2019 ident: 871_CR17 publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.11.005 – volume: 38 start-page: 20 issue: 1 year: 2018 ident: 871_CR12 publication-title: J. Comput. Appl. – volume: 2 start-page: 222 year: 1987 ident: 871_CR3 publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1987.232894 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 871_CR9 publication-title: J. Big Data doi: 10.1186/s40537-018-0151-6 – volume: 52 start-page: 82 issue: 1 year: 2014 ident: 871_CR18 publication-title: S. Afr. Comput. J. doi: 10.18489/sacj.v52i0.200 – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 871_CR13 publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1007730.1007735 – volume: 148 start-page: 164 year: 2019 ident: 871_CR22 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.11.010 – volume: 38 start-page: 306 issue: 1 year: 2011 ident: 871_CR5 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.066 – volume: 12 start-page: 1223 issue: 7 year: 2019 ident: 871_CR20 publication-title: Energies doi: 10.3390/en12071223 – volume: 21 start-page: 027 year: 2015 ident: 871_CR4 publication-title: Mod. Electron. Tech. – volume: 8 start-page: 389 issue: 6 year: 2017 ident: 871_CR21 publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/IJACSA.2017.080651 – volume: 6 start-page: 11897 year: 2018 ident: 871_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810267 – volume: 25 start-page: 108 issue: 1 year: 2017 ident: 871_CR15 publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1504-234 – ident: 871_CR14 doi: 10.1007/11538059_9 – year: 2020 ident: 871_CR11 publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.3004312 – volume: 44 start-page: 80 year: 2019 ident: 871_CR16 publication-title: J. Inf. Secur. Appl. doi: 10.1016/j.jisa.2018.11.007 – volume: 9 start-page: 577 issue: 4 year: 2020 ident: 871_CR19 publication-title: Electronics doi: 10.3390/electronics9040577 – volume: 6 start-page: 13624 year: 2018 ident: 871_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810198 – volume: 243 start-page: 88 year: 2017 ident: 871_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.011 – volume: 70 start-page: 447 issue: 3 year: 2019 ident: 871_CR1 publication-title: Telecommun. Syst. doi: 10.1007/s11235-018-0475-8 – volume: 18 start-page: 2491 issue: 8 year: 2018 ident: 871_CR2 publication-title: Sensors doi: 10.3390/s18082491 – volume: 4 start-page: 753 issue: 4 year: 2013 ident: 871_CR8 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.01.003 |
| SSID | ssj0056202 |
| Score | 2.5220764 |
| Snippet | Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network security. During... Abstract Network security is subject to malicious attacks from multiple sources, and intrusion detection systems play a key role in maintaining network... |
| SourceID | doaj unpaywall proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Classification Cluster analysis Clustering Data imbalance Datasets Detectors Engineering Enhanced random forest Intrusion detection systems Network intrusion detection NSL-KDD Oversampling Quantum Information Technology Security Security software Signal,Image and Speech Processing Similarity SMOTE algorithm Spintronics Training Vector quantization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHVF4iUJAPSBxoVDt-xHssqFVBKj3QSr1ZfsJhm63aRaj_nhknuyxCKhw4JnGkmfHnzEw88xngTe6yz76ntg9hWpW4bW3h1LGcROSyCKWp3_nkszk-V58u9MXGUV9UEzbSA4-G25c6CKl0X5QIKpU8MyFh1KF0EYmnXFv3uJ2tkqnxG4xOnep2xhYZa_ZvhDRStVS5ThxsojW_uaHK1v_nN3ljc3Qb7n8frvztDz-fb_ifox14OAWO7GAU-BHcy8Nj2N6gE3wCpx8HaqFAS7OUl7XGamAjVTNDYGEOnBPLw7e66c_QSaXFJcOgFYVg9D-WfTk5PTtkfv51cY2Xl0_h_Ojw7MNxOx2Y0EZl7LKNmK4l0UvKKQov0Vhbgpaz0JnUZe6F14bMGHS2setLJ0sXMD8ukWtLJI7PYGtYDPk5MC09BlK9iTp71fk4S6HIPpgQeczB2AbEyn4uTmzidKjF3NWswho32tyhzV21uTMNvFu_czVyadw5-j1Ny3ok8WDXG4gON6HD_Q0dDbylSXW0WlG86KemA1SSeK_cQV85z1D5BnZX8-6mZXzjMHrBDIpI7BrYW2Hh1-O7hN9b4-UfdH3xP3R9CQ-6inDd8n4XthBx-RVGTMvwui6OnxkcDVs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gA9IJ5qoCAfkDjQqLEdO94DQi3aqiB1i6CVerP8bA_b7EIXIf49M06yXYS04po4imc8noc98w0hbyKPNtoGyz6YKutQ6VKnCiuWA_OVSKyWWO98OlUnF_XnS3m5RaZDLQymVQ46MSvqMPd4Rn4AhgScWcQT-7D4XmLXKLxdHVpo2L61QnifIcbukW2OyFgjsn00mX75OuhmMPZdFqLSuTiOD2U0Wh3cMqFEXWJ2O-K0sVL9Zaoyov-_envtAnWH3P_ZLuzvX3Y2W7NRx4_Iw965pIedNDwmW7F9QnbWIAefkrNPLZZZwGrQEJc5D6ulHZwzBUZAnBwDje11TgygYMjC_IaCYwuToHhmS7-dnp1PqJ1dAXOW1zfPyMXx5PzjSdk3VSh9rfSy9BDSBdYIjDtSlbzSOjkpxo6rwGNlmZWqZq52MmrPm8RF4g5i6OQrqRHo8TkZtfM27hIqhQVnq1FeRltz68fBJdE45Xzlo1O6IGzgn_E94jg2vpiZHHloZTqeG-C5yTw3qiDvVt8sOryNjaOPcFlWIxErOz-Y_7gy_dYzQjomatkkJCukOFYugN9ay8RCFeK4IG9xUQ3uaJiet31hAhCJ2FjmsMm4aEB8QfaGdTf9Vr81d4JZkP1BFu5eb5r8_kpe_oPWF5t__pI84Fl2ZVk1e2QEshRfgb-0dK_7TfAHs2QNJA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHKAHxFOkFOQDEgca4Xe8x1K1KkilB1qpN8vPcthmq-4ixL9nxkmWRYgKjkmcyPPyzMQznwl5k0X22XfY9sFNqxKzrS0MO5YTj0wWrjT2O598Nsfn6tOFvhibwpZTtfu0JVlX6mrW1rxfcmmkarH6HHHUeGvuknsQfwg8sOEAexyG9RccOtbs7Pz9vd9cUEXq_3M93tgY3Sb3v_XX_sd3P59v-J6jR-ThGDTS_UHKj8md3D8h2xtQgk_J6cce2yeAyzTlVa2v6ukA00yBPsh_c6K5_1o3_Ck4qLS4ohCwwiQo_oulX05Ozw6pn18ubuDy6hk5Pzo8Ozhux8MS2qiMXbURUrXEO4n5RGElGmtL0HIWhEkiM8-9NooHFXS2UXRFyCIC5MYlMm0RwPE52eoXfX5BqJYegqjORJ29Ej7OUiiyCyZEFnMwtiF84p-LI5I4HmgxdzWjsMYNPHfAc1d57kxD3q3fuR5wNG4d_QHFsh6JGNj1xuLm0o0m5aQOXCrdFSQrlTwzIYE-KF14YinPGvIWherQUmF60Y8NB0AkYl65_a7inQHxDdmd5O5GE146iFwge0IAu4bsTbrw6_Ftk99b68s_0Lrzf19_SR6Iqsu6Zd0u2QLdyq8gLlqF19UMfgL-qAFp priority: 102 providerName: Springer Nature |
| Title | Intrusion detection system combined enhanced random forest with SMOTE algorithm |
| URI | https://link.springer.com/article/10.1186/s13634-022-00871-6 https://www.proquest.com/docview/2660495492 https://asp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13634-022-00871-6 https://doaj.org/article/35b13457f41b4dfe96bd51945f1d0de9 |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: 8FG dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: C6C dateStart: 20011201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: U2A dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JbxMxFLba5AA9sCMCpZoDEgc6qT1je5xjGhIKImmhjVROlteCmk6iLELw63meJQ2LKpC4vNk8y3vz2X5vxu8zQi9c4pRTWUj7IDymFotYeBwyli0xOPWEspDvPBzxozF9d87Ot9CHOhdGLWaxW83V4susMuaiXf-hDPNJFY33cq7M5cHM-rLOC36wIClPaRyGpgeSNRLzbdTkDNzzBmqORyfdTyHw4qJIiUuu1wWuE2n-eJGfOquC0__3lnvjF-oOurXKZ-rbVzWZbPRSg7toXutXDk65bK-Wum2-_0L9-F8NcA_dqXzaqFuC8D7acvkDtLPBdPgQHb_NQ3YHgCCyblkM_8qjkkU6gltBeO5s5PLPxXiECPpPO72KwJ8GzaPwqTg6HR6f9SM1uZjOYfPqERoP-me9o7iayyE2lItlbCCStCRLQ7jjsTdcCK9Z2tEJt4nDiijGKdFUMydMkvkk9YmG0N0bzETgl3yMGvk0d09QxFIFPl7GDXOKJsp0rPZpprk22DjNRQuR-qVJUxGdh_k2JrIIeASXpbEkGEsWxpK8hV6tz5mVNB83lj4MWFiXDBTdxY7p_EJWNV6mTJOUsswHtax3Ha4tuMuUeWKxdZ0WehmQJENDEt6nqvIhQMlAySW7WUHHBsq30G4NNlljQoJjBcFd4Ndrof0aINeHb3r4_TVI_0LXp_9W_Bm6nRQgZDHOdlEDsOWeg9u21Htom-I3IMUAZLP7evj-FJaH_dHJR9jbS2iQvLdXfBYBOU5AlpX3BwSWP6M |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyg9IJ4iUMAHEAe66vq5m0OFWkiV0CZFkEq9uX62h3QTSFDVP8dvY-zspkFIEZde92nPjD0zu_N9g9BbT732uoiwDyIz7vIyK0MeEcuO2JwFwkXEO_cHsnvKv5yJszX0u8HCxLLKZk9MG7Ub2_iNfBccCQSzkU_s4-RHFrtGxb-rTQsNXbdWcHuJYqwGdhz5m2tI4aZ7vc-g73eUHnaGn7pZ3WUgs1yWs8xCjuNIwWIgHvJgZVkGI1jbUOmozzXRQnJiuBG-tLQIlAVqIKkMNhdlZD6E595DG5zxNiR_GwedwddvjS-A4GJe9SjLBMajDWynlLtTwiTjWaymj7xwJJN_ucbUQeBfP7H0w3YLbf6qJvrmWo9GSz7x8CF6UAezeH9ufY_Qmq8eo60lisMn6KRXRVgHaB87P0t1XxWe00djEDzk5d5hX12mQgQMjtONrzAE0jAIHL8R4-_9k2EH69EFKGN2efUUnd6JeJ-h9Wpc-ecIC6YhuCukFV5zqm3bmcAKI43NrTeybCHSyE_ZmuE8NtoYqZTplFLNZa5A5irJXMkW-rC4ZzLn91h59UFUy-LKyM2dDox_Xqh6qSsmDGFcFCFOywXflsZBnMxFIC53vt1C76NSVdxBYHhW10AImGTk4lL7ReJhg8m30Hajd1VvLVN1uxBaaKexhdvTqwa_s7CX_5jri9Uvf4M2u8P-sTruDY5eovs02bHI8mIbrYNd-VcQq83M63pBYHR-12vwDy-ISMY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPIA7UinftXW8OCBXa0FDaItFKvS37bA-pE0hQ1b_Gr2NmbadBSBWXXhM72Z3Hzow93zeEvAo8mGAqhH0wmZU-V5mKOSKWPXN5EVkpEO-8ty93jsrPx-J4hfzusDDYVtmdiemg9hOHz8j7EEggmUU-sX5s2yK-bg3fT39kOEEK37R24zQaE9kNF-dQvs3ejbZA1685H24fftzJ2gkDmSulmmcO6hvPqgKT8JhHJ5WKVhQDy6XnITfMCFkyW1oRlONV5EXkFgrK6HKhkPUQfvcGuVkhizui1IefuigAaUXT7yhVguHxDrCjZH_GClmUGfbRIyMcy-RfQTHNDvg3Qiy9ql0jt3_VU3NxbsbjpWg4vEfutmks3Wzs7j5ZCfUDsrZEbviQHIxqBHSA3qkP89TxVdOGOJqCyKEiD56G-jS1IFAImX5yRiGFhkVQfDpMv-0dHG5TMz4B0c9Pzx6Ro2sR7mOyWk_q8IRQURhI6yrpRDAlN27gbSwqK63LXbBS9Qjr5Kddy22OIzbGOtU4SupG5hpkrpPMteyRt4t7pg2zx5VXf0C1LK5EVu70weTniW6dXBfCsqIUVcRt-RgG0nrIkEsRmc99GPTIG1SqxrMDludMC4GATSILl96sEgMbbL5H1ju96_ZQmelLF-iRjc4WLr--avEbC3v5j70-vfrPX5Jb4Hn6y2h_9xm5w5MZiyyv1skqmFV4Dkna3L5I3kDJ9-t2vz8Qq0Zg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFH4q0wP0UHaRUpAPSBxopnFiO57jgFoVpLYgOlI5WV4L6jQTZWaE4NdjO8l0WFSBxC2Ls7yXz_Z7sb_PAC9sbqWVZaB9YJYSk_GUuywwlg3WWeEwoYHvfHzCjibk3Tk934APPRdGzuvULhs5_1J3zpwP-xHKsJ5UbLwXjdSX-7VxbZ3nbH-OC1aQNExNDyJrOGW3YJNRH54PYHNy8n78KSRejEdKXH69zbOeSPPHm_zUWUVN_99b7rUh1C24vaxq-e2rnE7XeqnDu9D09rWTUy6Hy4Ua6u-_SD_-Vwfcg-0upkXjFoT3YcNWD2BrTenwIZy-rQK7w4MAGbuI078q1KpII_8on55bg2z1Oc5HQL7_NLMr5ONpbzkKv4rRx-PTswMkpxezxu9ePYLJ4cHZm6O0W8sh1YTxRap9JmlwWYR0x2VOM86dosVI5czkNpNYUkawIoparvPS5YXLlU_dnc4oD_qSj2FQzSr7BBAtpI_xSqaplSSXemSUK0rFlM60VYwngPuPJnQndB7W25iKmPBwJlpnCe8sEZ0lWAKvVtfUrczHjaVfByysSgaJ7nhg1lyIrsaLgipcEFq6YJZxdsSU8eEyoQ6bzNhRAi8DkkRoSML3lB0fwhsZJLnEuIxybN74BHZ7sIkeE8IHVj65C_p6Cez1ALk-fdPL761A-he27vxb8adwJ48gpGlW7sLAY8s-82HbQj3vKuIPCCk3Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+system+combined+enhanced+random+forest+with+SMOTE+algorithm&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Tao+Wu&rft.au=Honghui+Fan&rft.au=Hongjin+Zhu&rft.au=Congzhe+You&rft.date=2022-05-07&rft.pub=SpringerOpen&rft.eissn=1687-6180&rft.volume=2022&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs13634-022-00871-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_35b13457f41b4dfe96bd51945f1d0de9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |