PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPI...
Saved in:
Published in | iScience Vol. 9; pp. 382 - 398 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
30.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2018.11.002 |
Cover
Abstract | Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. |
---|---|
AbstractList | Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
•
ER-to-Golgi trafficking of COPII vesicles is affected by PAQR3
•
PAQR3 is localized in the ERGIC and cis-Golgi structures
•
PAQR3 interacts with the coat proteins Sec13 and Sec31 of COPII vesicles
•
PAQR3 facilitates tethering of COPII vesicles to the Golgi apparatus
Molecular Biology Experimental Approach; Cell Biology; Functional Aspects of Cell Biology Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. : Molecular Biology Experimental Approach; Cell Biology; Functional Aspects of Cell Biology Subject Areas: Molecular Biology Experimental Approach, Cell Biology, Functional Aspects of Cell Biology Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. |
Author | Xu, Lijiao Wang, Zheng Cao, Qianqian You, Xue Liao, Lujian Chen, Yan Wan, Huida |
AuthorAffiliation | 2 Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China 3 School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China 1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China |
AuthorAffiliation_xml | – name: 2 Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China – name: 1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China – name: 3 School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China |
Author_xml | – sequence: 1 givenname: Qianqian surname: Cao fullname: Cao, Qianqian – sequence: 2 givenname: Zheng surname: Wang fullname: Wang, Zheng – sequence: 3 givenname: Huida surname: Wan fullname: Wan, Huida – sequence: 4 givenname: Lijiao surname: Xu fullname: Xu, Lijiao – sequence: 5 givenname: Xue surname: You fullname: You, Xue – sequence: 6 givenname: Lujian surname: Liao fullname: Liao, Lujian – sequence: 7 givenname: Yan surname: Chen fullname: Chen, Yan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30466064$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v3CAQRVWq5qP5Az1UHHvxBgzG5lIpWqWJpUjZpmmvCLNjh61ttoBTtb--eDeNkh4qIRgNb95jeHOMDkY3AkLvKFlQQsXZZmGDsYuc0GpB6YKQ_BU6yotKZoTw_OBZfIhOQ9iQhEiLS_EGHTLChSCCH6Hfq_PPtwzfQjf1OkLAF-PabXsdBmtSNloz9dOQRZddur6z-M7rtrXmux077Fq8vFnVNf4GwZoe8IPVuB4jeG2idSP-aeM9_gKGsrO0M4qXTke88i6CHcNb9LrVfYDTx_MEff10cbe8yq5vLuvl-XVmuKhi1vCiItLQVoAxrMkbWRS8pKws5a4JWBvelEWec0I0UCllRSgDaIlkhtA1O0H1nnft9EZtvR20_6WctmqXcL5T2se5AaULU8hKGllxzQlvm1LLUvBCCyiKsioT18c913ZqhqQMY_S6f0H68ma096pzD0qkn2dyJvjwSODdjwlCVEPyEfpej-CmoPLUGBc52Wm9f671JPLXvATI9wDjXQge2icIJWoeErVR85CoeUgUpSr5n4qqf4qMjXq2K73X9v8r_QMzjcFo |
CitedBy_id | crossref_primary_10_3390_cells11050780 crossref_primary_10_1111_tpj_16197 crossref_primary_10_1007_s12272_022_01408_z crossref_primary_10_1016_j_mcpro_2022_100422 crossref_primary_10_1002_iid3_437 crossref_primary_10_1038_s41596_020_0399_0 crossref_primary_10_1038_s41598_020_61352_0 crossref_primary_10_1038_s41598_024_60687_2 crossref_primary_10_1021_acsnano_0c08596 crossref_primary_10_1002_wdev_392 crossref_primary_10_15252_embr_202050958 crossref_primary_10_1016_j_jprot_2020_103990 |
Cites_doi | 10.1021/bi961616x 10.1038/ncomms9100 10.1016/j.bbamcr.2005.02.007 10.1042/BJ20141392 10.1126/science.1256898 10.1074/jbc.M114.561829 10.1126/science.1230593 10.1042/BJ20080948 10.1016/j.bbamcr.2005.03.003 10.1128/MCB.23.20.7271-7284.2003 10.1016/j.molcel.2016.05.030 10.1093/emboj/17.8.2156 10.1038/nature09969 10.1146/annurev.cellbio.24.110707.175421 10.1182/blood-2012-01-292086 10.1126/science.272.5259.227 10.1016/S0092-8674(00)80213-5 10.3109/09687688.2010.524894 10.1093/carcin/bgn139 10.1038/nbt.2375 10.1091/mbc.e06-05-0444 10.1016/S0092-8674(00)80608-X 10.1074/jbc.M504041200 10.1093/carcin/bgs245 10.1242/jcs.031070 10.15252/embj.201592864 10.1038/nprot.2016.018 10.1016/j.ajhg.2016.06.011 10.1016/0092-8674(89)90685-5 10.1016/j.cmet.2005.11.014 10.1038/nmeth.1928 10.1093/annonc/mdu168 10.1016/j.devcel.2015.10.015 10.1101/cshperspect.a013391 10.1128/MCB.01038-09 10.1016/j.devcel.2017.11.020 10.1016/j.molcel.2014.06.003 10.1016/j.cellsig.2017.04.023 10.1242/jcs.03019 10.1016/j.tcb.2016.09.004 10.1083/jcb.143.6.1505 10.1038/onc.2010.270 10.1083/jcb.131.4.875 10.1093/oxfordjournals.jbchem.a123712 10.1091/mbc.7.10.1535 10.1073/pnas.0701298104 10.1016/S1097-2765(02)00591-9 10.1126/science.291.5507.1363 10.1158/0008-5472.CAN-10-4077 10.1242/jcs.017681 10.1038/nmeth.3179 10.1038/nature04339 10.1007/s00239-004-0375-2 10.1016/j.cellsig.2015.08.017 10.1083/jcb.135.1.19 10.2337/db12-0244 10.1002/hep.29786 10.1016/j.cellsig.2017.02.017 10.1101/cshperspect.a013367 10.1042/BJ20150253 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. 2018 The Author(s) 2018 |
Copyright_xml | – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2018 The Author(s) 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2018.11.002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 398 |
ExternalDocumentID | oai_doaj_org_article_a5c5989c984a404fb7a97645a6e55787 PMC6249397 30466064 10_1016_j_isci_2018_11_002 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AACTN NPM 7X8 5PM |
ID | FETCH-LOGICAL-c468t-b45809c1f6ecc3b2b955471377946606edc4b7522400ae19998013eef093c01d3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Thu Aug 21 13:50:02 EDT 2025 Thu Jul 10 23:00:16 EDT 2025 Thu Apr 03 06:57:30 EDT 2025 Tue Jul 01 01:03:24 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional Aspects of Cell Biology Cell Biology Molecular Biology Experimental Approach |
Language | English |
License | Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-b45809c1f6ecc3b2b955471377946606edc4b7522400ae19998013eef093c01d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/a5c5989c984a404fb7a97645a6e55787 |
PMID | 30466064 |
PQID | 2137462087 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5c5989c984a404fb7a97645a6e55787 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6249397 proquest_miscellaneous_2137462087 pubmed_primary_30466064 crossref_primary_10_1016_j_isci_2018_11_002 crossref_citationtrail_10_1016_j_isci_2018_11_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-30 |
PublicationDateYYYYMMDD | 2018-11-30 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2018 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Wang (10.1016/j.isci.2018.11.002_bib50) 2012; 33 Brown (10.1016/j.isci.2018.11.002_bib8) 1997; 89 Liu (10.1016/j.isci.2018.11.002_bib28) 2015; 467 Hewavitharana (10.1016/j.isci.2018.11.002_bib16) 2015; 27 Helm (10.1016/j.isci.2018.11.002_bib15) 2014; 289 Paccaud (10.1016/j.isci.2018.11.002_bib36) 1996; 7 Townley (10.1016/j.isci.2018.11.002_bib48) 2008; 121 Spang (10.1016/j.isci.2018.11.002_bib42) 2013; 5 Tang (10.1016/j.isci.2018.11.002_bib46) 2005; 1744 Cao (10.1016/j.isci.2018.11.002_bib9) 1998; 17 Jiang (10.1016/j.isci.2018.11.002_bib20) 2011; 71 Martinez-Menarguez (10.1016/j.isci.2018.11.002_bib33) 1999; 98 Zhao (10.1016/j.isci.2018.11.002_bib60) 2018; 68 Izumi (10.1016/j.isci.2018.11.002_bib19) 2016; 99 Stagg (10.1016/j.isci.2018.11.002_bib43) 2006; 439 Rhee (10.1016/j.isci.2018.11.002_bib38) 2013; 339 Bendayan (10.1016/j.isci.2018.11.002_bib4) 2001; 291 Rothman (10.1016/j.isci.2018.11.002_bib39) 1996; 272 Sun (10.1016/j.isci.2018.11.002_bib45) 2005; 280 Jiang (10.1016/j.isci.2018.11.002_bib21) 2010; 30 Xu (10.1016/j.isci.2018.11.002_bib55) 2015; 6 Xu (10.1016/j.isci.2018.11.002_bib56) 2016; 35 Hung (10.1016/j.isci.2018.11.002_bib18) 2014; 55 Martell (10.1016/j.isci.2018.11.002_bib32) 2012; 30 Hung (10.1016/j.isci.2018.11.002_bib17) 2016; 11 Mick (10.1016/j.isci.2018.11.002_bib34) 2015; 35 You (10.1016/j.isci.2018.11.002_bib58) 2017; 36 Farhan (10.1016/j.isci.2018.11.002_bib11) 2008; 121 Joo (10.1016/j.isci.2018.11.002_bib22) 2016; 62 Brown (10.1016/j.isci.2018.11.002_bib7) 2002; 10 Yamasaki (10.1016/j.isci.2018.11.002_bib57) 2006; 17 Glick (10.1016/j.isci.2018.11.002_bib13) 2009; 25 Lord (10.1016/j.isci.2018.11.002_bib30) 2013; 5 Ling (10.1016/j.isci.2018.11.002_bib26) 2014; 25 Wong (10.1016/j.isci.2018.11.002_bib53) 2014; 346 Bannykh (10.1016/j.isci.2018.11.002_bib3) 1996; 135 Khoriaty (10.1016/j.isci.2018.11.002_bib23) 2012; 120 Qiao (10.1016/j.isci.2018.11.002_bib37) 2015; 469 Appenzeller-Herzog (10.1016/j.isci.2018.11.002_bib1) 2006; 119 Lord (10.1016/j.isci.2018.11.002_bib29) 2011; 473 Wang (10.1016/j.isci.2018.11.002_bib49) 2017; 33 Xie (10.1016/j.isci.2018.11.002_bib54) 2008; 29 Lippincott-Schwartz (10.1016/j.isci.2018.11.002_bib27) 1989; 56 Wang (10.1016/j.isci.2018.11.002_bib51) 2013; 62 Bersuker (10.1016/j.isci.2018.11.002_bib5) 2018; 44 Lam (10.1016/j.isci.2018.11.002_bib25) 2015; 12 Aridor (10.1016/j.isci.2018.11.002_bib2) 1995; 131 Tang (10.1016/j.isci.2018.11.002_bib47) 2005; 61 Zhang (10.1016/j.isci.2018.11.002_bib59) 2010; 29 Mitoma (10.1016/j.isci.2018.11.002_bib35) 1992; 111 Boncompain (10.1016/j.isci.2018.11.002_bib6) 2012; 9 Routledge (10.1016/j.isci.2018.11.002_bib40) 2010; 27 Watson (10.1016/j.isci.2018.11.002_bib52) 2005; 1744 Luo (10.1016/j.isci.2018.11.002_bib31) 2008; 414 Kim (10.1016/j.isci.2018.11.002_bib24) 2016; 26 Feng (10.1016/j.isci.2018.11.002_bib12) 2007; 104 Enninga (10.1016/j.isci.2018.11.002_bib10) 2003; 23 Gong (10.1016/j.isci.2018.11.002_bib14) 2006; 3 Saxena (10.1016/j.isci.2018.11.002_bib41) 1996; 35 Storrie (10.1016/j.isci.2018.11.002_bib44) 1998; 143 22828136 - Carcinogenesis. 2012 Nov;33(11):2228-35 25706881 - Biochem J. 2015 May 1;467(3):415-24 26327583 - Cell Signal. 2015 Dec;27(12):2444-51 16044242 - J Mol Evol. 2005 Sep;61(3):372-80 9545229 - EMBO J. 1998 Apr 15;17(8):2156-65 22586181 - Blood. 2012 Jul 5;120(1):31-8 10412983 - Cell. 1999 Jul 9;98(1):81-90 28473198 - Cell Signal. 2017 Aug;36:108-116 16957052 - Mol Biol Cell. 2006 Nov;17(11):4876-87 21532587 - Nature. 2011 May 12;473(7346):181-6 15979504 - Biochim Biophys Acta. 2005 Jul 10;1744(3):304-15 18713835 - J Cell Sci. 2008 Sep 15;121(Pt 18):3025-34 29275994 - Dev Cell. 2018 Jan 8;44(1):97-112.e7 23086038 - Diabetes. 2013 Feb;62(2):444-56 26834238 - EMBO J. 2016 Mar 1;35(5):496-514 27476655 - Am J Hum Genet. 2016 Aug 4;99(2):451-9 2647301 - Cell. 1989 Mar 10;56(5):801-13 23732476 - Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6):null 28214587 - Cell Signal. 2017 May;33:98-106 29331071 - Hepatology. 2018 Jul;68(1):289-303 23371551 - Science. 2013 Mar 15;339(6125):1328-1331 12191470 - Mol Cell. 2002 Aug;10(2):237-45 1318879 - J Biochem. 1992 Jan;111(1):20-4 8602507 - Science. 1996 Apr 12;272(5259):227-34 15979503 - Biochim Biophys Acta. 2005 Jul 10;1744(3):293-303 16399501 - Cell Metab. 2006 Jan;3(1):15-24 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8 23378591 - Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):null 26311497 - Nat Commun. 2015 Aug 27;6:8100 18550569 - Carcinogenesis. 2008 Aug;29(8):1632-8 25002142 - Mol Cell. 2014 Jul 17;55(2):332-41 9150132 - Cell. 1997 May 2;89(3):331-40 27667171 - Trends Cell Biol. 2016 Nov;26(11):804-817 8858160 - J Cell Biol. 1996 Oct;135(1):19-35 21054154 - Mol Membr Biol. 2010 Nov;27(8):385-97 15899885 - J Biol Chem. 2005 Jul 15;280(28):26483-90 16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83 24799462 - Ann Oncol. 2014 Jul;25(7):1363-72 17724343 - Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14348-53 11233453 - Science. 2001 Feb 16;291(5507):1363-5 18285449 - J Cell Sci. 2008 Mar 15;121(Pt 6):753-61 18547165 - Biochem J. 2008 Sep 15;414(3):399-406 27315557 - Mol Cell. 2016 Jun 16;62(6):982 26866790 - Nat Protoc. 2016 Mar;11(3):456-75 14517296 - Mol Cell Biol. 2003 Oct;23(20):7271-84 20603618 - Oncogene. 2010 Sep 30;29(39):5404-15 25006245 - J Biol Chem. 2014 Aug 22;289(34):23609-28 16407955 - Nature. 2006 Jan 12;439(7073):234-8 8952469 - Biochemistry. 1996 Dec 3;35(48):15215-21 19884349 - Mol Cell Biol. 2010 Jan;30(1):78-90 25359980 - Science. 2014 Oct 31;346(6209):1256898 23086203 - Nat Biotechnol. 2012 Nov;30(11):1143-8 7490291 - J Cell Biol. 1995 Nov;131(4):875-93 9852147 - J Cell Biol. 1998 Dec 14;143(6):1505-21 21385899 - Cancer Res. 2011 Apr 15;71(8):2959-68 26205499 - Biochem J. 2015 Aug 1;469(3):469-80 19575639 - Annu Rev Cell Dev Biol. 2009;25:113-32 8898360 - Mol Biol Cell. 1996 Oct;7(10):1535-46 25419960 - Nat Methods. 2015 Jan;12(1):51-4 26585297 - Dev Cell. 2015 Nov 23;35(4):497-512 |
References_xml | – volume: 35 start-page: 15215 year: 1996 ident: 10.1016/j.isci.2018.11.002_bib41 article-title: Analysis of the physical properties and molecular modeling of Sec13: a WD repeat protein involved in vesicular traffic publication-title: Biochemistry doi: 10.1021/bi961616x – volume: 6 start-page: 8100 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib55 article-title: PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus publication-title: Nat. Commun. doi: 10.1038/ncomms9100 – volume: 1744 start-page: 293 year: 2005 ident: 10.1016/j.isci.2018.11.002_bib46 article-title: COPII and exit from the endoplasmic reticulum publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2005.02.007 – volume: 467 start-page: 415 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib28 article-title: PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells publication-title: Biochem. J. doi: 10.1042/BJ20141392 – volume: 346 start-page: 1256898 year: 2014 ident: 10.1016/j.isci.2018.11.002_bib53 article-title: The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins publication-title: Science doi: 10.1126/science.1256898 – volume: 289 start-page: 23609 year: 2014 ident: 10.1016/j.isci.2018.11.002_bib15 article-title: Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.561829 – volume: 339 start-page: 1328 year: 2013 ident: 10.1016/j.isci.2018.11.002_bib38 article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging publication-title: Science doi: 10.1126/science.1230593 – volume: 414 start-page: 399 year: 2008 ident: 10.1016/j.isci.2018.11.002_bib31 article-title: Characterization of the topology and functional domains of RKTG publication-title: Biochem. J. doi: 10.1042/BJ20080948 – volume: 1744 start-page: 304 year: 2005 ident: 10.1016/j.isci.2018.11.002_bib52 article-title: ER-to-Golgi transport: form and formation of vesicular and tubular carriers publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2005.03.003 – volume: 23 start-page: 7271 year: 2003 ident: 10.1016/j.isci.2018.11.002_bib10 article-title: Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7271-7284.2003 – volume: 62 start-page: 982 year: 2016 ident: 10.1016/j.isci.2018.11.002_bib22 article-title: The noncanonical role of ULK/ATG1 in ER-to-golgi trafficking is essential for cellular homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.030 – volume: 17 start-page: 2156 year: 1998 ident: 10.1016/j.isci.2018.11.002_bib9 article-title: Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins publication-title: EMBO J. doi: 10.1093/emboj/17.8.2156 – volume: 473 start-page: 181 year: 2011 ident: 10.1016/j.isci.2018.11.002_bib29 article-title: Sequential interactions with Sec23 control the direction of vesicle traffic publication-title: Nature doi: 10.1038/nature09969 – volume: 25 start-page: 113 year: 2009 ident: 10.1016/j.isci.2018.11.002_bib13 article-title: Membrane traffic within the Golgi apparatus publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.24.110707.175421 – volume: 120 start-page: 31 year: 2012 ident: 10.1016/j.isci.2018.11.002_bib23 article-title: The COPII pathway and hematologic disease publication-title: Blood doi: 10.1182/blood-2012-01-292086 – volume: 272 start-page: 227 year: 1996 ident: 10.1016/j.isci.2018.11.002_bib39 article-title: Protein sorting by transport vesicles publication-title: Science doi: 10.1126/science.272.5259.227 – volume: 89 start-page: 331 year: 1997 ident: 10.1016/j.isci.2018.11.002_bib8 article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor publication-title: Cell doi: 10.1016/S0092-8674(00)80213-5 – volume: 27 start-page: 385 year: 2010 ident: 10.1016/j.isci.2018.11.002_bib40 article-title: Emergent properties of proteostasis-COPII coupled systems in human health and disease publication-title: Mol. Membr. Biol. doi: 10.3109/09687688.2010.524894 – volume: 29 start-page: 1632 year: 2008 ident: 10.1016/j.isci.2018.11.002_bib54 article-title: Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse publication-title: Carcinogenesis doi: 10.1093/carcin/bgn139 – volume: 30 start-page: 1143 year: 2012 ident: 10.1016/j.isci.2018.11.002_bib32 article-title: Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2375 – volume: 17 start-page: 4876 year: 2006 ident: 10.1016/j.isci.2018.11.002_bib57 article-title: The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-05-0444 – volume: 98 start-page: 81 year: 1999 ident: 10.1016/j.isci.2018.11.002_bib33 article-title: Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion front COPI-coated vesicles publication-title: Cell doi: 10.1016/S0092-8674(00)80608-X – volume: 280 start-page: 26483 year: 2005 ident: 10.1016/j.isci.2018.11.002_bib45 article-title: Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504041200 – volume: 33 start-page: 2228 year: 2012 ident: 10.1016/j.isci.2018.11.002_bib50 article-title: PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers publication-title: Carcinogenesis doi: 10.1093/carcin/bgs245 – volume: 121 start-page: 3025 year: 2008 ident: 10.1016/j.isci.2018.11.002_bib48 article-title: Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development publication-title: J. Cell Sci. doi: 10.1242/jcs.031070 – volume: 35 start-page: 496 year: 2016 ident: 10.1016/j.isci.2018.11.002_bib56 article-title: PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity publication-title: EMBO J. doi: 10.15252/embj.201592864 – volume: 11 start-page: 456 year: 2016 ident: 10.1016/j.isci.2018.11.002_bib17 article-title: Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.018 – volume: 99 start-page: 451 year: 2016 ident: 10.1016/j.isci.2018.11.002_bib19 article-title: ARCN1 mutations cause a recognizable craniofacial syndrome due to COPI-mediated transport defects publication-title: Am. J. Hum. Genet doi: 10.1016/j.ajhg.2016.06.011 – volume: 56 start-page: 801 year: 1989 ident: 10.1016/j.isci.2018.11.002_bib27 article-title: Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER publication-title: Cell doi: 10.1016/0092-8674(89)90685-5 – volume: 3 start-page: 15 year: 2006 ident: 10.1016/j.isci.2018.11.002_bib14 article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.11.014 – volume: 9 start-page: 493 year: 2012 ident: 10.1016/j.isci.2018.11.002_bib6 article-title: Synchronization of secretory protein traffic in populations of cells publication-title: Nat. Methods doi: 10.1038/nmeth.1928 – volume: 25 start-page: 1363 year: 2014 ident: 10.1016/j.isci.2018.11.002_bib26 article-title: A Golgi-specific protein PAQR3 is closely associated with the progression, metastasis and prognosis of human gastric cancers publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu168 – volume: 35 start-page: 497 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib34 article-title: Proteomics of primary cilia by proximity labeling publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.10.015 – volume: 5 year: 2013 ident: 10.1016/j.isci.2018.11.002_bib42 article-title: Retrograde traffic from the Golgi to the endoplasmic reticulum publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a013391 – volume: 30 start-page: 78 year: 2010 ident: 10.1016/j.isci.2018.11.002_bib21 article-title: Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01038-09 – volume: 44 start-page: 97 year: 2018 ident: 10.1016/j.isci.2018.11.002_bib5 article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.11.020 – volume: 55 start-page: 332 year: 2014 ident: 10.1016/j.isci.2018.11.002_bib18 article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.06.003 – volume: 36 start-page: 108 year: 2017 ident: 10.1016/j.isci.2018.11.002_bib58 article-title: Subcellular distribution of RAD23B controls XPC degradation and DNA damage repair in response to chemotherapy drugs publication-title: Cell Signal. doi: 10.1016/j.cellsig.2017.04.023 – volume: 119 start-page: 2173 year: 2006 ident: 10.1016/j.isci.2018.11.002_bib1 article-title: The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function publication-title: J. Cell Sci. doi: 10.1242/jcs.03019 – volume: 26 start-page: 804 year: 2016 ident: 10.1016/j.isci.2018.11.002_bib24 article-title: Filling the void: proximity-based labeling of proteins in living cells publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.09.004 – volume: 143 start-page: 1505 year: 1998 ident: 10.1016/j.isci.2018.11.002_bib44 article-title: Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering publication-title: J. Cell Biol. doi: 10.1083/jcb.143.6.1505 – volume: 29 start-page: 5404 year: 2010 ident: 10.1016/j.isci.2018.11.002_bib59 article-title: RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma publication-title: Oncogene doi: 10.1038/onc.2010.270 – volume: 131 start-page: 875 year: 1995 ident: 10.1016/j.isci.2018.11.002_bib2 article-title: Sequential coupling between Copii and Copi vesicle coats in endoplasmic-reticulum to Golgi transport publication-title: J. Cell Biol. doi: 10.1083/jcb.131.4.875 – volume: 111 start-page: 20 year: 1992 ident: 10.1016/j.isci.2018.11.002_bib35 article-title: Mitochondrial targeting signal of rat-liver monoamine oxidase-B is located at its carboxy terminus publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a123712 – volume: 7 start-page: 1535 year: 1996 ident: 10.1016/j.isci.2018.11.002_bib36 article-title: Cloning and functional characterization of mammalian homologues of the COPII component Sec23 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.7.10.1535 – volume: 104 start-page: 14348 year: 2007 ident: 10.1016/j.isci.2018.11.002_bib12 article-title: Spatial regulation of Raf kinase signaling by RKTG publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0701298104 – volume: 10 start-page: 237 year: 2002 ident: 10.1016/j.isci.2018.11.002_bib7 article-title: Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00591-9 – volume: 291 start-page: 1363 year: 2001 ident: 10.1016/j.isci.2018.11.002_bib4 article-title: Worth its weight in gold publication-title: Science doi: 10.1126/science.291.5507.1363 – volume: 71 start-page: 2959 year: 2011 ident: 10.1016/j.isci.2018.11.002_bib20 article-title: Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4077 – volume: 121 start-page: 753 year: 2008 ident: 10.1016/j.isci.2018.11.002_bib11 article-title: Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif publication-title: J. Cell Sci. doi: 10.1242/jcs.017681 – volume: 12 start-page: 51 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib25 article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling publication-title: Nat. Methods doi: 10.1038/nmeth.3179 – volume: 439 start-page: 234 year: 2006 ident: 10.1016/j.isci.2018.11.002_bib43 article-title: Structure of the Sec13/31 COPII coat cage publication-title: Nature doi: 10.1038/nature04339 – volume: 61 start-page: 372 year: 2005 ident: 10.1016/j.isci.2018.11.002_bib47 article-title: PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif publication-title: J. Mol. Evol. doi: 10.1007/s00239-004-0375-2 – volume: 27 start-page: 2444 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib16 article-title: PAQR3 regulates Golgi vesicle fission and transport via the Gbetagamma-PKD signaling pathway publication-title: Cell Signal. doi: 10.1016/j.cellsig.2015.08.017 – volume: 135 start-page: 19 year: 1996 ident: 10.1016/j.isci.2018.11.002_bib3 article-title: The organization of endoplasmic reticulum export complexes publication-title: J. Cell Biol. doi: 10.1083/jcb.135.1.19 – volume: 62 start-page: 444 year: 2013 ident: 10.1016/j.isci.2018.11.002_bib51 article-title: PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110alpha to the Golgi apparatus publication-title: Diabetes doi: 10.2337/db12-0244 – volume: 68 start-page: 289 year: 2018 ident: 10.1016/j.isci.2018.11.002_bib60 article-title: Hepatic PPARalpha function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1 publication-title: Hepatology doi: 10.1002/hep.29786 – volume: 33 start-page: 98 year: 2017 ident: 10.1016/j.isci.2018.11.002_bib49 article-title: PAQR3 augments amino acid deprivation-induced autophagy by inhibiting mTORC1 signaling publication-title: Cell Signal. doi: 10.1016/j.cellsig.2017.02.017 – volume: 5 year: 2013 ident: 10.1016/j.isci.2018.11.002_bib30 article-title: The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the Golgi publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a013367 – volume: 469 start-page: 469 year: 2015 ident: 10.1016/j.isci.2018.11.002_bib37 article-title: DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells publication-title: Biochem. J. doi: 10.1042/BJ20150253 – reference: 19884349 - Mol Cell Biol. 2010 Jan;30(1):78-90 – reference: 8952469 - Biochemistry. 1996 Dec 3;35(48):15215-21 – reference: 22828136 - Carcinogenesis. 2012 Nov;33(11):2228-35 – reference: 10412983 - Cell. 1999 Jul 9;98(1):81-90 – reference: 2647301 - Cell. 1989 Mar 10;56(5):801-13 – reference: 11233453 - Science. 2001 Feb 16;291(5507):1363-5 – reference: 27476655 - Am J Hum Genet. 2016 Aug 4;99(2):451-9 – reference: 23371551 - Science. 2013 Mar 15;339(6125):1328-1331 – reference: 17724343 - Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14348-53 – reference: 29275994 - Dev Cell. 2018 Jan 8;44(1):97-112.e7 – reference: 15899885 - J Biol Chem. 2005 Jul 15;280(28):26483-90 – reference: 16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83 – reference: 25706881 - Biochem J. 2015 May 1;467(3):415-24 – reference: 1318879 - J Biochem. 1992 Jan;111(1):20-4 – reference: 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8 – reference: 25002142 - Mol Cell. 2014 Jul 17;55(2):332-41 – reference: 23086203 - Nat Biotechnol. 2012 Nov;30(11):1143-8 – reference: 19575639 - Annu Rev Cell Dev Biol. 2009;25:113-32 – reference: 26311497 - Nat Commun. 2015 Aug 27;6:8100 – reference: 28214587 - Cell Signal. 2017 May;33:98-106 – reference: 28473198 - Cell Signal. 2017 Aug;36:108-116 – reference: 23732476 - Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6):null – reference: 18550569 - Carcinogenesis. 2008 Aug;29(8):1632-8 – reference: 26834238 - EMBO J. 2016 Mar 1;35(5):496-514 – reference: 22586181 - Blood. 2012 Jul 5;120(1):31-8 – reference: 26327583 - Cell Signal. 2015 Dec;27(12):2444-51 – reference: 16957052 - Mol Biol Cell. 2006 Nov;17(11):4876-87 – reference: 21054154 - Mol Membr Biol. 2010 Nov;27(8):385-97 – reference: 16044242 - J Mol Evol. 2005 Sep;61(3):372-80 – reference: 16407955 - Nature. 2006 Jan 12;439(7073):234-8 – reference: 12191470 - Mol Cell. 2002 Aug;10(2):237-45 – reference: 24799462 - Ann Oncol. 2014 Jul;25(7):1363-72 – reference: 8898360 - Mol Biol Cell. 1996 Oct;7(10):1535-46 – reference: 9852147 - J Cell Biol. 1998 Dec 14;143(6):1505-21 – reference: 9545229 - EMBO J. 1998 Apr 15;17(8):2156-65 – reference: 25359980 - Science. 2014 Oct 31;346(6209):1256898 – reference: 26585297 - Dev Cell. 2015 Nov 23;35(4):497-512 – reference: 27315557 - Mol Cell. 2016 Jun 16;62(6):982 – reference: 29331071 - Hepatology. 2018 Jul;68(1):289-303 – reference: 23378591 - Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):null – reference: 26866790 - Nat Protoc. 2016 Mar;11(3):456-75 – reference: 26205499 - Biochem J. 2015 Aug 1;469(3):469-80 – reference: 21532587 - Nature. 2011 May 12;473(7346):181-6 – reference: 25006245 - J Biol Chem. 2014 Aug 22;289(34):23609-28 – reference: 25419960 - Nat Methods. 2015 Jan;12(1):51-4 – reference: 18547165 - Biochem J. 2008 Sep 15;414(3):399-406 – reference: 16399501 - Cell Metab. 2006 Jan;3(1):15-24 – reference: 27667171 - Trends Cell Biol. 2016 Nov;26(11):804-817 – reference: 21385899 - Cancer Res. 2011 Apr 15;71(8):2959-68 – reference: 7490291 - J Cell Biol. 1995 Nov;131(4):875-93 – reference: 9150132 - Cell. 1997 May 2;89(3):331-40 – reference: 8602507 - Science. 1996 Apr 12;272(5259):227-34 – reference: 14517296 - Mol Cell Biol. 2003 Oct;23(20):7271-84 – reference: 20603618 - Oncogene. 2010 Sep 30;29(39):5404-15 – reference: 23086038 - Diabetes. 2013 Feb;62(2):444-56 – reference: 15979503 - Biochim Biophys Acta. 2005 Jul 10;1744(3):293-303 – reference: 18285449 - J Cell Sci. 2008 Mar 15;121(Pt 6):753-61 – reference: 15979504 - Biochim Biophys Acta. 2005 Jul 10;1744(3):304-15 – reference: 8858160 - J Cell Biol. 1996 Oct;135(1):19-35 – reference: 18713835 - J Cell Sci. 2008 Sep 15;121(Pt 18):3025-34 |
SSID | ssj0002002496 |
Score | 2.1544302 |
Snippet | Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 382 |
Title | PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30466064 https://www.proquest.com/docview/2137462087 https://pubmed.ncbi.nlm.nih.gov/PMC6249397 https://doaj.org/article/a5c5989c984a404fb7a97645a6e55787 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiNfykpG4odA4fsQ-tquWFglYCkW9WXZi01QlqbopB349M3Z2tYsQXLjk4DiJMzPJPDzzDSGvjK5Y4Ni-3UsPDgrThVepCkTGtuatqFKXiPcf1NGpeHcmzzZafWFOWIYHzoTbdbKRRpvGaOFEKaKvHWhQIZ0KEqUN_76lKTecqYu0vYZQeKmznMScIBDNqWImJ3dhxSvmdek3COE5xVRWWimB9__J4vw9cXJDEx3eJXcmE5Lu5aXfI7dCf5_8XOx9OuH0JLeWD0t60LfDFZjG37sGRscc5ivGoXg7XH7rKOgoBI_AQDkdIp1_XBwf069hibekPzpHU6gwVz1QDNbSz6FhfBeOnNH54Ea6QIiHrl8-IKeHB1_mR8XUV6FohNJj4YXUpWlYVMA_7itvwKaoE_SgUODQwPsJX8uUXuoC4hRoDJaGWBrelKzlD8lOP_ThMaF1VLGVKlQyBiGDdrKMsa24CQyEg7kZYSu62mYCHcfeF5d2lV12YZEXFnkB3ogFXszI6_U1Vxly46-z95Fd65kIl50GQIjsJET2X0I0Iy9XzLbweeGeievDcLO0FZBFqKrEOY8y89ePwk1lIJeYkXpLLLbWsn2m784ThLcC6QRL8Mn_WPxTchvpkfEon5Gd8fomPAdLafQv0kfxCx-6DTg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAQR3+Regulates+Endoplasmic+Reticulum-to-Golgi+Trafficking+of+COPII+Vesicle+via+Interaction+with+Sec13%2FSec31+Coat+Proteins&rft.jtitle=iScience&rft.au=Cao%2C+Qianqian&rft.au=Wang%2C+Zheng&rft.au=Wan%2C+Huida&rft.au=Xu%2C+Lijiao&rft.date=2018-11-30&rft.eissn=2589-0042&rft.volume=9&rft.spage=382&rft_id=info:doi/10.1016%2Fj.isci.2018.11.002&rft_id=info%3Apmid%2F30466064&rft.externalDocID=30466064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |