PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins

Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPI...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 9; pp. 382 - 398
Main Authors Cao, Qianqian, Wang, Zheng, Wan, Huida, Xu, Lijiao, You, Xue, Liao, Lujian, Chen, Yan
Format Journal Article
LanguageEnglish
Published United States Elsevier 30.11.2018
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2018.11.002

Cover

Abstract Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
AbstractList Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. • ER-to-Golgi trafficking of COPII vesicles is affected by PAQR3 • PAQR3 is localized in the ERGIC and cis-Golgi structures • PAQR3 interacts with the coat proteins Sec13 and Sec31 of COPII vesicles • PAQR3 facilitates tethering of COPII vesicles to the Golgi apparatus Molecular Biology Experimental Approach; Cell Biology; Functional Aspects of Cell Biology
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles. : Molecular Biology Experimental Approach; Cell Biology; Functional Aspects of Cell Biology Subject Areas: Molecular Biology Experimental Approach, Cell Biology, Functional Aspects of Cell Biology
Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer cage. How COPII vesicles are tethered to the Golgi is not completely understood. We demonstrated here that PAQR3 can facilitate tethering of COPII vesicles to the Golgi. Proximity labeling using PAQR3 fused with APEX2 identified that many proteins involved in intracellular transport are in close proximity to PAQR3. ER-to-Golgi trafficking of N-acetylgalactosaminyltransferase-2 on removal of brefeldin A is delayed by PAQR3 deletion. RUSH assay also revealed that ER-to-Golgi trafficking is affected by PAQR3. The N-terminal end of PAQR3 can interact with the WD domains of Sec13 and Sec31A. PAQR3 enhances Golgi localization of Sec13 and Sec31A. Furthermore, PAQR3 is localized in the ERGIC and cis-Golgi structures, the acceptor sites for COPII vesicles. Taken together, our study uncovers a role for PAQR3 as a player in regulating ER-to-Golgi transport of COPII vesicles.
Author Xu, Lijiao
Wang, Zheng
Cao, Qianqian
You, Xue
Liao, Lujian
Chen, Yan
Wan, Huida
AuthorAffiliation 2 Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
3 School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China
1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
AuthorAffiliation_xml – name: 2 Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
– name: 1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– name: 3 School of Life Sciences and Technology, Shanghai Tech University, Shanghai 200031, China
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Cao
  fullname: Cao, Qianqian
– sequence: 2
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
– sequence: 3
  givenname: Huida
  surname: Wan
  fullname: Wan, Huida
– sequence: 4
  givenname: Lijiao
  surname: Xu
  fullname: Xu, Lijiao
– sequence: 5
  givenname: Xue
  surname: You
  fullname: You, Xue
– sequence: 6
  givenname: Lujian
  surname: Liao
  fullname: Liao, Lujian
– sequence: 7
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30466064$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3CAQRVWq5qP5Az1UHHvxBgzG5lIpWqWJpUjZpmmvCLNjh61ttoBTtb--eDeNkh4qIRgNb95jeHOMDkY3AkLvKFlQQsXZZmGDsYuc0GpB6YKQ_BU6yotKZoTw_OBZfIhOQ9iQhEiLS_EGHTLChSCCH6Hfq_PPtwzfQjf1OkLAF-PabXsdBmtSNloz9dOQRZddur6z-M7rtrXmux077Fq8vFnVNf4GwZoe8IPVuB4jeG2idSP-aeM9_gKGsrO0M4qXTke88i6CHcNb9LrVfYDTx_MEff10cbe8yq5vLuvl-XVmuKhi1vCiItLQVoAxrMkbWRS8pKws5a4JWBvelEWec0I0UCllRSgDaIlkhtA1O0H1nnft9EZtvR20_6WctmqXcL5T2se5AaULU8hKGllxzQlvm1LLUvBCCyiKsioT18c913ZqhqQMY_S6f0H68ma096pzD0qkn2dyJvjwSODdjwlCVEPyEfpej-CmoPLUGBc52Wm9f671JPLXvATI9wDjXQge2icIJWoeErVR85CoeUgUpSr5n4qqf4qMjXq2K73X9v8r_QMzjcFo
CitedBy_id crossref_primary_10_3390_cells11050780
crossref_primary_10_1111_tpj_16197
crossref_primary_10_1007_s12272_022_01408_z
crossref_primary_10_1016_j_mcpro_2022_100422
crossref_primary_10_1002_iid3_437
crossref_primary_10_1038_s41596_020_0399_0
crossref_primary_10_1038_s41598_020_61352_0
crossref_primary_10_1038_s41598_024_60687_2
crossref_primary_10_1021_acsnano_0c08596
crossref_primary_10_1002_wdev_392
crossref_primary_10_15252_embr_202050958
crossref_primary_10_1016_j_jprot_2020_103990
Cites_doi 10.1021/bi961616x
10.1038/ncomms9100
10.1016/j.bbamcr.2005.02.007
10.1042/BJ20141392
10.1126/science.1256898
10.1074/jbc.M114.561829
10.1126/science.1230593
10.1042/BJ20080948
10.1016/j.bbamcr.2005.03.003
10.1128/MCB.23.20.7271-7284.2003
10.1016/j.molcel.2016.05.030
10.1093/emboj/17.8.2156
10.1038/nature09969
10.1146/annurev.cellbio.24.110707.175421
10.1182/blood-2012-01-292086
10.1126/science.272.5259.227
10.1016/S0092-8674(00)80213-5
10.3109/09687688.2010.524894
10.1093/carcin/bgn139
10.1038/nbt.2375
10.1091/mbc.e06-05-0444
10.1016/S0092-8674(00)80608-X
10.1074/jbc.M504041200
10.1093/carcin/bgs245
10.1242/jcs.031070
10.15252/embj.201592864
10.1038/nprot.2016.018
10.1016/j.ajhg.2016.06.011
10.1016/0092-8674(89)90685-5
10.1016/j.cmet.2005.11.014
10.1038/nmeth.1928
10.1093/annonc/mdu168
10.1016/j.devcel.2015.10.015
10.1101/cshperspect.a013391
10.1128/MCB.01038-09
10.1016/j.devcel.2017.11.020
10.1016/j.molcel.2014.06.003
10.1016/j.cellsig.2017.04.023
10.1242/jcs.03019
10.1016/j.tcb.2016.09.004
10.1083/jcb.143.6.1505
10.1038/onc.2010.270
10.1083/jcb.131.4.875
10.1093/oxfordjournals.jbchem.a123712
10.1091/mbc.7.10.1535
10.1073/pnas.0701298104
10.1016/S1097-2765(02)00591-9
10.1126/science.291.5507.1363
10.1158/0008-5472.CAN-10-4077
10.1242/jcs.017681
10.1038/nmeth.3179
10.1038/nature04339
10.1007/s00239-004-0375-2
10.1016/j.cellsig.2015.08.017
10.1083/jcb.135.1.19
10.2337/db12-0244
10.1002/hep.29786
10.1016/j.cellsig.2017.02.017
10.1101/cshperspect.a013367
10.1042/BJ20150253
ContentType Journal Article
Copyright Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018 The Author(s) 2018
Copyright_xml – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author(s) 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.11.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 398
ExternalDocumentID oai_doaj_org_article_a5c5989c984a404fb7a97645a6e55787
PMC6249397
30466064
10_1016_j_isci_2018_11_002
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AACTN
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-b45809c1f6ecc3b2b955471377946606edc4b7522400ae19998013eef093c01d3
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:28:04 EDT 2025
Thu Aug 21 13:50:02 EDT 2025
Thu Jul 10 23:00:16 EDT 2025
Thu Apr 03 06:57:30 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Thu Apr 24 22:51:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional Aspects of Cell Biology
Cell Biology
Molecular Biology Experimental Approach
Language English
License Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-b45809c1f6ecc3b2b955471377946606edc4b7522400ae19998013eef093c01d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/a5c5989c984a404fb7a97645a6e55787
PMID 30466064
PQID 2137462087
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a5c5989c984a404fb7a97645a6e55787
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6249397
proquest_miscellaneous_2137462087
pubmed_primary_30466064
crossref_primary_10_1016_j_isci_2018_11_002
crossref_citationtrail_10_1016_j_isci_2018_11_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier
Publisher_xml – name: Elsevier
References Wang (10.1016/j.isci.2018.11.002_bib50) 2012; 33
Brown (10.1016/j.isci.2018.11.002_bib8) 1997; 89
Liu (10.1016/j.isci.2018.11.002_bib28) 2015; 467
Hewavitharana (10.1016/j.isci.2018.11.002_bib16) 2015; 27
Helm (10.1016/j.isci.2018.11.002_bib15) 2014; 289
Paccaud (10.1016/j.isci.2018.11.002_bib36) 1996; 7
Townley (10.1016/j.isci.2018.11.002_bib48) 2008; 121
Spang (10.1016/j.isci.2018.11.002_bib42) 2013; 5
Tang (10.1016/j.isci.2018.11.002_bib46) 2005; 1744
Cao (10.1016/j.isci.2018.11.002_bib9) 1998; 17
Jiang (10.1016/j.isci.2018.11.002_bib20) 2011; 71
Martinez-Menarguez (10.1016/j.isci.2018.11.002_bib33) 1999; 98
Zhao (10.1016/j.isci.2018.11.002_bib60) 2018; 68
Izumi (10.1016/j.isci.2018.11.002_bib19) 2016; 99
Stagg (10.1016/j.isci.2018.11.002_bib43) 2006; 439
Rhee (10.1016/j.isci.2018.11.002_bib38) 2013; 339
Bendayan (10.1016/j.isci.2018.11.002_bib4) 2001; 291
Rothman (10.1016/j.isci.2018.11.002_bib39) 1996; 272
Sun (10.1016/j.isci.2018.11.002_bib45) 2005; 280
Jiang (10.1016/j.isci.2018.11.002_bib21) 2010; 30
Xu (10.1016/j.isci.2018.11.002_bib55) 2015; 6
Xu (10.1016/j.isci.2018.11.002_bib56) 2016; 35
Hung (10.1016/j.isci.2018.11.002_bib18) 2014; 55
Martell (10.1016/j.isci.2018.11.002_bib32) 2012; 30
Hung (10.1016/j.isci.2018.11.002_bib17) 2016; 11
Mick (10.1016/j.isci.2018.11.002_bib34) 2015; 35
You (10.1016/j.isci.2018.11.002_bib58) 2017; 36
Farhan (10.1016/j.isci.2018.11.002_bib11) 2008; 121
Joo (10.1016/j.isci.2018.11.002_bib22) 2016; 62
Brown (10.1016/j.isci.2018.11.002_bib7) 2002; 10
Yamasaki (10.1016/j.isci.2018.11.002_bib57) 2006; 17
Glick (10.1016/j.isci.2018.11.002_bib13) 2009; 25
Lord (10.1016/j.isci.2018.11.002_bib30) 2013; 5
Ling (10.1016/j.isci.2018.11.002_bib26) 2014; 25
Wong (10.1016/j.isci.2018.11.002_bib53) 2014; 346
Bannykh (10.1016/j.isci.2018.11.002_bib3) 1996; 135
Khoriaty (10.1016/j.isci.2018.11.002_bib23) 2012; 120
Qiao (10.1016/j.isci.2018.11.002_bib37) 2015; 469
Appenzeller-Herzog (10.1016/j.isci.2018.11.002_bib1) 2006; 119
Lord (10.1016/j.isci.2018.11.002_bib29) 2011; 473
Wang (10.1016/j.isci.2018.11.002_bib49) 2017; 33
Xie (10.1016/j.isci.2018.11.002_bib54) 2008; 29
Lippincott-Schwartz (10.1016/j.isci.2018.11.002_bib27) 1989; 56
Wang (10.1016/j.isci.2018.11.002_bib51) 2013; 62
Bersuker (10.1016/j.isci.2018.11.002_bib5) 2018; 44
Lam (10.1016/j.isci.2018.11.002_bib25) 2015; 12
Aridor (10.1016/j.isci.2018.11.002_bib2) 1995; 131
Tang (10.1016/j.isci.2018.11.002_bib47) 2005; 61
Zhang (10.1016/j.isci.2018.11.002_bib59) 2010; 29
Mitoma (10.1016/j.isci.2018.11.002_bib35) 1992; 111
Boncompain (10.1016/j.isci.2018.11.002_bib6) 2012; 9
Routledge (10.1016/j.isci.2018.11.002_bib40) 2010; 27
Watson (10.1016/j.isci.2018.11.002_bib52) 2005; 1744
Luo (10.1016/j.isci.2018.11.002_bib31) 2008; 414
Kim (10.1016/j.isci.2018.11.002_bib24) 2016; 26
Feng (10.1016/j.isci.2018.11.002_bib12) 2007; 104
Enninga (10.1016/j.isci.2018.11.002_bib10) 2003; 23
Gong (10.1016/j.isci.2018.11.002_bib14) 2006; 3
Saxena (10.1016/j.isci.2018.11.002_bib41) 1996; 35
Storrie (10.1016/j.isci.2018.11.002_bib44) 1998; 143
22828136 - Carcinogenesis. 2012 Nov;33(11):2228-35
25706881 - Biochem J. 2015 May 1;467(3):415-24
26327583 - Cell Signal. 2015 Dec;27(12):2444-51
16044242 - J Mol Evol. 2005 Sep;61(3):372-80
9545229 - EMBO J. 1998 Apr 15;17(8):2156-65
22586181 - Blood. 2012 Jul 5;120(1):31-8
10412983 - Cell. 1999 Jul 9;98(1):81-90
28473198 - Cell Signal. 2017 Aug;36:108-116
16957052 - Mol Biol Cell. 2006 Nov;17(11):4876-87
21532587 - Nature. 2011 May 12;473(7346):181-6
15979504 - Biochim Biophys Acta. 2005 Jul 10;1744(3):304-15
18713835 - J Cell Sci. 2008 Sep 15;121(Pt 18):3025-34
29275994 - Dev Cell. 2018 Jan 8;44(1):97-112.e7
23086038 - Diabetes. 2013 Feb;62(2):444-56
26834238 - EMBO J. 2016 Mar 1;35(5):496-514
27476655 - Am J Hum Genet. 2016 Aug 4;99(2):451-9
2647301 - Cell. 1989 Mar 10;56(5):801-13
23732476 - Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6):null
28214587 - Cell Signal. 2017 May;33:98-106
29331071 - Hepatology. 2018 Jul;68(1):289-303
23371551 - Science. 2013 Mar 15;339(6125):1328-1331
12191470 - Mol Cell. 2002 Aug;10(2):237-45
1318879 - J Biochem. 1992 Jan;111(1):20-4
8602507 - Science. 1996 Apr 12;272(5259):227-34
15979503 - Biochim Biophys Acta. 2005 Jul 10;1744(3):293-303
16399501 - Cell Metab. 2006 Jan;3(1):15-24
22406856 - Nat Methods. 2012 Mar 11;9(5):493-8
23378591 - Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):null
26311497 - Nat Commun. 2015 Aug 27;6:8100
18550569 - Carcinogenesis. 2008 Aug;29(8):1632-8
25002142 - Mol Cell. 2014 Jul 17;55(2):332-41
9150132 - Cell. 1997 May 2;89(3):331-40
27667171 - Trends Cell Biol. 2016 Nov;26(11):804-817
8858160 - J Cell Biol. 1996 Oct;135(1):19-35
21054154 - Mol Membr Biol. 2010 Nov;27(8):385-97
15899885 - J Biol Chem. 2005 Jul 15;280(28):26483-90
16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83
24799462 - Ann Oncol. 2014 Jul;25(7):1363-72
17724343 - Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14348-53
11233453 - Science. 2001 Feb 16;291(5507):1363-5
18285449 - J Cell Sci. 2008 Mar 15;121(Pt 6):753-61
18547165 - Biochem J. 2008 Sep 15;414(3):399-406
27315557 - Mol Cell. 2016 Jun 16;62(6):982
26866790 - Nat Protoc. 2016 Mar;11(3):456-75
14517296 - Mol Cell Biol. 2003 Oct;23(20):7271-84
20603618 - Oncogene. 2010 Sep 30;29(39):5404-15
25006245 - J Biol Chem. 2014 Aug 22;289(34):23609-28
16407955 - Nature. 2006 Jan 12;439(7073):234-8
8952469 - Biochemistry. 1996 Dec 3;35(48):15215-21
19884349 - Mol Cell Biol. 2010 Jan;30(1):78-90
25359980 - Science. 2014 Oct 31;346(6209):1256898
23086203 - Nat Biotechnol. 2012 Nov;30(11):1143-8
7490291 - J Cell Biol. 1995 Nov;131(4):875-93
9852147 - J Cell Biol. 1998 Dec 14;143(6):1505-21
21385899 - Cancer Res. 2011 Apr 15;71(8):2959-68
26205499 - Biochem J. 2015 Aug 1;469(3):469-80
19575639 - Annu Rev Cell Dev Biol. 2009;25:113-32
8898360 - Mol Biol Cell. 1996 Oct;7(10):1535-46
25419960 - Nat Methods. 2015 Jan;12(1):51-4
26585297 - Dev Cell. 2015 Nov 23;35(4):497-512
References_xml – volume: 35
  start-page: 15215
  year: 1996
  ident: 10.1016/j.isci.2018.11.002_bib41
  article-title: Analysis of the physical properties and molecular modeling of Sec13: a WD repeat protein involved in vesicular traffic
  publication-title: Biochemistry
  doi: 10.1021/bi961616x
– volume: 6
  start-page: 8100
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib55
  article-title: PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9100
– volume: 1744
  start-page: 293
  year: 2005
  ident: 10.1016/j.isci.2018.11.002_bib46
  article-title: COPII and exit from the endoplasmic reticulum
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2005.02.007
– volume: 467
  start-page: 415
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib28
  article-title: PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20141392
– volume: 346
  start-page: 1256898
  year: 2014
  ident: 10.1016/j.isci.2018.11.002_bib53
  article-title: The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
  publication-title: Science
  doi: 10.1126/science.1256898
– volume: 289
  start-page: 23609
  year: 2014
  ident: 10.1016/j.isci.2018.11.002_bib15
  article-title: Apoptosis-linked gene-2 (ALG-2)/Sec31 interactions regulate endoplasmic reticulum (ER)-to-Golgi transport: a potential effector pathway for luminal calcium
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.561829
– volume: 339
  start-page: 1328
  year: 2013
  ident: 10.1016/j.isci.2018.11.002_bib38
  article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging
  publication-title: Science
  doi: 10.1126/science.1230593
– volume: 414
  start-page: 399
  year: 2008
  ident: 10.1016/j.isci.2018.11.002_bib31
  article-title: Characterization of the topology and functional domains of RKTG
  publication-title: Biochem. J.
  doi: 10.1042/BJ20080948
– volume: 1744
  start-page: 304
  year: 2005
  ident: 10.1016/j.isci.2018.11.002_bib52
  article-title: ER-to-Golgi transport: form and formation of vesicular and tubular carriers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2005.03.003
– volume: 23
  start-page: 7271
  year: 2003
  ident: 10.1016/j.isci.2018.11.002_bib10
  article-title: Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7271-7284.2003
– volume: 62
  start-page: 982
  year: 2016
  ident: 10.1016/j.isci.2018.11.002_bib22
  article-title: The noncanonical role of ULK/ATG1 in ER-to-golgi trafficking is essential for cellular homeostasis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.030
– volume: 17
  start-page: 2156
  year: 1998
  ident: 10.1016/j.isci.2018.11.002_bib9
  article-title: Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.8.2156
– volume: 473
  start-page: 181
  year: 2011
  ident: 10.1016/j.isci.2018.11.002_bib29
  article-title: Sequential interactions with Sec23 control the direction of vesicle traffic
  publication-title: Nature
  doi: 10.1038/nature09969
– volume: 25
  start-page: 113
  year: 2009
  ident: 10.1016/j.isci.2018.11.002_bib13
  article-title: Membrane traffic within the Golgi apparatus
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.24.110707.175421
– volume: 120
  start-page: 31
  year: 2012
  ident: 10.1016/j.isci.2018.11.002_bib23
  article-title: The COPII pathway and hematologic disease
  publication-title: Blood
  doi: 10.1182/blood-2012-01-292086
– volume: 272
  start-page: 227
  year: 1996
  ident: 10.1016/j.isci.2018.11.002_bib39
  article-title: Protein sorting by transport vesicles
  publication-title: Science
  doi: 10.1126/science.272.5259.227
– volume: 89
  start-page: 331
  year: 1997
  ident: 10.1016/j.isci.2018.11.002_bib8
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80213-5
– volume: 27
  start-page: 385
  year: 2010
  ident: 10.1016/j.isci.2018.11.002_bib40
  article-title: Emergent properties of proteostasis-COPII coupled systems in human health and disease
  publication-title: Mol. Membr. Biol.
  doi: 10.3109/09687688.2010.524894
– volume: 29
  start-page: 1632
  year: 2008
  ident: 10.1016/j.isci.2018.11.002_bib54
  article-title: Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgn139
– volume: 30
  start-page: 1143
  year: 2012
  ident: 10.1016/j.isci.2018.11.002_bib32
  article-title: Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2375
– volume: 17
  start-page: 4876
  year: 2006
  ident: 10.1016/j.isci.2018.11.002_bib57
  article-title: The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-05-0444
– volume: 98
  start-page: 81
  year: 1999
  ident: 10.1016/j.isci.2018.11.002_bib33
  article-title: Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion front COPI-coated vesicles
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80608-X
– volume: 280
  start-page: 26483
  year: 2005
  ident: 10.1016/j.isci.2018.11.002_bib45
  article-title: Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504041200
– volume: 33
  start-page: 2228
  year: 2012
  ident: 10.1016/j.isci.2018.11.002_bib50
  article-title: PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs245
– volume: 121
  start-page: 3025
  year: 2008
  ident: 10.1016/j.isci.2018.11.002_bib48
  article-title: Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.031070
– volume: 35
  start-page: 496
  year: 2016
  ident: 10.1016/j.isci.2018.11.002_bib56
  article-title: PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity
  publication-title: EMBO J.
  doi: 10.15252/embj.201592864
– volume: 11
  start-page: 456
  year: 2016
  ident: 10.1016/j.isci.2018.11.002_bib17
  article-title: Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.018
– volume: 99
  start-page: 451
  year: 2016
  ident: 10.1016/j.isci.2018.11.002_bib19
  article-title: ARCN1 mutations cause a recognizable craniofacial syndrome due to COPI-mediated transport defects
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2016.06.011
– volume: 56
  start-page: 801
  year: 1989
  ident: 10.1016/j.isci.2018.11.002_bib27
  article-title: Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90685-5
– volume: 3
  start-page: 15
  year: 2006
  ident: 10.1016/j.isci.2018.11.002_bib14
  article-title: Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.11.014
– volume: 9
  start-page: 493
  year: 2012
  ident: 10.1016/j.isci.2018.11.002_bib6
  article-title: Synchronization of secretory protein traffic in populations of cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1928
– volume: 25
  start-page: 1363
  year: 2014
  ident: 10.1016/j.isci.2018.11.002_bib26
  article-title: A Golgi-specific protein PAQR3 is closely associated with the progression, metastasis and prognosis of human gastric cancers
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu168
– volume: 35
  start-page: 497
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib34
  article-title: Proteomics of primary cilia by proximity labeling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.10.015
– volume: 5
  year: 2013
  ident: 10.1016/j.isci.2018.11.002_bib42
  article-title: Retrograde traffic from the Golgi to the endoplasmic reticulum
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a013391
– volume: 30
  start-page: 78
  year: 2010
  ident: 10.1016/j.isci.2018.11.002_bib21
  article-title: Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01038-09
– volume: 44
  start-page: 97
  year: 2018
  ident: 10.1016/j.isci.2018.11.002_bib5
  article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.11.020
– volume: 55
  start-page: 332
  year: 2014
  ident: 10.1016/j.isci.2018.11.002_bib18
  article-title: Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.06.003
– volume: 36
  start-page: 108
  year: 2017
  ident: 10.1016/j.isci.2018.11.002_bib58
  article-title: Subcellular distribution of RAD23B controls XPC degradation and DNA damage repair in response to chemotherapy drugs
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2017.04.023
– volume: 119
  start-page: 2173
  year: 2006
  ident: 10.1016/j.isci.2018.11.002_bib1
  article-title: The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03019
– volume: 26
  start-page: 804
  year: 2016
  ident: 10.1016/j.isci.2018.11.002_bib24
  article-title: Filling the void: proximity-based labeling of proteins in living cells
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.09.004
– volume: 143
  start-page: 1505
  year: 1998
  ident: 10.1016/j.isci.2018.11.002_bib44
  article-title: Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.6.1505
– volume: 29
  start-page: 5404
  year: 2010
  ident: 10.1016/j.isci.2018.11.002_bib59
  article-title: RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma
  publication-title: Oncogene
  doi: 10.1038/onc.2010.270
– volume: 131
  start-page: 875
  year: 1995
  ident: 10.1016/j.isci.2018.11.002_bib2
  article-title: Sequential coupling between Copii and Copi vesicle coats in endoplasmic-reticulum to Golgi transport
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.131.4.875
– volume: 111
  start-page: 20
  year: 1992
  ident: 10.1016/j.isci.2018.11.002_bib35
  article-title: Mitochondrial targeting signal of rat-liver monoamine oxidase-B is located at its carboxy terminus
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a123712
– volume: 7
  start-page: 1535
  year: 1996
  ident: 10.1016/j.isci.2018.11.002_bib36
  article-title: Cloning and functional characterization of mammalian homologues of the COPII component Sec23
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.7.10.1535
– volume: 104
  start-page: 14348
  year: 2007
  ident: 10.1016/j.isci.2018.11.002_bib12
  article-title: Spatial regulation of Raf kinase signaling by RKTG
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0701298104
– volume: 10
  start-page: 237
  year: 2002
  ident: 10.1016/j.isci.2018.11.002_bib7
  article-title: Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00591-9
– volume: 291
  start-page: 1363
  year: 2001
  ident: 10.1016/j.isci.2018.11.002_bib4
  article-title: Worth its weight in gold
  publication-title: Science
  doi: 10.1126/science.291.5507.1363
– volume: 71
  start-page: 2959
  year: 2011
  ident: 10.1016/j.isci.2018.11.002_bib20
  article-title: Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4077
– volume: 121
  start-page: 753
  year: 2008
  ident: 10.1016/j.isci.2018.11.002_bib11
  article-title: Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.017681
– volume: 12
  start-page: 51
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib25
  article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3179
– volume: 439
  start-page: 234
  year: 2006
  ident: 10.1016/j.isci.2018.11.002_bib43
  article-title: Structure of the Sec13/31 COPII coat cage
  publication-title: Nature
  doi: 10.1038/nature04339
– volume: 61
  start-page: 372
  year: 2005
  ident: 10.1016/j.isci.2018.11.002_bib47
  article-title: PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-004-0375-2
– volume: 27
  start-page: 2444
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib16
  article-title: PAQR3 regulates Golgi vesicle fission and transport via the Gbetagamma-PKD signaling pathway
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2015.08.017
– volume: 135
  start-page: 19
  year: 1996
  ident: 10.1016/j.isci.2018.11.002_bib3
  article-title: The organization of endoplasmic reticulum export complexes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.135.1.19
– volume: 62
  start-page: 444
  year: 2013
  ident: 10.1016/j.isci.2018.11.002_bib51
  article-title: PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110alpha to the Golgi apparatus
  publication-title: Diabetes
  doi: 10.2337/db12-0244
– volume: 68
  start-page: 289
  year: 2018
  ident: 10.1016/j.isci.2018.11.002_bib60
  article-title: Hepatic PPARalpha function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1
  publication-title: Hepatology
  doi: 10.1002/hep.29786
– volume: 33
  start-page: 98
  year: 2017
  ident: 10.1016/j.isci.2018.11.002_bib49
  article-title: PAQR3 augments amino acid deprivation-induced autophagy by inhibiting mTORC1 signaling
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2017.02.017
– volume: 5
  year: 2013
  ident: 10.1016/j.isci.2018.11.002_bib30
  article-title: The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the Golgi
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a013367
– volume: 469
  start-page: 469
  year: 2015
  ident: 10.1016/j.isci.2018.11.002_bib37
  article-title: DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150253
– reference: 19884349 - Mol Cell Biol. 2010 Jan;30(1):78-90
– reference: 8952469 - Biochemistry. 1996 Dec 3;35(48):15215-21
– reference: 22828136 - Carcinogenesis. 2012 Nov;33(11):2228-35
– reference: 10412983 - Cell. 1999 Jul 9;98(1):81-90
– reference: 2647301 - Cell. 1989 Mar 10;56(5):801-13
– reference: 11233453 - Science. 2001 Feb 16;291(5507):1363-5
– reference: 27476655 - Am J Hum Genet. 2016 Aug 4;99(2):451-9
– reference: 23371551 - Science. 2013 Mar 15;339(6125):1328-1331
– reference: 17724343 - Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14348-53
– reference: 29275994 - Dev Cell. 2018 Jan 8;44(1):97-112.e7
– reference: 15899885 - J Biol Chem. 2005 Jul 15;280(28):26483-90
– reference: 16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83
– reference: 25706881 - Biochem J. 2015 May 1;467(3):415-24
– reference: 1318879 - J Biochem. 1992 Jan;111(1):20-4
– reference: 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8
– reference: 25002142 - Mol Cell. 2014 Jul 17;55(2):332-41
– reference: 23086203 - Nat Biotechnol. 2012 Nov;30(11):1143-8
– reference: 19575639 - Annu Rev Cell Dev Biol. 2009;25:113-32
– reference: 26311497 - Nat Commun. 2015 Aug 27;6:8100
– reference: 28214587 - Cell Signal. 2017 May;33:98-106
– reference: 28473198 - Cell Signal. 2017 Aug;36:108-116
– reference: 23732476 - Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6):null
– reference: 18550569 - Carcinogenesis. 2008 Aug;29(8):1632-8
– reference: 26834238 - EMBO J. 2016 Mar 1;35(5):496-514
– reference: 22586181 - Blood. 2012 Jul 5;120(1):31-8
– reference: 26327583 - Cell Signal. 2015 Dec;27(12):2444-51
– reference: 16957052 - Mol Biol Cell. 2006 Nov;17(11):4876-87
– reference: 21054154 - Mol Membr Biol. 2010 Nov;27(8):385-97
– reference: 16044242 - J Mol Evol. 2005 Sep;61(3):372-80
– reference: 16407955 - Nature. 2006 Jan 12;439(7073):234-8
– reference: 12191470 - Mol Cell. 2002 Aug;10(2):237-45
– reference: 24799462 - Ann Oncol. 2014 Jul;25(7):1363-72
– reference: 8898360 - Mol Biol Cell. 1996 Oct;7(10):1535-46
– reference: 9852147 - J Cell Biol. 1998 Dec 14;143(6):1505-21
– reference: 9545229 - EMBO J. 1998 Apr 15;17(8):2156-65
– reference: 25359980 - Science. 2014 Oct 31;346(6209):1256898
– reference: 26585297 - Dev Cell. 2015 Nov 23;35(4):497-512
– reference: 27315557 - Mol Cell. 2016 Jun 16;62(6):982
– reference: 29331071 - Hepatology. 2018 Jul;68(1):289-303
– reference: 23378591 - Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):null
– reference: 26866790 - Nat Protoc. 2016 Mar;11(3):456-75
– reference: 26205499 - Biochem J. 2015 Aug 1;469(3):469-80
– reference: 21532587 - Nature. 2011 May 12;473(7346):181-6
– reference: 25006245 - J Biol Chem. 2014 Aug 22;289(34):23609-28
– reference: 25419960 - Nat Methods. 2015 Jan;12(1):51-4
– reference: 18547165 - Biochem J. 2008 Sep 15;414(3):399-406
– reference: 16399501 - Cell Metab. 2006 Jan;3(1):15-24
– reference: 27667171 - Trends Cell Biol. 2016 Nov;26(11):804-817
– reference: 21385899 - Cancer Res. 2011 Apr 15;71(8):2959-68
– reference: 7490291 - J Cell Biol. 1995 Nov;131(4):875-93
– reference: 9150132 - Cell. 1997 May 2;89(3):331-40
– reference: 8602507 - Science. 1996 Apr 12;272(5259):227-34
– reference: 14517296 - Mol Cell Biol. 2003 Oct;23(20):7271-84
– reference: 20603618 - Oncogene. 2010 Sep 30;29(39):5404-15
– reference: 23086038 - Diabetes. 2013 Feb;62(2):444-56
– reference: 15979503 - Biochim Biophys Acta. 2005 Jul 10;1744(3):293-303
– reference: 18285449 - J Cell Sci. 2008 Mar 15;121(Pt 6):753-61
– reference: 15979504 - Biochim Biophys Acta. 2005 Jul 10;1744(3):304-15
– reference: 8858160 - J Cell Biol. 1996 Oct;135(1):19-35
– reference: 18713835 - J Cell Sci. 2008 Sep 15;121(Pt 18):3025-34
SSID ssj0002002496
Score 2.1544302
Snippet Endoplasmic reticulum (ER)-to-Golgi anterograde transport is driven by COPII vesicles mainly composed of a Sec23/Sec24 inner shell and a Sec13/Sec31 outer...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 382
Title PAQR3 Regulates Endoplasmic Reticulum-to-Golgi Trafficking of COPII Vesicle via Interaction with Sec13/Sec31 Coat Proteins
URI https://www.ncbi.nlm.nih.gov/pubmed/30466064
https://www.proquest.com/docview/2137462087
https://pubmed.ncbi.nlm.nih.gov/PMC6249397
https://doaj.org/article/a5c5989c984a404fb7a97645a6e55787
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiNfykpG4odA4fsQ-tquWFglYCkW9WXZi01QlqbopB349M3Z2tYsQXLjk4DiJMzPJPDzzDSGvjK5Y4Ni-3UsPDgrThVepCkTGtuatqFKXiPcf1NGpeHcmzzZafWFOWIYHzoTbdbKRRpvGaOFEKaKvHWhQIZ0KEqUN_76lKTecqYu0vYZQeKmznMScIBDNqWImJ3dhxSvmdek3COE5xVRWWimB9__J4vw9cXJDEx3eJXcmE5Lu5aXfI7dCf5_8XOx9OuH0JLeWD0t60LfDFZjG37sGRscc5ivGoXg7XH7rKOgoBI_AQDkdIp1_XBwf069hibekPzpHU6gwVz1QDNbSz6FhfBeOnNH54Ea6QIiHrl8-IKeHB1_mR8XUV6FohNJj4YXUpWlYVMA_7itvwKaoE_SgUODQwPsJX8uUXuoC4hRoDJaGWBrelKzlD8lOP_ThMaF1VLGVKlQyBiGDdrKMsa24CQyEg7kZYSu62mYCHcfeF5d2lV12YZEXFnkB3ogFXszI6_U1Vxly46-z95Fd65kIl50GQIjsJET2X0I0Iy9XzLbweeGeievDcLO0FZBFqKrEOY8y89ePwk1lIJeYkXpLLLbWsn2m784ThLcC6QRL8Mn_WPxTchvpkfEon5Gd8fomPAdLafQv0kfxCx-6DTg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAQR3+Regulates+Endoplasmic+Reticulum-to-Golgi+Trafficking+of+COPII+Vesicle+via+Interaction+with+Sec13%2FSec31+Coat+Proteins&rft.jtitle=iScience&rft.au=Cao%2C+Qianqian&rft.au=Wang%2C+Zheng&rft.au=Wan%2C+Huida&rft.au=Xu%2C+Lijiao&rft.date=2018-11-30&rft.eissn=2589-0042&rft.volume=9&rft.spage=382&rft_id=info:doi/10.1016%2Fj.isci.2018.11.002&rft_id=info%3Apmid%2F30466064&rft.externalDocID=30466064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon