Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries
Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scala...
Saved in:
Published in | iScience Vol. 16; pp. 122 - 132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
28.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2019.05.023 |
Cover
Abstract | Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO
@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO
nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO
, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO
loadings (>1.6 mg/cm
) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. |
---|---|
AbstractList | Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C.Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. : Electrochemical Energy Storage; Nanomaterials; Materials Characterization; Porous Material Subject Areas: Electrochemical Energy Storage, Nanomaterials, Materials Characterization, Porous Material Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO @N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO , whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO loadings (>1.6 mg/cm ) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO 2 @N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO 2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO 2 , whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO 2 loadings (>1.6 mg/cm 2 ) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. • A scalable method is developed for the fabrication of flexible silica anodes • The flexible mechanisms of carbon nanofiber and silica films are illustrated • High-silica-loading anodes exhibit long cycle stability and high rate capability • Soft silica anodes show appealing properties for soft batteries Electrochemical Energy Storage; Nanomaterials; Materials Characterization; Porous Material |
Author | Ding, Bin Dong, Keqi Zhao, Yun Aboalhassan, Ahmed A. Yan, Jianhua Yu, Jianyong Wang, Xiao |
AuthorAffiliation | 3 Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China 1 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China 2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China |
AuthorAffiliation_xml | – name: 3 Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China – name: 2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China – name: 1 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China |
Author_xml | – sequence: 1 givenname: Ahmed A. surname: Aboalhassan fullname: Aboalhassan, Ahmed A. – sequence: 2 givenname: Jianhua surname: Yan fullname: Yan, Jianhua – sequence: 3 givenname: Yun surname: Zhao fullname: Zhao, Yun – sequence: 4 givenname: Keqi surname: Dong fullname: Dong, Keqi – sequence: 5 givenname: Xiao surname: Wang fullname: Wang, Xiao – sequence: 6 givenname: Jianyong surname: Yu fullname: Yu, Jianyong – sequence: 7 givenname: Bin surname: Ding fullname: Ding, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31158691$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAfOSSYDtxYl-QluWr0gqQlp6tiTNuvfLGWztb6L-vw5aq5YBkyR_zzjO2531ZHI1hxKJ4zWjFKGvfbSqXjKs4ZaqioqK8flaccCFVSWnDjx6tj4uzlDaUUp5Ho9oXxXHNmJCtYifF9Rq9LRcp4bb3OJAfIYZ9KtfOOwPkl5uu3Ei-lR_DLgeXEPuQtzAG63qMiUAiF36KUFqPv10mkMUYBkzEhkjWwU5kNSP2W_IBpgmjw_SqeG7BJzy7n0-Li8-ffi6_lqvvX86Xi1VpmlZOJajeAO8GwTtp2WDpYASTg2klWiZ74FYKIQdlJFeiAalU26CUnaQS-w7r-rQ4P3CHABu9i24L8VYHcPrPQYiXGuLkjEdtlAShDGs4iIbbXJoiWNlaZhoLrM-s9wfWbt9vcTA45jf7J9CnkdFd6ctwo1vRiFrRDHh7D4jheo9p0tvcPvQeRsz_rTmvBe14LbssffO41kORvz3LAn4QmBhSimgfJIzq2Rt6o2dv6NkbmgqdvZGT5D9Jxk0wuTDf1_n_pd4B5zrBvQ |
CitedBy_id | crossref_primary_10_1016_j_electacta_2023_142097 crossref_primary_10_1016_j_compositesb_2021_109531 crossref_primary_10_1016_j_seppur_2021_119731 crossref_primary_10_1002_asia_202201198 crossref_primary_10_1016_j_cej_2021_130346 crossref_primary_10_1016_j_compositesb_2022_110386 crossref_primary_10_1016_j_jece_2023_111361 crossref_primary_10_1016_j_ssi_2021_115817 crossref_primary_10_1016_j_cej_2023_142798 crossref_primary_10_1016_j_jpowsour_2023_233493 crossref_primary_10_1007_s10008_024_06082_3 crossref_primary_10_1016_j_jelechem_2024_118141 crossref_primary_10_20964_2022_12_01 crossref_primary_10_1002_aesr_202100020 crossref_primary_10_1088_1361_6528_acf37f crossref_primary_10_1002_adfm_202208349 crossref_primary_10_1016_j_jcis_2022_05_067 crossref_primary_10_1021_acsami_9b23099 crossref_primary_10_1002_er_8448 crossref_primary_10_3390_polym16030327 crossref_primary_10_1039_D0RA10229F crossref_primary_10_1016_j_electacta_2023_142165 crossref_primary_10_1038_s41467_019_13430_9 crossref_primary_10_26599_JAC_2023_9220673 crossref_primary_10_1007_s12598_021_01788_z crossref_primary_10_1002_batt_202500021 crossref_primary_10_1021_acsanm_1c00894 crossref_primary_10_1016_j_jcis_2019_11_041 crossref_primary_10_1016_j_rser_2020_110085 crossref_primary_10_1002_admi_202201231 crossref_primary_10_1007_s42765_020_00035_x |
Cites_doi | 10.1021/cm901452z 10.1039/C7TA02153D 10.1016/j.apsusc.2007.11.058 10.1016/j.elecom.2008.09.032 10.1016/j.ceramint.2013.02.081 10.1039/C8TA03968B 10.1149/1.1388178 10.1038/srep01919 10.1016/j.nanoen.2018.06.067 10.1149/1.2752985 10.1021/acsnano.6b08262 10.1039/C6RA11451B 10.1039/c2ee00003b 10.1016/j.cplett.2016.03.015 10.1016/j.micromeso.2011.09.003 10.1039/c1ee01598b 10.1038/nnano.2012.35 10.1002/aenm.201700418 10.1038/srep01568 10.1039/C5TA02954F 10.1016/j.jpowsour.2018.09.086 10.1039/C4TA00716F 10.1016/j.jpowsour.2014.08.128 10.1039/C7TA07024A 10.1016/j.jpowsour.2017.07.073 10.1021/acs.chemrev.8b00422 10.1038/nmat1368 10.1016/j.jpowsour.2018.12.022 10.1021/acsami.6b11996 10.1039/C5TA08620E 10.1016/j.jpowsour.2017.01.125 10.1039/C5CC06666B 10.1149/1.1652421 10.1039/c1jm10864f 10.1038/s41467-018-06879-7 10.1021/acsnano.6b06326 10.1016/j.carbon.2009.07.018 10.1021/jz1015422 10.1039/C6TA00762G 10.1039/C4CP05995F 10.1016/j.jpowsour.2013.11.103 10.1021/jp5011023 10.1016/j.carbon.2014.05.030 10.1039/C7TA02334K 10.1016/j.jpowsour.2018.02.004 10.1016/j.electacta.2015.04.035 10.1039/C6NJ01698G 10.1007/s12274-012-0268-4 10.1016/j.electacta.2015.07.141 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.05.023 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 132 |
ExternalDocumentID | oai_doaj_org_article_c98a59c142a542fa9b0eaf86f1c4fa1b PMC6545390 31158691 10_1016_j_isci_2019_05_023 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c468t-a9bca27d5278f1df0dc518dc68ef18ba2f8558d9c82954a89964e887808eb7e33 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:26:44 EDT 2025 Thu Aug 21 14:30:31 EDT 2025 Fri Jul 11 07:46:57 EDT 2025 Tue Aug 05 11:37:59 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 Tue Jul 01 01:03:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Materials Characterization Nanomaterials Electrochemical Energy Storage Porous Material |
Language | English |
License | Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-a9bca27d5278f1df0dc518dc68ef18ba2f8558d9c82954a89964e887808eb7e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://doaj.org/article/c98a59c142a542fa9b0eaf86f1c4fa1b |
PMID | 31158691 |
PQID | 2235072387 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c98a59c142a542fa9b0eaf86f1c4fa1b pubmedcentral_primary_oai_pubmedcentral_nih_gov_6545390 proquest_miscellaneous_2235072387 pubmed_primary_31158691 crossref_primary_10_1016_j_isci_2019_05_023 crossref_citationtrail_10_1016_j_isci_2019_05_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-28 |
PublicationDateYYYYMMDD | 2019-06-28 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Obrovac (10.1016/j.isci.2019.05.023_bib28) 2004; 7 Panomsuwan (10.1016/j.isci.2019.05.023_bib31) 2015; 17 Jang (10.1016/j.isci.2019.05.023_bib17) 2009; 47 Kim (10.1016/j.isci.2019.05.023_bib21) 2014; 272 Yan (10.1016/j.isci.2019.05.023_bib45) 2013; 3 Winter (10.1016/j.isci.2019.05.023_bib42) 2018; 118 Zhou (10.1016/j.isci.2019.05.023_bib50) 2012; 5 Jeschull (10.1016/j.isci.2019.05.023_bib18) 2015; 51 Manthiram (10.1016/j.isci.2019.05.023_bib26) 2011; 2 Ye (10.1016/j.isci.2019.05.023_bib47) 2017; 5 Li (10.1016/j.isci.2019.05.023_bib22) 2017; 5 Guo (10.1016/j.isci.2019.05.023_bib14) 2008; 10 Tan (10.1016/j.isci.2019.05.023_bib37) 2017; 5 Sasidharan (10.1016/j.isci.2019.05.023_bib34) 2011; 21 Liu (10.1016/j.isci.2019.05.023_bib25) 2013; 3 Kim (10.1016/j.isci.2019.05.023_bib20) 2017; 7 Obrovac (10.1016/j.isci.2019.05.023_bib29) 2007; 154 Qu (10.1016/j.isci.2019.05.023_bib32) 2018; 403 Yang (10.1016/j.isci.2019.05.023_bib46) 2014; 77 Pan (10.1016/j.isci.2019.05.023_bib30) 2015; 3 Sun (10.1016/j.isci.2019.05.023_bib36) 2008; 254 Goodenough (10.1016/j.isci.2019.05.023_bib12) 2009; 22 Rao (10.1016/j.isci.2019.05.023_bib33) 2018; 51 Wang (10.1016/j.isci.2019.05.023_bib39) 2017; 11 Wu (10.1016/j.isci.2019.05.023_bib44) 2018; 6 Ge (10.1016/j.isci.2019.05.023_bib11) 2016; 4 Deng (10.1016/j.isci.2019.05.023_bib8) 2016; 4 Hu (10.1016/j.isci.2019.05.023_bib16) 2014; 2 Wu (10.1016/j.isci.2019.05.023_bib43) 2012; 7 Meng (10.1016/j.isci.2019.05.023_bib27) 2015; 176 Goriparti (10.1016/j.isci.2019.05.023_bib13) 2014; 257 Chang (10.1016/j.isci.2019.05.023_bib6) 2012; 5 Etacheri (10.1016/j.isci.2019.05.023_bib10) 2011; 4 An (10.1016/j.isci.2019.05.023_bib1) 2017; 345 Yue (10.1016/j.isci.2019.05.023_bib49) 2016; 10 Yuan (10.1016/j.isci.2019.05.023_bib48) 2016; 651 Ji (10.1016/j.isci.2019.05.023_bib19) 2019; 413 Chen (10.1016/j.isci.2019.05.023_bib7) 2017; 363 Sui (10.1016/j.isci.2019.05.023_bib35) 2016; 6 Li (10.1016/j.isci.2019.05.023_bib23) 2012; 151 Wang (10.1016/j.isci.2019.05.023_bib40) 2016; 8 Wang (10.1016/j.isci.2019.05.023_bib41) 2016; 40 Aricò (10.1016/j.isci.2019.05.023_bib3) 2005; 4 Li (10.1016/j.isci.2019.05.023_bib24) 2018; 381 Beaulieu (10.1016/j.isci.2019.05.023_bib4) 2001; 4 Hu (10.1016/j.isci.2019.05.023_bib15) 2013; 39 Dirican (10.1016/j.isci.2019.05.023_bib9) 2015; 169 Tu (10.1016/j.isci.2019.05.023_bib38) 2014; 118 Chang (10.1016/j.isci.2019.05.023_bib5) 2018; 9 |
References_xml | – volume: 22 start-page: 587 year: 2009 ident: 10.1016/j.isci.2019.05.023_bib12 article-title: Challenges for rechargeable Li batteries publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 5 start-page: 13882 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib22 article-title: Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02153D – volume: 254 start-page: 3774 year: 2008 ident: 10.1016/j.isci.2019.05.023_bib36 article-title: Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.11.058 – volume: 10 start-page: 1876 year: 2008 ident: 10.1016/j.isci.2019.05.023_bib14 article-title: Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.09.032 – volume: 39 start-page: 8487 year: 2013 ident: 10.1016/j.isci.2019.05.023_bib15 article-title: Preparation of graphitic carbon nanofibres by in situ catalytic graphitisation of phenolic resins publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.02.081 – volume: 6 start-page: 12932 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib44 article-title: The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03968B – volume: 4 start-page: A137 year: 2001 ident: 10.1016/j.isci.2019.05.023_bib4 article-title: Colossal reversible volume changes in lithium alloys publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1388178 – volume: 3 start-page: 1919 year: 2013 ident: 10.1016/j.isci.2019.05.023_bib25 article-title: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes publication-title: Sci. Rep. doi: 10.1038/srep01919 – volume: 51 start-page: 425 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib33 article-title: All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.067 – volume: 154 start-page: A849 year: 2007 ident: 10.1016/j.isci.2019.05.023_bib29 article-title: Alloy design for lithium-ion battery anodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2752985 – volume: 11 start-page: 2066 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib39 article-title: Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs publication-title: ACS Nano doi: 10.1021/acsnano.6b08262 – volume: 6 start-page: 54785 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib35 article-title: Enhanced mechanical properties of olefin block copolymer by adding a quaternary ammonium salt functionalized graphene oxide publication-title: RSC Adv. doi: 10.1039/C6RA11451B – volume: 5 start-page: 6895 year: 2012 ident: 10.1016/j.isci.2019.05.023_bib6 article-title: Quartz (SiO 2): a new energy storage anode material for Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/c2ee00003b – volume: 651 start-page: 19 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib48 article-title: Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.03.015 – volume: 151 start-page: 488 year: 2012 ident: 10.1016/j.isci.2019.05.023_bib23 article-title: Nanoporous tree-like SiO2 films fabricated by sol–gel assisted electrostatic spray deposition publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.09.003 – volume: 4 start-page: 3243 year: 2011 ident: 10.1016/j.isci.2019.05.023_bib10 article-title: Challenges in the development of advanced Li-ion batteries: a review publication-title: Energ Environ. Sci. doi: 10.1039/c1ee01598b – volume: 7 start-page: 310 year: 2012 ident: 10.1016/j.isci.2019.05.023_bib43 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 7 start-page: 1700418 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib20 article-title: Exploiting lithium–ether co-intercalation in graphite for high-power lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700418 – volume: 3 start-page: 1568 year: 2013 ident: 10.1016/j.isci.2019.05.023_bib45 article-title: Hollow porous SiO 2 nanocubes towards high-performance anodes for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/srep01568 – volume: 3 start-page: 13827 year: 2015 ident: 10.1016/j.isci.2019.05.023_bib30 article-title: Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02954F – volume: 403 start-page: 103 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib32 article-title: Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.086 – volume: 2 start-page: 10712 year: 2014 ident: 10.1016/j.isci.2019.05.023_bib16 article-title: Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00716F – volume: 272 start-page: 689 year: 2014 ident: 10.1016/j.isci.2019.05.023_bib21 article-title: Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: effect of boric acid publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.128 – volume: 5 start-page: 23620 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib37 article-title: In situ nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07024A – volume: 363 start-page: 126 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib7 article-title: Recent advancement of SiOx based anodes for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.073 – volume: 118 start-page: 11433 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib42 article-title: Before Li ion batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00422 – volume: 4 start-page: 366 year: 2005 ident: 10.1016/j.isci.2019.05.023_bib3 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat. Mater. doi: 10.1038/nmat1368 – volume: 413 start-page: 42 year: 2019 ident: 10.1016/j.isci.2019.05.023_bib19 article-title: Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.022 – volume: 8 start-page: 33091 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib40 article-title: Study of microstructure change of carbon nanofibers as binder-free anode for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11996 – volume: 4 start-page: 1144 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib8 article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08620E – volume: 345 start-page: 227 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib1 article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.125 – volume: 51 start-page: 17100 year: 2015 ident: 10.1016/j.isci.2019.05.023_bib18 article-title: A stable graphite negative electrode for the lithium–sulfur battery publication-title: Chem. Commun. doi: 10.1039/C5CC06666B – volume: 7 start-page: A93 year: 2004 ident: 10.1016/j.isci.2019.05.023_bib28 article-title: Structural changes in silicon anodes during lithium insertion/extraction publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1652421 – volume: 21 start-page: 13881 year: 2011 ident: 10.1016/j.isci.2019.05.023_bib34 article-title: Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres publication-title: J. Mater. Chem. doi: 10.1039/c1jm10864f – volume: 9 start-page: 4480 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib5 article-title: Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium publication-title: Nat. Commun. doi: 10.1038/s41467-018-06879-7 – volume: 10 start-page: 11249 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib49 article-title: A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil publication-title: ACS Nano doi: 10.1021/acsnano.6b06326 – volume: 47 start-page: 3383 year: 2009 ident: 10.1016/j.isci.2019.05.023_bib17 article-title: The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2009.07.018 – volume: 2 start-page: 176 year: 2011 ident: 10.1016/j.isci.2019.05.023_bib26 article-title: Materials challenges and opportunities of lithium ion batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1015422 – volume: 4 start-page: 7795 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib11 article-title: Polybenzoxazine-based highly porous carbon nanofibrous membranes hybridized by tin oxide nanoclusters: durable mechanical elasticity and capacitive performance publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00762G – volume: 17 start-page: 6227 year: 2015 ident: 10.1016/j.isci.2019.05.023_bib31 article-title: Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen reduction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05995F – volume: 257 start-page: 421 year: 2014 ident: 10.1016/j.isci.2019.05.023_bib13 article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.103 – volume: 118 start-page: 7357 year: 2014 ident: 10.1016/j.isci.2019.05.023_bib38 article-title: Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance publication-title: J. Phys. Chem. C doi: 10.1021/jp5011023 – volume: 77 start-page: 275 year: 2014 ident: 10.1016/j.isci.2019.05.023_bib46 article-title: Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure publication-title: Carbon doi: 10.1016/j.carbon.2014.05.030 – volume: 5 start-page: 8247 year: 2017 ident: 10.1016/j.isci.2019.05.023_bib47 article-title: Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02334K – volume: 381 start-page: 1 year: 2018 ident: 10.1016/j.isci.2019.05.023_bib24 article-title: Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: preparation via electrospinning and application as the anode materials for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.004 – volume: 169 start-page: 52 year: 2015 ident: 10.1016/j.isci.2019.05.023_bib9 article-title: Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.035 – volume: 40 start-page: 8202 year: 2016 ident: 10.1016/j.isci.2019.05.023_bib41 article-title: Mesoporous silica nanoparticles as high performance anode materials for lithium-ion batteries publication-title: New J. Chem. doi: 10.1039/C6NJ01698G – volume: 5 start-page: 845 year: 2012 ident: 10.1016/j.isci.2019.05.023_bib50 article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-012-0268-4 – volume: 176 start-page: 1001 year: 2015 ident: 10.1016/j.isci.2019.05.023_bib27 article-title: Facile fabrication of 3D SiO2@ graphene aerogel composites as anode material for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.141 |
SSID | ssj0002002496 |
Score | 2.2749486 |
Snippet | Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 122 |
Title | Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31158691 https://www.proquest.com/docview/2235072387 https://pubmed.ncbi.nlm.nih.gov/PMC6545390 https://doaj.org/article/c98a59c142a542fa9b0eaf86f1c4fa1b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVTr1UjfrI9hFRqbcKxWDAcMxTUdVGlbYr5YZ4qhtt7GSz-f-dsb2r3apqLznaYMDMwHwDwwchnzPAXDBDDQu1kkxGX5gVlWJgq3PSqSp1Qkfx-5W-nMmv1-p666ovjAkb6IGHjjuK1nhlI5fCKymKt6HKvhhdeJTF84CzL5ixLWfqpt9eQyq8_mY5hTFBoJrjiZkhuAtPvGJcl-1pO0W9Y5V68v6_Ic4_Aye3LNHFS_JihJD0eGj6PnmW21fkfpoXheEW7m1Y5ER_dEvw6dl0jotyFFdb5y29YmfdHSSe-mXo4NG3oFoBACD1D3S2gMpYQYJMKIEet13KDxQwLZ3CVE2_YRGPt3Qg5AT_-jWZXZz_PL1k43UKLEptVgy6LnrRJCUaU3gqVYqKmxS1yYWb4EUxSplko8G9Pw-OmJYZ5iBTmRyaXNdvyF7btfmAUAHzRPCqEjFD2TraErTnsgAeSbXIzYTwdXe6OHKN45UXC7cOKrtxKAKHInCVciCCCfmy-eZuYNr4Z-4TlNImJ7Jk9y9Ad9yoO-5_ujMhn9YydjCqcKvEtxmk4wA0AVAGOAO_8naQ-aYq5Ccy2vIJaXa0Yactuynt_FfP3K0Br9a2evcUjX9PnmN_YNiaMB_I3mr5mD8CQFqFw34s_AaP6g89 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembled+Porous-Silica+within+N-Doped+Carbon+Nanofibers+as+Ultra-flexible+Anodes+for+Soft+Lithium+Batteries&rft.jtitle=iScience&rft.au=Aboalhassan%2C+Ahmed+A&rft.au=Yan%2C+Jianhua&rft.au=Zhao%2C+Yun&rft.au=Dong%2C+Keqi&rft.date=2019-06-28&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=16&rft.spage=122&rft_id=info:doi/10.1016%2Fj.isci.2019.05.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |