Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries

Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scala...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 16; pp. 122 - 132
Main Authors Aboalhassan, Ahmed A., Yan, Jianhua, Zhao, Yun, Dong, Keqi, Wang, Xiao, Yu, Jianyong, Ding, Bin
Format Journal Article
LanguageEnglish
Published United States Elsevier 28.06.2019
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2019.05.023

Cover

Abstract Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO @N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO , whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO loadings (>1.6 mg/cm ) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C.
AbstractList Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C.Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C.
Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO2@N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO2, whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO2 loadings (>1.6 mg/cm2) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. : Electrochemical Energy Storage; Nanomaterials; Materials Characterization; Porous Material Subject Areas: Electrochemical Energy Storage, Nanomaterials, Materials Characterization, Porous Material
Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO @N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO , whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO loadings (>1.6 mg/cm ) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C.
Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change and unstable solid-electrolyte interface. Moreover, it is a challenge to fabricate flexible silica anodes. Here, we report a low-cost and scalable strategy to create flexible anodes of N-doped carbon nanofiber-confined porous silica (p-SiO 2 @N-CNF) by developing a sol-gel electrospinning process followed by carbonization. This approach causes the p-SiO 2 nanoparticles (NPs) to be self-assembled within the N-CNFs, which act like elastomer and electrolyte barrier to accommodate volume changes and to enhance the stability of SiO 2 , whereas the NPs act as soft plasticizer providing strength to the CNF skeletons. Benefiting from the hierarchical structures, the anodes with high p-SiO 2 loadings (>1.6 mg/cm 2 ) exhibit exceptional cycling performance (>1,000 cycles) in terms of bending, current rate, and capacity. Moreover, the batteries remain stable when discharging at 0.5 C and charging at 2 C. • A scalable method is developed for the fabrication of flexible silica anodes • The flexible mechanisms of carbon nanofiber and silica films are illustrated • High-silica-loading anodes exhibit long cycle stability and high rate capability • Soft silica anodes show appealing properties for soft batteries Electrochemical Energy Storage; Nanomaterials; Materials Characterization; Porous Material
Author Ding, Bin
Dong, Keqi
Zhao, Yun
Aboalhassan, Ahmed A.
Yan, Jianhua
Yu, Jianyong
Wang, Xiao
AuthorAffiliation 3 Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
1 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
AuthorAffiliation_xml – name: 3 Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
– name: 2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
– name: 1 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
Author_xml – sequence: 1
  givenname: Ahmed A.
  surname: Aboalhassan
  fullname: Aboalhassan, Ahmed A.
– sequence: 2
  givenname: Jianhua
  surname: Yan
  fullname: Yan, Jianhua
– sequence: 3
  givenname: Yun
  surname: Zhao
  fullname: Zhao, Yun
– sequence: 4
  givenname: Keqi
  surname: Dong
  fullname: Dong, Keqi
– sequence: 5
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
– sequence: 6
  givenname: Jianyong
  surname: Yu
  fullname: Yu, Jianyong
– sequence: 7
  givenname: Bin
  surname: Ding
  fullname: Ding, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31158691$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAfOSSYDtxYl-QluWr0gqQlp6tiTNuvfLGWztb6L-vw5aq5YBkyR_zzjO2531ZHI1hxKJ4zWjFKGvfbSqXjKs4ZaqioqK8flaccCFVSWnDjx6tj4uzlDaUUp5Ho9oXxXHNmJCtYifF9Rq9LRcp4bb3OJAfIYZ9KtfOOwPkl5uu3Ei-lR_DLgeXEPuQtzAG63qMiUAiF36KUFqPv10mkMUYBkzEhkjWwU5kNSP2W_IBpgmjw_SqeG7BJzy7n0-Li8-ffi6_lqvvX86Xi1VpmlZOJajeAO8GwTtp2WDpYASTg2klWiZ74FYKIQdlJFeiAalU26CUnaQS-w7r-rQ4P3CHABu9i24L8VYHcPrPQYiXGuLkjEdtlAShDGs4iIbbXJoiWNlaZhoLrM-s9wfWbt9vcTA45jf7J9CnkdFd6ctwo1vRiFrRDHh7D4jheo9p0tvcPvQeRsz_rTmvBe14LbssffO41kORvz3LAn4QmBhSimgfJIzq2Rt6o2dv6NkbmgqdvZGT5D9Jxk0wuTDf1_n_pd4B5zrBvQ
CitedBy_id crossref_primary_10_1016_j_electacta_2023_142097
crossref_primary_10_1016_j_compositesb_2021_109531
crossref_primary_10_1016_j_seppur_2021_119731
crossref_primary_10_1002_asia_202201198
crossref_primary_10_1016_j_cej_2021_130346
crossref_primary_10_1016_j_compositesb_2022_110386
crossref_primary_10_1016_j_jece_2023_111361
crossref_primary_10_1016_j_ssi_2021_115817
crossref_primary_10_1016_j_cej_2023_142798
crossref_primary_10_1016_j_jpowsour_2023_233493
crossref_primary_10_1007_s10008_024_06082_3
crossref_primary_10_1016_j_jelechem_2024_118141
crossref_primary_10_20964_2022_12_01
crossref_primary_10_1002_aesr_202100020
crossref_primary_10_1088_1361_6528_acf37f
crossref_primary_10_1002_adfm_202208349
crossref_primary_10_1016_j_jcis_2022_05_067
crossref_primary_10_1021_acsami_9b23099
crossref_primary_10_1002_er_8448
crossref_primary_10_3390_polym16030327
crossref_primary_10_1039_D0RA10229F
crossref_primary_10_1016_j_electacta_2023_142165
crossref_primary_10_1038_s41467_019_13430_9
crossref_primary_10_26599_JAC_2023_9220673
crossref_primary_10_1007_s12598_021_01788_z
crossref_primary_10_1002_batt_202500021
crossref_primary_10_1021_acsanm_1c00894
crossref_primary_10_1016_j_jcis_2019_11_041
crossref_primary_10_1016_j_rser_2020_110085
crossref_primary_10_1002_admi_202201231
crossref_primary_10_1007_s42765_020_00035_x
Cites_doi 10.1021/cm901452z
10.1039/C7TA02153D
10.1016/j.apsusc.2007.11.058
10.1016/j.elecom.2008.09.032
10.1016/j.ceramint.2013.02.081
10.1039/C8TA03968B
10.1149/1.1388178
10.1038/srep01919
10.1016/j.nanoen.2018.06.067
10.1149/1.2752985
10.1021/acsnano.6b08262
10.1039/C6RA11451B
10.1039/c2ee00003b
10.1016/j.cplett.2016.03.015
10.1016/j.micromeso.2011.09.003
10.1039/c1ee01598b
10.1038/nnano.2012.35
10.1002/aenm.201700418
10.1038/srep01568
10.1039/C5TA02954F
10.1016/j.jpowsour.2018.09.086
10.1039/C4TA00716F
10.1016/j.jpowsour.2014.08.128
10.1039/C7TA07024A
10.1016/j.jpowsour.2017.07.073
10.1021/acs.chemrev.8b00422
10.1038/nmat1368
10.1016/j.jpowsour.2018.12.022
10.1021/acsami.6b11996
10.1039/C5TA08620E
10.1016/j.jpowsour.2017.01.125
10.1039/C5CC06666B
10.1149/1.1652421
10.1039/c1jm10864f
10.1038/s41467-018-06879-7
10.1021/acsnano.6b06326
10.1016/j.carbon.2009.07.018
10.1021/jz1015422
10.1039/C6TA00762G
10.1039/C4CP05995F
10.1016/j.jpowsour.2013.11.103
10.1021/jp5011023
10.1016/j.carbon.2014.05.030
10.1039/C7TA02334K
10.1016/j.jpowsour.2018.02.004
10.1016/j.electacta.2015.04.035
10.1039/C6NJ01698G
10.1007/s12274-012-0268-4
10.1016/j.electacta.2015.07.141
ContentType Journal Article
Copyright Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2019.05.023
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 132
ExternalDocumentID oai_doaj_org_article_c98a59c142a542fa9b0eaf86f1c4fa1b
PMC6545390
31158691
10_1016_j_isci_2019_05_023
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-a9bca27d5278f1df0dc518dc68ef18ba2f8558d9c82954a89964e887808eb7e33
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:26:44 EDT 2025
Thu Aug 21 14:30:31 EDT 2025
Fri Jul 11 07:46:57 EDT 2025
Tue Aug 05 11:37:59 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
Tue Jul 01 01:03:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Materials Characterization
Nanomaterials
Electrochemical Energy Storage
Porous Material
Language English
License Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-a9bca27d5278f1df0dc518dc68ef18ba2f8558d9c82954a89964e887808eb7e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/c98a59c142a542fa9b0eaf86f1c4fa1b
PMID 31158691
PQID 2235072387
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c98a59c142a542fa9b0eaf86f1c4fa1b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6545390
proquest_miscellaneous_2235072387
pubmed_primary_31158691
crossref_primary_10_1016_j_isci_2019_05_023
crossref_citationtrail_10_1016_j_isci_2019_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-28
PublicationDateYYYYMMDD 2019-06-28
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
References Obrovac (10.1016/j.isci.2019.05.023_bib28) 2004; 7
Panomsuwan (10.1016/j.isci.2019.05.023_bib31) 2015; 17
Jang (10.1016/j.isci.2019.05.023_bib17) 2009; 47
Kim (10.1016/j.isci.2019.05.023_bib21) 2014; 272
Yan (10.1016/j.isci.2019.05.023_bib45) 2013; 3
Winter (10.1016/j.isci.2019.05.023_bib42) 2018; 118
Zhou (10.1016/j.isci.2019.05.023_bib50) 2012; 5
Jeschull (10.1016/j.isci.2019.05.023_bib18) 2015; 51
Manthiram (10.1016/j.isci.2019.05.023_bib26) 2011; 2
Ye (10.1016/j.isci.2019.05.023_bib47) 2017; 5
Li (10.1016/j.isci.2019.05.023_bib22) 2017; 5
Guo (10.1016/j.isci.2019.05.023_bib14) 2008; 10
Tan (10.1016/j.isci.2019.05.023_bib37) 2017; 5
Sasidharan (10.1016/j.isci.2019.05.023_bib34) 2011; 21
Liu (10.1016/j.isci.2019.05.023_bib25) 2013; 3
Kim (10.1016/j.isci.2019.05.023_bib20) 2017; 7
Obrovac (10.1016/j.isci.2019.05.023_bib29) 2007; 154
Qu (10.1016/j.isci.2019.05.023_bib32) 2018; 403
Yang (10.1016/j.isci.2019.05.023_bib46) 2014; 77
Pan (10.1016/j.isci.2019.05.023_bib30) 2015; 3
Sun (10.1016/j.isci.2019.05.023_bib36) 2008; 254
Goodenough (10.1016/j.isci.2019.05.023_bib12) 2009; 22
Rao (10.1016/j.isci.2019.05.023_bib33) 2018; 51
Wang (10.1016/j.isci.2019.05.023_bib39) 2017; 11
Wu (10.1016/j.isci.2019.05.023_bib44) 2018; 6
Ge (10.1016/j.isci.2019.05.023_bib11) 2016; 4
Deng (10.1016/j.isci.2019.05.023_bib8) 2016; 4
Hu (10.1016/j.isci.2019.05.023_bib16) 2014; 2
Wu (10.1016/j.isci.2019.05.023_bib43) 2012; 7
Meng (10.1016/j.isci.2019.05.023_bib27) 2015; 176
Goriparti (10.1016/j.isci.2019.05.023_bib13) 2014; 257
Chang (10.1016/j.isci.2019.05.023_bib6) 2012; 5
Etacheri (10.1016/j.isci.2019.05.023_bib10) 2011; 4
An (10.1016/j.isci.2019.05.023_bib1) 2017; 345
Yue (10.1016/j.isci.2019.05.023_bib49) 2016; 10
Yuan (10.1016/j.isci.2019.05.023_bib48) 2016; 651
Ji (10.1016/j.isci.2019.05.023_bib19) 2019; 413
Chen (10.1016/j.isci.2019.05.023_bib7) 2017; 363
Sui (10.1016/j.isci.2019.05.023_bib35) 2016; 6
Li (10.1016/j.isci.2019.05.023_bib23) 2012; 151
Wang (10.1016/j.isci.2019.05.023_bib40) 2016; 8
Wang (10.1016/j.isci.2019.05.023_bib41) 2016; 40
Aricò (10.1016/j.isci.2019.05.023_bib3) 2005; 4
Li (10.1016/j.isci.2019.05.023_bib24) 2018; 381
Beaulieu (10.1016/j.isci.2019.05.023_bib4) 2001; 4
Hu (10.1016/j.isci.2019.05.023_bib15) 2013; 39
Dirican (10.1016/j.isci.2019.05.023_bib9) 2015; 169
Tu (10.1016/j.isci.2019.05.023_bib38) 2014; 118
Chang (10.1016/j.isci.2019.05.023_bib5) 2018; 9
References_xml – volume: 22
  start-page: 587
  year: 2009
  ident: 10.1016/j.isci.2019.05.023_bib12
  article-title: Challenges for rechargeable Li batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 5
  start-page: 13882
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib22
  article-title: Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02153D
– volume: 254
  start-page: 3774
  year: 2008
  ident: 10.1016/j.isci.2019.05.023_bib36
  article-title: Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.11.058
– volume: 10
  start-page: 1876
  year: 2008
  ident: 10.1016/j.isci.2019.05.023_bib14
  article-title: Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.09.032
– volume: 39
  start-page: 8487
  year: 2013
  ident: 10.1016/j.isci.2019.05.023_bib15
  article-title: Preparation of graphitic carbon nanofibres by in situ catalytic graphitisation of phenolic resins
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.02.081
– volume: 6
  start-page: 12932
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib44
  article-title: The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03968B
– volume: 4
  start-page: A137
  year: 2001
  ident: 10.1016/j.isci.2019.05.023_bib4
  article-title: Colossal reversible volume changes in lithium alloys
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1388178
– volume: 3
  start-page: 1919
  year: 2013
  ident: 10.1016/j.isci.2019.05.023_bib25
  article-title: Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
  publication-title: Sci. Rep.
  doi: 10.1038/srep01919
– volume: 51
  start-page: 425
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib33
  article-title: All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.067
– volume: 154
  start-page: A849
  year: 2007
  ident: 10.1016/j.isci.2019.05.023_bib29
  article-title: Alloy design for lithium-ion battery anodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2752985
– volume: 11
  start-page: 2066
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib39
  article-title: Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08262
– volume: 6
  start-page: 54785
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib35
  article-title: Enhanced mechanical properties of olefin block copolymer by adding a quaternary ammonium salt functionalized graphene oxide
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11451B
– volume: 5
  start-page: 6895
  year: 2012
  ident: 10.1016/j.isci.2019.05.023_bib6
  article-title: Quartz (SiO 2): a new energy storage anode material for Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee00003b
– volume: 651
  start-page: 19
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib48
  article-title: Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.03.015
– volume: 151
  start-page: 488
  year: 2012
  ident: 10.1016/j.isci.2019.05.023_bib23
  article-title: Nanoporous tree-like SiO2 films fabricated by sol–gel assisted electrostatic spray deposition
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.09.003
– volume: 4
  start-page: 3243
  year: 2011
  ident: 10.1016/j.isci.2019.05.023_bib10
  article-title: Challenges in the development of advanced Li-ion batteries: a review
  publication-title: Energ Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 7
  start-page: 310
  year: 2012
  ident: 10.1016/j.isci.2019.05.023_bib43
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 7
  start-page: 1700418
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib20
  article-title: Exploiting lithium–ether co-intercalation in graphite for high-power lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700418
– volume: 3
  start-page: 1568
  year: 2013
  ident: 10.1016/j.isci.2019.05.023_bib45
  article-title: Hollow porous SiO 2 nanocubes towards high-performance anodes for lithium-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep01568
– volume: 3
  start-page: 13827
  year: 2015
  ident: 10.1016/j.isci.2019.05.023_bib30
  article-title: Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02954F
– volume: 403
  start-page: 103
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib32
  article-title: Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.086
– volume: 2
  start-page: 10712
  year: 2014
  ident: 10.1016/j.isci.2019.05.023_bib16
  article-title: Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00716F
– volume: 272
  start-page: 689
  year: 2014
  ident: 10.1016/j.isci.2019.05.023_bib21
  article-title: Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: effect of boric acid
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.128
– volume: 5
  start-page: 23620
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib37
  article-title: In situ nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07024A
– volume: 363
  start-page: 126
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib7
  article-title: Recent advancement of SiOx based anodes for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.073
– volume: 118
  start-page: 11433
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib42
  article-title: Before Li ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00422
– volume: 4
  start-page: 366
  year: 2005
  ident: 10.1016/j.isci.2019.05.023_bib3
  article-title: Nanostructured materials for advanced energy conversion and storage devices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1368
– volume: 413
  start-page: 42
  year: 2019
  ident: 10.1016/j.isci.2019.05.023_bib19
  article-title: Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.022
– volume: 8
  start-page: 33091
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib40
  article-title: Study of microstructure change of carbon nanofibers as binder-free anode for high-performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11996
– volume: 4
  start-page: 1144
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib8
  article-title: Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08620E
– volume: 345
  start-page: 227
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib1
  article-title: Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.125
– volume: 51
  start-page: 17100
  year: 2015
  ident: 10.1016/j.isci.2019.05.023_bib18
  article-title: A stable graphite negative electrode for the lithium–sulfur battery
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06666B
– volume: 7
  start-page: A93
  year: 2004
  ident: 10.1016/j.isci.2019.05.023_bib28
  article-title: Structural changes in silicon anodes during lithium insertion/extraction
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1652421
– volume: 21
  start-page: 13881
  year: 2011
  ident: 10.1016/j.isci.2019.05.023_bib34
  article-title: Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10864f
– volume: 9
  start-page: 4480
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib5
  article-title: Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06879-7
– volume: 10
  start-page: 11249
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib49
  article-title: A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06326
– volume: 47
  start-page: 3383
  year: 2009
  ident: 10.1016/j.isci.2019.05.023_bib17
  article-title: The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.07.018
– volume: 2
  start-page: 176
  year: 2011
  ident: 10.1016/j.isci.2019.05.023_bib26
  article-title: Materials challenges and opportunities of lithium ion batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1015422
– volume: 4
  start-page: 7795
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib11
  article-title: Polybenzoxazine-based highly porous carbon nanofibrous membranes hybridized by tin oxide nanoclusters: durable mechanical elasticity and capacitive performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00762G
– volume: 17
  start-page: 6227
  year: 2015
  ident: 10.1016/j.isci.2019.05.023_bib31
  article-title: Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen reduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05995F
– volume: 257
  start-page: 421
  year: 2014
  ident: 10.1016/j.isci.2019.05.023_bib13
  article-title: Review on recent progress of nanostructured anode materials for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.103
– volume: 118
  start-page: 7357
  year: 2014
  ident: 10.1016/j.isci.2019.05.023_bib38
  article-title: Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5011023
– volume: 77
  start-page: 275
  year: 2014
  ident: 10.1016/j.isci.2019.05.023_bib46
  article-title: Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.030
– volume: 5
  start-page: 8247
  year: 2017
  ident: 10.1016/j.isci.2019.05.023_bib47
  article-title: Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02334K
– volume: 381
  start-page: 1
  year: 2018
  ident: 10.1016/j.isci.2019.05.023_bib24
  article-title: Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: preparation via electrospinning and application as the anode materials for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.004
– volume: 169
  start-page: 52
  year: 2015
  ident: 10.1016/j.isci.2019.05.023_bib9
  article-title: Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.04.035
– volume: 40
  start-page: 8202
  year: 2016
  ident: 10.1016/j.isci.2019.05.023_bib41
  article-title: Mesoporous silica nanoparticles as high performance anode materials for lithium-ion batteries
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ01698G
– volume: 5
  start-page: 845
  year: 2012
  ident: 10.1016/j.isci.2019.05.023_bib50
  article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0268-4
– volume: 176
  start-page: 1001
  year: 2015
  ident: 10.1016/j.isci.2019.05.023_bib27
  article-title: Facile fabrication of 3D SiO2@ graphene aerogel composites as anode material for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.141
SSID ssj0002002496
Score 2.2749486
Snippet Silica is an attractive anode material for soft lithium batteries owing to its high specific capacity, but it suffers severe problems of large volume change...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 122
Title Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/31158691
https://www.proquest.com/docview/2235072387
https://pubmed.ncbi.nlm.nih.gov/PMC6545390
https://doaj.org/article/c98a59c142a542fa9b0eaf86f1c4fa1b
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVTr1UjfrI9hFRqbcKxWDAcMxTUdVGlbYr5YZ4qhtt7GSz-f-dsb2r3apqLznaYMDMwHwDwwchnzPAXDBDDQu1kkxGX5gVlWJgq3PSqSp1Qkfx-5W-nMmv1-p666ovjAkb6IGHjjuK1nhlI5fCKymKt6HKvhhdeJTF84CzL5ixLWfqpt9eQyq8_mY5hTFBoJrjiZkhuAtPvGJcl-1pO0W9Y5V68v6_Ic4_Aye3LNHFS_JihJD0eGj6PnmW21fkfpoXheEW7m1Y5ER_dEvw6dl0jotyFFdb5y29YmfdHSSe-mXo4NG3oFoBACD1D3S2gMpYQYJMKIEet13KDxQwLZ3CVE2_YRGPt3Qg5AT_-jWZXZz_PL1k43UKLEptVgy6LnrRJCUaU3gqVYqKmxS1yYWb4EUxSplko8G9Pw-OmJYZ5iBTmRyaXNdvyF7btfmAUAHzRPCqEjFD2TraErTnsgAeSbXIzYTwdXe6OHKN45UXC7cOKrtxKAKHInCVciCCCfmy-eZuYNr4Z-4TlNImJ7Jk9y9Ad9yoO-5_ujMhn9YydjCqcKvEtxmk4wA0AVAGOAO_8naQ-aYq5Ccy2vIJaXa0Yactuynt_FfP3K0Br9a2evcUjX9PnmN_YNiaMB_I3mr5mD8CQFqFw34s_AaP6g89
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembled+Porous-Silica+within+N-Doped+Carbon+Nanofibers+as+Ultra-flexible+Anodes+for+Soft+Lithium+Batteries&rft.jtitle=iScience&rft.au=Aboalhassan%2C+Ahmed+A&rft.au=Yan%2C+Jianhua&rft.au=Zhao%2C+Yun&rft.au=Dong%2C+Keqi&rft.date=2019-06-28&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=16&rft.spage=122&rft_id=info:doi/10.1016%2Fj.isci.2019.05.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon