Real communities of virtual plants explain biodiversity on just three assumptions

To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants are 19 different, fully validated functional types drawn from universal adaptive strategy theory. The scale of approach is far beyond that o...

Full description

Saved in:
Bibliographic Details
Published inin silico Plants Vol. 3; no. 1
Main Authors Hunt, Roderick, Colasanti, Ric L
Format Journal Article
LanguageEnglish
Published UK Oxford University Press (OUP) 01.01.2021
Oxford University Press
Subjects
Online AccessGet full text
ISSN2517-5025
2517-5025
DOI10.1093/insilicoplants/diab015

Cover

Abstract To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants are 19 different, fully validated functional types drawn from universal adaptive strategy theory. The scale of approach is far beyond that of even the most ambitious investigations in the physical world. By simulating 496 billion plant–environment interactions, we succeed in creating conditions that sustain high diversity realistically and indefinitely. Our simulations manipulate the levels of, and degree of heterogeneity in the supply of, resources, external disturbances and invading propagules. We fail to reproduce this outcome when we adopt the assumptions of unified neutral theory. The 19 functional types in our experiments respond in complete accordance with universal adaptive strategy theory. We find that spatial heterogeneity is a strong contributor to long-term diversity, but temporal heterogeneity is less so. The strongest support of all comes when an incursion of propagules is simulated. We enter caveats and suggest further directions for working with cellular automata in plant science. We conclude that although (i) the differentiation of plant life into distinct functional types, (ii) the presence of environmental heterogeneity and (iii) the opportunity for invasion by propagules can all individually promote plant biodiversity, all three appear to be necessary simultaneously for its long-term maintenance. Though further, and possibly more complex, sets of processes could additionally be involved, we consider it unlikely that any set of conditions more minimal than those described here would be sufficient to deliver the same outcome. Graphical Abstract
AbstractList To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants are 19 different, fully validated functional types drawn from universal adaptive strategy theory. The scale of approach is far beyond that of even the most ambitious investigations in the physical world. By simulating 496 billion plant–environment interactions, we succeed in creating conditions that sustain high diversity realistically and indefinitely. Our simulations manipulate the levels of, and degree of heterogeneity in the supply of, resources, external disturbances and invading propagules. We fail to reproduce this outcome when we adopt the assumptions of unified neutral theory. The 19 functional types in our experiments respond in complete accordance with universal adaptive strategy theory. We find that spatial heterogeneity is a strong contributor to long-term diversity, but temporal heterogeneity is less so. The strongest support of all comes when an incursion of propagules is simulated. We enter caveats and suggest further directions for working with cellular automata in plant science. We conclude that although (i) the differentiation of plant life into distinct functional types, (ii) the presence of environmental heterogeneity and (iii) the opportunity for invasion by propagules can all individually promote plant biodiversity, all three appear to be necessary simultaneously for its long-term maintenance. Though further, and possibly more complex, sets of processes could additionally be involved, we consider it unlikely that any set of conditions more minimal than those described here would be sufficient to deliver the same outcome.
To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants are 19 different, fully validated functional types drawn from universal adaptive strategy theory. The scale of approach is far beyond that of even the most ambitious investigations in the physical world. By simulating 496 billion plant–environment interactions, we succeed in creating conditions that sustain high diversity realistically and indefinitely. Our simulations manipulate the levels of, and degree of heterogeneity in the supply of, resources, external disturbances and invading propagules. We fail to reproduce this outcome when we adopt the assumptions of unified neutral theory. The 19 functional types in our experiments respond in complete accordance with universal adaptive strategy theory. We find that spatial heterogeneity is a strong contributor to long-term diversity, but temporal heterogeneity is less so. The strongest support of all comes when an incursion of propagules is simulated. We enter caveats and suggest further directions for working with cellular automata in plant science. We conclude that although (i) the differentiation of plant life into distinct functional types, (ii) the presence of environmental heterogeneity and (iii) the opportunity for invasion by propagules can all individually promote plant biodiversity, all three appear to be necessary simultaneously for its long-term maintenance. Though further, and possibly more complex, sets of processes could additionally be involved, we consider it unlikely that any set of conditions more minimal than those described here would be sufficient to deliver the same outcome. Graphical Abstract
Author Ric L Colasanti
Roderick Hunt
Author_xml – sequence: 1
  givenname: Roderick
  orcidid: 0000-0002-9611-4349
  surname: Hunt
  fullname: Hunt, Roderick
  email: r.hunt@exeter.ac.uk
  organization: Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
– sequence: 2
  givenname: Ric L
  surname: Colasanti
  fullname: Colasanti, Ric L
  organization: Department of Creative Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
BackLink https://cir.nii.ac.jp/crid/1873679867266970880$$DView record in CiNii
BookMark eNqNkEtLAzEUhYNUsNb-BQnotjaZNI8BN1J8QUGU7odMJoO3TJMxyRT7750yXagb3dx7CPc7h5xzNHLeWYQuKbmhJGdzcBEaML5ttEtxXoEuCeUnaJxxKmecZHz0TZ-haYwbQnq54CzPx-j1zeoGG7_ddg4S2Ih9jXcQUtc_D6bYfvYCHC7BV7CzIULaY-_wposJp_dgLdYxdts2gXfxAp3Wuol2etwTtH64Xy-fZquXx-fl3WpmFkKlWa6VENIqQbk0Wpd2wYWubc2oonll6owwa0upmWGELLipFWdcK1XbqqxMySboarBtg__obEzFxnfB9YkFozKjvTkX_ZUYrkzwMQZbF22ArQ77gpLiUGDxs8DiWGAP3v4CDSR9-GAKGpq_cTrgvmv_H3k9MA6gTztMqiQTMldCZkLkkihF2BdDbZ_C
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_123353
crossref_primary_10_1038_s41559_024_02344_5
crossref_primary_10_1103_PhysRevE_110_034114
Cites_doi 10.1007/s00442-016-3549-x
10.1038/nature16489
10.1890/04-1196
10.1093/aob/mcm037
10.1111/jvs.12399
10.1016/j.tpb.2004.06.003
10.1111/j.0269-8463.2005.00936.x
10.1038/nature16867
10.1016/0022-5193(83)90014-0
10.1086/286080
10.1046/j.1365-2745.2000.00473.x
10.1073/pnas.1312779110
10.1016/j.tree.2015.07.008
10.1093/insilicoplants/diaa011
10.1007/978-94-017-1094-7
10.1016/j.tree.2004.09.003
10.1073/pnas.1721114115
10.1079/9780851994321.0215
10.1111/j.1365-2745.2009.01603.x
10.1093/jxb/eri280
10.1098/rspb.2020.2063
10.1016/S0022-5193(87)80215-1
10.2307/2389883
10.1007/s13593-011-0015-3
10.1038/23010
10.1146/annurev-ecolsys-120213-091917
10.1111/geb.13165
10.1016/0022-5193(61)90038-8
10.1111/j.1466-8238.2008.00400.x
10.15666/aeer/0902_157166
10.1126/science.199.4335.1302
10.1038/nature01583
10.3161/15052249PJE2020.68.1.006
10.1126/science.1064088
10.1016/j.ppees.2011.12.002
10.1016/j.ecolmodel.2006.12.039
10.1111/j.0030-1299.2005.13965.x
10.1007/978-3-642-05029-9_8
10.1016/S0025-5564(02)00213-4
10.1016/j.ppees.2005.04.001
10.1038/s41559-018-0696-y
10.1111/ele.13457
10.2307/3546494
10.1038/nature01785
10.1111/1365-2435.12269
10.1038/35012217
10.1126/science.277.5330.1302
10.1016/j.tree.2004.07.019
10.1093/aobpla/plz006
10.1126/science.aab3916
10.1046/j.1466-822X.2003.00015.x
10.1093/aob/mcx084
10.1038/242344a0
10.1111/ele.12071
10.1098/rspb.2015.3005
10.2307/3237067
10.1016/S0022-5193(84)80233-7
10.1038/416427a
10.2307/3546011
10.1890/06-0997
10.1111/j.0030-1299.2006.14107.x
10.2307/1934352
10.1111/j.1654-1103.2009.05577.x
10.2307/3546874
10.1093/bjps/40.3.323
10.1080/11263504.2014.987848
10.1111/jvs.12027
10.1038/35012228
10.1111/j.1654-109X.2004.tb00607.x
10.1086/283244
10.1126/science.286.5442.1123
10.1073/pnas.1922266117
10.1002/9781118223246
10.1111/j.2006.0030-1299.14714.x
10.1098/rstb.2010.0280
10.1038/35012221
10.1111/j.1365-2745.2010.01753.x
10.1093/insilicoplants/diz010
10.2307/2260696
10.1016/0167-2789(94)90286-0
10.1038/s41467-019-13678-1
10.1111/1365-2435.12722
10.1111/j.1654-1103.2004.tb02266.x
10.1046/j.0269-8463.2001.00556.x
10.1038/35073563
10.1017/9781108612265
10.1016/j.biocon.2004.07.016
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
TOX
AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1093/insilicoplants/diab015
DatabaseName CiNii Complete
Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2517-5025
ExternalDocumentID 10_1093_insilicoplants_diab015
10.1093/insilicoplants/diab015
GroupedDBID 0R~
7X2
AAFWJ
AAPXW
AAVAP
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACUHS
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
KSI
M0K
M7P
ML0
M~E
OK1
PHGZM
PHGZT
PIMPY
RYH
TOX
AFULF
ROX
AAYXX
CITATION
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c468t-9a8667e86157caabe456afef31819dcf203eeb7a3c30045cf8535a88fedbdcb3
IEDL.DBID BENPR
ISSN 2517-5025
IngestDate Fri Sep 19 20:57:46 EDT 2025
Tue Jul 01 02:41:20 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Thu Dec 12 07:20:20 EST 2024
Thu Jun 26 23:58:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords emergent process
environmental heterogeneity
hump-backed model
seed rain
universal adaptive strategy theory
Shannon entropy
Biomass
cellular automaton
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-9a8667e86157caabe456afef31819dcf203eeb7a3c30045cf8535a88fedbdcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9611-4349
OpenAccessLink https://www.proquest.com/docview/3172166756?pq-origsite=%requestingapplication%&accountid=15518
PQID 3172166756
PQPubID 7097366
ParticipantIDs proquest_journals_3172166756
crossref_primary_10_1093_insilicoplants_diab015
crossref_citationtrail_10_1093_insilicoplants_diab015
oup_primary_10_1093_insilicoplants_diab015
nii_cinii_1873679867266970880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: Oxford
PublicationTitle in silico Plants
PublicationYear 2021
Publisher Oxford University Press (OUP)
Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press (OUP)
– name: Oxford University Press
References Silvertown (2021081714121955700_CIT0082) 1992; 8
Ritchie (2021081714121955700_CIT0075) 1999; 400
Shipley (2021081714121955700_CIT0080) 2016; 180
Thompson (2021081714121955700_CIT0087) 2000
Hill (2021081714121955700_CIT0044) 1973; 54
Xu (2021081714121955700_CIT0097) 2020; 287
Gaujour (2021081714121955700_CIT0030) 2012; 32
Colasanti (2021081714121955700_CIT0012) 1993; 7
Thompson (2021081714121955700_CIT0088) 2005; 19
McGill (2021081714121955700_CIT0063) 2003; 422
McNickle (2021081714121955700_CIT0064) 2013; 16
Harper (2021081714121955700_CIT0042) 1982
Shipley (2021081714121955700_CIT0079) 2010
Denbigh (2021081714121955700_CIT0020) 1989; 40
Gabriel (2021081714121955700_CIT0026) 2005; 7
Grime (2021081714121955700_CIT0040) 1997; 79
Hillebrand (2021081714121955700_CIT0045) 2020; 23
Zobel (2021081714121955700_CIT0098) 2008; 17
Silvertown (2021081714121955700_CIT0081) 2004; 19
Peck (2021081714121955700_CIT0070) 2004; 19
Pachepsky (2021081714121955700_CIT0068) 2001; 410
Gross (2021081714121955700_CIT0032) 2016; 529
Allen (2021081714121955700_CIT0001) 1983; 101
Grime (2021081714121955700_CIT0035) 1977; 11
Gaston (2021081714121955700_CIT0029) 2004
Grace (2021081714121955700_CIT0031) 2014; 28
Hunt (2021081714121955700_CIT0053) 1984; 111
Nimmo (2021081714121955700_CIT0067) 2015; 30
Fukami (2021081714121955700_CIT0025) 2003; 424
Garnier (2021081714121955700_CIT0027) 2016
Scheffer (2021081714121955700_CIT0078) 2018; 115
Purvis (2021081714121955700_CIT0073) 2000; 405
Pierce (2021081714121955700_CIT0071) 2017; 31
Hodgson (2021081714121955700_CIT0049) 1999; 85
Pärtel (2021081714121955700_CIT0069) 2007; 88
Hubbell (2021081714121955700_CIT0051) 2001
Nerlekar (2021081714121955700_CIT0066) 2020; 117
Tamme (2021081714121955700_CIT0084) 2010; 21
Colasanti (2021081714121955700_CIT0014) 2007; 203
Wardle (2021081714121955700_CIT0093) 2016; 27
Gaston (2021081714121955700_CIT0028) 2000; 405
Hunt (2021081714121955700_CIT0054) 2004; 7
Körner (2021081714121955700_CIT0058) 2018; 2
Chase (2021081714121955700_CIT0010) 2002; 416
Grime (2021081714121955700_CIT0039) 2012
White (2021081714121955700_CIT0094) 2010; 365
Tilman (2021081714121955700_CIT0089) 2000; 405
Grime (2021081714121955700_CIT0034) 1973; 1
Grime (2021081714121955700_CIT0038) 1988
Hector (2021081714121955700_CIT0043) 1999; 286
Tao (2021081714121955700_CIT0085) 2020; 68
Lundholm (2021081714121955700_CIT0062) 2009; 20
Davies (2021081714121955700_CIT0018) 2005; 86
Assaf (2021081714121955700_CIT0003) 2011; 9
Fraser (2021081714121955700_CIT0023) 2015; 349
Ray (2021081714121955700_CIT0074) 1994; 75
Hodgson (2021081714121955700_CIT0047) 2005; 122
Connell (2021081714121955700_CIT0015) 1978; 199
Hooper (2021081714121955700_CIT0050) 1997; 277
Tardieu (2021081714121955700_CIT0086) 2020; 2
Fuentes (2021081714121955700_CIT0024) 2004; 66
Colasanti (2021081714121955700_CIT0013) 2001; 15
Cannas (2021081714121955700_CIT0007) 2003; 183
Craven (2021081714121955700_CIT0016) 2020; 29
Caccianiga (2021081714121955700_CIT0006) 2006; 112
Díaz (2021081714121955700_CIT0022) 2016; 529
Vellend (2021081714121955700_CIT0092) 2013; 110
Prach (2021081714121955700_CIT0072) 2009; 10
Lewontin (2021081714121955700_CIT0060) 1961; 1
Spellerberg (2021081714121955700_CIT0083) 2003; 12
Grime (2021081714121955700_CIT0036) 1979
Díaz (2021081714121955700_CIT0021) 2004; 15
Wilson (2021081714121955700_CIT0096) 2019
Grime (2021081714121955700_CIT0037) 2001
Wilkinson (2021081714121955700_CIT0095) 1999; 84
Jost (2021081714121955700_CIT0056) 2006; 113
Kelemen (2021081714121955700_CIT0057) 2013; 24
Catford (2021081714121955700_CIT0008) 2012; 14
Grime (2021081714121955700_CIT0033) 1973; 242
Hammer (2021081714121955700_CIT0041) 2019; 1
Tilman (2021081714121955700_CIT0090) 2014; 45
Hodge (2021081714121955700_CIT0046) 2006; 57
Van Ruijven (2021081714121955700_CIT0091) 2010; 98
Rosenzweig (2021081714121955700_CIT0077) 1993
Cerabolini (2021081714121955700_CIT0009) 2016; 150
Hodgson (2021081714121955700_CIT0048) 2017; 120
Hunt (2021081714121955700_CIT0052) 2007; 99
Chesson (2021081714121955700_CIT0011) 1997; 150
Loreau (2021081714121955700_CIT0061) 2001; 294
Breckling (2021081714121955700_CIT0004) 2011
Lavorel (2021081714121955700_CIT0059) 2011; 99
Davis (2021081714121955700_CIT0019) 2000; 88
Rohde (2021081714121955700_CIT0076) 2005; 110
Aslan (2021081714121955700_CIT0002) 2019; 11
Naeem (2021081714121955700_CIT0065) 2016; 283
Brun (2021081714121955700_CIT0005) 2019; 10
Hutchinson (2021081714121955700_CIT0055) 1965
Crawley (2021081714121955700_CIT0017) 1987; 125
References_xml – volume: 180
  start-page: 923
  year: 2016
  ident: 2021081714121955700_CIT0080
  article-title: Reinforcing loose foundation stones in trait-based plant ecology
  publication-title: Oecologia
  doi: 10.1007/s00442-016-3549-x
– volume: 529
  start-page: 167
  year: 2016
  ident: 2021081714121955700_CIT0022
  article-title: The global spectrum of plant form and function
  publication-title: Nature
  doi: 10.1038/nature16489
– volume: 86
  start-page: 1602
  year: 2005
  ident: 2021081714121955700_CIT0018
  article-title: Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship
  publication-title: Ecology
  doi: 10.1890/04-1196
– volume-title: Plant strategies and vegetation processes
  year: 1979
  ident: 2021081714121955700_CIT0036
– volume: 99
  start-page: 1023
  year: 2007
  ident: 2021081714121955700_CIT0052
  article-title: Self-assembling plants and integration across ecological scales
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcm037
– volume: 27
  start-page: 646
  year: 2016
  ident: 2021081714121955700_CIT0093
  article-title: Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?
  publication-title: Journal of Vegetation Science
  doi: 10.1111/jvs.12399
– volume: 66
  start-page: 199
  year: 2004
  ident: 2021081714121955700_CIT0024
  article-title: Slight differences among individuals and the unified neutral theory of biodiversity
  publication-title: Theoretical Population Biology
  doi: 10.1016/j.tpb.2004.06.003
– volume: 19
  start-page: 355
  year: 2005
  ident: 2021081714121955700_CIT0088
  article-title: Biodiversity, ecosystem function and plant traits in mature and immature plant communities
  publication-title: Functional Ecology
  doi: 10.1111/j.0269-8463.2005.00936.x
– volume: 529
  start-page: 293
  year: 2016
  ident: 2021081714121955700_CIT0032
  article-title: Biodiversity and productivity entwined
  publication-title: Nature
  doi: 10.1038/nature16867
– volume: 101
  start-page: 529
  year: 1983
  ident: 2021081714121955700_CIT0001
  article-title: A hierarchical model for the complexity of plant communities
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/0022-5193(83)90014-0
– volume: 150
  start-page: 519
  year: 1997
  ident: 2021081714121955700_CIT0011
  article-title: The roles of harsh and fluctuating conditions in the dynamics of ecological communities
  publication-title: American Naturalist
  doi: 10.1086/286080
– volume: 88
  start-page: 528
  year: 2000
  ident: 2021081714121955700_CIT0019
  article-title: Fluctuating resources in plant communities: a general theory of invasibility
  publication-title: Journal of Ecology
  doi: 10.1046/j.1365-2745.2000.00473.x
– start-page: 11
  volume-title: The plant community as a working mechanism. Special Publication of the British Ecological Society 1
  year: 1982
  ident: 2021081714121955700_CIT0042
  article-title: After description.
– volume: 21
  start-page: 796
  year: 2010
  ident: 2021081714121955700_CIT0084
  article-title: Environmental heterogeneity, species diversity and co-existence at different spatial scales
  publication-title: Journal of Vegetation Science
– volume: 110
  start-page: 19456
  year: 2013
  ident: 2021081714121955700_CIT0092
  article-title: Global meta-analysis reveals no net change in local-scale plant biodiversity over time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1312779110
– volume: 30
  start-page: 516
  year: 2015
  ident: 2021081714121955700_CIT0067
  article-title: Vive la résistance: reviving resistance for 21st century conservation
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2015.07.008
– volume: 2
  start-page: diaa011
  year: 2020
  ident: 2021081714121955700_CIT0086
  article-title: Are crop and detailed physiological models equally “mechanistic” for predicting the genetic variability of whole plant behaviour? The nexus between mechanisms and adaptive strategies
  publication-title: In Silico Plants
  doi: 10.1093/insilicoplants/diaa011
– start-page: 22
  volume-title: Comparative plant ecology: a functional approach to common British species (reprinted 1996)
  year: 1988
  ident: 2021081714121955700_CIT0038
  doi: 10.1007/978-94-017-1094-7
– volume: 19
  start-page: 605
  year: 2004
  ident: 2021081714121955700_CIT0081
  article-title: Plant coexistence and the niche
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2004.09.003
– volume: 115
  start-page: 639
  year: 2018
  ident: 2021081714121955700_CIT0078
  article-title: Emergent neutrality in resource competition
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1721114115
– start-page: 215
  volume-title: Seeds: the ecology of regeneration in plant communities
  year: 2000
  ident: 2021081714121955700_CIT0087
  article-title: The functional ecology of soil seed banks
  doi: 10.1079/9780851994321.0215
– volume: 98
  start-page: 81
  year: 2010
  ident: 2021081714121955700_CIT0091
  article-title: Diversity enhances community recovery, but not resistance, after drought
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2009.01603.x
– volume: 57
  start-page: 401
  year: 2006
  ident: 2021081714121955700_CIT0046
  article-title: Plastic plants and patchy soils
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eri280
– volume: 287
  start-page: 20202063
  year: 2020
  ident: 2021081714121955700_CIT0097
  article-title: Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2020.2063
– volume: 125
  start-page: 475
  year: 1987
  ident: 2021081714121955700_CIT0017
  article-title: Population dynamics and plant community structure: competition between annuals and perennials
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(87)80215-1
– volume: 7
  start-page: 169
  year: 1993
  ident: 2021081714121955700_CIT0012
  article-title: Resource dynamics and vegetation processes: a deterministic model using two-dimensional cellular automata
  publication-title: Functional Ecology
  doi: 10.2307/2389883
– volume: 32
  start-page: 133
  year: 2012
  ident: 2021081714121955700_CIT0030
  article-title: Factors and processes affecting plant biodiversity in permanent grasslands. A review
  publication-title: Agronomy for Sustainable Development
  doi: 10.1007/s13593-011-0015-3
– volume: 400
  start-page: 557
  year: 1999
  ident: 2021081714121955700_CIT0075
  article-title: Spatial scaling laws yield a synthetic theory of biodiversity
  publication-title: Nature
  doi: 10.1038/23010
– volume: 45
  start-page: 471
  year: 2014
  ident: 2021081714121955700_CIT0090
  article-title: Biodiversity and ecosystem functioning
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-120213-091917
– volume: 29
  start-page: 1940
  year: 2020
  ident: 2021081714121955700_CIT0016
  article-title: A cross-scale assessment of productivity–diversity relationships
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.13165
– volume: 1
  start-page: 382
  year: 1961
  ident: 2021081714121955700_CIT0060
  article-title: Evolution and the theory of games
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/0022-5193(61)90038-8
– volume: 17
  start-page: 679
  year: 2008
  ident: 2021081714121955700_CIT0098
  article-title: What determines the relationship between plant diversity and habitat productivity?
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2008.00400.x
– volume: 9
  start-page: 157
  year: 2011
  ident: 2021081714121955700_CIT0003
  article-title: The relationship between plant diversity and productivity in natural and in managed grasslands
  publication-title: Applied Ecology and Environmental Research
  doi: 10.15666/aeer/0902_157166
– volume: 199
  start-page: 1302
  year: 1978
  ident: 2021081714121955700_CIT0015
  article-title: Diversity in tropical rain forests and coral reefs
  publication-title: Science
  doi: 10.1126/science.199.4335.1302
– volume: 422
  start-page: 881
  year: 2003
  ident: 2021081714121955700_CIT0063
  article-title: A test of the unified neutral theory of biodiversity
  publication-title: Nature
  doi: 10.1038/nature01583
– volume-title: Biodiversity: an introduction
  year: 2004
  ident: 2021081714121955700_CIT0029
– volume: 68
  start-page: 67
  year: 2020
  ident: 2021081714121955700_CIT0085
  article-title: Humped relationship between herbaceous species richness and biomass reveals a potential for increasing productivity in a temperate desert in Central Asia
  publication-title: Polish Journal of Ecology
  doi: 10.3161/15052249PJE2020.68.1.006
– volume: 294
  start-page: 804
  year: 2001
  ident: 2021081714121955700_CIT0061
  article-title: Biodiversity and ecosystem functioning: current knowledge and future challenges
  publication-title: Science
  doi: 10.1126/science.1064088
– volume: 14
  start-page: 231
  year: 2012
  ident: 2021081714121955700_CIT0008
  article-title: The intermediate disturbance hypothesis and plant invasions: implications for species richness and management
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
  doi: 10.1016/j.ppees.2011.12.002
– volume: 203
  start-page: 363
  year: 2007
  ident: 2021081714121955700_CIT0014
  article-title: A simple cellular automaton model for high-level vegetation dynamics
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2006.12.039
– volume: 110
  start-page: 203
  year: 2005
  ident: 2021081714121955700_CIT0076
  article-title: Cellular automata and ecology
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2005.13965.x
– start-page: 105
  volume-title: Modelling complex ecological dynamics
  year: 2011
  ident: 2021081714121955700_CIT0004
  article-title: Cellular automata in ecological modelling.
  doi: 10.1007/978-3-642-05029-9_8
– volume: 183
  start-page: 93
  year: 2003
  ident: 2021081714121955700_CIT0007
  article-title: Modelling biological invasions: species traits, species interactions, and habitat heterogeneity
  publication-title: Mathematical Biosciences
  doi: 10.1016/S0025-5564(02)00213-4
– volume: 7
  start-page: 85
  year: 2005
  ident: 2021081714121955700_CIT0026
  article-title: Local diversity of arable weeds increases with landscape complexity
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
  doi: 10.1016/j.ppees.2005.04.001
– volume: 2
  start-page: 1925
  year: 2018
  ident: 2021081714121955700_CIT0058
  article-title: Change in dominance determines herbivore effects on plant biodiversity
  publication-title: Nature Ecology and Evolution
  doi: 10.1038/s41559-018-0696-y
– volume: 23
  start-page: 575
  year: 2020
  ident: 2021081714121955700_CIT0045
  article-title: Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems
  publication-title: Ecology Letters
  doi: 10.1111/ele.13457
– volume: 85
  start-page: 282
  year: 1999
  ident: 2021081714121955700_CIT0049
  article-title: Allocating C-S-R plant functional types: a soft approach to a hard problem
  publication-title: Oikos
  doi: 10.2307/3546494
– volume: 424
  start-page: 423
  year: 2003
  ident: 2021081714121955700_CIT0025
  article-title: Productivity-biodiversity relationships depend on the history of community assembly
  publication-title: Nature
  doi: 10.1038/nature01785
– volume: 28
  start-page: 787
  year: 2014
  ident: 2021081714121955700_CIT0031
  article-title: Causal networks clarify productivity-richness interrelations, bivariate plots do not
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.12269
– volume: 405
  start-page: 208
  year: 2000
  ident: 2021081714121955700_CIT0089
  article-title: Causes, consequences and ethics of biodiversity
  publication-title: Nature
  doi: 10.1038/35012217
– volume: 277
  start-page: 1302
  year: 1997
  ident: 2021081714121955700_CIT0050
  article-title: The effects of plant composition and diversity on ecosystem processes
  publication-title: Science
  doi: 10.1126/science.277.5330.1302
– volume: 19
  start-page: 530
  year: 2004
  ident: 2021081714121955700_CIT0070
  article-title: Simulation as experiment: a philosophical reassessment for biological modeling
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2004.07.019
– volume: 11
  start-page: plz006
  year: 2019
  ident: 2021081714121955700_CIT0002
  article-title: Employing plant functional groups to advance seed dispersal ecology and conservation
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plz006
– volume: 349
  start-page: 302
  year: 2015
  ident: 2021081714121955700_CIT0023
  article-title: Worldwide evidence of a unimodal relationship between productivity and plant species richness
  publication-title: Science
  doi: 10.1126/science.aab3916
– volume: 12
  start-page: 177
  year: 2003
  ident: 2021081714121955700_CIT0083
  article-title: A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ index
  publication-title: Global Ecology and Biogeography
  doi: 10.1046/j.1466-822X.2003.00015.x
– volume: 120
  start-page: 633
  year: 2017
  ident: 2021081714121955700_CIT0048
  article-title: Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies… and taxonomy with ecology?
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcx084
– volume-title: A unified neutral theory of biodiversity and biogeography
  year: 2001
  ident: 2021081714121955700_CIT0051
– start-page: 52
  volume-title: Species diversity in ecological communities: historical and geographical perspectives
  year: 1993
  ident: 2021081714121955700_CIT0077
  article-title: How are diversity and productivity related?
– volume: 242
  start-page: 344
  year: 1973
  ident: 2021081714121955700_CIT0033
  article-title: Competitive exclusion in herbaceous vegetation
  publication-title: Nature
  doi: 10.1038/242344a0
– volume-title: The ecological theater and the evolutionary play
  year: 1965
  ident: 2021081714121955700_CIT0055
– volume: 16
  start-page: 545
  year: 2013
  ident: 2021081714121955700_CIT0064
  article-title: Game theory and plant ecology
  publication-title: Ecology Letters
  doi: 10.1111/ele.12071
– volume: 283
  start-page: 2015.3005
  year: 2016
  ident: 2021081714121955700_CIT0065
  article-title: Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2015.3005
– volume: 10
  start-page: 383
  year: 2009
  ident: 2021081714121955700_CIT0072
  article-title: How do species dominating in succession differ from others?
  publication-title: Journal of Vegetation Science
  doi: 10.2307/3237067
– volume: 111
  start-page: 451
  year: 1984
  ident: 2021081714121955700_CIT0053
  article-title: Modelling the partitioning of research effort in ecology
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/S0022-5193(84)80233-7
– volume: 416
  start-page: 427
  year: 2002
  ident: 2021081714121955700_CIT0010
  article-title: Spatial scale dictates the productivity-biodiversity relationship
  publication-title: Nature
  doi: 10.1038/416427a
– volume-title: Plant functional diversity: organism traits, community structure, and ecosystem properties
  year: 2016
  ident: 2021081714121955700_CIT0027
– volume: 79
  start-page: 259
  year: 1997
  ident: 2021081714121955700_CIT0040
  article-title: Integrated screening validates primary axes of specialisation in plants
  publication-title: Oikos
  doi: 10.2307/3546011
– volume: 88
  start-page: 1091
  year: 2007
  ident: 2021081714121955700_CIT0069
  article-title: Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history
  publication-title: Ecology
  doi: 10.1890/06-0997
– volume: 112
  start-page: 10
  year: 2006
  ident: 2021081714121955700_CIT0006
  article-title: The functional basis of a primary succession resolved by CSR classification
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2006.14107.x
– volume-title: Plant strategies, vegetation processes, and ecosystem properties
  year: 2001
  ident: 2021081714121955700_CIT0037
– volume: 54
  start-page: 427
  year: 1973
  ident: 2021081714121955700_CIT0044
  article-title: Diversity and evenness: a unifying notation and its consequences
  publication-title: Ecology
  doi: 10.2307/1934352
– volume: 20
  start-page: 377
  year: 2009
  ident: 2021081714121955700_CIT0062
  article-title: Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses
  publication-title: Journal of Vegetation Science
  doi: 10.1111/j.1654-1103.2009.05577.x
– volume: 84
  start-page: 145
  year: 1999
  ident: 2021081714121955700_CIT0095
  article-title: The disturbing history of intermediate disturbance
  publication-title: Oikos
  doi: 10.2307/3546874
– volume: 40
  start-page: 323
  year: 1989
  ident: 2021081714121955700_CIT0020
  article-title: Note on entropy, disorder and disorganization
  publication-title: British Journal for the Philosophy of Science
  doi: 10.1093/bjps/40.3.323
– volume: 150
  start-page: 550
  year: 2016
  ident: 2021081714121955700_CIT0009
  article-title: Why are many anthropogenic agroecosystems particularly species-rich?
  publication-title: Plant Biosystems
  doi: 10.1080/11263504.2014.987848
– volume: 24
  start-page: 1195
  year: 2013
  ident: 2021081714121955700_CIT0057
  article-title: Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands
  publication-title: Journal of Vegetation Science
  doi: 10.1111/jvs.12027
– volume: 405
  start-page: 220
  year: 2000
  ident: 2021081714121955700_CIT0028
  article-title: Global patterns in biodiversity
  publication-title: Nature
  doi: 10.1038/35012228
– volume: 1
  start-page: 151
  year: 1973
  ident: 2021081714121955700_CIT0034
  article-title: Control of species density in herbaceous vegetation
  publication-title: Journal of Environmental Management
– volume: 7
  start-page: 163
  year: 2004
  ident: 2021081714121955700_CIT0054
  article-title: A new practical tool for deriving a functional signature for herbaceous vegetation
  publication-title: Applied Vegetation Science
  doi: 10.1111/j.1654-109X.2004.tb00607.x
– volume: 11
  start-page: 1169
  year: 1977
  ident: 2021081714121955700_CIT0035
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: American Naturalist
  doi: 10.1086/283244
– volume: 286
  start-page: 1123
  year: 1999
  ident: 2021081714121955700_CIT0043
  article-title: Plant diversity and productivity experiments in European grasslands
  publication-title: Science
  doi: 10.1126/science.286.5442.1123
– volume: 117
  start-page: 18550
  year: 2020
  ident: 2021081714121955700_CIT0066
  article-title: High plant diversity and slow assembly of old-growth grasslands
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1922266117
– volume-title: The evolutionary strategies that shape ecosystems
  year: 2012
  ident: 2021081714121955700_CIT0039
  doi: 10.1002/9781118223246
– volume: 113
  start-page: 363
  year: 2006
  ident: 2021081714121955700_CIT0056
  article-title: Entropy and diversity
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.14714.x
– volume: 365
  start-page: 3633
  year: 2010
  ident: 2021081714121955700_CIT0094
  article-title: Integrating spatial and temporal approaches to understanding species richness
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2010.0280
– volume: 405
  start-page: 212
  year: 2000
  ident: 2021081714121955700_CIT0073
  article-title: Getting the measure of biodiversity
  publication-title: Nature
  doi: 10.1038/35012221
– volume-title: From plant traits to vegetation structure: chance and selection in the assembly of ecological communities
  year: 2010
  ident: 2021081714121955700_CIT0079
– volume: 99
  start-page: 135
  year: 2011
  ident: 2021081714121955700_CIT0059
  article-title: Using plant functional traits to understand the landscape distribution of multiple ecosystem services
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2010.01753.x
– volume: 1
  start-page: diz010
  year: 2019
  ident: 2021081714121955700_CIT0041
  article-title: Biological reality and parsimony in crop models-why we need both in crop improvement!
  publication-title: In Silico Plants
  doi: 10.1093/insilicoplants/diz010
– volume: 8
  start-page: 527
  year: 1992
  ident: 2021081714121955700_CIT0082
  article-title: Cellular automaton models of interspecific competition for space - the effect of pattern on process
  publication-title: Journal of Ecology
  doi: 10.2307/2260696
– volume: 75
  start-page: 239
  year: 1994
  ident: 2021081714121955700_CIT0074
  article-title: Evolution, complexity, entropy and artificial reality
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(94)90286-0
– volume: 10
  start-page: 5691
  year: 2019
  ident: 2021081714121955700_CIT0005
  article-title: The productivity-biodiversity relationship varies across diversity dimensions
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13678-1
– volume: 31
  start-page: 444
  year: 2017
  ident: 2021081714121955700_CIT0071
  article-title: A global method for calculating plant CSR ecological strategies applied across biomes world-wide
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.12722
– volume: 15
  start-page: 295
  year: 2004
  ident: 2021081714121955700_CIT0021
  article-title: The plant traits that drive ecosystems: evidence from three continents
  publication-title: Journal of Vegetation Science
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– volume: 15
  start-page: 676
  year: 2001
  ident: 2021081714121955700_CIT0013
  article-title: A self-assembling model of resource dynamics and plant growth incorporating plant functional types
  publication-title: Functional Ecology
  doi: 10.1046/j.0269-8463.2001.00556.x
– volume: 410
  start-page: 923
  year: 2001
  ident: 2021081714121955700_CIT0068
  article-title: Towards a general theory of biodiversity
  publication-title: Nature
  doi: 10.1038/35073563
– volume-title: The nature of plant communities
  year: 2019
  ident: 2021081714121955700_CIT0096
  doi: 10.1017/9781108612265
– volume: 122
  start-page: 263
  year: 2005
  ident: 2021081714121955700_CIT0047
  article-title: How much will it cost to save grassland diversity?
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2004.07.016
SSID ssj0002545399
Score 2.1560054
Snippet To illuminate mechanisms supporting diversity in plant communities, we construct 2D cellular automata and ‘grow’ virtual plants in real experiments. The plants...
SourceID proquest
crossref
oup
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biodiversity
Biological invasions
Cellular automata
Heterogeneity
Plant communities
Plant diversity
Propagules
Spatial heterogeneity
Title Real communities of virtual plants explain biodiversity on just three assumptions
URI https://cir.nii.ac.jp/crid/1873679867266970880
https://www.proquest.com/docview/3172166756
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: ABDBF
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: TOX
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2517-5025
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002545399
  issn: 2517-5025
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC509OBFdFUcV6UPnhbC5NWdzmERlRERnF1lFuYW-hWIDMnoxGX3sr_dqjx0dw_qpQmETqCqu-rr6qr6AE5SzZUOrPFSXwkvdjLyNPplL3BSxYqHOlRU73wzEVc_4usZn63ApK-FobTK3iY2htpWhmLko4jOKgLhrThdPHjEGkW3qz2FhuqoFezXpsXYKqyFxKo8gLXz8eT73UvUBY9D1Iq1LxVOo1FRLos5Cn0xp7yTEUU8feLI_ctLrZZF8V_9W2-wGy90uQWbHXxkZ62-t2HFlZ9g_bxCiPd7B27vEPYx09Z8UKdUVuXsZ_FINSKs_TVzv_ChKJkuKtvnZLCqZPdPy5rVqFnHEE-jkpsFuQvTy_H04srrOBM8EwtZe6mSKCQnEagkRintECCp3OW4dYPUmjz0I-d0oiJDrba4ydFdcyVl7qy2Rkd7MCir0u0Dy4XxuQ5EIriJuY51oP1Uam2DwKbCuSHwXkSZ6fqJE63FPGvvtaPsX9FmnWiHMHqZt2g7arw74wg1gD-hMZBJRDdHIkFokSZoJP0hfEHdfPhjh70Ks267LrPXxXXw9uvPsBFSUksTgzmEQf345I4QldT6uFtqx82pHsebP2Mcp99mz26G61E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7yKDSX0CfdPFod2kvBrG1ZsnwIpWkTNk2ytGELuRm9DC6Lvck6afPj-t8640f6OLS95GIMRhLMfJ75JM0D4GVmhDaRs0EWahkkXvHAoF8OIq90okVsYk35zqdTOfmcfDgX5yvwfciFobDKwSa2htrVls7Ix5z2KhLprXyzuAioaxTdrg4tNHTfWsHttSXG-sSOY3_zFbdwy72j96jvV3F8eDB7Nwn6LgOBTaRqgkwrnNYrdO2p1dp4pBS68AWCPcqcLeKQe29SzS0VpxK2QAcntFKFd8ZZw3HaVVhH1sHxp1rfP5h-PLs95MHdF1V-HTKTMz4uq2U5Rx0v5hTmMqYD1pBa8v7iFFersvwj3W7wD63TO3wAmz1bZW87eD2EFV89gnv7NTLKm8fw6QxZJrNdigkVZmV1wa7LS0pJYd3SzH_Dl7JipqzdEALC6op9uVo2rEEgeYb0HTHV4v8JzO5CeE9hraor_wxYIW0oTCRTKWwiTGIiE2bKGBdFLpPej0AMIsptX76cumjM8-4anee_izbvRTuC8e24RVfA458jdlEDuAg9I5VyuqiSKTKZLEWbHI7gNermvyfbGVSY99Zhmf_E8tbfP7-A-5PZ6Ul-cjQ93oaNmOJp2uOfHVhrLq_8LhKixjzvYccgv2Og_wBWwCZf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+communities+of+virtual+plants+explain+biodiversity+on+just+three+assumptions&rft.jtitle=in+silico+Plants&rft.au=Roderick+Hunt&rft.au=Ric+L+Colasanti&rft.date=2021-01-01&rft.pub=Oxford+University+Press+%28OUP%29&rft.eissn=2517-5025&rft.volume=3&rft_id=info:doi/10.1093%2Finsilicoplants%2Fdiab015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2517-5025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2517-5025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2517-5025&client=summon