A diagnostic codes-based algorithm improves accuracy for identification of childhood asthma in archival data sets

While a single but truncated ICD code (493) had been widely used for identifying asthma in asthma care and research, it significantly under-identifies asthma. We aimed to develop and validate a diagnostic codes-based algorithm for identifying asthmatics using Predetermined Asthma Criteria (PAC) as t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of asthma Vol. 58; no. 8; p. 1077
Main Authors Seol, Hee Yun, Wi, Chung-Il, Ryu, Euijung, King, Katherine S, Divekar, Rohit D, Juhn, Young J
Format Journal Article
LanguageEnglish
Published England 03.08.2021
Subjects
Online AccessGet full text
ISSN0277-0903
1532-4303
1532-4303
DOI10.1080/02770903.2020.1759624

Cover

Abstract While a single but truncated ICD code (493) had been widely used for identifying asthma in asthma care and research, it significantly under-identifies asthma. We aimed to develop and validate a diagnostic codes-based algorithm for identifying asthmatics using Predetermined Asthma Criteria (PAC) as the reference. This is a retrospective cross-sectional study which utilized two different coding systems, the Hospital Adaptation of the International Classification of Diseases, Eighth Revision (H-ICDA) and the International Classification of Diseases, Ninth Revision (ICD-9). The algorithm was developed using two population-based asthma study cohorts, and validated in a validation cohort, a random sample of the 1976-2007 Olmsted County Birth Cohort. Performance of the diagnostic codes-based algorithm for ascertaining asthma status against manual chart review for PAC (gold standard) was assessed by determining both criterion and construct validity. Among eligible 267 subjects of the validation cohort, 50% were male, 70% white, and the median age at last follow-up was 17 (interquartile range, 8.7-24.4) years. Asthma prevalence by PAC through manual chart review was 34%. Sensitivity and specificity of the codes-based algorithm for identifying asthma were 82% and 98% respectively. Associations of asthma-related risk factors with asthma status ascertained by the code-based algorithm were similar to those by the manual review. The diagnostic codes-based algorithm for identifying asthmatics improves accuracy of identification of asthma and can be a useful tool for large scale studies in a setting without automated chart review capabilities.
AbstractList While a single but truncated ICD code (493) had been widely used for identifying asthma in asthma care and research, it significantly under-identifies asthma. We aimed to develop and validate a diagnostic codes-based algorithm for identifying asthmatics using Predetermined Asthma Criteria (PAC) as the reference. This is a retrospective cross-sectional study which utilized two different coding systems, the Hospital Adaptation of the International Classification of Diseases, Eighth Revision (H-ICDA) and the International Classification of Diseases, Ninth Revision (ICD-9). The algorithm was developed using two population-based asthma study cohorts, and validated in a validation cohort, a random sample of the 1976-2007 Olmsted County Birth Cohort. Performance of the diagnostic codes-based algorithm for ascertaining asthma status against manual chart review for PAC (gold standard) was assessed by determining both criterion and construct validity. Among eligible 267 subjects of the validation cohort, 50% were male, 70% white, and the median age at last follow-up was 17 (interquartile range, 8.7-24.4) years. Asthma prevalence by PAC through manual chart review was 34%. Sensitivity and specificity of the codes-based algorithm for identifying asthma were 82% and 98% respectively. Associations of asthma-related risk factors with asthma status ascertained by the code-based algorithm were similar to those by the manual review. The diagnostic codes-based algorithm for identifying asthmatics improves accuracy of identification of asthma and can be a useful tool for large scale studies in a setting without automated chart review capabilities.
Author Wi, Chung-Il
Juhn, Young J
Ryu, Euijung
Divekar, Rohit D
King, Katherine S
Seol, Hee Yun
Author_xml – sequence: 1
  givenname: Hee Yun
  surname: Seol
  fullname: Seol, Hee Yun
  organization: Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
– sequence: 2
  givenname: Chung-Il
  orcidid: 0000-0001-8938-2997
  surname: Wi
  fullname: Wi, Chung-Il
  organization: Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 3
  givenname: Euijung
  orcidid: 0000-0001-6281-8738
  surname: Ryu
  fullname: Ryu, Euijung
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 4
  givenname: Katherine S
  surname: King
  fullname: King, Katherine S
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 5
  givenname: Rohit D
  surname: Divekar
  fullname: Divekar, Rohit D
  organization: Division of Allergic Disease, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 6
  givenname: Young J
  orcidid: 0000-0003-2112-4240
  surname: Juhn
  fullname: Juhn, Young J
  organization: Department of Pediatric and Adolescent Medicine/Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32315558$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1OwzAQBi1URH_gEUB-gZSNHSf2saqgIFXiAudoYzutURKHOC3q25OoLaeVRt_sYeZk0vjGEvIYwzIGCc_AsgwU8CUDNqBMqJQlN2QWC86ihAOfkNm4icbRlMxD-AYYAKR3ZMoZj4UQckZ-VtQ43DU-9E5T7Y0NUYHBGorVzneu39fU1W3njzZQ1PrQoT7R0nfUGdv0rnQae-cb6kuq964ye-8HNwweUtdQ7AZ6xIoa7JEG24d7cltiFezD5S7I1-vL5_ot2n5s3terbaSTVPaRSoQSWGQiM0rIQhosSmOZYIpJA6niNmGcxZpJrjloaUuRogHFDNNxMbAFSc9_D02Lp1-sqrztXI3dKY8hHxvm14b52DC_NBzEp7PYHoramn_rGo3_AcUfcBI
CitedBy_id crossref_primary_10_1093_ofid_ofaa197
crossref_primary_10_1542_hpeds_2023_007526
crossref_primary_10_3389_fimmu_2021_729501
crossref_primary_10_2196_53662
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.1080/02770903.2020.1759624
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-4303
ExternalDocumentID oai:pubmedcentral.nih.gov:7677164
32315558
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL126667
– fundername: NIA NIH HHS
  grantid: R33 AG058738
– fundername: NIA NIH HHS
  grantid: R01 AG034676
– fundername: NCATS NIH HHS
  grantid: UL1 TR000135
– fundername: NIAID NIH HHS
  grantid: R21 AI116839
GroupedDBID ---
.55
.GJ
00X
03L
0BK
0R~
29J
36B
3O-
4.4
53G
5GY
5RE
5VS
AALIY
AALUX
AAMIU
AAORF
AAPUL
AAPXX
AAQRR
ABBKH
ABEIZ
ABIVO
ABJNI
ABLIJ
ABLKL
ABUPF
ABWCV
ABXYU
ABZEW
ACENM
ACGEJ
ACGFO
ACGFS
ACIEZ
ACKZS
ADCVX
ADFOM
ADFZZ
ADRBQ
ADXPE
ADYSH
AECIN
AEGXH
AEIIZ
AENEX
AEOZL
AFFNX
AFKVX
AFLEI
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJVHN
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AMDAE
AWYRJ
BABNJ
BLEHA
BOHLJ
BRMBE
CAG
CCCUG
CGR
COF
CS3
CUY
CVF
CYYVM
CZDIS
DKSSO
DRXRE
DU5
DWTOO
EBS
ECM
EIF
EJD
F5P
FEDTE
H13
HVGLF
HZ~
JENTW
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M44
M4Z
NPM
NUSFT
O9-
QQXMO
RNANH
RVRKI
SJN
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
UEQFS
V1S
X7M
ZGI
ZXP
~1N
AAGDL
AAJKZ
ABWVI
ACOPL
ACYZI
ADTOC
AFRVT
AQTUD
TASJS
UNPAY
ID FETCH-LOGICAL-c468t-94595ab757d958b8dabfde252928d0693e42321c283c30c8ef56ad092d2c1b3c3
IEDL.DBID UNPAY
ISSN 0277-0903
1532-4303
IngestDate Sun Oct 26 04:07:41 EDT 2025
Wed Feb 19 02:26:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Epidemiology
diagnostics
pediatrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-94595ab757d958b8dabfde252928d0693e42321c283c30c8ef56ad092d2c1b3c3
ORCID 0000-0003-2112-4240
0000-0001-6281-8738
0000-0001-8938-2997
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7677164
PMID 32315558
ParticipantIDs unpaywall_primary_10_1080_02770903_2020_1759624
pubmed_primary_32315558
PublicationCentury 2000
PublicationDate 2021-08-03
PublicationDateYYYYMMDD 2021-08-03
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Journal of asthma
PublicationTitleAlternate J Asthma
PublicationYear 2021
SSID ssj0002706
Score 2.3163643
Snippet While a single but truncated ICD code (493) had been widely used for identifying asthma in asthma care and research, it significantly under-identifies asthma....
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 1077
SubjectTerms Adolescent
Adult
Algorithms
Asthma - diagnosis
Child
Cross-Sectional Studies
Datasets as Topic
Female
Humans
Male
Retrospective Studies
Young Adult
Title A diagnostic codes-based algorithm improves accuracy for identification of childhood asthma in archival data sets
URI https://www.ncbi.nlm.nih.gov/pubmed/32315558
https://www.ncbi.nlm.nih.gov/pmc/articles/7677164
UnpaywallVersion submittedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGP2oLagX96Vu5OB1prMkk8mxiFKEFhELehqyVQfbae1MkfrrTWYR8eY1XwKBF8hL8t4LwHVIbNok9Z1JyKmDrS9HSKqdWAQq8IRZJNIanIejaDDG98_kuQV-44UpRftSpG42nblZ-lZqKxcz2Wt0Yj0aUcvxN6ATEUO_29AZjx76L-VdCqXlvUOVkWrdQF7YuHZsnrap27I5FQamidqPZ_CvnWdrlS34-pNPp7-2mLtdeGwmVylL3t1VIVz59Se38V-z34OdmnCiflXah5bODmBzWD-pH8JHH6lKbmc6IOtwzx27tSnEp6_zZVq8zVBa3jzoHHEpV0su18hQXZSqWmlUgovmEySbnGTEczOOozRD5UuFWc7IalFRrov8CMZ3t083A6f-h8GROIoLh2HCCBeUUMVILGLFxUTpgAQsiJUXsVDb115fGqYiQ0_GekIirjxm0Ja-MG3H0M7mmT4FJEtvq6SROfZhhkOBKREMe5r5jONYdOGkQiNZVGEbSWgIqM0k60LvB56fot8EnNbIJhbZpEb27N8jzmE7sJIVqwgJL6BdLFf60nCOQlzBxuhheFWvtW_fMtFh
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JawIxGP2wCm0v3Re7kUOvo7Mkk8lRSosUlFIq2JNksw7V0Tojxf76JrOI9NZrvgQCL5CX5L0XgPuA2LRJ6jnjgFMHW1-OkFQ7kfCV7wqzSKQ1OPf6YXeAn4dkWAOv8sLkon0p4lYynbWSeJJrKxcz2a50Ym0aUsvxd6AREkO_69AY9F867_ldCqX5vUORkWrdQG5QuXZsnrap27I5FfqmidqPZ_DWzrO3ShZ8_c2n060t5ukQXqvJFcqSz9YqEy358ye38V-zP4KDknCiTlE6hppOTmC3Vz6pn8JXB6lCbmc6IOtwTx27tSnEpx_zZZxNZijObx50iriUqyWXa2SoLopVqTTKwUXzMZJVTjLiqRnHUZyg_KXCLGdktago1Vl6BoOnx7eHrlP-w-BIHEaZwzBhhAtKqGIkEpHiYqy0T3zmR8oNWaDta68nDVORgSsjPSYhVy4zaEtPmLZzqCfzRF8Ckrm3VdLQHPsww4HAlAiGXc08xnEkmnBRoDFaFGEbo8AQUJtJ1oT2Bp5N0asCTktkRxbZUYns1b9HXMO-byUrVhES3EA9W670reEcmbgrV9kv_BLQVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+diagnostic+codes-based+algorithm+improves+accuracy+for+identification+of+childhood+asthma+in+archival+data+sets&rft.jtitle=The+Journal+of+asthma&rft.date=2021-08-03&rft.issn=0277-0903&rft_id=info:doi/10.1080%2F02770903.2020.1759624&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A7677164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-0903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-0903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-0903&client=summon