IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescen...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 10; p. 1083743 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
12.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-634X 2296-634X |
DOI | 10.3389/fcell.2022.1083743 |
Cover
Abstract | Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a “pseudo-senescent” state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms. |
---|---|
AbstractList | Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a “pseudo-senescent” state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms. Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms. |
Author | D’Uva, Gabriele Pagano, Federica Sgarzi, Michela Romaniello, Donatella Filippini, Daria Maria Lauriola, Mattia Morselli, Alessandra Girone, Cinzia Gelfo, Valerio |
AuthorAffiliation | 3 Division of Medical Oncology , IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy 1 Department of Experimental , Diagnostic and Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy 2 Centre for Applied Biomedical Research (CRBA) , Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic , Bologna , Italy 4 National Laboratory of Molecular Biology and Stem Cell Engineering , National Institute of Biostructures and Biosystems (INBB) , Bologna , Italy |
AuthorAffiliation_xml | – name: 3 Division of Medical Oncology , IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy – name: 2 Centre for Applied Biomedical Research (CRBA) , Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic , Bologna , Italy – name: 1 Department of Experimental , Diagnostic and Specialty Medicine (DIMES) , University of Bologna , Bologna , Italy – name: 4 National Laboratory of Molecular Biology and Stem Cell Engineering , National Institute of Biostructures and Biosystems (INBB) , Bologna , Italy |
Author_xml | – sequence: 1 givenname: Donatella surname: Romaniello fullname: Romaniello, Donatella – sequence: 2 givenname: Valerio surname: Gelfo fullname: Gelfo, Valerio – sequence: 3 givenname: Federica surname: Pagano fullname: Pagano, Federica – sequence: 4 givenname: Michela surname: Sgarzi fullname: Sgarzi, Michela – sequence: 5 givenname: Alessandra surname: Morselli fullname: Morselli, Alessandra – sequence: 6 givenname: Cinzia surname: Girone fullname: Girone, Cinzia – sequence: 7 givenname: Daria Maria surname: Filippini fullname: Filippini, Daria Maria – sequence: 8 givenname: Gabriele surname: D’Uva fullname: D’Uva, Gabriele – sequence: 9 givenname: Mattia surname: Lauriola fullname: Lauriola, Mattia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36712972$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1UREvpH-CAcuSSxRk7scMBCVXdstIiJAQSN8txxq2rxF7sBKn8erzZLWo5cLI1M-97mnkvyYkPHgl5XdEVY7J9Zw0OwwoowKqikgnOnpEzgLYpG8Z_nDz6n5KLlO4opRXUopbsBTlljaigFXBGPm-2ZVVo3xcJPSaD3uD7Yh0d-j4tdRuwCLa4ul5_LTzOU9SD-60nF_zSduM4-zDdYtS7-1fkudVDwovje06-r6--XX4qt1-uN5cft6XhjZzKljFRG2pZ22uL2hgqRcUpAui-RyagsmBZn1e0NW-N4VbbrumAdm1tGFp2TjYHbh_0ndpFN-p4r4J2aimEeKN0nJwZUNnslPUGjeVcWqGt1IAdA2hM03Yssz4cWLu5G7HPF9iv-AT6tOPdrboJv1QrhWigzoC3R0AMP2dMkxpd2qejPYY5KRAiJ8RryfPom8def00e8sgD8jBgYkgpolXGTcuxs7UbVEXVPn21pK_26atj-lkK_0gf6P8R_QEtgLVz |
CitedBy_id | crossref_primary_10_1093_biolre_ioad149 crossref_primary_10_1016_j_slasd_2025_100219 crossref_primary_10_1016_j_critrevonc_2025_104705 crossref_primary_10_18632_aging_205520 crossref_primary_10_3390_biomedicines12122669 |
Cites_doi | 10.1038/35052073 10.1038/nrc2440 10.1016/j.molcel.2008.03.023 10.1016/j.isci.2020.102016 10.3390/cancers13030484 10.3390/cancers12040822 10.1101/gad.1550307 10.1016/j.celrep.2017.09.085 10.1200/JCO.2017.74.6065 10.1038/sj.onc.1204665 10.3390/cancers12092394 10.2174/1389450116666150825113500 10.1093/jnci/86.17.1303 10.3390/ijms21176009 10.1200/jco.2000.18.4.904 10.1073/pnas.1812266115 10.1016/j.cell.2019.10.005 10.1186/s13046-016-0433-9 10.4049/jimmunol.1202769 10.1016/j.ccell.2018.03.009 10.1016/j.tibs.2006.05.004 10.1371/journal.pbio.1000476 10.1146/annurev-pathol-121808-102144 10.1016/S0531-5565(99)00068-6 10.1016/J.CELL.2010.06.011 10.3389/fmolb.2020.00063 10.1152/physrev.00030.2015 10.2174/138161213805219711 10.1016/j.cell.2013.10.019 10.3389/fimmu.2019.02247 10.7888/JUOEH.41.153 10.3892/or.17.2.313 10.1016/j.tcb.2018.02.001 10.4049/jimmunol.2000523 10.1111/febs.15570 10.1186/s40425-019-0550-z 10.1093/jnci/djq364 10.1016/j.ctrv.2017.08.003 10.1016/j.cub.2017.07.033 10.1016/j.ccr.2008.06.005 10.15252/emmm.201810234 10.1007/s11912-016-0534-9 10.1172/JCI95149 10.1016/S0140-6736(17)32247-X 10.3390/CANCERS14194816 10.1128/mcb.01674-12 10.3390/cancers10100355 10.1146/ANNUREV-BIOCHEM-060614-034402 10.1038/nature01745 10.18632/oncotarget.12354 10.1128/mcb.20.18.6741-6754.2000 10.1158/0008-5472.CAN-11-0213 10.1016/J.BBRC.2019.03.204 10.1101/2020.06.10.142893 10.3390/cancers11020197 10.1016/S1470-2045(16)30033-X 10.1016/j.celrep.2018.12.017 10.1126/science.288.5470.1425 10.1126/science.aav4474 10.3389/fonc.2018.00164 10.1038/nri2808 10.2217/FON-2021-1567 10.1371/journal.pgen.1002650 10.1038/nature05327 10.1016/j.bbrc.2015.03.162 10.1038/bjc.1997.103 10.1016/j.biocel.2004.10.013 10.1038/345458a0 10.1186/s12979-020-0173-8 10.1038/ni.2224 10.1038/nature25167 10.1111/acel.13270 10.1111/j.1474-9726.2012.00818.x 10.1016/j.bcp.2015.06.013 10.1016/j.tcb.2007.07.012 10.1371/journal.pbio.0060301 10.3390/CANCERS9050052 10.1016/0014-4827(61)90192-6 10.1038/ncomms11190 10.1016/j.canlet.2021.04.004 10.1038/srep30842 10.1038/s41467-018-04010-4 10.1038/ncb2784 10.1056/NEJMOA1713137 10.1093/emboj/cdg417 10.3389/fcell.2021.645593 10.2174/1381612823666170613080919 10.1016/J.CELL.2013.09.034 10.1016/J.CELREP.2019.08.088 10.1073/pnas.1714478115 10.1186/s11658-022-00319-7 10.1111/acel.12344 10.1038/s41580-020-00314-w 10.1038/s41598-019-42040-0 10.1073/pnas.92.20.9363 10.15252/EMMM.202013144 10.3389/fcell.2021.754069 10.1158/0008-5472.CAN-06-2956 10.1038/nature02118 10.1016/j.bcp.2018.12.013 10.1158/2159-8290.CD-22-0111 10.18632/oncotarget.12590 10.1038/ncomms14532 10.1038/s41422-018-0050-6 10.1016/j.ebiom.2018.12.052 10.1038/s41556-018-0249-2 10.1016/S0014-4827(02)00098-8 10.1038/238026a0 10.1016/j.celrep.2018.03.114 10.1016/j.cell.2020.03.008 10.1016/j.celrep.2021.109441 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola. Copyright © 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola. 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola |
Copyright_xml | – notice: Copyright © 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola. – notice: Copyright © 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola. 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fcell.2022.1083743 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Romaniello et al |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_f75c4facecf448f7af8a2eb3226c69b3 PMC9877625 36712972 10_3389_fcell_2022_1083743 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c468t-93375c0f39dafeacc087140e22adde3721f2f3dfcef549cc4fafb6b20b95c3ef3 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:32:39 EDT 2025 Thu Aug 21 18:38:36 EDT 2025 Thu Sep 04 17:32:09 EDT 2025 Mon Jul 21 05:42:45 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 01:17:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PD1 (programmed cell death protein 1) moab senescence senotherapeutics IL-1 immunotherapy EGFR |
Language | English |
License | Copyright © 2023 Romaniello, Gelfo, Pagano, Sgarzi, Morselli, Girone, Filippini, D’Uva and Lauriola. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-93375c0f39dafeacc087140e22adde3721f2f3dfcef549cc4fafb6b20b95c3ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Halina Was, Military Institute of Medicine, Poland Reviewed by: Torsten Wuestefeld, Genome Institute of Singapore, Singapore These authors have contributed equally to this work and share first authorship Audrey Lasry, Grossman School of Medicine, New York University, United States This article was submitted to Cancer Cell Biology, a section of the journal Frontiers in Cell and Developmental Biology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2022.1083743 |
PMID | 36712972 |
PQID | 2771084584 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f75c4facecf448f7af8a2eb3226c69b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9877625 proquest_miscellaneous_2771084584 pubmed_primary_36712972 crossref_citationtrail_10_3389_fcell_2022_1083743 crossref_primary_10_3389_fcell_2022_1083743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-12 |
PublicationDateYYYYMMDD | 2023-01-12 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationTitleAlternate | Front Cell Dev Biol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hotta (B44) 2007; 17 Jochems (B47) 2021; 36 Zhang (B108) 2018; 9 Yoneda (B105) 2019; 41 Wang (B102) 2011; 71 Coppé (B16) 2010; 5 Yosef (B106) 2016; 7 Kumari (B54) 2021; 9 Becklund (B6) 2016; 6 Pelissier Vatter (B75) 2018; 23 Mastri (B65) 2018; 25 Lee (B56) 2022; 18 Yarden (B104) 2001; 2 Di Micco (B20) 2006; 444 Kowald (B52) 2020; 19 Noronha (B70) 2022; 1 Saleh (B86) 2018; 8 Lemmon (B58) 2010; 141 Kaplanov (B50) 2019; 116 Shiloh (B89) 2006; 31 Gibaja (B34) 2019; 9 Gorgoulis (B36) 2019; 179 González-Gualda (B35) 2021; 288 Rosemblit (B81) 2018 Ewald (B26) 2010; 102 Hernandez-Segura (B42) 2018; 28 Chaudhary (B13) 2021; 510 Singh (B90) 2021; 206 Ben-Porath (B7) 2005; 37 Maron (B62) 2019; 513 Jorissen (B48) 2003; 284 Holliday (B43) 1972; 238 Zou (B112) 2007; 21 Tran (B96) 2012; 8 Di Micco (B21) 2007; 17 Visconti (B99) 2016; 35 D’Adda Di Fagagna (B19) 2003; 426 Aiello (B2) 2019; 10 Carmi (B11) 2013; 190 Ruscetti (B83) 2020; 181 Baselga (B4) 2000; 18 Saleh (B85) 2020; 12 Harley (B39) 1990; 345 Acosta (B1) 2013; 15 Chakradeo (B12) 2015; 17 Paez-Ribes (B72) 2019; 11 Brennan (B10) 2013; 155 Mongiardi (B68) 2021; 13 Muñoz-Espín (B69) 2013; 155 Dulić (B23) 2000; 20 Wang (B101) 2017; 21 Mailand (B61) 2000; 288 Di Micco (B113) 2021; 22 Gelfo (B33) 2020; 21 Lim (B60) 2015; 96 Voronov (B100) 2020; 23 Gelfo (B32) 2016; 7 Li (B59) 2018; 28 Milanovic (B67) 2017; 553 Beauséjour (B5) 2003; 22 Hanna (B37) 2017; 35 Hao (B38) 2021; 24 McDermott (B66) 2019; 11 Palmer (B73) 2018; 115 Elias (B24) 2016; 18 Chen (B14) 2016; 96 Bonilla (B9) 2008; 30 Ovadya (B71) 2018; 128 Zhu (B110) 2015; 14 Chou (B15) 2013; 19 Kovacs (B51) 2015; 84 Saleh (B87) 2019; 162 Besancenot (B8) 2010; 8 Laberge (B55) 2012; 11 Coppé (B17) 2008; 6 Huang (B45) 2003; 424 Justice (B49) 2019; 40 Wee (B103) 2017; 9 Gelfo (B31) 2018; 1 Schafer (B88) 2017; 8 Krelin (B53) 2007; 67 Reyes de Mochel (B77) 2020; 1 Ruhland (B82) 2021; 9 Hayflick (B40) 1961; 25 Ferrara (B27) 2017; 60 Huggins (B46) 2013; 33 Marrocco (B63) 2021; 13 Marrocco (B64) 2019 Turenne (B97) 2001; 20 D’Adda Di Fagagna (B18) 2008; 8 Lee (B57) 2019; 21 Romaniello (B80) 2020; 12 Yu (B107) 2018; 33 Espinosa-Cotton (B25) 2019; 7 Ridker (B78) 2017; 390 Vernot (B98) 2020; 7 Dimri (B22) 1995; 92 Franceschi (B30) 1999; 34 Srivastava (B92) 2019; 29 Zhou (B109) 2022; 14 Fisher (B28) 1997; 75 Pili (B76) 1994; 86 Soria (B91) 2018; 378 Zitvogel (B111) 2012; 13 Hernandez-Segura (B41) 2017; 27 Sugita (B94) 2015; 461 Romaniello (B79) 2022; 27 Stanam (B93) 2016; 7 Flavell (B29) 2010; 10 Thomas (B95) 2020; 17 Russo (B84) 2019; 366 Park (B74) 2016; 17 Ansieau (B3) 2008; 14 |
References_xml | – volume: 2 start-page: 127 year: 2001 ident: B104 article-title: Untangling the ErbB signalling network publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35052073 – volume: 8 start-page: 512 year: 2008 ident: B18 article-title: Living on a break: Cellular senescence as a DNA-damage response publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2440 – volume: 30 start-page: 267 year: 2008 ident: B9 article-title: Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.023 – volume: 24 start-page: 102016 year: 2021 ident: B38 article-title: Sensitization of ovarian tumor to immune checkpoint blockade by boosting senescence-associated secretory phenotype publication-title: iScience doi: 10.1016/j.isci.2020.102016 – volume: 13 start-page: 484 year: 2021 ident: B68 article-title: Cancer response to therapy-induced senescence: A matter of dose and timing publication-title: Cancers (Basel) doi: 10.3390/cancers13030484 – volume: 12 start-page: 822 year: 2020 ident: B85 article-title: Therapy-induced senescence: An “old” friend becomes the enemy publication-title: Cancers (Basel) doi: 10.3390/cancers12040822 – volume: 21 start-page: 879 year: 2007 ident: B112 article-title: Single- and double-stranded DNA: Building a trigger of ATR-mediated DNA damage response publication-title: Genes Dev. doi: 10.1101/gad.1550307 – volume: 21 start-page: 773 year: 2017 ident: B101 article-title: High-throughput functional genetic and compound screens identify targets for senescence induction in cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.085 – volume: 35 start-page: 3484 year: 2017 ident: B37 article-title: Systemic therapy for stage IV non–small-cell lung cancer: American society of clinical oncology clinical practice guideline update publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.74.6065 – volume: 20 start-page: 5100 year: 2001 ident: B97 article-title: Activation of p53 transcriptional activity requires ATM’s kinase domain and multiple N-terminal serine residues of p53 publication-title: Oncogene doi: 10.1038/sj.onc.1204665 – volume: 12 start-page: 2394 year: 2020 ident: B80 article-title: Targeting her3, a catalytically defective receptor tyrosine kinase, prevents resistance of lung cancer to a third-generation egfr kinase inhibitor publication-title: Cancers (Basel) doi: 10.3390/cancers12092394 – volume: 17 start-page: 460 year: 2015 ident: B12 article-title: Is senescence reversible? publication-title: Curr. Drug Targets doi: 10.2174/1389450116666150825113500 – volume: 86 start-page: 1303 year: 1994 ident: B76 article-title: Altered angiogenesis underlying age-dependent changes in tumor growth publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/86.17.1303 – volume: 21 start-page: 6009 year: 2020 ident: B33 article-title: Roles of il-1 in cancer: From tumor progression to resistance to targeted therapies publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21176009 – volume: 18 start-page: 904 year: 2000 ident: B4 article-title: Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin publication-title: J. Clin. Oncol. doi: 10.1200/jco.2000.18.4.904 – volume: 116 start-page: 1361 year: 2019 ident: B50 article-title: Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti–PD-1 for tumor abrogation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1812266115 – volume: 179 start-page: 1 year: 2019 ident: B36 article-title: Cellular senescence: Defining a path forward publication-title: Cell doi: 10.1016/j.cell.2019.10.005 – volume: 35 start-page: 153 year: 2016 ident: B99 article-title: Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-016-0433-9 – volume: 190 start-page: 3500 year: 2013 ident: B11 article-title: The role of IL-1β in the early tumor cell–induced angiogenic response publication-title: J. Immunol. doi: 10.4049/jimmunol.1202769 – volume: 33 start-page: 785 year: 2018 ident: B107 article-title: Targeting the senescence-overriding cooperative activity of structurally unrelated H3K9 demethylases in melanoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.009 – volume: 31 start-page: 402 year: 2006 ident: B89 article-title: The ATM-mediated DNA-damage response: Taking shape publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.05.004 – volume: 8 start-page: e1000476 year: 2010 ident: B8 article-title: A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: Implications for physiological and pathological megakaryocytic proliferation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000476 – volume: 5 start-page: 99 year: 2010 ident: B16 article-title: The senescence-associated secretory phenotype: The dark side of tumor suppression publication-title: Annu. Rev. Pathology Mech. Dis. doi: 10.1146/annurev-pathol-121808-102144 – volume: 34 start-page: 911 year: 1999 ident: B30 article-title: Biomarkers of immunosenescence within an evolutionary perspective: The challenge of heterogeneity and the role of antigenic load publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(99)00068-6 – volume: 141 start-page: 1117 year: 2010 ident: B58 article-title: Cell signaling by receptor tyrosine kinases publication-title: Cell doi: 10.1016/J.CELL.2010.06.011 – volume: 7 start-page: 63 year: 2020 ident: B98 article-title: Senescence-associated pro-inflammatory cytokines and tumor cell plasticity publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00063 – volume: 96 start-page: 1025 year: 2016 ident: B14 article-title: Expression and function of the epidermal growth factor receptor in physiology and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00030.2015 – volume-title: Oncodriver inhibition and CD4 + Th1 cytokines cooperate through Stat1 activation to induce tumor senescence and apoptosis in HER2+ and triple negative breast cancer: Implications for combining immune and targeted therapies year: 2018 ident: B81 – volume: 19 start-page: 1680 year: 2013 ident: B15 article-title: T cell replicative senescence in human aging publication-title: Curr. Pharm. Des. doi: 10.2174/138161213805219711 – volume: 155 start-page: 1104 year: 2013 ident: B69 article-title: Programmed cell senescence during mammalian embryonic development publication-title: Cell doi: 10.1016/j.cell.2013.10.019 – volume: 10 start-page: 2247 year: 2019 ident: B2 article-title: Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02247 – volume: 41 start-page: 153 year: 2019 ident: B105 article-title: Treatment of non-small cell lung cancer with EGFR-mutations publication-title: J. UOEH doi: 10.7888/JUOEH.41.153 – volume: 17 start-page: 313 year: 2007 ident: B44 article-title: Gefitinib induces premature senescence in non-small cell lung cancer cells with or without EGFR gene mutation publication-title: Oncol. Rep. doi: 10.3892/or.17.2.313 – volume: 28 start-page: 436 year: 2018 ident: B42 article-title: Hallmarks of cellular senescence publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.02.001 – volume: 206 start-page: 1966 year: 2021 ident: B90 article-title: IL-1α mediates innate and acquired resistance to immunotherapy in melanoma publication-title: J. Immunol. doi: 10.4049/jimmunol.2000523 – volume: 288 start-page: 56 year: 2021 ident: B35 article-title: A guide to assessing cellular senescence in vitro and in vivo publication-title: FEBS J. doi: 10.1111/febs.15570 – volume: 7 start-page: 79 year: 2019 ident: B25 article-title: Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0550-z – volume: 102 start-page: 1536 year: 2010 ident: B26 article-title: Therapy-induced senescence in cancer publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djq364 – volume: 60 start-page: 60 year: 2017 ident: B27 article-title: Immunosenescence and immunecheckpoint inhibitors in non-small cell lung cancer patients: Does age really matter? publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2017.08.003 – volume: 27 start-page: 2652 year: 2017 ident: B41 article-title: Unmasking transcriptional heterogeneity in senescent cells publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.07.033 – volume: 14 start-page: 79 year: 2008 ident: B3 article-title: Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.06.005 – volume: 11 start-page: e10234 year: 2019 ident: B72 article-title: Targeting senescent cells in translational medicine publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201810234 – volume: 18 start-page: 47 year: 2016 ident: B24 article-title: Immune checkpoint inhibitors in older adults publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-016-0534-9 – volume: 128 start-page: 1247 year: 2018 ident: B71 article-title: Strategies targeting cellular senescence publication-title: J. Clin. Investigation doi: 10.1172/JCI95149 – volume: 390 start-page: 1833 year: 2017 ident: B78 article-title: Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(17)32247-X – volume: 14 start-page: 4816 year: 2022 ident: B109 article-title: Novel methods of targeting IL-1 signalling for the treatment of breast cancer bone metastasis publication-title: Cancers (Basel) doi: 10.3390/CANCERS14194816 – volume: 33 start-page: 3242 year: 2013 ident: B46 article-title: C/EBPγ suppresses senescence and inflammatory gene expression by heterodimerizing with C/EBPβ publication-title: Mol. Cell Biol. doi: 10.1128/mcb.01674-12 – volume: 1 start-page: 1 year: 2018 ident: B31 article-title: A novel role for the interleukin-1 receptor Axis in resistance to anti-EGFR therapy publication-title: Cancers (Basel) doi: 10.3390/cancers10100355 – volume: 84 start-page: 739 year: 2015 ident: B51 article-title: A structural perspective on the regulation of the epidermal growth factor receptor publication-title: Annu. Rev. Biochem. doi: 10.1146/ANNUREV-BIOCHEM-060614-034402 – volume: 424 start-page: 219 year: 2003 ident: B45 article-title: JNK phosphorylates paxillin and regulates cell migration publication-title: Nature doi: 10.1038/nature01745 – volume: 7 start-page: 72167 year: 2016 ident: B32 article-title: A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors publication-title: Oncotarget doi: 10.18632/oncotarget.12354 – volume: 20 start-page: 6741 year: 2000 ident: B23 article-title: Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts publication-title: Mol. Cell Biol. doi: 10.1128/mcb.20.18.6741-6754.2000 – volume: 71 start-page: 6261 year: 2011 ident: B102 article-title: EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0213 – volume: 513 start-page: 219 year: 2019 ident: B62 article-title: Inhibition of a pancreatic cancer model by cooperative pairs of clinically approved and experimental antibodies publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/J.BBRC.2019.03.204 – volume: 1 start-page: 1 year: 2020 ident: B77 article-title: Sentinel p16-INK4a+ cells in the basement membrane form a reparative niche in the lung publication-title: bioRxiv doi: 10.1101/2020.06.10.142893 – volume: 11 start-page: 197 year: 2019 ident: B66 article-title: HER2-targeted tyrosine kinase inhibitors cause therapy-induced-senescence in breast cancer cells publication-title: Cancers (Basel) doi: 10.3390/cancers11020197 – volume: 17 start-page: 577 year: 2016 ident: B74 article-title: Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30033-X – volume: 25 start-page: 3706 year: 2018 ident: B65 article-title: A transient pseudosenescent secretome promotes tumor growth after antiangiogenic therapy withdrawal publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.12.017 – volume: 288 start-page: 1425 year: 2000 ident: B61 article-title: Rapid destruction of human Cdc25A in response to DNA damage publication-title: Science doi: 10.1126/science.288.5470.1425 – volume: 366 start-page: 1473 year: 2019 ident: B84 article-title: Adaptive mutability of colorectal cancers in response to targeted therapies publication-title: Science doi: 10.1126/science.aav4474 – volume: 8 start-page: 164 year: 2018 ident: B86 article-title: Non-cell autonomous effects of the senescence-associated secretory phenotype in cancer therapy publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00164 – volume: 10 start-page: 554 year: 2010 ident: B29 article-title: The polarization of immune cells in the tumour environment by TGFbeta publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2808 – volume: 18 start-page: 3085 year: 2022 ident: B56 article-title: Overcoming immunosuppression and pro-tumor inflammation in lung cancer with combined IL-1β and PD-1 inhibition publication-title: Future Oncol. doi: 10.2217/FON-2021-1567 – volume: 8 start-page: e1002650 year: 2012 ident: B96 article-title: Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002650 – volume: 444 start-page: 638 year: 2006 ident: B20 article-title: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication publication-title: Nature doi: 10.1038/nature05327 – volume: 461 start-page: 28 year: 2015 ident: B94 article-title: EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.03.162 – volume: 75 start-page: 593 year: 1997 ident: B28 article-title: Histopathology of breast cancer in relation to age publication-title: Br. J. Cancer doi: 10.1038/bjc.1997.103 – volume: 37 start-page: 961 year: 2005 ident: B7 article-title: The signals and pathways activating cellular senescence publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2004.10.013 – volume: 345 start-page: 458 year: 1990 ident: B39 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature doi: 10.1038/345458a0 – volume: 17 start-page: 2 year: 2020 ident: B95 article-title: Contributions of age-related thymic involution to immunosenescence and inflammaging publication-title: Immun. Ageing doi: 10.1186/s12979-020-0173-8 – volume: 13 start-page: 343 year: 2012 ident: B111 article-title: Inflammasomes in carcinogenesis and anticancer immune responses publication-title: Nat. Immunol. doi: 10.1038/ni.2224 – volume: 553 start-page: 96 year: 2017 ident: B67 article-title: Senescence-associated reprogramming promotes cancer stemness publication-title: Nature doi: 10.1038/nature25167 – start-page: 1 volume-title: The dawn of antibody cocktails year: 2019 ident: B64 article-title: Cancer immunotherapy – volume: 19 start-page: e13270 year: 2020 ident: B52 article-title: On the evolution of cellular senescence publication-title: Aging Cell doi: 10.1111/acel.13270 – volume: 11 start-page: 569 year: 2012 ident: B55 article-title: Glucocorticoids suppress selected components of the senescence-associated secretory phenotype publication-title: Aging Cell doi: 10.1111/j.1474-9726.2012.00818.x – volume: 96 start-page: 337 year: 2015 ident: B60 article-title: Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2015.06.013 – volume: 17 start-page: 529 year: 2007 ident: B21 article-title: Breaking news: High-speed race ends in arrest--how oncogenes induce senescence publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2007.07.012 – volume: 6 start-page: 2853 year: 2008 ident: B17 article-title: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060301 – volume: 9 start-page: 52 year: 2017 ident: B103 article-title: Epidermal growth factor receptor cell proliferation signaling pathways publication-title: Cancers (Basel) doi: 10.3390/CANCERS9050052 – volume: 25 start-page: 585 year: 1961 ident: B40 article-title: The serial cultivation of human diploid cell strains publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(61)90192-6 – volume: 7 start-page: 11190 year: 2016 ident: B106 article-title: Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL publication-title: Nat. Commun. doi: 10.1038/ncomms11190 – volume: 510 start-page: 79 year: 2021 ident: B13 article-title: Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring publication-title: Cancer Lett. doi: 10.1016/j.canlet.2021.04.004 – volume: 6 start-page: 30842 year: 2016 ident: B6 article-title: The aged lymphoid tissue environment fails to support naive T cell homeostasis publication-title: Sci. Rep. doi: 10.1038/srep30842 – volume: 9 start-page: 1723 year: 2018 ident: B108 article-title: The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04010-4 – volume: 15 start-page: 978 year: 2013 ident: B1 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence publication-title: Nat. Cell Biol. doi: 10.1038/ncb2784 – volume: 378 start-page: 113 year: 2018 ident: B91 article-title: Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMOA1713137 – volume: 22 start-page: 4212 year: 2003 ident: B5 article-title: Reversal of human cellular senescence: Roles of the p53 and p16 pathways publication-title: EMBO J. doi: 10.1093/emboj/cdg417 – volume: 9 start-page: 645593 year: 2021 ident: B54 article-title: Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.645593 – volume: 23 start-page: 4893 year: 2020 ident: B100 article-title: Targeting the tumor microenvironment by intervention in interleukin-1 Biology publication-title: Curr. Pharm. Des. doi: 10.2174/1381612823666170613080919 – volume: 155 start-page: 462 year: 2013 ident: B10 article-title: The somatic genomic landscape of glioblastoma publication-title: Cell doi: 10.1016/J.CELL.2013.09.034 – volume: 29 start-page: 104 year: 2019 ident: B92 article-title: ETS proteins bind with glucocorticoid receptors: Relevance for treatment of ewing sarcoma publication-title: Cell Rep. doi: 10.1016/J.CELREP.2019.08.088 – volume: 115 start-page: 1883 year: 2018 ident: B73 article-title: Thymic involution and rising disease incidence with age publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1714478115 – volume: 27 start-page: 20 year: 2022 ident: B79 article-title: Senescence-associated reprogramming induced by interleukin-1 impairs response to EGFR neutralization publication-title: Cell Mol. Biol. Lett. doi: 10.1186/s11658-022-00319-7 – volume: 14 start-page: 644 year: 2015 ident: B110 article-title: The achilles’ heel of senescent cells: From transcriptome to senolytic drugs publication-title: Aging Cell doi: 10.1111/acel.12344 – volume: 22 start-page: 75 year: 2021 ident: B113 article-title: Cellular senescence in ageing: From mechanisms to therapeutic opportunities publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00314-w – volume: 9 start-page: 5912 year: 2019 ident: B34 article-title: TGFβ2-induced senescence during early inner ear development publication-title: Sci. Rep. doi: 10.1038/s41598-019-42040-0 – volume: 92 start-page: 9363 year: 1995 ident: B22 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.20.9363 – volume: 13 start-page: e13144 year: 2021 ident: B63 article-title: Upfront admixing antibodies and EGFR inhibitors preempts sequential treatments in lung cancer models publication-title: EMBO Mol. Med. doi: 10.15252/EMMM.202013144 – volume: 9 start-page: 754069 year: 2021 ident: B82 article-title: Senescence and immunoregulation in the tumor microenvironment publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.754069 – volume: 67 start-page: 1062 year: 2007 ident: B53 article-title: Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2956 – volume: 426 start-page: 194 year: 2003 ident: B19 article-title: A DNA damage checkpoint response in telomere-initiated senescence publication-title: Nature doi: 10.1038/nature02118 – volume: 162 start-page: 202 year: 2019 ident: B87 article-title: Tumor cell escape from therapy-induced senescence publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.12.013 – volume: 1 start-page: OF1 year: 2022 ident: B70 article-title: AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-22-0111 – volume: 7 start-page: 76087 year: 2016 ident: B93 article-title: Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.12590 – volume: 8 start-page: 14532 year: 2017 ident: B88 article-title: Cellular senescence mediates fibrotic pulmonary disease publication-title: Nat. Commun. doi: 10.1038/ncomms14532 – volume: 28 start-page: 775 year: 2018 ident: B59 article-title: Embryonic senescent cells re-enter cell cycle and contribute to tissues after birth publication-title: Cell Res. doi: 10.1038/s41422-018-0050-6 – volume: 40 start-page: 554 year: 2019 ident: B49 article-title: Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.052 – volume: 21 start-page: 94 year: 2019 ident: B57 article-title: The dynamic nature of senescence in cancer publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0249-2 – volume: 284 start-page: 31 year: 2003 ident: B48 article-title: Epidermal growth factor receptor: Mechanisms of activation and signalling publication-title: Exp. Cell Res. doi: 10.1016/S0014-4827(02)00098-8 – volume: 238 start-page: 26 year: 1972 ident: B43 article-title: Altered enzymes in ageing human fibroblasts publication-title: Nature doi: 10.1038/238026a0 – volume: 23 start-page: 1205 year: 2018 ident: B75 article-title: High-dimensional phenotyping identifies age-emergent cells in human mammary epithelia publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.114 – volume: 181 start-page: 424 year: 2020 ident: B83 article-title: Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer publication-title: Cell doi: 10.1016/j.cell.2020.03.008 – volume: 36 start-page: 109441 year: 2021 ident: B47 article-title: The cancer SENESCopedia: A delineation of cancer cell senescence publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109441 |
SSID | ssj0001257583 |
Score | 2.2527409 |
SecondaryResourceType | review_article |
Snippet | Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1083743 |
SubjectTerms | Cell and Developmental Biology EGFR IL-1 immunotherapy moab senescence senotherapeutics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iLHgR3fVH1ZUK3qTYJmmTenMXR1fUgyh4C02ah4J0xJk5zH_ve0kdZmTRi9ckJeFLXvK-NO97jB1a5ACkS5Y1aEmZ9GjpVnKbuTKvrADQMuh0X99UF_fy8qF8mEv1RW_CojxwBO4YVOkkNM47QCYBqgHdcGSA6Da4qrZB5zOv8zkyFW9X0A3RIkbJIAurj4EuwpEPck7P6oSSYuEkCoL9__MyPz6WnDt9BmtstXcb09M43HW25Luf7EdMJDn9xa7_XWVF2nRtOqK9y5G5nqQD0jBuR6Echj4dQnp2PrhNOz8J9xsxAjNUP1GYSB-MNd1g94Ozu78XWZ8oIXOy0uOsFgJRykHUbQO4k7pckw6f55x2L4EkDziIFiEApIOO8ARbWZ7bunTCg9hky92w89sstbm2hVSQq6qVhSO9eVEUAriGtrTeJqx4B824XkWcklk8G2QTBLQJQBsC2vRAJ-xo9s1L1ND4tPUfmotZS9K_DgW4Kky_KsxXqyJhB-8zadBeqJOm88PJyHCFPpWmv8MJ24ozO-tKVArdH8UTphbmfGEsizXd02PQ5K61wmOl3PmOwe-yFUpqTxc9Bd9jy-PXif-Nrs_Y7odV_gaRVAPC priority: 102 providerName: Directory of Open Access Journals |
Title | IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36712972 https://www.proquest.com/docview/2771084584 https://pubmed.ncbi.nlm.nih.gov/PMC9877625 https://doaj.org/article/f75c4facecf448f7af8a2eb3226c69b3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qRfBF6vdZLVvwTVZ3k2yyWyii0msV64N4cG9hk81ooezqfYD33zuT3Ts8qaWvSTbZTDKZj2R-A_DSkQ3AuGRpTZyUqkCc7pRwqS8y7SRiqSJO9_kXfTZRn6bFdAfW6Y4GAs6vNO04n9Rkdvn696_VW2L4Y7Y4Sd6-QfZxk6knBL-YkyQTb8HteF_ET_kGdb_3uZByEpE5hah0qqWa9nE0_-lmS1ZFSP-r9NB_n1P-JZ_Ge3BvUCyTd_1OuA87oX0Ad_pUk6uHcP7xc5onddskcz7dPDP0UTJmlONmHsuxC0mHycnp-GvShmX0gPQxmrH6ggNJhnCt1SOYjE--fThLh1QKqVe6XKSVlKbwGcqqqZHOWp-VjNQXhODzTZIZiAJlQyRAMhi9V1ij005kriq8DCgfw27bteEpJC4rXa4MZkY3KveMSC_zXKIosSlccCPI10SzfsAZ53QXl5bsDSa0jYS2TGg7EHoErzbf_OxRNq5t_Z7XYtOSEbJjQTf7bgeGs0jzpVn44JEsUDQ1lrUIjs4v7XXlqJPD9Upa4igepG5Dt5xbYUjrKvn-eARP-pXdDCW1IQXJiBGYrTXf-pftmvbiR0TtrkpDgqd4doNx9-EuZ7VnT08unsPuYrYML0j3WbiD6DM4iNv6D9DSApg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IL-1+and+senescence%3A+Friends+and+foe+of+EGFR+neutralization+and+immunotherapy&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Romaniello%2C+Donatella&rft.au=Gelfo%2C+Valerio&rft.au=Pagano%2C+Federica&rft.au=Sgarzi%2C+Michela&rft.date=2023-01-12&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=10&rft.spage=1083743&rft_id=info:doi/10.3389%2Ffcell.2022.1083743&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |