Long-wavelength fluctuations and anomalous dynamics in 2-dimensional liquids
In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 46; pp. 22977 - 22982 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1909319116 |
Cover
Abstract | In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D ∝ τ–κ, with κ > 1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. |
---|---|
AbstractList | Long-wavelength elastic modes, which have an infinitesimal energy cost, destroy the long-range translational order of 2D solids at finite temperatures. Here we demonstrate that these long-wavelength fluctuations also influence the dynamical properties of 2D systems in their normal liquid regimes. Hence, long-wavelength fluctuations make 2- and 3D molecular particulate systems behave differently from high- to very low-temperature regimes.
In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient
D
and structural relaxation time
τ
, where
D
∝
τ
−
κ
, with
κ
>
1
. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D∝τ−κ, with κ>1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D ∝ τ–κ, with κ > 1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems. |
Author | Li, Yan-Wei Sun, Zhao-Yan Ciamarra, Massimo Pica Mason, Thomas G. Mishra, Chandan K. Zhao, Kun Ganapathy, Rajesh |
Author_xml | – sequence: 1 givenname: Yan-Wei surname: Li fullname: Li, Yan-Wei – sequence: 2 givenname: Chandan K. surname: Mishra fullname: Mishra, Chandan K. – sequence: 3 givenname: Zhao-Yan surname: Sun fullname: Sun, Zhao-Yan – sequence: 4 givenname: Kun surname: Zhao fullname: Zhao, Kun – sequence: 5 givenname: Thomas G. surname: Mason fullname: Mason, Thomas G. – sequence: 6 givenname: Rajesh surname: Ganapathy fullname: Ganapathy, Rajesh – sequence: 7 givenname: Massimo Pica surname: Ciamarra fullname: Ciamarra, Massimo Pica |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31659051$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PHDEQxS1EBAehTpVopTRpFmb8desmUoTyJZ2UJqktn-09fPLax3qXiP8-hgNCkFJYU_j3nt7MOyGHKSdPyBuEc4Qlu9glU85RgWKoEOUBWSAobCVXcEgWAHTZdpzyY3JSyhYAlOjgiBwzlEKBwAVZrXLatL_NjY8-baarpo-znWYzhZxKY5KrLw8m5rk07jaZIdjShNTQ1oXBp1IxE5sYrufgymvyqjex-LOHeUp-ffn88_Jbu_rx9fvlp1Vrueymlnc99sKJNafgkXpUgkoA24FEIyislyAkN8LQnos1UOOYNyB7J71l6Bw7JR_3vrt5PXhnfZpGE_VuDIMZb3U2Qf_7k8KV3uQbLTuhGIhq8OHBYMzXsy-THkKxPkaTfN1UU4ZAlVgCr-j7F-g2z2Nd-p7igiJTtFLvnid6ivJ46AqIPWDHXMroe23DdH_lGjBEjaDvCtV3heq_hVbdxQvdo_X_FW_3im2Z8viEU9lJZB1jfwCKO60K |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_2c07417 crossref_primary_10_1002_pssr_202300254 crossref_primary_10_1103_PhysRevLett_128_258001 crossref_primary_10_1038_s41467_020_18760_7 crossref_primary_10_1103_PhysRevX_11_031002 crossref_primary_10_1088_1751_8121_ac7e0a crossref_primary_10_1103_PhysRevLett_134_048203 crossref_primary_10_1103_PhysRevLett_123_265501 crossref_primary_10_1134_S0021364024603038 crossref_primary_10_1021_acs_jpcb_4c06702 crossref_primary_10_1039_D1SM01092A crossref_primary_10_1038_s41467_023_40772_2 crossref_primary_10_1088_1361_648X_abcff7 crossref_primary_10_1088_1361_648X_abbbc4 crossref_primary_10_1103_PhysRevResearch_3_033172 crossref_primary_10_1088_1742_6596_2207_1_012026 crossref_primary_10_1021_acs_jpcb_4c06881 crossref_primary_10_1103_PhysRevE_103_022607 crossref_primary_10_1103_PhysRevE_104_044608 crossref_primary_10_1103_PhysRevMaterials_3_125603 crossref_primary_10_1103_PhysRevResearch_6_033209 crossref_primary_10_1063_5_0059622 crossref_primary_10_1103_PhysRevE_110_L062602 |
Cites_doi | 10.1103/PhysRevLett.68.2559 10.1017/CBO9780511813467 10.1088/0953-8984/21/3/035117 10.1103/PhysRevLett.74.1250 10.1002/jcc.23365 10.1073/pnas.1815097116 10.1002/andp.201200232 10.1002/9783527622979.ch11 10.1103/PhysRevLett.17.1133 10.1126/science.287.5453.627 10.1103/PhysRevLett.114.198302 10.1103/PhysRevLett.73.1376 10.1103/PhysRevE.68.011306 10.1038/nphys1025 10.1063/1.4792356 10.1126/sciadv.1700399 10.1038/35065704 10.1103/PhysRevLett.81.120 10.1103/PhysRevLett.63.1747 10.1038/31189 10.1088/1361-648X/aaa8b8 10.1103/PhysRevLett.110.188301 10.1103/RevModPhys.60.161 10.1103/RevModPhys.17.323 10.1103/PhysRevLett.117.245701 10.1103/PhysRevLett.121.228003 10.1038/ncomms8392 10.1103/PhysRevLett.123.265501 10.1103/PhysRevA.1.18 10.1103/PhysRevLett.115.158302 10.1142/7300 10.1073/pnas.1507897112 10.1039/C9SM00302A 10.1073/pnas.1612964114 10.1137/1010093 10.1073/pnas.1607226113 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Nov 12, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Nov 12, 2019 – notice: 2019 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1909319116 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 22982 |
ExternalDocumentID | PMC6859305 31659051 10_1073_pnas_1909319116 26861383 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education - Singapore (MOE) grantid: MOE2017-T2-1-066 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c468t-48f1f5d5b420e12e1952600c8061a520b70564a5a2f45b02ad3ea06fd6ec31dd3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:43 EDT 2025 Fri Sep 05 05:10:57 EDT 2025 Mon Jun 30 10:01:36 EDT 2025 Wed Feb 19 02:30:43 EST 2025 Tue Jul 01 03:40:10 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Thu May 29 13:20:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | long-wavelength fluctuations normal liquid diffusion relaxation |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-48f1f5d5b420e12e1952600c8061a520b70564a5a2f45b02ad3ea06fd6ec31dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Eric R. Weeks, Emory University, Atlanta, GA, and accepted by Editorial Board Member Pablo G. Debenedetti October 1, 2019 (received for review May 30, 2019) Author contributions: K.Z., T.G.M., and M.P.C. designed research; Y.-W.L., C.K.M., Z.-Y.S., and R.G. performed research; and Y.-W.L., K.Z., T.G.M., and M.P.C. wrote the paper. |
ORCID | 0000-0002-7858-6537 0000-0001-8931-9058 0000-0002-0172-9907 |
PMID | 31659051 |
PQID | 2314521392 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859305 proquest_miscellaneous_2310295704 proquest_journals_2314521392 pubmed_primary_31659051 crossref_citationtrail_10_1073_pnas_1909319116 crossref_primary_10_1073_pnas_1909319116 jstor_primary_26861383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-12 |
PublicationDateYYYYMMDD | 2019-11-12 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 Hansen J. P. (e_1_3_3_26_2) 2005 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Dhont J. K. G. (e_1_3_3_36_2) 1996 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_34_2 doi: 10.1103/PhysRevLett.68.2559 – ident: e_1_3_3_1_2 doi: 10.1017/CBO9780511813467 – ident: e_1_3_3_13_2 doi: 10.1088/0953-8984/21/3/035117 – ident: e_1_3_3_35_2 doi: 10.1103/PhysRevLett.74.1250 – volume-title: An Introduction to Dynamics of Colloids year: 1996 ident: e_1_3_3_36_2 – ident: e_1_3_3_38_2 doi: 10.1002/jcc.23365 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1815097116 – ident: e_1_3_3_37_2 doi: 10.1002/andp.201200232 – ident: e_1_3_3_19_2 doi: 10.1002/9783527622979.ch11 – ident: e_1_3_3_2_2 doi: 10.1103/PhysRevLett.17.1133 – ident: e_1_3_3_18_2 doi: 10.1126/science.287.5453.627 – ident: e_1_3_3_9_2 doi: 10.1103/PhysRevLett.114.198302 – ident: e_1_3_3_12_2 doi: 10.1103/PhysRevLett.73.1376 – ident: e_1_3_3_14_2 doi: 10.1103/PhysRevE.68.011306 – ident: e_1_3_3_31_2 doi: 10.1038/nphys1025 – ident: e_1_3_3_10_2 doi: 10.1063/1.4792356 – ident: e_1_3_3_27_2 doi: 10.1126/sciadv.1700399 – ident: e_1_3_3_4_2 doi: 10.1038/35065704 – ident: e_1_3_3_28_2 doi: 10.1103/PhysRevLett.81.120 – ident: e_1_3_3_33_2 doi: 10.1103/PhysRevLett.63.1747 – ident: e_1_3_3_24_2 doi: 10.1038/31189 – ident: e_1_3_3_8_2 doi: 10.1088/1361-648X/aaa8b8 – ident: e_1_3_3_15_2 doi: 10.1103/PhysRevLett.110.188301 – ident: e_1_3_3_16_2 doi: 10.1103/RevModPhys.60.161 – ident: e_1_3_3_25_2 doi: 10.1103/RevModPhys.17.323 – ident: e_1_3_3_7_2 doi: 10.1103/PhysRevLett.117.245701 – ident: e_1_3_3_30_2 doi: 10.1103/PhysRevLett.121.228003 – volume-title: Theory of Simple Liquids year: 2005 ident: e_1_3_3_26_2 – ident: e_1_3_3_5_2 doi: 10.1038/ncomms8392 – ident: e_1_3_3_23_2 doi: 10.1103/PhysRevLett.123.265501 – ident: e_1_3_3_22_2 doi: 10.1103/PhysRevA.1.18 – ident: e_1_3_3_11_2 doi: 10.1103/PhysRevLett.115.158302 – ident: e_1_3_3_17_2 doi: 10.1142/7300 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.1507897112 – ident: e_1_3_3_32_2 doi: 10.1039/C9SM00302A – ident: e_1_3_3_3_2 doi: 10.1073/pnas.1612964114 – ident: e_1_3_3_20_2 doi: 10.1137/1010093 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.1607226113 |
SSID | ssj0009580 |
Score | 2.4833724 |
Snippet | In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their... Long-wavelength elastic modes, which have an infinitesimal energy cost, destroy the long-range translational order of 2D solids at finite temperatures. Here we... In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22977 |
SubjectTerms | Decoupling Diffusion coefficient Divergence Fluctuations High temperature Liquids Long range order Physical Sciences Relaxation time Wavelength |
Title | Long-wavelength fluctuations and anomalous dynamics in 2-dimensional liquids |
URI | https://www.jstor.org/stable/26861383 https://www.ncbi.nlm.nih.gov/pubmed/31659051 https://www.proquest.com/docview/2314521392 https://www.proquest.com/docview/2310295704 https://pubmed.ncbi.nlm.nih.gov/PMC6859305 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSGgviAFjgYGCxMNQ5ZI4dn48Tgg0oVLtYRMbL5ETO2ukzh20FRJ_PWc7dtKyScBLlMSOI_k7X-6cu-8QeksA1CYRKSaVyDGVXAcBiATTWtSZFFnFpXYUv0zTk3P6-YJdDP6Y6uySVTWuf92aV_I_qMI9wFVnyf4Dsn5QuAHngC8cAWE4_hXGk4W6wj-5rh2hrlazUTNf63wQG9xmWVgX13yuo1yFrTxvol8JFprT3_JxjObt93Vr032dlXrqv2pLF0MwdZuGx30KSqcXliM8Op32BY0nJkDgkiv8VbYe0HY5MyWNTD6DAK3S76-ujeb7NuMLfNkLq742amithlsTcaFz9LqgaGnVKVgjOKW2IKjXtza5shMsuqE-SWGLuvyh2EET6WrEii_HYMIUoDi6YQYw31wbnJM4ZZp1rP_C-bhD13QfPSAZ2Fpud8eTNOeRo3_Kkvdbb9tFD93zG0aMjWO9zUPZDrQdWC5nj9GjzuUIj6387KF7Uj1Bew688KhjHn_3FE22BCocClQIsIVeoEInUGGrwg2BCjuBeobOP308-3CCu3IbuKZpvsI0b-KGCVZREsmYyLhgunpBnYPJxxmJqgyMZcoZJw1lVUS4SCSP0kaksk5iIZJ9tKMWSh6gkGZpxBvwNcDf1YR8Oeck4pmMcxnD4mcBGrv5K-uOi16XRJmXJiYiS0o992U_9wE68g_cWBqWu7vuG0B8P5LmYLPmSYAOHUJlt4iXJbg3FCxY8BIC9MY3g4rV_824kjChuk9ECpZFNEDPLaB-cCcRAco2oPYdNH37ZotqZ4bGPdVUgxF7ceeYL9Fuv6oO0c7qx1q-AhN4Vb02cvsbwrqw-w |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-wavelength+fluctuations+and+anomalous+dynamics+in+2-dimensional+liquids&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Yan-Wei&rft.au=Mishra%2C+Chandan+K&rft.au=Sun%2C+Zhao-Yan&rft.au=Zhao%2C+Kun&rft.date=2019-11-12&rft.eissn=1091-6490&rft.volume=116&rft.issue=46&rft.spage=22977&rft_id=info:doi/10.1073%2Fpnas.1909319116&rft_id=info%3Apmid%2F31659051&rft.externalDocID=31659051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |