Long-wavelength fluctuations and anomalous dynamics in 2-dimensional liquids

In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 46; pp. 22977 - 22982
Main Authors Li, Yan-Wei, Mishra, Chandan K., Sun, Zhao-Yan, Zhao, Kun, Mason, Thomas G., Ganapathy, Rajesh, Ciamarra, Massimo Pica
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.11.2019
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1909319116

Cover

Abstract In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D ∝ τ–κ, with κ > 1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
AbstractList Long-wavelength elastic modes, which have an infinitesimal energy cost, destroy the long-range translational order of 2D solids at finite temperatures. Here we demonstrate that these long-wavelength fluctuations also influence the dynamical properties of 2D systems in their normal liquid regimes. Hence, long-wavelength fluctuations make 2- and 3D molecular particulate systems behave differently from high- to very low-temperature regimes. In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ , where D ∝ τ − κ , with κ > 1 . Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D∝τ−κ, with κ>1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature which is the divergence of the vibrational amplitude with the system size also affects disordered solids and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where D ∝ τ–κ, with κ > 1. Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their dynamical signature, which is the divergence of the vibrational amplitude with the system size, also affects disordered solids, and it washes out the transient solid-like response generally exhibited by liquids cooled below their melting temperatures. Through a combined numerical and experimental investigation, here we show that long-wavelength fluctuations are also relevant at high temperature, where the liquid dynamics do not reveal a transient solid-like response. In this regime, these fluctuations induce an unusual but ubiquitous decoupling between long-time diffusion coefficient D and structural relaxation time τ, where [Formula: see text], with [Formula: see text] Long-wavelength fluctuations have a negligible influence on the relaxation dynamics only at extremely high temperatures in molecular liquids or at extremely low densities in colloidal systems.
Author Li, Yan-Wei
Sun, Zhao-Yan
Ciamarra, Massimo Pica
Mason, Thomas G.
Mishra, Chandan K.
Zhao, Kun
Ganapathy, Rajesh
Author_xml – sequence: 1
  givenname: Yan-Wei
  surname: Li
  fullname: Li, Yan-Wei
– sequence: 2
  givenname: Chandan K.
  surname: Mishra
  fullname: Mishra, Chandan K.
– sequence: 3
  givenname: Zhao-Yan
  surname: Sun
  fullname: Sun, Zhao-Yan
– sequence: 4
  givenname: Kun
  surname: Zhao
  fullname: Zhao, Kun
– sequence: 5
  givenname: Thomas G.
  surname: Mason
  fullname: Mason, Thomas G.
– sequence: 6
  givenname: Rajesh
  surname: Ganapathy
  fullname: Ganapathy, Rajesh
– sequence: 7
  givenname: Massimo Pica
  surname: Ciamarra
  fullname: Ciamarra, Massimo Pica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31659051$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1PHDEQxS1EBAehTpVopTRpFmb8desmUoTyJZ2UJqktn-09fPLax3qXiP8-hgNCkFJYU_j3nt7MOyGHKSdPyBuEc4Qlu9glU85RgWKoEOUBWSAobCVXcEgWAHTZdpzyY3JSyhYAlOjgiBwzlEKBwAVZrXLatL_NjY8-baarpo-znWYzhZxKY5KrLw8m5rk07jaZIdjShNTQ1oXBp1IxE5sYrufgymvyqjex-LOHeUp-ffn88_Jbu_rx9fvlp1Vrueymlnc99sKJNafgkXpUgkoA24FEIyislyAkN8LQnos1UOOYNyB7J71l6Bw7JR_3vrt5PXhnfZpGE_VuDIMZb3U2Qf_7k8KV3uQbLTuhGIhq8OHBYMzXsy-THkKxPkaTfN1UU4ZAlVgCr-j7F-g2z2Nd-p7igiJTtFLvnid6ivJ46AqIPWDHXMroe23DdH_lGjBEjaDvCtV3heq_hVbdxQvdo_X_FW_3im2Z8viEU9lJZB1jfwCKO60K
CitedBy_id crossref_primary_10_1021_acs_jpcb_2c07417
crossref_primary_10_1002_pssr_202300254
crossref_primary_10_1103_PhysRevLett_128_258001
crossref_primary_10_1038_s41467_020_18760_7
crossref_primary_10_1103_PhysRevX_11_031002
crossref_primary_10_1088_1751_8121_ac7e0a
crossref_primary_10_1103_PhysRevLett_134_048203
crossref_primary_10_1103_PhysRevLett_123_265501
crossref_primary_10_1134_S0021364024603038
crossref_primary_10_1021_acs_jpcb_4c06702
crossref_primary_10_1039_D1SM01092A
crossref_primary_10_1038_s41467_023_40772_2
crossref_primary_10_1088_1361_648X_abcff7
crossref_primary_10_1088_1361_648X_abbbc4
crossref_primary_10_1103_PhysRevResearch_3_033172
crossref_primary_10_1088_1742_6596_2207_1_012026
crossref_primary_10_1021_acs_jpcb_4c06881
crossref_primary_10_1103_PhysRevE_103_022607
crossref_primary_10_1103_PhysRevE_104_044608
crossref_primary_10_1103_PhysRevMaterials_3_125603
crossref_primary_10_1103_PhysRevResearch_6_033209
crossref_primary_10_1063_5_0059622
crossref_primary_10_1103_PhysRevE_110_L062602
Cites_doi 10.1103/PhysRevLett.68.2559
10.1017/CBO9780511813467
10.1088/0953-8984/21/3/035117
10.1103/PhysRevLett.74.1250
10.1002/jcc.23365
10.1073/pnas.1815097116
10.1002/andp.201200232
10.1002/9783527622979.ch11
10.1103/PhysRevLett.17.1133
10.1126/science.287.5453.627
10.1103/PhysRevLett.114.198302
10.1103/PhysRevLett.73.1376
10.1103/PhysRevE.68.011306
10.1038/nphys1025
10.1063/1.4792356
10.1126/sciadv.1700399
10.1038/35065704
10.1103/PhysRevLett.81.120
10.1103/PhysRevLett.63.1747
10.1038/31189
10.1088/1361-648X/aaa8b8
10.1103/PhysRevLett.110.188301
10.1103/RevModPhys.60.161
10.1103/RevModPhys.17.323
10.1103/PhysRevLett.117.245701
10.1103/PhysRevLett.121.228003
10.1038/ncomms8392
10.1103/PhysRevLett.123.265501
10.1103/PhysRevA.1.18
10.1103/PhysRevLett.115.158302
10.1142/7300
10.1073/pnas.1507897112
10.1039/C9SM00302A
10.1073/pnas.1612964114
10.1137/1010093
10.1073/pnas.1607226113
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 12, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Nov 12, 2019
– notice: 2019
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1909319116
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 22982
ExternalDocumentID PMC6859305
31659051
10_1073_pnas_1909319116
26861383
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE2017-T2-1-066
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c468t-48f1f5d5b420e12e1952600c8061a520b70564a5a2f45b02ad3ea06fd6ec31dd3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:43 EDT 2025
Fri Sep 05 05:10:57 EDT 2025
Mon Jun 30 10:01:36 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Tue Jul 01 03:40:10 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Thu May 29 13:20:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords long-wavelength fluctuations
normal liquid
diffusion
relaxation
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-48f1f5d5b420e12e1952600c8061a520b70564a5a2f45b02ad3ea06fd6ec31dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Eric R. Weeks, Emory University, Atlanta, GA, and accepted by Editorial Board Member Pablo G. Debenedetti October 1, 2019 (received for review May 30, 2019)
Author contributions: K.Z., T.G.M., and M.P.C. designed research; Y.-W.L., C.K.M., Z.-Y.S., and R.G. performed research; and Y.-W.L., K.Z., T.G.M., and M.P.C. wrote the paper.
ORCID 0000-0002-7858-6537
0000-0001-8931-9058
0000-0002-0172-9907
PMID 31659051
PQID 2314521392
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6859305
proquest_miscellaneous_2310295704
proquest_journals_2314521392
pubmed_primary_31659051
crossref_citationtrail_10_1073_pnas_1909319116
crossref_primary_10_1073_pnas_1909319116
jstor_primary_26861383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-12
PublicationDateYYYYMMDD 2019-11-12
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
Hansen J. P. (e_1_3_3_26_2) 2005
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Dhont J. K. G. (e_1_3_3_36_2) 1996
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_34_2
  doi: 10.1103/PhysRevLett.68.2559
– ident: e_1_3_3_1_2
  doi: 10.1017/CBO9780511813467
– ident: e_1_3_3_13_2
  doi: 10.1088/0953-8984/21/3/035117
– ident: e_1_3_3_35_2
  doi: 10.1103/PhysRevLett.74.1250
– volume-title: An Introduction to Dynamics of Colloids
  year: 1996
  ident: e_1_3_3_36_2
– ident: e_1_3_3_38_2
  doi: 10.1002/jcc.23365
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1815097116
– ident: e_1_3_3_37_2
  doi: 10.1002/andp.201200232
– ident: e_1_3_3_19_2
  doi: 10.1002/9783527622979.ch11
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevLett.17.1133
– ident: e_1_3_3_18_2
  doi: 10.1126/science.287.5453.627
– ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevLett.114.198302
– ident: e_1_3_3_12_2
  doi: 10.1103/PhysRevLett.73.1376
– ident: e_1_3_3_14_2
  doi: 10.1103/PhysRevE.68.011306
– ident: e_1_3_3_31_2
  doi: 10.1038/nphys1025
– ident: e_1_3_3_10_2
  doi: 10.1063/1.4792356
– ident: e_1_3_3_27_2
  doi: 10.1126/sciadv.1700399
– ident: e_1_3_3_4_2
  doi: 10.1038/35065704
– ident: e_1_3_3_28_2
  doi: 10.1103/PhysRevLett.81.120
– ident: e_1_3_3_33_2
  doi: 10.1103/PhysRevLett.63.1747
– ident: e_1_3_3_24_2
  doi: 10.1038/31189
– ident: e_1_3_3_8_2
  doi: 10.1088/1361-648X/aaa8b8
– ident: e_1_3_3_15_2
  doi: 10.1103/PhysRevLett.110.188301
– ident: e_1_3_3_16_2
  doi: 10.1103/RevModPhys.60.161
– ident: e_1_3_3_25_2
  doi: 10.1103/RevModPhys.17.323
– ident: e_1_3_3_7_2
  doi: 10.1103/PhysRevLett.117.245701
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevLett.121.228003
– volume-title: Theory of Simple Liquids
  year: 2005
  ident: e_1_3_3_26_2
– ident: e_1_3_3_5_2
  doi: 10.1038/ncomms8392
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevLett.123.265501
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevA.1.18
– ident: e_1_3_3_11_2
  doi: 10.1103/PhysRevLett.115.158302
– ident: e_1_3_3_17_2
  doi: 10.1142/7300
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.1507897112
– ident: e_1_3_3_32_2
  doi: 10.1039/C9SM00302A
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.1612964114
– ident: e_1_3_3_20_2
  doi: 10.1137/1010093
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.1607226113
SSID ssj0009580
Score 2.4833724
Snippet In 2-dimensional systems at finite temperature, long-wavelength Mermin–Wagner fluctuations prevent the existence of translational long-range order. Their...
Long-wavelength elastic modes, which have an infinitesimal energy cost, destroy the long-range translational order of 2D solids at finite temperatures. Here we...
In 2-dimensional systems at finite temperature, long-wavelength Mermin-Wagner fluctuations prevent the existence of translational long-range order. Their...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22977
SubjectTerms Decoupling
Diffusion coefficient
Divergence
Fluctuations
High temperature
Liquids
Long range order
Physical Sciences
Relaxation time
Wavelength
Title Long-wavelength fluctuations and anomalous dynamics in 2-dimensional liquids
URI https://www.jstor.org/stable/26861383
https://www.ncbi.nlm.nih.gov/pubmed/31659051
https://www.proquest.com/docview/2314521392
https://www.proquest.com/docview/2310295704
https://pubmed.ncbi.nlm.nih.gov/PMC6859305
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSGgviAFjgYGCxMNQ5ZI4dn48Tgg0oVLtYRMbL5ETO2ukzh20FRJ_PWc7dtKyScBLlMSOI_k7X-6cu-8QeksA1CYRKSaVyDGVXAcBiATTWtSZFFnFpXYUv0zTk3P6-YJdDP6Y6uySVTWuf92aV_I_qMI9wFVnyf4Dsn5QuAHngC8cAWE4_hXGk4W6wj-5rh2hrlazUTNf63wQG9xmWVgX13yuo1yFrTxvol8JFprT3_JxjObt93Vr032dlXrqv2pLF0MwdZuGx30KSqcXliM8Op32BY0nJkDgkiv8VbYe0HY5MyWNTD6DAK3S76-ujeb7NuMLfNkLq742amithlsTcaFz9LqgaGnVKVgjOKW2IKjXtza5shMsuqE-SWGLuvyh2EET6WrEii_HYMIUoDi6YQYw31wbnJM4ZZp1rP_C-bhD13QfPSAZ2Fpud8eTNOeRo3_Kkvdbb9tFD93zG0aMjWO9zUPZDrQdWC5nj9GjzuUIj6387KF7Uj1Bew688KhjHn_3FE22BCocClQIsIVeoEInUGGrwg2BCjuBeobOP308-3CCu3IbuKZpvsI0b-KGCVZREsmYyLhgunpBnYPJxxmJqgyMZcoZJw1lVUS4SCSP0kaksk5iIZJ9tKMWSh6gkGZpxBvwNcDf1YR8Oeck4pmMcxnD4mcBGrv5K-uOi16XRJmXJiYiS0o992U_9wE68g_cWBqWu7vuG0B8P5LmYLPmSYAOHUJlt4iXJbg3FCxY8BIC9MY3g4rV_824kjChuk9ECpZFNEDPLaB-cCcRAco2oPYdNH37ZotqZ4bGPdVUgxF7ceeYL9Fuv6oO0c7qx1q-AhN4Vb02cvsbwrqw-w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-wavelength+fluctuations+and+anomalous+dynamics+in+2-dimensional+liquids&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Yan-Wei&rft.au=Mishra%2C+Chandan+K&rft.au=Sun%2C+Zhao-Yan&rft.au=Zhao%2C+Kun&rft.date=2019-11-12&rft.eissn=1091-6490&rft.volume=116&rft.issue=46&rft.spage=22977&rft_id=info:doi/10.1073%2Fpnas.1909319116&rft_id=info%3Apmid%2F31659051&rft.externalDocID=31659051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon