Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments

We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 9; pp. 298 - 313
Main Authors Puchalska, Patrycja, Huang, Xiaojing, Martin, Shannon E., Han, Xianlin, Patti, Gary J., Crawford, Peter A.
Format Journal Article
LanguageEnglish
Published United States Elsevier 30.11.2018
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2018.10.029

Cover

Abstract We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [ C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [ C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.
AbstractList We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments. • Classically and alternatively polarized macrophages leverage hexosamine biosynthesis • Multiple carbon sources support hexosamine and itaconate biosynthesis • Intracellular metabolic compartmentation varies with macrophage polarization • Itaconate is imported into alternatively polarized macrophages Components of the Immune System; Immunology; Metabolomics
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [ C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [ C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments.
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in bone-marrow-derived macrophages. At the pathway level, classically (lipopolysaccharide [LPS]-polarized, M1) and alternatively (interleukin [IL]-4-polarized, M2) polarized macrophages were 13C-labeled with surprising concordance. Total pools of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an intermediate in the hexosamine biosynthetic pathway, were equally abundant in LPS- and IL-4-polarized macrophages. Informatic scrutiny of 13C-isotopologues revealed that LPS-polarized macrophages leverage the pentose phosphate pathway to generate UDP-GlcNAc, whereas IL-4-polarized macrophages rely on intact glucose and mitochondrial metabolism of glucose carbon. Labeling from [13C]glucose is competed by unlabeled fatty acids and acetoacetate, underscoring the broad roles for substrate metabolism beyond energy conversion. Finally, the LPS-polarized macrophage metabolite itaconate is imported into IL-4-polarized macrophages, in which it reprograms [13C]glucose metabolism. Thus, use of fully unsupervised isotope tracing metabolomics in macrophages reveals polarization-state-specific metabolic pathway connectivity, substrate competition, and metabolite allocation among cellular compartments. : Components of the Immune System; Immunology; Metabolomics Subject Areas: Components of the Immune System, Immunology, Metabolomics
Author Huang, Xiaojing
Crawford, Peter A.
Han, Xianlin
Patti, Gary J.
Puchalska, Patrycja
Martin, Shannon E.
AuthorAffiliation 4 Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
6 Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
3 Department of Chemistry, Washington University, St. Louis, MO 63110, USA
1 Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA
2 Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
5 Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
7 Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
AuthorAffiliation_xml – name: 2 Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
– name: 3 Department of Chemistry, Washington University, St. Louis, MO 63110, USA
– name: 4 Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
– name: 5 Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
– name: 1 Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA
– name: 6 Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
– name: 7 Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
Author_xml – sequence: 1
  givenname: Patrycja
  surname: Puchalska
  fullname: Puchalska, Patrycja
– sequence: 2
  givenname: Xiaojing
  surname: Huang
  fullname: Huang, Xiaojing
– sequence: 3
  givenname: Shannon E.
  surname: Martin
  fullname: Martin, Shannon E.
– sequence: 4
  givenname: Xianlin
  surname: Han
  fullname: Han, Xianlin
– sequence: 5
  givenname: Gary J.
  surname: Patti
  fullname: Patti, Gary J.
– sequence: 6
  givenname: Peter A.
  surname: Crawford
  fullname: Crawford, Peter A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30448730$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARLaU_wAJlySaDH4ntbJDQCMpIrUC0XVuOfTP1KLGD7SkqP9Ffxplpq5YFQrLkq-vzsO_x6-LAeQdF8RajBUaYfdgsbNR2QRAWubFApH1RHJFGtBVCNTl4Uh8WJzFuEEIkr7plr4pDiupacIqOirtV9MlPUF4Gpa1bl1cuqbCGBKY8h6Q6P_jR6lj-gBtQQyzPlQ5-ulZrKL_7QQX7WyXrXXWRVILqYgJte6sfuLlaeh-MdTtUOZNjLFcuZTsYhm1WyIhxUiGN4FJ8U7zssw2c3O_HxdWXz5fLr9XZt9PV8tNZpWsmUkVZ1_TCYDBc96QnRndQ864HTo1mhIiW1phQxhUiWHMiONIETNc2QBADSo-L1V7XeLWRU7CjCrfSKyt3DR_WMl_J6gFkDcC5EA01TNdYdAqbroFOMao4MW2btehea-smdftLDcOjIEZyTktu5JyWnNOaezmtzPq4Z03bbgSjYZ7J8Owqz0-cvZZrfyMZqRFHLAu8vxcI_ucWYpJjNslDVQ78NkqCacNogzDO0HdPvR5NHv5BBog9YJdPgF5qm3aRZWs7_Psd5C_qfzz-D3WY364
CitedBy_id crossref_primary_10_31857_S0320972524050047
crossref_primary_10_1016_j_expneurol_2020_113310
crossref_primary_10_3389_fcvm_2023_1232681
crossref_primary_10_1016_j_it_2019_05_007
crossref_primary_10_1038_s41467_022_31670_0
crossref_primary_10_1016_j_cmet_2022_02_002
crossref_primary_10_1038_s41589_019_0348_9
crossref_primary_10_1097_IN9_0000000000000032
crossref_primary_10_1183_16000617_0134_2020
crossref_primary_10_1038_s41589_019_0323_5
crossref_primary_10_1093_jleuko_qiae198
crossref_primary_10_1016_j_mam_2021_100990
crossref_primary_10_1016_j_pharmthera_2020_107521
crossref_primary_10_3389_fimmu_2021_746151
crossref_primary_10_1007_s12350_020_02479_5
crossref_primary_10_1016_j_mtbio_2023_100917
crossref_primary_10_1186_s10020_024_00866_z
crossref_primary_10_1016_j_freeradbiomed_2021_01_036
crossref_primary_10_1016_j_tem_2022_07_001
crossref_primary_10_3389_fcimb_2022_862582
crossref_primary_10_1016_j_it_2022_10_003
crossref_primary_10_1038_s12276_022_00838_5
crossref_primary_10_1016_j_cmet_2020_07_016
crossref_primary_10_1016_j_mam_2025_101338
crossref_primary_10_1155_2020_5404780
crossref_primary_10_1016_j_imbio_2022_152191
crossref_primary_10_1111_imm_13245
crossref_primary_10_1016_j_copbio_2022_102739
crossref_primary_10_3390_genes14040933
crossref_primary_10_3390_mps3030054
crossref_primary_10_1089_ars_2019_7974
crossref_primary_10_3389_fimmu_2021_673916
crossref_primary_10_3389_fimmu_2019_01462
crossref_primary_10_1080_10799893_2024_2341678
crossref_primary_10_1016_j_molcel_2020_04_002
crossref_primary_10_1021_acs_chemrev_0c00884
crossref_primary_10_1080_17435390_2020_1817598
crossref_primary_10_1002_1878_0261_13588
crossref_primary_10_1146_annurev_nutr_111120_111518
crossref_primary_10_1021_acs_jproteome_1c00124
crossref_primary_10_1007_s43657_023_00129_7
crossref_primary_10_1016_j_jbc_2023_103005
crossref_primary_10_1016_j_trac_2019_115676
crossref_primary_10_1016_j_cmet_2018_10_015
crossref_primary_10_1016_j_lwt_2023_114645
crossref_primary_10_1126_sciadv_ads0535
crossref_primary_10_1134_S0006297924050043
crossref_primary_10_1016_j_trecan_2023_11_007
crossref_primary_10_3389_fcell_2023_1167097
crossref_primary_10_1002_ctm2_1785
crossref_primary_10_1007_s00216_021_03204_y
crossref_primary_10_3390_ani14030522
crossref_primary_10_3390_ijms26051976
crossref_primary_10_1038_s41598_023_34435_x
crossref_primary_10_1016_j_ccell_2022_08_012
crossref_primary_10_1152_ajpcell_00478_2023
Cites_doi 10.1016/j.cmet.2018.09.018
10.1038/nchembio.2307
10.1038/nmeth.3940
10.1146/annurev.bi.49.070180.002143
10.1084/jem.20180118
10.1038/ni.3366
10.1016/bs.ai.2016.12.001
10.1074/jbc.M115.685792
10.1101/gad.217406.113
10.1016/j.smim.2016.10.004
10.1007/978-1-62703-299-5_18
10.1007/s00726-011-1193-7
10.1074/mcp.O115.049627
10.1038/nbt.4101
10.1038/nature14362
10.1016/j.immuni.2015.02.017
10.1038/257808a0
10.1038/nature21028
10.1016/j.cmet.2018.06.001
10.1189/jlb.1111537
10.1016/j.cmet.2016.06.004
10.1371/journal.pone.0087680
10.1016/j.immuni.2016.09.016
10.12703/P6-13
10.1016/j.cmet.2016.12.022
10.1073/pnas.0915139107
10.1146/annurev-nutr-071714-034243
10.1038/nature11986
10.1152/ajpendo.00408.2016
10.1021/ja2070889
10.1016/j.cmet.2018.08.012
10.1016/j.bbrc.2013.09.037
10.1016/j.immuni.2016.09.006
10.1038/ni.3796
10.1016/j.cell.2016.08.064
10.1038/srep46249
10.1074/jbc.C117.775270
10.1073/pnas.1218599110
10.1016/j.cell.2017.09.051
10.1016/j.molmet.2014.07.010
10.1038/nature25986
10.1038/cr.2015.68
10.1016/j.copbio.2014.04.006
10.1016/j.cmet.2006.05.011
10.1186/s40170-016-0150-z
10.1038/srep22637
10.3389/fimmu.2017.00289
10.1016/j.molcel.2015.04.021
10.3389/fendo.2014.00235
10.1021/ac403384n
10.1074/jbc.M115.676817
10.1038/s41586-018-0052-z
10.1016/j.cell.2018.07.030
10.3389/fphys.2015.00344
10.1016/j.copbio.2010.08.009
10.1016/j.cell.2018.03.055
10.1016/j.immuni.2015.02.005
ContentType Journal Article
Copyright Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Authors 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.isci.2018.10.029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 313
ExternalDocumentID oai_doaj_org_article_4ee778853d6c418ba1db5eba63a72d99
10.1016/j.isci.2018.10.029
PMC6240706
30448730
10_1016_j_isci_2018_10_029
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK091538
– fundername: NCATS NIH HHS
  grantid: L30 TR000589
– fundername: NIEHS NIH HHS
  grantid: R35 ES028365
– fundername: NCI NIH HHS
  grantid: U01 CA235482
– fundername: NIH HHS
  grantid: R24 OD024624
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AACTN
NCXOZ
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c468t-36b5f8d1ed7cf2f2dcbe47bfe73dc622893412367a021c72870c2edb95e206e33
IEDL.DBID UNPAY
ISSN 2589-0042
IngestDate Wed Aug 27 01:22:53 EDT 2025
Wed Aug 20 00:18:51 EDT 2025
Tue Sep 30 16:57:36 EDT 2025
Fri Jul 11 08:09:06 EDT 2025
Thu Jan 02 22:30:56 EST 2025
Thu Apr 24 22:49:57 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metabolomics
Components of the Immune System
Immunology
Language English
License Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-36b5f8d1ed7cf2f2dcbe47bfe73dc622893412367a021c72870c2edb95e206e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.isci.2018.10.029
PMID 30448730
PQID 2135635011
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4ee778853d6c418ba1db5eba63a72d99
unpaywall_primary_10_1016_j_isci_2018_10_029
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240706
proquest_miscellaneous_2135635011
pubmed_primary_30448730
crossref_citationtrail_10_1016_j_isci_2018_10_029
crossref_primary_10_1016_j_isci_2018_10_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier
Publisher_xml – name: Elsevier
References Mills (10.1016/j.isci.2018.10.029_bib40) 2016; 167
Puchalska (10.1016/j.isci.2018.10.029_bib48) 2017; 25
Bambouskova (10.1016/j.isci.2018.10.029_bib2) 2018; 556
Geeraerts (10.1016/j.isci.2018.10.029_bib17) 2017; 8
Cordes (10.1016/j.isci.2018.10.029_bib9) 2015; 35
Lampropoulou (10.1016/j.isci.2018.10.029_bib31) 2016; 24
Losman (10.1016/j.isci.2018.10.029_bib33) 2013; 27
Jha (10.1016/j.isci.2018.10.029_bib27) 2015; 42
Cordes (10.1016/j.isci.2018.10.029_bib10) 2016; 291
Huang (10.1016/j.isci.2018.10.029_bib20) 2016; 45
O'Neill (10.1016/j.isci.2018.10.029_bib45) 2015; 42
Weindl (10.1016/j.isci.2018.10.029_bib60) 2015; 6
Divakaruni (10.1016/j.isci.2018.10.029_bib13) 2018; 28
Van den Bossche (10.1016/j.isci.2018.10.029_bib55) 2018; 28
Tannahill (10.1016/j.isci.2018.10.029_bib53) 2013; 496
Jang (10.1016/j.isci.2018.10.029_bib25) 2018; 173
Shen (10.1016/j.isci.2018.10.029_bib51) 2017; 171
Fei (10.1016/j.isci.2018.10.029_bib15) 2016; 6
Kim (10.1016/j.isci.2018.10.029_bib30) 2016; 45
Guijas (10.1016/j.isci.2018.10.029_bib19) 2018; 36
Zamboni (10.1016/j.isci.2018.10.029_bib64) 2011; 22
Huang (10.1016/j.isci.2018.10.029_bib21) 2014; 86
Italiani (10.1016/j.isci.2018.10.029_bib24) 2014; 9
Nomura (10.1016/j.isci.2018.10.029_bib44) 2016; 17
Schugar (10.1016/j.isci.2018.10.029_bib50) 2014; 3
Mills (10.1016/j.isci.2018.10.029_bib41) 2018; 556
Tur (10.1016/j.isci.2018.10.029_bib54) 2017; 133
Bordbar (10.1016/j.isci.2018.10.029_bib5) 2017; 7
Infantino (10.1016/j.isci.2018.10.029_bib22) 2013; 440
Jazmin (10.1016/j.isci.2018.10.029_bib26) 2013; 985
Nair (10.1016/j.isci.2018.10.029_bib43) 2018; 215
Wong (10.1016/j.isci.2018.10.029_bib62) 2017; 542
ElAzzouny (10.1016/j.isci.2018.10.029_bib14) 2017; 292
Pirhaji (10.1016/j.isci.2018.10.029_bib46) 2016; 13
Intlekofer (10.1016/j.isci.2018.10.029_bib23) 2017; 13
Puchalska (10.1016/j.isci.2018.10.029_bib47) 2018
Bhat (10.1016/j.isci.2018.10.029_bib4) 2010; 107
Liu (10.1016/j.isci.2018.10.029_bib32) 2017; 18
Meiser (10.1016/j.isci.2018.10.029_bib38) 2016; 291
Wang (10.1016/j.isci.2018.10.029_bib57) 2018; 28
Zamboni (10.1016/j.isci.2018.10.029_bib63) 2015; 58
McGarry (10.1016/j.isci.2018.10.029_bib37) 1980; 49
Schoors (10.1016/j.isci.2018.10.029_bib49) 2015; 520
Artyomov (10.1016/j.isci.2018.10.029_bib1) 2016; 28
Murphy (10.1016/j.isci.2018.10.029_bib42) 2018; 174
Cho (10.1016/j.isci.2018.10.029_bib7) 2014; 28
Vats (10.1016/j.isci.2018.10.029_bib56) 2006; 4
Baudoin (10.1016/j.isci.2018.10.029_bib3) 2015; 5
Kelly (10.1016/j.isci.2018.10.029_bib29) 2015; 25
Cooper (10.1016/j.isci.2018.10.029_bib8) 1975; 257
Gonzalez-Hurtado (10.1016/j.isci.2018.10.029_bib18) 2017; 312
Weindl (10.1016/j.isci.2018.10.029_bib59) 2016; 4
Strelko (10.1016/j.isci.2018.10.029_bib52) 2011; 133
Martinez (10.1016/j.isci.2018.10.029_bib36) 2014; 6
Wang (10.1016/j.isci.2018.10.029_bib58) 2016; 15
Michelucci (10.1016/j.isci.2018.10.029_bib39) 2013; 110
Jin (10.1016/j.isci.2018.10.029_bib28) 2013; 45
Feingold (10.1016/j.isci.2018.10.029_bib16) 2012; 92
References_xml – volume: 28
  start-page: 538
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib55
  article-title: Fatty acid oxidation in macrophages and T cells: time for reassessment?
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.09.018
– volume: 13
  start-page: 494
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib23
  article-title: L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2307
– volume: 13
  start-page: 770
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib46
  article-title: Revealing disease-associated pathways by network integration of untargeted metabolomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3940
– volume: 49
  start-page: 395
  year: 1980
  ident: 10.1016/j.isci.2018.10.029_bib37
  article-title: Regulation of hepatic fatty acid oxidation and ketone body production
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.49.070180.002143
– volume: 215
  start-page: 1035
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib43
  article-title: Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20180118
– volume: 17
  start-page: 216
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib44
  article-title: Fatty acid oxidation in macrophage polarization
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3366
– volume: 133
  start-page: 1
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib54
  article-title: Chapter One - Macrophages and mitochondria: a critical interplay between metabolism, signaling, and the functional activity
  publication-title: Adv. Immunol.
  doi: 10.1016/bs.ai.2016.12.001
– volume: 291
  start-page: 14274
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib10
  article-title: immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.685792
– volume: 27
  start-page: 836
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib33
  article-title: What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.217406.113
– volume: 28
  start-page: 417
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib1
  article-title: Integrating immunometabolism and macrophage diversity
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2016.10.004
– volume: 985
  start-page: 367
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib26
  article-title: Isotopically nonstationary 13C metabolic flux analysis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-299-5_18
– volume: 45
  start-page: 87
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib28
  article-title: GABA is an effective immunomodulatory molecule
  publication-title: Amino Acids
  doi: 10.1007/s00726-011-1193-7
– volume: 15
  start-page: 2462
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib58
  article-title: A novel quantitative mass spectrometry platform for determining protein O-GlcNAcylation dynamics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O115.049627
– volume: 36
  start-page: 316
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib19
  article-title: Metabolomics activity screening for identifying metabolites that modulate phenotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4101
– volume: 520
  start-page: 192
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib49
  article-title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells
  publication-title: Nature
  doi: 10.1038/nature14362
– volume: 42
  start-page: 393
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib45
  article-title: A broken krebs cycle in macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.017
– volume: 257
  start-page: 808
  year: 1975
  ident: 10.1016/j.isci.2018.10.029_bib8
  article-title: Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction
  publication-title: Nature
  doi: 10.1038/257808a0
– volume: 542
  start-page: 49
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib62
  article-title: The role of fatty acid beta-oxidation in lymphangiogenesis
  publication-title: Nature
  doi: 10.1038/nature21028
– volume: 28
  start-page: 490
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib13
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.06.001
– volume: 92
  start-page: 829
  year: 2012
  ident: 10.1016/j.isci.2018.10.029_bib16
  article-title: Mechanisms of triglyceride accumulation in activated macrophages
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1111537
– volume: 24
  start-page: 158
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib31
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 9
  start-page: e87680
  year: 2014
  ident: 10.1016/j.isci.2018.10.029_bib24
  article-title: Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087680
– volume: 45
  start-page: 817
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib20
  article-title: Metabolic reprogramming mediated by the mTORC2-irf4 signaling axis is essential for macrophage alternative activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.09.016
– volume: 6
  start-page: 13
  year: 2014
  ident: 10.1016/j.isci.2018.10.029_bib36
  article-title: The M1 and M2 paradigm of macrophage activation: time for reassessment
  publication-title: F1000Prime Rep.
  doi: 10.12703/P6-13
– volume: 25
  start-page: 262
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib48
  article-title: Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.12.022
– volume: 107
  start-page: 2580
  year: 2010
  ident: 10.1016/j.isci.2018.10.029_bib4
  article-title: Inhibitory role for GABA in autoimmune inflammation
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0915139107
– volume: 35
  start-page: 451
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib9
  article-title: Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071714-034243
– volume: 496
  start-page: 238
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib53
  article-title: Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 312
  start-page: E381
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib18
  article-title: The loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00408.2016
– volume: 133
  start-page: 16386
  year: 2011
  ident: 10.1016/j.isci.2018.10.029_bib52
  article-title: Itaconic acid is a mammalian metabolite induced during macrophage activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2070889
– volume: 28
  start-page: 463
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib57
  article-title: Glycolytic stimulation is not a requirement for M2 macrophage differentiation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.08.012
– volume: 440
  start-page: 105
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib22
  article-title: ATP-citrate lyase is essential for macrophage inflammatory response
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.09.037
– volume: 45
  start-page: 468
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib30
  article-title: Homegrown macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.09.006
– volume: 18
  start-page: 985
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib32
  article-title: Alpha-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3796
– volume: 167
  start-page: 457
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib40
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.064
– volume: 7
  start-page: 46249
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib5
  article-title: Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
  publication-title: Sci. Rep.
  doi: 10.1038/srep46249
– volume: 292
  start-page: 4766
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib14
  article-title: Dimethyl itaconate is not metabolized into itaconate intracellularly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C117.775270
– volume: 110
  start-page: 7820
  year: 2013
  ident: 10.1016/j.isci.2018.10.029_bib39
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1218599110
– volume: 171
  start-page: 771
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib51
  article-title: The human knockout gene CLYBL connects itaconate to vitamin B12
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.051
– volume: 3
  start-page: 754
  year: 2014
  ident: 10.1016/j.isci.2018.10.029_bib50
  article-title: Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2014.07.010
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib41
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib47
  article-title: Hepatocyte-macrophage acetoacetate shuttle protects against tissue fibrosis
  publication-title: Cell Metab.
– volume: 25
  start-page: 771
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib29
  article-title: Metabolic reprogramming in macrophages and dendritic cells in innate immunity
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.68
– volume: 28
  start-page: 143
  year: 2014
  ident: 10.1016/j.isci.2018.10.029_bib7
  article-title: After the feature presentation: technologies bridging untargeted metabolomics and biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.04.006
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.isci.2018.10.029_bib56
  article-title: Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 4
  start-page: 10
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib59
  article-title: Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis
  publication-title: Cancer Metab.
  doi: 10.1186/s40170-016-0150-z
– volume: 6
  start-page: 22637
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib15
  article-title: Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide
  publication-title: Sci. Rep.
  doi: 10.1038/srep22637
– volume: 8
  start-page: 289
  year: 2017
  ident: 10.1016/j.isci.2018.10.029_bib17
  article-title: Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00289
– volume: 58
  start-page: 699
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib63
  article-title: Defining the metabolome: size, flux, and regulation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.021
– volume: 5
  start-page: 235
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib3
  article-title: O-GlcNAcylation and inflammation: a vast territory to explore
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2014.00235
– volume: 86
  start-page: 1632
  year: 2014
  ident: 10.1016/j.isci.2018.10.029_bib21
  article-title: X13CMS: global tracking of isotopic labels in untargeted metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac403384n
– volume: 291
  start-page: 3932
  year: 2016
  ident: 10.1016/j.isci.2018.10.029_bib38
  article-title: Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.676817
– volume: 556
  start-page: 501
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib2
  article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 174
  start-page: 780
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib42
  article-title: Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.030
– volume: 6
  start-page: 344
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib60
  article-title: Metabolome-wide analysis of stable isotope labeling-is it worth the effort?
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2015.00344
– volume: 22
  start-page: 103
  year: 2011
  ident: 10.1016/j.isci.2018.10.029_bib64
  article-title: 13C metabolic flux analysis in complex systems
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.08.009
– volume: 173
  start-page: 822
  year: 2018
  ident: 10.1016/j.isci.2018.10.029_bib25
  article-title: Metabolomics and isotope tracing
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.055
– volume: 42
  start-page: 419
  year: 2015
  ident: 10.1016/j.isci.2018.10.029_bib27
  article-title: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.005
SSID ssj0002002496
Score 2.3311818
Snippet We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by C-substrates in...
We apply stable isotope tracing, mass-spectrometry-based untargeted metabolomics, to reveal the biochemical space labeled by 13C-substrates in...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 298
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXsoFgcrDQNEicQND7H05x1JRtUhBCBGpN2sfs2qqyI5qB8Sv4C8zs3ZCIhBw4Gb5vTvjnRnPN98w9gICGC8j_V6aQi5dELmNWuVGQJx4U4XSUkZ39kGfz-X7S3W50-qLMGEDPfAwcW8kgMEwTYmgvSwqZ4vgFDirhTVlmKbSPTRjO8HUdUqvERVe6iynCBOEqjlWzAzgLqp4JVxX9ZqgXcm__GmVEnn_7zzOX4GTh-tmZb99tcvljlU6u8vujO4kPxmGcY_dguaIfb_o2r5dAUdD5NE08XkzAL4h8Bn0KPYl1SJ3_BN8QT-x4zNLjbyucGnhHynUHWsz8-SJ5qlFfVz4zbW4ddpizLoYfiRym8bEL-hlKQ9AwFae1pmbBGHv7rP52bvPp-f52Hgh91JXfS60U7EKBQTjYxnL4B1I4yIYEbwuMUZD20fUbxY9BG8oV-pLCG6qoJxoEOIBO2jaBh4xrlBkDr0KLdEPKIowNSFaIFZAaYQ0IWPFZuJrP7KSU3OMZb2Bn13XJKyahEX7UFgZe7m9ZjVwcvzx7Lckz-2ZxKeddqCW1aOW1X_Tsow932hDjd8fTaZtoF13dVkIpSk7W2Ts4aAd20eJCQa_uIRmzOzpzd677B9pFleJ41tTpD3RGXu11bB_GOvj_zHWJ-w23XLgt3zKDvqbNRyj59W7Z-kj-wH04C8M
  priority: 102
  providerName: Directory of Open Access Journals
Title Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments
URI https://www.ncbi.nlm.nih.gov/pubmed/30448730
https://www.proquest.com/docview/2135635011
https://pubmed.ncbi.nlm.nih.gov/PMC6240706
https://doi.org/10.1016/j.isci.2018.10.029
https://doaj.org/article/4ee778853d6c418ba1db5eba63a72d99
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELage4ALD_EKj5WRuEGqJnbs5LisWO0idbVCVFpOkR8TbaFKqk0Kgj_BX2bGSSsCK7Tc2tRu4snYM-P5_A1jr8CDdrKi7aUCYmm9iE2lslgLqGZO5z41lNGdn6rjhXx_np0PNDl0FmaUvw84LDqcShCsfEoorLS4yfYUJZMmbG9xenbwiarHZYT7QfUbTsVc3XFkeQJB_1Ve5d_gyFubem2-fzOr1W-W5-huX8KoDYSFBDj5Mt10dup-_EHneL1B3WN3BgeUH_Qac5_dgPoB-3nSNl2zBo6my6Ex44u6h4iD53PoUFFWdHq55R_gK3qWLZ8bKv11gYsRP6PgeDjNGQffNQ5F7aul2_bFT4cNRrnLfuuRmyAhfkJDp8wBQWF5WJkuA-i9fcgWR-8-Hh7HQ6mG2EmVd7FQNqtyn4DXrkqr1DsLUtsKtPBOpRjVobUksjiDPoXTlF11KXhbZJDOFAjxiE3qpoYnjGdJbi36IUqi55AkvtC-MkA8glILqX3Eku1rLN3AY07lNFblFrD2uSTxliReuobijdjrXZ91z-Lxz9ZvSTt2LYmBO1zAd1gOE7qUAFrn6Ox45SQ-skm8zcAaJYxOfYF_8nKrWyXOWBKmqaHZtGWaiExRPjeJ2ONe13a3EjMMl3HRjZgeaeHoWca_1MuLwAquKDafqYi92enrNcb69P-aP2O36VvPffmcTbrLDbxAr6yz-2E3Y3-YlL8A2UY4LQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4ALD_EKLxmJG2S1iR07OZaKqkXaqkKsVE6RHxN1yypZNVkQ_An-MjNOdkWgQuWWzdpJPBl7ZjKfv2HsNXjQTlb0eamAWFovYlOpLNYCqpnTuU8NZXTnJ-poIT-cZWcDTQ7thRnl7wMOizanEgQrnxIKKy1usj1FyaQJ21ucnO5_pupxGeF-UP2GXTFXdxxZnkDQf5VX-Tc48tamXpvv38xq9ZvlObzblzBqA2EhAU6-TDednboff9A5Xm9Q99idwQHl-73G3Gc3oH7Afh63TdesgaPpcmjM-KLuIeLg-Rw6VJQV7V5u-Uf4ip5ly-eGSn-d42LETyk4HnZzxsF3jUNR-2rptn3x6KDBKHfZf3rkJkiIH9PQKXNAUFgeVqbLAHpvH7LF4ftPB0fxUKohdlLlXSyUzarcJ-C1q9Iq9c6C1LYCLbxTKUZ1aC2JLM6gT-E0ZVddCt4WGaQzBUI8YpO6qeEJ41mSW4t-iJLoOSSJL7SvDBCPoNRCah-xZPsaSzfwmFM5jVW5BaxdlCTeksRL51C8EXuz67PuWTz-2fodaceuJTFwhxP4DsthQpcSQOscnR2vnMRHNom3GVijhNGpL_Air7a6VeKMJWGaGppNW6aJyBTlc5OIPe51bXcrMcNwGRfdiOmRFo6eZfxPvTwPrOCKYvOZitjbnb5eY6xP_6_5M3abfvXcl8_ZpLvcwAv0yjr7cpiOvwCN9Dc4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isotope+Tracing+Untargeted+Metabolomics+Reveals+Macrophage+Polarization-State-Specific+Metabolic+Coordination+across+Intracellular+Compartments&rft.jtitle=iScience&rft.au=Puchalska%2C+Patrycja&rft.au=Huang%2C+Xiaojing&rft.au=Martin%2C+Shannon+E&rft.au=Han%2C+Xianlin&rft.date=2018-11-30&rft.eissn=2589-0042&rft.volume=9&rft.spage=298&rft_id=info:doi/10.1016%2Fj.isci.2018.10.029&rft_id=info%3Apmid%2F30448730&rft.externalDocID=30448730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon