Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment

PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main f...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 14; p. 1120034
Main Authors Zhu, Peng, Ke, Zhuo-Ran, Chen, Jing-Xian, Li, Shi-Jin, Ma, Tian-Liang, Fan, Xiao-Lei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.02.2023
Subjects
Online AccessGet full text
ISSN1664-3224
1664-3224
DOI10.3389/fimmu.2023.1120034

Cover

Abstract PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
AbstractList PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
Author Zhu, Peng
Li, Shi-Jin
Fan, Xiao-Lei
Chen, Jing-Xian
Ma, Tian-Liang
Ke, Zhuo-Ran
AuthorAffiliation 2 School of Anesthesiology, Guizhou Medical University , Guiyang, Guizhou , China
3 Department of Orthopedics, Xiangya Hospital, Central South University , Changsha, Hunan , China
4 Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University , Xi’an , China
1 XiangYa School of Medicine, Central South University , Changsha, Hunan , China
AuthorAffiliation_xml – name: 2 School of Anesthesiology, Guizhou Medical University , Guiyang, Guizhou , China
– name: 3 Department of Orthopedics, Xiangya Hospital, Central South University , Changsha, Hunan , China
– name: 1 XiangYa School of Medicine, Central South University , Changsha, Hunan , China
– name: 4 Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University , Xi’an , China
Author_xml – sequence: 1
  givenname: Peng
  surname: Zhu
  fullname: Zhu, Peng
– sequence: 2
  givenname: Zhuo-Ran
  surname: Ke
  fullname: Ke, Zhuo-Ran
– sequence: 3
  givenname: Jing-Xian
  surname: Chen
  fullname: Chen, Jing-Xian
– sequence: 4
  givenname: Shi-Jin
  surname: Li
  fullname: Li, Shi-Jin
– sequence: 5
  givenname: Tian-Liang
  surname: Ma
  fullname: Ma, Tian-Liang
– sequence: 6
  givenname: Xiao-Lei
  surname: Fan
  fullname: Fan, Xiao-Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36845112$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk9vFCEcJabG1m2_gAczRy-7MsAw4MFk07TapNGm6Z0A82NLMwMrME389tLdrWk9yAEIvD-B996joxADIPShxStKhfzs_DTNK4IJXbUtwZiyN-ik5ZwtKSHs6MX-GJ3l_IDrYJJS2r1Dx5QL1lXaCbpdD486WMiND80E9l4Hn6dGh6FJsJlHXXwMTXTNzfpH3JaYff7S3KSYt2DLjjT4DDpDUxLoMkEop-it02OGs8O6QHeXF3fn35fXP79dna-vl5ZxUZYtSD102rKecOwk6RnpgWFrJGiCzeC4M0yIlnZ950yd-s5yNhhs3WAd0AW62ssOUT-obfKTTr9V1F7tDmLaKJ2KtyMoKrjsQTDjjGZOMsM5wS3vpLEdGNFXra97re1sJhhsfUXS4yvR1zfB36tNfFRSMsFqBgv06SCQ4q8ZclGTzxbGUQeIc1akF5gJTrq2Qj--9Ppr8pxJBYg9wNZvzgmcsr7scqjWflQtVk8NULsGqKcGqEMDKpX8Q31W_w_pDwCKtig
CitedBy_id crossref_primary_10_1016_j_intimp_2024_112889
crossref_primary_10_3389_fnagi_2024_1400544
crossref_primary_10_1002_ange_202419649
crossref_primary_10_3389_fendo_2024_1397794
crossref_primary_10_1038_s41419_024_07322_0
crossref_primary_10_1002_smsc_202400220
crossref_primary_10_1002_advs_202500406
crossref_primary_10_1016_j_scitotenv_2024_178031
crossref_primary_10_1038_s41598_024_71625_7
crossref_primary_10_26453_otjhs_1473888
crossref_primary_10_1016_j_intimp_2024_113528
crossref_primary_10_1007_s11010_024_05150_6
crossref_primary_10_1080_0886022X_2024_2403649
crossref_primary_10_1016_j_intimp_2023_111161
crossref_primary_10_1155_ijog_6915258
crossref_primary_10_1038_s41598_024_62259_w
crossref_primary_10_1155_2023_6879022
crossref_primary_10_1007_s10495_024_01979_w
crossref_primary_10_1371_journal_pone_0307651
crossref_primary_10_1007_s12672_024_01134_6
crossref_primary_10_1007_s10495_024_02072_y
crossref_primary_10_1080_10286020_2024_2368841
crossref_primary_10_1186_s12876_023_03020_x
crossref_primary_10_1038_s41598_024_76263_7
crossref_primary_10_3389_fcell_2024_1409662
crossref_primary_10_3390_biom13121715
crossref_primary_10_1007_s12017_024_08815_z
crossref_primary_10_1111_eci_14226
crossref_primary_10_1038_s41598_024_71954_7
crossref_primary_10_2147_JIR_S491203
crossref_primary_10_1002_cam4_6803
crossref_primary_10_1007_s10495_023_01889_3
crossref_primary_10_1007_s11010_024_04948_8
crossref_primary_10_1186_s12903_024_04917_z
crossref_primary_10_1038_s41598_024_75377_2
crossref_primary_10_3390_ijms25010348
crossref_primary_10_1002_jgm_3682
crossref_primary_10_3390_ijms241210127
crossref_primary_10_1007_s10495_025_02086_0
crossref_primary_10_2147_JIR_S455862
crossref_primary_10_1002_jcb_70026
crossref_primary_10_1007_s10495_023_01931_4
crossref_primary_10_1038_s41598_025_90498_y
crossref_primary_10_1002_anie_202419649
crossref_primary_10_3389_fimmu_2024_1502257
crossref_primary_10_1186_s11658_024_00646_x
crossref_primary_10_2147_JIR_S483977
crossref_primary_10_3390_biom14020142
crossref_primary_10_1016_j_intimp_2025_114298
crossref_primary_10_1186_s12943_024_02130_8
crossref_primary_10_3389_fendo_2024_1344058
crossref_primary_10_3389_fphar_2023_1289829
crossref_primary_10_1038_s41419_025_07351_3
crossref_primary_10_3389_fphar_2025_1508047
crossref_primary_10_3390_ijms25158194
crossref_primary_10_3390_genes14111994
crossref_primary_10_3390_pathogens14010043
crossref_primary_10_2147_DDDT_S495225
crossref_primary_10_1016_j_autrev_2024_103714
crossref_primary_10_1038_s41417_024_00765_9
Cites_doi 10.1038/nature13788
10.1002/jcp.28122
10.3389/fcimb.2020.00237
10.3390/ijms22031048
10.1126/science.1172308
10.1038/ncomms7282
10.3389/fimmu.2020.01518
10.1038/cdd.2015.172
10.1083/jcb.201602089
10.3389/fmolb.2021.790613
10.1089/ars.2005.7.482
10.1016/j.celrep.2021.109858
10.1016/j.cell.2020.11.025
10.18632/aging.100934
10.1007/s13277-016-5035-9
10.1016/j.mib.2020.07.012
10.4049/immunohorizons.2000097
10.1038/ni.1861
10.1074/jbc.RA120.015924
10.1038/s41392-022-00889-0
10.1111/imr.12906
10.1093/nar/gky1131
10.1016/j.bbamcr.2010.10.017
10.1038/cdd.2015.70
10.1038/srep27912
10.1016/j.apsb.2021.03.011
10.1038/s41586-020-2127-x
10.1128/jvi.00120-16
10.1074/jbc.RA120.015036
10.1038/s41586-019-1752-8
10.1155/2019/5972152
10.1038/s41419-019-2157-1
10.3389/fcimb.2020.00238
10.1038/nrmicro2070
10.1038/ajg.2009.29
10.1126/science.aau2818
10.1084/jem.20170550
10.14336/ad.2021.1023
10.1046/j.1365-2443.1998.00223.x
10.1016/j.cbi.2021.109368
10.1084/jem.20191644
10.1073/pnas.1601636113
10.1007/s00011-021-01452-3
10.1371/journal.ppat.1004820
10.1038/ni.1864
10.1038/s41392-021-00507-5
10.3389/fimmu.2021.789610
10.1038/376596a0
10.3389/fendo.2021.752546
10.1016/j.chom.2015.01.006
10.3390/cancers14143309
10.1111/imr.12909
10.1016/j.pharmthera.2021.108010
10.4049/jimmunol.1701538
10.1371/journal.ppat.1005337
10.1016/j.celrep.2018.10.087
10.1073/pnas.1915829117
10.1016/s0092-8674(00)81871-1
10.1126/sciimmunol.abo6294
10.1016/j.tcb.2015.12.002
10.1038/ni.3118
10.1038/s41586-019-1770-6
10.1111/imr.12618
10.1073/pnas.0507900102
10.1002/eji.201848070
10.1007/s00018-022-04564-z
10.1186/s12943-019-1029-8
10.1126/science.abd0811
10.1007/s00018-016-2189-y
10.4103/1673-5374.346543
10.1038/nri.2016.58
10.1016/j.clim.2022.109019
10.1074/jbc.M116.756379
10.1016/j.cell.2020.03.040
10.3390/cells11121885
10.1038/nature20558
10.1126/science.1242255
10.1016/j.csbj.2021.07.038
10.1016/j.immuni.2009.02.005
10.1073/pnas.1613305114
10.1073/pnas.1408987111
10.3389/fcimb.2019.00406
10.1016/j.cell.2014.02.008
10.1002/ijc.33698
10.1042/bj20150678
10.1038/cdd.2014.216
10.1111/j.1745-7270.2005.00108.x
10.1038/s41423-020-00630-3
10.4103/1673-5374.331539
10.1016/s0092-8674(00)80434-1
10.1073/pnas.1809548115
10.18632/aging.103528
10.1038/s41580-020-0270-8
10.1038/nature14191
10.1016/j.immuni.2009.02.006
10.1002/prot.24287
10.1074/jbc.RA120.013752
10.1101/gad.13.24.3179
10.3390/ijms222111398
10.1038/ncomms8515
10.3233/jad-132738
10.1016/j.chom.2016.09.014
10.1038/ni.3015
10.1038/s41419-020-02985-x
10.1002/jcp.27909
10.1073/pnas.1320294111
10.1016/j.cell.2009.05.021
10.1101/2020.10.29.361048
10.1038/s12276-021-00634-7
10.1038/s41586-021-03875-8
10.4049/jimmunol.1302787
10.1016/j.micinf.2017.10.006
10.1186/s13024-016-0088-1
10.3390/cells11091495
10.1172/jci.insight.136720
10.1038/s41467-019-09753-2
10.1038/s41583-018-0093-1
10.1038/s41580-019-0173-8
10.5483/bmbrep.2012.45.9.186
10.1016/j.cell.2009.05.037
10.1016/j.jaut.2019.05.014
10.33696/immunology.2.064
10.1016/s0092-8674(00)80501-2
10.1016/s1097-2765(02)00442-2
10.1126/sciimmunol.aag2045
10.1242/jcs.207365
ContentType Journal Article
Copyright Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan.
Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan 2023 Zhu, Ke, Chen, Li, Ma and Fan
Copyright_xml – notice: Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan.
– notice: Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan 2023 Zhu, Ke, Chen, Li, Ma and Fan
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2023.1120034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87
PMC9948402
36845112
10_3389_fimmu_2023_1120034
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-1e9ad5ac47260f927427e40cb9ea20bdf6fb48813575fb57575c64db0cfdcfe3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:03:05 EDT 2025
Thu Aug 21 18:37:55 EDT 2025
Thu Sep 04 16:48:37 EDT 2025
Thu Apr 03 06:54:11 EDT 2025
Tue Jul 01 02:13:45 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PCD
infection
cell death
PANoptosis
PANoptosome
Language English
License Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-1e9ad5ac47260f927427e40cb9ea20bdf6fb48813575fb57575c64db0cfdcfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology
These authors have contributed equally to this work
Edited by: Yong Huang, Northwest A&F University, China
Reviewed by: Youwei Ai, Institute of Genetics and Developmental Biology (CAS), China; Yaqiu Wang, St. Jude Children’s Research Hospital, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2023.1120034
PMID 36845112
PQID 2780486251
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9948402
proquest_miscellaneous_2780486251
pubmed_primary_36845112
crossref_citationtrail_10_3389_fimmu_2023_1120034
crossref_primary_10_3389_fimmu_2023_1120034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-09
PublicationDateYYYYMMDD 2023-02-09
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tsujimoto (B43) 1998; 3
Fan (B40) 2005; 37
Wang (B99) 2022; 79
Cui (B126) 2022; 13
Yuan (B50) 2019; 20
Samir (B9) 2020; 10
Lin (B74) 2016; 540
Christgen (B75) 2020; 10
Malireddi (B12) 2020; 4
Jiang (B84) 2021; 12
Acehan (B47) 2002; 9
Jin (B29) 2013; 81
Bock (B44) 2020; 21
Karki (B89) 2022; 7
He (B55) 2009; 137
Xia (B121) 2019; 234
Bedoui (B2) 2020; 21
Banoth (B11) 2020; 295
Lindsay (B42) 2011; 1813
Green (B1) 2016; 23
Broz (B28) 2016; 16
Li (B70) 1997; 91
Kuriakose (B10) 2016; 1
Man (B110) 2015; 16
Schoultz (B17) 2009; 104
Vanden Berghe (B71) 2016; 73
Tamura (B115) 1995; 376
Place (B7) 2021; 59
Pasparakis (B53) 2015; 517
Malireddi (B76) 2020; 217
Wang (B108) 2014; 15
Arrázola (B61) 2023; 18
Babamale (B83) 2021; 22
Lin (B97) 2014; 111
Thammavongsa (B94) 2013; 342
Rodriguez (B48) 1999; 13
Bertheloot (B3) 2021; 18
Kim (B46) 2005; 102
Blaser (B52) 2016; 26
Kesavardhana (B107) 2017; 214
Lv (B18) 2021; 11
Chauhan (B62) 2018; 25
Gurung (B16) 2016; 113
Bai (B34) 2020; 11
Seo (B6) 2021; 53
Conos (B67) 2017; 114
Jiang (B36) 2021; 149
Lee (B72) 2012; 45
Pan (B87) 2022; 238
Lu (B30) 2014; 156
Kuriakose (B116) 2018; 200
Cho (B54) 2009; 137
Jiang (B21) 2021; 12
Jie (B22) 2021; 70
Tanzer (B58) 2015; 471
Ichinohe (B118) 2010; 11
Zheng (B100) 2020; 297
Mueller-Ortiz (B98) 2014; 193
Karki (B114) 2021; 184
Levine (B37) 1997; 88
Lawlor (B60) 2015; 6
Malik (B26) 2017; 130
Yu (B122) 2021; 6
Zheng (B78) 2020; 2
Sundaram (B101) 2021; 22
Guo (B38) 2019; 2019
Newton (B80) 2019; 575
Arab (B19) 2021; 335
Karki (B113) 2015; 17
Christgen (B14) 2021; 232
Zheng (B90) 2020; 295
Zheng (B77) 2020; 181
Pistritto (B124) 2016; 8
Gullett (B88) 2022; 11
Rajesh (B13) 2022; 11
Lugrin (B33) 2018; 281
Kitur (B95) 2015; 11
Radi (B123) 2014
Wang (B93) 2020; 117
Szklarczyk (B82) 2019; 47
Häcker (B5) 2018; 20
Shalini (B25) 2015; 22
Malireddi (B79) 2020; 12
Allen (B105) 2009; 30
Tsuchiya (B64) 2019; 10
González-Juarbe (B96) 2015; 11
Freeman (B92) 2020; 11
Rathinam (B112) 2010; 11
Kay (B31) 2020; 297
Wang (B81) 2021; 19
Kang (B59) 2015; 6
Wang (B20) 2020; 580
Sarhan (B63) 2018; 115
Hildebrand (B109) 2014; 111
Pinar (B119) 2017; 292
Karki (B117) 2020; 5
Karki (B91) 2020; 184
Saresella (B24) 2016; 11
Kiraz (B41) 2016; 37
Kesavardhana (B102) 2020; 295
Thapa (B103) 2016; 20
Tate (B106) 2016; 6
Shakibaei (B49) 2005; 7
Zou (B45) 1997; 90
Zhang (B56) 2009; 325
Lee (B8) 2021; 597
Fritsch (B65) 2019; 575
Sharma (B111) 2019; 49
Orning (B35) 2018; 362
Rodriguez (B57) 2016; 23
Malireddi (B68) 2019; 9
Bergsbaken (B4) 2009; 7
Sharma (B27) 2016; 213
Bauernfried (B32) 2021; 371
Yan (B69) 2022; 17
Lukens (B15) 2014; 516
Pan (B86) 2022; 14
Thomas (B104) 2009; 30
Lin (B125) 2022; 7
Moriyama (B120) 2016; 90
Karki (B85) 2021; 37
Gong (B51) 2019; 18
He (B23) 2021; 8
Guo (B66) 2019; 103
Mortezaee (B39) 2019; 234
Chen (B73) 2019; 10
References_xml – volume: 516
  year: 2014
  ident: B15
  article-title: Dietary modulation of the microbiome affects autoinflammatory disease
  publication-title: Nature
  doi: 10.1038/nature13788
– volume: 234
  year: 2019
  ident: B39
  article-title: Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28122
– volume: 10
  year: 2020
  ident: B75
  article-title: Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis)
  publication-title: Front In Cell Infection Microbiol
  doi: 10.3389/fcimb.2020.00237
– volume: 22
  start-page: 1048
  year: 2021
  ident: B101
  article-title: Advances in understanding activation and function of the NLRC4 inflammasome
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22031048
– volume: 325
  year: 2009
  ident: B56
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 6
  start-page: 6282
  year: 2015
  ident: B60
  article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL
  publication-title: Nat Commun
  doi: 10.1038/ncomms7282
– volume: 11
  year: 2020
  ident: B92
  article-title: Targeting the NLRP3 inflammasome in severe COVID-19
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.01518
– volume: 23
  year: 2016
  ident: B1
  article-title: The clearance of dying cells: table for two
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.172
– volume: 213
  year: 2016
  ident: B27
  article-title: The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201602089
– volume: 8
  year: 2021
  ident: B23
  article-title: Comparison of necroptosis with apoptosis for OVX-induced osteoporosis
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2021.790613
– volume: 7
  year: 2005
  ident: B49
  article-title: Redox regulation of apoptosis by members of the TNF superfamily
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2005.7.482
– volume: 37
  year: 2021
  ident: B85
  article-title: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109858
– volume: 184
  start-page: 149
  year: 2021
  ident: B114
  article-title: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.025
– volume: 8
  year: 2016
  ident: B124
  article-title: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100934
– volume: 37
  year: 2016
  ident: B41
  article-title: Major apoptotic mechanisms and genes involved in apoptosis
  publication-title: Tumor Biol
  doi: 10.1007/s13277-016-5035-9
– volume: 59
  year: 2021
  ident: B7
  article-title: PANoptosis in microbial infection
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2020.07.012
– volume: 4
  year: 2020
  ident: B12
  article-title: RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis
  publication-title: Immunohorizons
  doi: 10.4049/immunohorizons.2000097
– volume: 11
  year: 2010
  ident: B118
  article-title: Influenza virus activates inflammasomes via its intracellular M2 ion channel
  publication-title: Nat Immunol
  doi: 10.1038/ni.1861
– volume: 295
  year: 2020
  ident: B11
  article-title: ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.015924
– volume: 7
  start-page: 54
  year: 2022
  ident: B125
  article-title: Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-022-00889-0
– volume: 297
  start-page: 67
  year: 2020
  ident: B31
  article-title: Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer
  publication-title: Immunol Rev
  doi: 10.1111/imr.12906
– volume: 47
  start-page: D607
  year: 2019
  ident: B82
  article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 1813
  year: 2011
  ident: B42
  article-title: Bcl-2 proteins and mitochondria–specificity in membrane targeting for death
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2010.10.017
– volume: 23
  start-page: 76
  year: 2016
  ident: B57
  article-title: Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.70
– volume: 6
  year: 2016
  ident: B106
  article-title: Reassessing the role of the NLRP3 inflammasome during pathogenic influenza a virus infection via temporal inhibition
  publication-title: Sci Rep
  doi: 10.1038/srep27912
– volume: 11
  year: 2021
  ident: B18
  article-title: Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2021.03.011
– volume: 580
  year: 2020
  ident: B20
  article-title: Gut stem cell necroptosis by genome instability triggers bowel inflammation
  publication-title: Nature
  doi: 10.1038/s41586-020-2127-x
– volume: 90
  year: 2016
  ident: B120
  article-title: The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated interleukin-1β secretion
  publication-title: J Virol
  doi: 10.1128/jvi.00120-16
– volume: 295
  year: 2020
  ident: B90
  article-title: Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.015036
– volume: 575
  year: 2019
  ident: B80
  article-title: Activity of caspase-8 determines plasticity between cell death pathways
  publication-title: Nature
  doi: 10.1038/s41586-019-1752-8
– volume: 2019
  year: 2019
  ident: B38
  article-title: Effects of microvesicles on cell apoptosis under hypoxia
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2019/5972152
– volume: 10
  start-page: 906
  year: 2019
  ident: B73
  article-title: NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-2157-1
– volume: 10
  year: 2020
  ident: B9
  article-title: The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis)
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2020.00238
– volume: 7
  start-page: 99
  year: 2009
  ident: B4
  article-title: Pyroptosis: Host cell death and inflammation
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2070
– volume: 104
  year: 2009
  ident: B17
  article-title: Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to crohn's disease in Swedish men
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2009.29
– volume: 362
  year: 2018
  ident: B35
  article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin d and cell death
  publication-title: Science
  doi: 10.1126/science.aau2818
– volume: 214
  year: 2017
  ident: B107
  article-title: ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death
  publication-title: J Exp Med
  doi: 10.1084/jem.20170550
– volume: 13
  start-page: 899
  year: 2022
  ident: B126
  article-title: MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis
  publication-title: Aging Dis
  doi: 10.14336/ad.2021.1023
– volume: 3
  start-page: 697
  year: 1998
  ident: B43
  article-title: Role of bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1998.00223.x
– volume: 335
  year: 2021
  ident: B19
  article-title: Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2021.109368
– volume: 217
  start-page: jem.20191644
  year: 2020
  ident: B76
  article-title: Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease
  publication-title: J Exp Med
  doi: 10.1084/jem.20191644
– volume: 113
  year: 2016
  ident: B16
  article-title: NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1601636113
– volume: 70
  year: 2021
  ident: B22
  article-title: FK506 ameliorates osteoporosis caused by osteoblast apoptosis via suppressing the activated CaN/NFAT pathway during oxidative stress
  publication-title: Inflammation Res
  doi: 10.1007/s00011-021-01452-3
– volume: 11
  year: 2015
  ident: B95
  article-title: Toxin-induced necroptosis is a major mechanism of staphylococcus aureus lung damage
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004820
– volume: 11
  start-page: 395
  year: 2010
  ident: B112
  article-title: The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
  publication-title: Nat Immunol
  doi: 10.1038/ni.1864
– volume: 6
  start-page: 128
  year: 2021
  ident: B122
  article-title: Pyroptosis: Mechanisms and diseases
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-021-00507-5
– volume: 12
  year: 2021
  ident: B84
  article-title: PANoptosis: A new insight into oral infectious diseases
  publication-title: Front In Immunol
  doi: 10.3389/fimmu.2021.789610
– volume: 376
  year: 1995
  ident: B115
  article-title: An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes
  publication-title: Nature
  doi: 10.1038/376596a0
– volume: 12
  year: 2021
  ident: B21
  article-title: NLRP3 inflammasome: A new target for prevention and control of osteoporosis
  publication-title: Front Endocrinol (Lausanne)
  doi: 10.3389/fendo.2021.752546
– volume: 17
  year: 2015
  ident: B113
  article-title: Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against aspergillus infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.01.006
– volume: 14
  start-page: 3309
  year: 2022
  ident: B86
  article-title: Non-canonical programmed cell death in colon cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14143309
– volume: 297
  start-page: 26
  year: 2020
  ident: B100
  article-title: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis)
  publication-title: Immunol Rev
  doi: 10.1111/imr.12909
– volume: 232
  start-page: 108010
  year: 2021
  ident: B14
  article-title: Programming inflammatory cell death for therapy
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2021.108010
– volume: 200
  year: 2018
  ident: B116
  article-title: IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1701538
– volume: 11
  year: 2015
  ident: B96
  article-title: Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005337
– volume: 25
  start-page: 2354
  year: 2018
  ident: B62
  article-title: BAX/BAK-induced apoptosis results in caspase-8-Dependent IL-1β maturation in macrophages
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.10.087
– volume: 117
  year: 2020
  ident: B93
  article-title: Orchestration of human macrophage NLRP3 inflammasome activation by staphylococcus aureus extracellular vesicles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1915829117
– volume: 88
  year: 1997
  ident: B37
  article-title: p53, the cellular gatekeeper for growth and division
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81871-1
– volume: 7
  year: 2022
  ident: B89
  article-title: ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abo6294
– volume: 26
  year: 2016
  ident: B52
  article-title: TNF and ROS crosstalk in inflammation
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2015.12.002
– volume: 16
  year: 2015
  ident: B110
  article-title: The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by francisella infection
  publication-title: Nat Immunol
  doi: 10.1038/ni.3118
– volume: 575
  year: 2019
  ident: B65
  article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1770-6
– volume: 281
  start-page: 99
  year: 2018
  ident: B33
  article-title: The AIM2 inflammasome: Sensor of pathogens and cellular perturbations
  publication-title: Immunol Rev
  doi: 10.1111/imr.12618
– volume: 102
  year: 2005
  ident: B46
  article-title: Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on apaf-1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0507900102
– volume: 49
  start-page: 1998
  year: 2019
  ident: B111
  article-title: Role of AIM2 inflammasome in inflammatory diseases, cancer and infection
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201848070
– volume: 79
  start-page: 531
  year: 2022
  ident: B99
  article-title: Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-022-04564-z
– volume: 18
  start-page: 100
  year: 2019
  ident: B51
  article-title: The role of necroptosis in cancer biology and therapy
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1029-8
– volume: 371
  start-page: eabd0811
  year: 2021
  ident: B32
  article-title: Human NLRP1 is a sensor for double-stranded RNA
  publication-title: Science
  doi: 10.1126/science.abd0811
– volume: 73
  year: 2016
  ident: B71
  article-title: An outline of necrosome triggers
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-016-2189-y
– volume: 18
  start-page: 341
  year: 2023
  ident: B61
  article-title: Commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons"
  publication-title: Neural Regeneration Res
  doi: 10.4103/1673-5374.346543
– volume: 16
  year: 2016
  ident: B28
  article-title: Inflammasomes: Mechanism of assembly, regulation and signalling
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.58
– volume: 238
  year: 2022
  ident: B87
  article-title: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2022.109019
– volume: 292
  year: 2017
  ident: B119
  article-title: PB1-F2 peptide derived from avian influenza a virus H7N9 induces inflammation via activation of the NLRP3 inflammasome
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.756379
– volume: 181
  start-page: 674
  year: 2020
  ident: B77
  article-title: Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.040
– volume: 11
  start-page: 1885
  year: 2022
  ident: B13
  article-title: Innate immune cell death in neuroinflammation and alzheimer's disease
  publication-title: Cells
  doi: 10.3390/cells11121885
– volume: 540
  year: 2016
  ident: B74
  article-title: RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation
  publication-title: Nature
  doi: 10.1038/nature20558
– volume: 342
  year: 2013
  ident: B94
  article-title: Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death
  publication-title: Science
  doi: 10.1126/science.1242255
– volume: 19
  year: 2021
  ident: B81
  article-title: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.07.038
– volume: 30
  year: 2009
  ident: B105
  article-title: The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.005
– volume: 114
  start-page: E961
  year: 2017
  ident: B67
  article-title: Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1613305114
– volume: 111
  year: 2014
  ident: B109
  article-title: Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1408987111
– volume: 9
  year: 2019
  ident: B68
  article-title: ZBP1 and TAK1: Master regulators of NLRP3 Inflammasome/Pyroptosis, apoptosis, and necroptosis (PAN-optosis)
  publication-title: Front In Cell Infection Microbiol
  doi: 10.3389/fcimb.2019.00406
– volume: 156
  year: 2014
  ident: B30
  article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.008
– volume: 149
  year: 2021
  ident: B36
  article-title: Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.33698
– volume: 471
  year: 2015
  ident: B58
  article-title: Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop
  publication-title: Biochem J
  doi: 10.1042/bj20150678
– volume: 22
  year: 2015
  ident: B25
  article-title: Old, new and emerging functions of caspases
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.216
– volume: 37
  year: 2005
  ident: B40
  article-title: Caspase family proteases and apoptosis
  publication-title: Acta Biochim Biophys Sin (Shanghai)
  doi: 10.1111/j.1745-7270.2005.00108.x
– volume: 18
  year: 2021
  ident: B3
  article-title: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-00630-3
– volume: 17
  year: 2022
  ident: B69
  article-title: Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? evidence from cell and rodent studies
  publication-title: Neural Regeneration Res
  doi: 10.4103/1673-5374.331539
– volume: 91
  year: 1997
  ident: B70
  article-title: Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80434-1
– volume: 115
  start-page: E10888
  year: 2018
  ident: B63
  article-title: Caspase-8 induces cleavage of gasdermin d to elicit pyroptosis during yersinia infection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1809548115
– volume: 12
  year: 2020
  ident: B79
  article-title: PANoptosis components, regulation, and implications
  publication-title: Aging
  doi: 10.18632/aging.103528
– volume: 21
  year: 2020
  ident: B2
  article-title: Emerging connectivity of programmed cell death pathways and its physiological implications
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-0270-8
– volume: 517
  year: 2015
  ident: B53
  article-title: Necroptosis and its role in inflammation
  publication-title: Nature
  doi: 10.1038/nature14191
– volume: 30
  year: 2009
  ident: B104
  article-title: The intracellular sensor NLRP3 mediates key innate and healing responses to influenza a virus via the regulation of caspase-1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.006
– volume: 81
  year: 2013
  ident: B29
  article-title: Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1
  publication-title: Proteins
  doi: 10.1002/prot.24287
– volume: 295
  year: 2020
  ident: B102
  article-title: The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.013752
– volume: 13
  year: 1999
  ident: B48
  article-title: Caspase-9 and APAF-1 form an active holoenzyme
  publication-title: Genes Dev
  doi: 10.1101/gad.13.24.3179
– volume: 22
  start-page: 11398
  year: 2021
  ident: B83
  article-title: Nod-like receptors: Critical intracellular sensors for host protection and cell death in microbial and parasitic infections
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms222111398
– volume: 6
  start-page: 7515
  year: 2015
  ident: B59
  article-title: Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3
  publication-title: Nat Commun
  doi: 10.1038/ncomms8515
– year: 2014
  ident: B123
  article-title: Apoptosis and oxidative stress in neurodegenerative diseases
  publication-title: J Alzheimers Dis
  doi: 10.3233/jad-132738
– volume: 20
  year: 2016
  ident: B103
  article-title: DAI senses influenza a virus genomic RNA and activates RIPK3-dependent cell death
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.014
– volume: 15
  year: 2014
  ident: B108
  article-title: RNA Viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway
  publication-title: Nat Immunol
  doi: 10.1038/ni.3015
– volume: 11
  start-page: 776
  year: 2020
  ident: B34
  article-title: NLRP3 inflammasome in endothelial dysfunction
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-02985-x
– volume: 234
  year: 2019
  ident: B121
  article-title: What role does pyroptosis play in microbial infection
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.27909
– volume: 111
  year: 2014
  ident: B97
  article-title: IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1320294111
– volume: 137
  year: 2009
  ident: B55
  article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 184
  year: 2020
  ident: B91
  article-title: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes
  publication-title: bioRxiv
  doi: 10.1101/2020.10.29.361048
– volume: 53
  year: 2021
  ident: B6
  article-title: Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-021-00634-7
– volume: 597
  year: 2021
  ident: B8
  article-title: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence
  publication-title: Nature
  doi: 10.1038/s41586-021-03875-8
– volume: 193
  year: 2014
  ident: B98
  article-title: The receptor for the complement C3a anaphylatoxin (C3aR) provides host protection against listeria monocytogenes-induced apoptosis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302787
– volume: 20
  year: 2018
  ident: B5
  article-title: Apoptosis in infection
  publication-title: Microbes Infection
  doi: 10.1016/j.micinf.2017.10.006
– volume: 11
  start-page: 23
  year: 2016
  ident: B24
  article-title: The NLRP3 and NLRP1 inflammasomes are activated in alzheimer's disease
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-016-0088-1
– volume: 11
  start-page: 1495
  year: 2022
  ident: B88
  article-title: It's all in the PAN: Crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects
  publication-title: Cells
  doi: 10.3390/cells11091495
– volume: 5
  start-page: e136720
  year: 2020
  ident: B117
  article-title: Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136720
– volume: 10
  start-page: 2091
  year: 2019
  ident: B64
  article-title: Caspase-1 initiates apoptosis in the absence of gasdermin d
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09753-2
– volume: 20
  start-page: 19
  year: 2019
  ident: B50
  article-title: Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases
  publication-title: Nat Rev Neurosci
  doi: 10.1038/s41583-018-0093-1
– volume: 21
  start-page: 85
  year: 2020
  ident: B44
  article-title: Mitochondria as multifaceted regulators of cell death
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-019-0173-8
– volume: 45
  start-page: 496
  year: 2012
  ident: B72
  article-title: The roles of FADD in extrinsic apoptosis and necroptosis
  publication-title: BMB Rep
  doi: 10.5483/bmbrep.2012.45.9.186
– volume: 137
  year: 2009
  ident: B54
  article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 103
  start-page: 102286
  year: 2019
  ident: B66
  article-title: Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2019.05.014
– volume: 2
  year: 2020
  ident: B78
  article-title: Newly identified function of caspase-6 in ZBP1-mediated innate immune responses, NLRP3 inflammasome activation, PANoptosis, and host defense
  publication-title: J Cell Immunol
  doi: 10.33696/immunology.2.064
– volume: 90
  year: 1997
  ident: B45
  article-title: Apaf-1, a human protein homologous to c. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80501-2
– volume: 9
  year: 2002
  ident: B47
  article-title: Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation
  publication-title: Mol Cell
  doi: 10.1016/s1097-2765(02)00442-2
– volume: 1
  start-page: aag2045
  year: 2016
  ident: B10
  article-title: ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aag2045
– volume: 130
  year: 2017
  ident: B26
  article-title: Inflammasome activation and assembly at a glance
  publication-title: J Cell Sci
  doi: 10.1242/jcs.207365
SSID ssj0000493335
Score 2.613793
SecondaryResourceType review_article
Snippet PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1120034
SubjectTerms Apoptosis - physiology
Cell Death
Humans
Immunology
infection
Necroptosis
Neurodegenerative Diseases - therapy
PANoptosis
PANoptosome
PCD
Pyroptosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUMgl9JGmmz5QobfiRrYk2-ptWxJCoSGUFHITelKXrh3Wu4f--85IzrIbQnPpxQdbwtI3IzTDzHxDyHsWeeVs6QsXHS-Ea2VhHPg8rol19MYrZrE4-dtFff5DfL2W11utvjAnLNMDZ-BOeFurJrTCRmtEVMLWdYUlOMo6GWyb6siZYlvO1K9s93LOZa6SAS9MncRusVh_xGbhWDWDtCw7N1Ei7L_PyrybLLl1-5w9IQeT2UjneblPyaPQPyOPcyPJP8_J93kO5Y-06-kiYDVvNy6o6T1d5mbzAD8dIr2cXww3q2Hsxk_0cjmkOss0aQrU0E3i-SG5Oju9-nJeTN0SCifqdlWUQRkvjRMNuChRYQi2CYI5q4KpmPWAvYXTWnIw0KKFRyNdLbxlLnoXA39B9vqhDy8JhSPqpRUqNgIGgP3lDNzq0ljmvWSunJHyFjjtJiZxbGjxW4NHgWDrBLZGsPUE9ox82My5yTwa_xz9GeWxGYkc2OkFaIaeNEM_pBkz8u5WmhrODAZCTB-G9agrZF0CV07CVo6ydDe_4nWLlG3VjDQ7ct9Zy-6XvvuZeLmVEuAuV8f_Y_GvyD4CkvLD1Wuyt1quwxswf1b2bdL0v286BMY
  priority: 102
  providerName: Directory of Open Access Journals
Title Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment
URI https://www.ncbi.nlm.nih.gov/pubmed/36845112
https://www.proquest.com/docview/2780486251
https://pubmed.ncbi.nlm.nih.gov/PMC9948402
https://doaj.org/article/38697e84bfba4f94b66201659bc5eb87
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9qRfBFrJ-ntqzgm6Qm2Y9kC0VOsRahpUgL9xb2s0Z6SU3uwP73zmxyhyfVJ1_2Idklm5kMM7_Mzm8IeZMGlluTucQGyxJuS5FoC5jHFkEGp51KDRYnn5zK4wv-ZSZmW2TV7mgUYH8rtMN-Uhfd1f7PHzfvweAPEXGCv30X6vl8uY99wLEgBhlX7pC74JkkgrGTMdz_PkTDjDEx1M78ZemGf4o0_rfFnn8eofzNJx09JA_GYJJOB-3vkC3fPCL3hvaSN4_J1-mQ4O9p3dC5xxrfup9T3TjaDS3oQSm0DfRsetpeL9q-7g_oWdfG6su4aEzf0PVx9Cfk_OjT-cfjZOyhkFguy0WSeaWd0JYXAFyCwsRs4XlqjfI6T40DjRiw4YxB2BYMDIWwkjuT2uBs8Owp2W7axj8nFAzXCcNVKDhMgKjMavD1QpvUOZHabEKyleAqO_KLY5uLqwpwBgq7isKuUNjVKOwJebtecz2wa_xz9gfUx3omMmPHC213WY2GVrFSqsKX3ASjeVDcSJljyZYyVnhTFhPyeqXNCiwJ0yO68e2yr3LkYgKAJ-BVng3aXT-KyRKJ3PIJKTb0vrGXzTtN_S2ydSvFAUTnL_7H5l-S-yiQeGpcvSLbi27pdyEoWpi9-DMBxs-zbC9-9b8Aj0UPRw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+mechanism+and+regulation+of+PANoptosis%3A+Prospects+in+disease+treatment&rft.jtitle=Frontiers+in+immunology&rft.au=Peng+Zhu&rft.au=Zhuo-Ran+Ke&rft.au=Jing-Xian+Chen&rft.au=Shi-Jin+Li&rft.date=2023-02-09&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=14&rft_id=info:doi/10.3389%2Ffimmu.2023.1120034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon