Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment
PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main f...
Saved in:
Published in | Frontiers in immunology Vol. 14; p. 1120034 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
09.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-3224 1664-3224 |
DOI | 10.3389/fimmu.2023.1120034 |
Cover
Abstract | PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment. |
---|---|
AbstractList | PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment. PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment. |
Author | Zhu, Peng Li, Shi-Jin Fan, Xiao-Lei Chen, Jing-Xian Ma, Tian-Liang Ke, Zhuo-Ran |
AuthorAffiliation | 2 School of Anesthesiology, Guizhou Medical University , Guiyang, Guizhou , China 3 Department of Orthopedics, Xiangya Hospital, Central South University , Changsha, Hunan , China 4 Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University , Xi’an , China 1 XiangYa School of Medicine, Central South University , Changsha, Hunan , China |
AuthorAffiliation_xml | – name: 2 School of Anesthesiology, Guizhou Medical University , Guiyang, Guizhou , China – name: 3 Department of Orthopedics, Xiangya Hospital, Central South University , Changsha, Hunan , China – name: 1 XiangYa School of Medicine, Central South University , Changsha, Hunan , China – name: 4 Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University , Xi’an , China |
Author_xml | – sequence: 1 givenname: Peng surname: Zhu fullname: Zhu, Peng – sequence: 2 givenname: Zhuo-Ran surname: Ke fullname: Ke, Zhuo-Ran – sequence: 3 givenname: Jing-Xian surname: Chen fullname: Chen, Jing-Xian – sequence: 4 givenname: Shi-Jin surname: Li fullname: Li, Shi-Jin – sequence: 5 givenname: Tian-Liang surname: Ma fullname: Ma, Tian-Liang – sequence: 6 givenname: Xiao-Lei surname: Fan fullname: Fan, Xiao-Lei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36845112$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk9vFCEcJabG1m2_gAczRy-7MsAw4MFk07TapNGm6Z0A82NLMwMrME389tLdrWk9yAEIvD-B996joxADIPShxStKhfzs_DTNK4IJXbUtwZiyN-ik5ZwtKSHs6MX-GJ3l_IDrYJJS2r1Dx5QL1lXaCbpdD486WMiND80E9l4Hn6dGh6FJsJlHXXwMTXTNzfpH3JaYff7S3KSYt2DLjjT4DDpDUxLoMkEop-it02OGs8O6QHeXF3fn35fXP79dna-vl5ZxUZYtSD102rKecOwk6RnpgWFrJGiCzeC4M0yIlnZ950yd-s5yNhhs3WAd0AW62ssOUT-obfKTTr9V1F7tDmLaKJ2KtyMoKrjsQTDjjGZOMsM5wS3vpLEdGNFXra97re1sJhhsfUXS4yvR1zfB36tNfFRSMsFqBgv06SCQ4q8ZclGTzxbGUQeIc1akF5gJTrq2Qj--9Ppr8pxJBYg9wNZvzgmcsr7scqjWflQtVk8NULsGqKcGqEMDKpX8Q31W_w_pDwCKtig |
CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112889 crossref_primary_10_3389_fnagi_2024_1400544 crossref_primary_10_1002_ange_202419649 crossref_primary_10_3389_fendo_2024_1397794 crossref_primary_10_1038_s41419_024_07322_0 crossref_primary_10_1002_smsc_202400220 crossref_primary_10_1002_advs_202500406 crossref_primary_10_1016_j_scitotenv_2024_178031 crossref_primary_10_1038_s41598_024_71625_7 crossref_primary_10_26453_otjhs_1473888 crossref_primary_10_1016_j_intimp_2024_113528 crossref_primary_10_1007_s11010_024_05150_6 crossref_primary_10_1080_0886022X_2024_2403649 crossref_primary_10_1016_j_intimp_2023_111161 crossref_primary_10_1155_ijog_6915258 crossref_primary_10_1038_s41598_024_62259_w crossref_primary_10_1155_2023_6879022 crossref_primary_10_1007_s10495_024_01979_w crossref_primary_10_1371_journal_pone_0307651 crossref_primary_10_1007_s12672_024_01134_6 crossref_primary_10_1007_s10495_024_02072_y crossref_primary_10_1080_10286020_2024_2368841 crossref_primary_10_1186_s12876_023_03020_x crossref_primary_10_1038_s41598_024_76263_7 crossref_primary_10_3389_fcell_2024_1409662 crossref_primary_10_3390_biom13121715 crossref_primary_10_1007_s12017_024_08815_z crossref_primary_10_1111_eci_14226 crossref_primary_10_1038_s41598_024_71954_7 crossref_primary_10_2147_JIR_S491203 crossref_primary_10_1002_cam4_6803 crossref_primary_10_1007_s10495_023_01889_3 crossref_primary_10_1007_s11010_024_04948_8 crossref_primary_10_1186_s12903_024_04917_z crossref_primary_10_1038_s41598_024_75377_2 crossref_primary_10_3390_ijms25010348 crossref_primary_10_1002_jgm_3682 crossref_primary_10_3390_ijms241210127 crossref_primary_10_1007_s10495_025_02086_0 crossref_primary_10_2147_JIR_S455862 crossref_primary_10_1002_jcb_70026 crossref_primary_10_1007_s10495_023_01931_4 crossref_primary_10_1038_s41598_025_90498_y crossref_primary_10_1002_anie_202419649 crossref_primary_10_3389_fimmu_2024_1502257 crossref_primary_10_1186_s11658_024_00646_x crossref_primary_10_2147_JIR_S483977 crossref_primary_10_3390_biom14020142 crossref_primary_10_1016_j_intimp_2025_114298 crossref_primary_10_1186_s12943_024_02130_8 crossref_primary_10_3389_fendo_2024_1344058 crossref_primary_10_3389_fphar_2023_1289829 crossref_primary_10_1038_s41419_025_07351_3 crossref_primary_10_3389_fphar_2025_1508047 crossref_primary_10_3390_ijms25158194 crossref_primary_10_3390_genes14111994 crossref_primary_10_3390_pathogens14010043 crossref_primary_10_2147_DDDT_S495225 crossref_primary_10_1016_j_autrev_2024_103714 crossref_primary_10_1038_s41417_024_00765_9 |
Cites_doi | 10.1038/nature13788 10.1002/jcp.28122 10.3389/fcimb.2020.00237 10.3390/ijms22031048 10.1126/science.1172308 10.1038/ncomms7282 10.3389/fimmu.2020.01518 10.1038/cdd.2015.172 10.1083/jcb.201602089 10.3389/fmolb.2021.790613 10.1089/ars.2005.7.482 10.1016/j.celrep.2021.109858 10.1016/j.cell.2020.11.025 10.18632/aging.100934 10.1007/s13277-016-5035-9 10.1016/j.mib.2020.07.012 10.4049/immunohorizons.2000097 10.1038/ni.1861 10.1074/jbc.RA120.015924 10.1038/s41392-022-00889-0 10.1111/imr.12906 10.1093/nar/gky1131 10.1016/j.bbamcr.2010.10.017 10.1038/cdd.2015.70 10.1038/srep27912 10.1016/j.apsb.2021.03.011 10.1038/s41586-020-2127-x 10.1128/jvi.00120-16 10.1074/jbc.RA120.015036 10.1038/s41586-019-1752-8 10.1155/2019/5972152 10.1038/s41419-019-2157-1 10.3389/fcimb.2020.00238 10.1038/nrmicro2070 10.1038/ajg.2009.29 10.1126/science.aau2818 10.1084/jem.20170550 10.14336/ad.2021.1023 10.1046/j.1365-2443.1998.00223.x 10.1016/j.cbi.2021.109368 10.1084/jem.20191644 10.1073/pnas.1601636113 10.1007/s00011-021-01452-3 10.1371/journal.ppat.1004820 10.1038/ni.1864 10.1038/s41392-021-00507-5 10.3389/fimmu.2021.789610 10.1038/376596a0 10.3389/fendo.2021.752546 10.1016/j.chom.2015.01.006 10.3390/cancers14143309 10.1111/imr.12909 10.1016/j.pharmthera.2021.108010 10.4049/jimmunol.1701538 10.1371/journal.ppat.1005337 10.1016/j.celrep.2018.10.087 10.1073/pnas.1915829117 10.1016/s0092-8674(00)81871-1 10.1126/sciimmunol.abo6294 10.1016/j.tcb.2015.12.002 10.1038/ni.3118 10.1038/s41586-019-1770-6 10.1111/imr.12618 10.1073/pnas.0507900102 10.1002/eji.201848070 10.1007/s00018-022-04564-z 10.1186/s12943-019-1029-8 10.1126/science.abd0811 10.1007/s00018-016-2189-y 10.4103/1673-5374.346543 10.1038/nri.2016.58 10.1016/j.clim.2022.109019 10.1074/jbc.M116.756379 10.1016/j.cell.2020.03.040 10.3390/cells11121885 10.1038/nature20558 10.1126/science.1242255 10.1016/j.csbj.2021.07.038 10.1016/j.immuni.2009.02.005 10.1073/pnas.1613305114 10.1073/pnas.1408987111 10.3389/fcimb.2019.00406 10.1016/j.cell.2014.02.008 10.1002/ijc.33698 10.1042/bj20150678 10.1038/cdd.2014.216 10.1111/j.1745-7270.2005.00108.x 10.1038/s41423-020-00630-3 10.4103/1673-5374.331539 10.1016/s0092-8674(00)80434-1 10.1073/pnas.1809548115 10.18632/aging.103528 10.1038/s41580-020-0270-8 10.1038/nature14191 10.1016/j.immuni.2009.02.006 10.1002/prot.24287 10.1074/jbc.RA120.013752 10.1101/gad.13.24.3179 10.3390/ijms222111398 10.1038/ncomms8515 10.3233/jad-132738 10.1016/j.chom.2016.09.014 10.1038/ni.3015 10.1038/s41419-020-02985-x 10.1002/jcp.27909 10.1073/pnas.1320294111 10.1016/j.cell.2009.05.021 10.1101/2020.10.29.361048 10.1038/s12276-021-00634-7 10.1038/s41586-021-03875-8 10.4049/jimmunol.1302787 10.1016/j.micinf.2017.10.006 10.1186/s13024-016-0088-1 10.3390/cells11091495 10.1172/jci.insight.136720 10.1038/s41467-019-09753-2 10.1038/s41583-018-0093-1 10.1038/s41580-019-0173-8 10.5483/bmbrep.2012.45.9.186 10.1016/j.cell.2009.05.037 10.1016/j.jaut.2019.05.014 10.33696/immunology.2.064 10.1016/s0092-8674(00)80501-2 10.1016/s1097-2765(02)00442-2 10.1126/sciimmunol.aag2045 10.1242/jcs.207365 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan. Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan 2023 Zhu, Ke, Chen, Li, Ma and Fan |
Copyright_xml | – notice: Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan. – notice: Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan 2023 Zhu, Ke, Chen, Li, Ma and Fan |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2023.1120034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87 PMC9948402 36845112 10_3389_fimmu_2023_1120034 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c468t-1e9ad5ac47260f927427e40cb9ea20bdf6fb48813575fb57575c64db0cfdcfe3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:03:05 EDT 2025 Thu Aug 21 18:37:55 EDT 2025 Thu Sep 04 16:48:37 EDT 2025 Thu Apr 03 06:54:11 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PCD infection cell death PANoptosis PANoptosome |
Language | English |
License | Copyright © 2023 Zhu, Ke, Chen, Li, Ma and Fan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-1e9ad5ac47260f927427e40cb9ea20bdf6fb48813575fb57575c64db0cfdcfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology These authors have contributed equally to this work Edited by: Yong Huang, Northwest A&F University, China Reviewed by: Youwei Ai, Institute of Genetics and Developmental Biology (CAS), China; Yaqiu Wang, St. Jude Children’s Research Hospital, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2023.1120034 |
PMID | 36845112 |
PQID | 2780486251 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9948402 proquest_miscellaneous_2780486251 pubmed_primary_36845112 crossref_citationtrail_10_3389_fimmu_2023_1120034 crossref_primary_10_3389_fimmu_2023_1120034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-09 |
PublicationDateYYYYMMDD | 2023-02-09 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Tsujimoto (B43) 1998; 3 Fan (B40) 2005; 37 Wang (B99) 2022; 79 Cui (B126) 2022; 13 Yuan (B50) 2019; 20 Samir (B9) 2020; 10 Lin (B74) 2016; 540 Christgen (B75) 2020; 10 Malireddi (B12) 2020; 4 Jiang (B84) 2021; 12 Acehan (B47) 2002; 9 Jin (B29) 2013; 81 Bock (B44) 2020; 21 Karki (B89) 2022; 7 He (B55) 2009; 137 Xia (B121) 2019; 234 Bedoui (B2) 2020; 21 Banoth (B11) 2020; 295 Lindsay (B42) 2011; 1813 Green (B1) 2016; 23 Broz (B28) 2016; 16 Li (B70) 1997; 91 Kuriakose (B10) 2016; 1 Man (B110) 2015; 16 Schoultz (B17) 2009; 104 Vanden Berghe (B71) 2016; 73 Tamura (B115) 1995; 376 Place (B7) 2021; 59 Pasparakis (B53) 2015; 517 Malireddi (B76) 2020; 217 Wang (B108) 2014; 15 Arrázola (B61) 2023; 18 Babamale (B83) 2021; 22 Lin (B97) 2014; 111 Thammavongsa (B94) 2013; 342 Rodriguez (B48) 1999; 13 Bertheloot (B3) 2021; 18 Kim (B46) 2005; 102 Blaser (B52) 2016; 26 Kesavardhana (B107) 2017; 214 Lv (B18) 2021; 11 Chauhan (B62) 2018; 25 Gurung (B16) 2016; 113 Bai (B34) 2020; 11 Seo (B6) 2021; 53 Conos (B67) 2017; 114 Jiang (B36) 2021; 149 Lee (B72) 2012; 45 Pan (B87) 2022; 238 Lu (B30) 2014; 156 Kuriakose (B116) 2018; 200 Cho (B54) 2009; 137 Jiang (B21) 2021; 12 Jie (B22) 2021; 70 Tanzer (B58) 2015; 471 Ichinohe (B118) 2010; 11 Zheng (B100) 2020; 297 Mueller-Ortiz (B98) 2014; 193 Karki (B114) 2021; 184 Levine (B37) 1997; 88 Lawlor (B60) 2015; 6 Malik (B26) 2017; 130 Yu (B122) 2021; 6 Zheng (B78) 2020; 2 Sundaram (B101) 2021; 22 Guo (B38) 2019; 2019 Newton (B80) 2019; 575 Arab (B19) 2021; 335 Karki (B113) 2015; 17 Christgen (B14) 2021; 232 Zheng (B90) 2020; 295 Zheng (B77) 2020; 181 Pistritto (B124) 2016; 8 Gullett (B88) 2022; 11 Rajesh (B13) 2022; 11 Lugrin (B33) 2018; 281 Kitur (B95) 2015; 11 Radi (B123) 2014 Wang (B93) 2020; 117 Szklarczyk (B82) 2019; 47 Häcker (B5) 2018; 20 Shalini (B25) 2015; 22 Malireddi (B79) 2020; 12 Allen (B105) 2009; 30 Tsuchiya (B64) 2019; 10 González-Juarbe (B96) 2015; 11 Freeman (B92) 2020; 11 Rathinam (B112) 2010; 11 Kay (B31) 2020; 297 Wang (B81) 2021; 19 Kang (B59) 2015; 6 Wang (B20) 2020; 580 Sarhan (B63) 2018; 115 Hildebrand (B109) 2014; 111 Pinar (B119) 2017; 292 Karki (B117) 2020; 5 Karki (B91) 2020; 184 Saresella (B24) 2016; 11 Kiraz (B41) 2016; 37 Kesavardhana (B102) 2020; 295 Thapa (B103) 2016; 20 Tate (B106) 2016; 6 Shakibaei (B49) 2005; 7 Zou (B45) 1997; 90 Zhang (B56) 2009; 325 Lee (B8) 2021; 597 Fritsch (B65) 2019; 575 Sharma (B111) 2019; 49 Orning (B35) 2018; 362 Rodriguez (B57) 2016; 23 Malireddi (B68) 2019; 9 Bergsbaken (B4) 2009; 7 Sharma (B27) 2016; 213 Bauernfried (B32) 2021; 371 Yan (B69) 2022; 17 Lukens (B15) 2014; 516 Pan (B86) 2022; 14 Thomas (B104) 2009; 30 Lin (B125) 2022; 7 Moriyama (B120) 2016; 90 Karki (B85) 2021; 37 Gong (B51) 2019; 18 He (B23) 2021; 8 Guo (B66) 2019; 103 Mortezaee (B39) 2019; 234 Chen (B73) 2019; 10 |
References_xml | – volume: 516 year: 2014 ident: B15 article-title: Dietary modulation of the microbiome affects autoinflammatory disease publication-title: Nature doi: 10.1038/nature13788 – volume: 234 year: 2019 ident: B39 article-title: Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy publication-title: J Cell Physiol doi: 10.1002/jcp.28122 – volume: 10 year: 2020 ident: B75 article-title: Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Front In Cell Infection Microbiol doi: 10.3389/fcimb.2020.00237 – volume: 22 start-page: 1048 year: 2021 ident: B101 article-title: Advances in understanding activation and function of the NLRC4 inflammasome publication-title: Int J Mol Sci doi: 10.3390/ijms22031048 – volume: 325 year: 2009 ident: B56 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science doi: 10.1126/science.1172308 – volume: 6 start-page: 6282 year: 2015 ident: B60 article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL publication-title: Nat Commun doi: 10.1038/ncomms7282 – volume: 11 year: 2020 ident: B92 article-title: Targeting the NLRP3 inflammasome in severe COVID-19 publication-title: Front Immunol doi: 10.3389/fimmu.2020.01518 – volume: 23 year: 2016 ident: B1 article-title: The clearance of dying cells: table for two publication-title: Cell Death Differ doi: 10.1038/cdd.2015.172 – volume: 213 year: 2016 ident: B27 article-title: The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation publication-title: J Cell Biol doi: 10.1083/jcb.201602089 – volume: 8 year: 2021 ident: B23 article-title: Comparison of necroptosis with apoptosis for OVX-induced osteoporosis publication-title: Front Mol Biosci doi: 10.3389/fmolb.2021.790613 – volume: 7 year: 2005 ident: B49 article-title: Redox regulation of apoptosis by members of the TNF superfamily publication-title: Antioxid Redox Signal doi: 10.1089/ars.2005.7.482 – volume: 37 year: 2021 ident: B85 article-title: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109858 – volume: 184 start-page: 149 year: 2021 ident: B114 article-title: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes publication-title: Cell doi: 10.1016/j.cell.2020.11.025 – volume: 8 year: 2016 ident: B124 article-title: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies publication-title: Aging (Albany NY) doi: 10.18632/aging.100934 – volume: 37 year: 2016 ident: B41 article-title: Major apoptotic mechanisms and genes involved in apoptosis publication-title: Tumor Biol doi: 10.1007/s13277-016-5035-9 – volume: 59 year: 2021 ident: B7 article-title: PANoptosis in microbial infection publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2020.07.012 – volume: 4 year: 2020 ident: B12 article-title: RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis publication-title: Immunohorizons doi: 10.4049/immunohorizons.2000097 – volume: 11 year: 2010 ident: B118 article-title: Influenza virus activates inflammasomes via its intracellular M2 ion channel publication-title: Nat Immunol doi: 10.1038/ni.1861 – volume: 295 year: 2020 ident: B11 article-title: ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015924 – volume: 7 start-page: 54 year: 2022 ident: B125 article-title: Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-00889-0 – volume: 297 start-page: 67 year: 2020 ident: B31 article-title: Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer publication-title: Immunol Rev doi: 10.1111/imr.12906 – volume: 47 start-page: D607 year: 2019 ident: B82 article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1131 – volume: 1813 year: 2011 ident: B42 article-title: Bcl-2 proteins and mitochondria–specificity in membrane targeting for death publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2010.10.017 – volume: 23 start-page: 76 year: 2016 ident: B57 article-title: Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis publication-title: Cell Death Differ doi: 10.1038/cdd.2015.70 – volume: 6 year: 2016 ident: B106 article-title: Reassessing the role of the NLRP3 inflammasome during pathogenic influenza a virus infection via temporal inhibition publication-title: Sci Rep doi: 10.1038/srep27912 – volume: 11 year: 2021 ident: B18 article-title: Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.03.011 – volume: 580 year: 2020 ident: B20 article-title: Gut stem cell necroptosis by genome instability triggers bowel inflammation publication-title: Nature doi: 10.1038/s41586-020-2127-x – volume: 90 year: 2016 ident: B120 article-title: The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated interleukin-1β secretion publication-title: J Virol doi: 10.1128/jvi.00120-16 – volume: 295 year: 2020 ident: B90 article-title: Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015036 – volume: 575 year: 2019 ident: B80 article-title: Activity of caspase-8 determines plasticity between cell death pathways publication-title: Nature doi: 10.1038/s41586-019-1752-8 – volume: 2019 year: 2019 ident: B38 article-title: Effects of microvesicles on cell apoptosis under hypoxia publication-title: Oxid Med Cell Longev doi: 10.1155/2019/5972152 – volume: 10 start-page: 906 year: 2019 ident: B73 article-title: NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling publication-title: Cell Death Dis doi: 10.1038/s41419-019-2157-1 – volume: 10 year: 2020 ident: B9 article-title: The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00238 – volume: 7 start-page: 99 year: 2009 ident: B4 article-title: Pyroptosis: Host cell death and inflammation publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2070 – volume: 104 year: 2009 ident: B17 article-title: Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to crohn's disease in Swedish men publication-title: Am J Gastroenterol doi: 10.1038/ajg.2009.29 – volume: 362 year: 2018 ident: B35 article-title: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin d and cell death publication-title: Science doi: 10.1126/science.aau2818 – volume: 214 year: 2017 ident: B107 article-title: ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death publication-title: J Exp Med doi: 10.1084/jem.20170550 – volume: 13 start-page: 899 year: 2022 ident: B126 article-title: MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis publication-title: Aging Dis doi: 10.14336/ad.2021.1023 – volume: 3 start-page: 697 year: 1998 ident: B43 article-title: Role of bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria publication-title: Genes Cells doi: 10.1046/j.1365-2443.1998.00223.x – volume: 335 year: 2021 ident: B19 article-title: Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2021.109368 – volume: 217 start-page: jem.20191644 year: 2020 ident: B76 article-title: Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease publication-title: J Exp Med doi: 10.1084/jem.20191644 – volume: 113 year: 2016 ident: B16 article-title: NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1601636113 – volume: 70 year: 2021 ident: B22 article-title: FK506 ameliorates osteoporosis caused by osteoblast apoptosis via suppressing the activated CaN/NFAT pathway during oxidative stress publication-title: Inflammation Res doi: 10.1007/s00011-021-01452-3 – volume: 11 year: 2015 ident: B95 article-title: Toxin-induced necroptosis is a major mechanism of staphylococcus aureus lung damage publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004820 – volume: 11 start-page: 395 year: 2010 ident: B112 article-title: The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses publication-title: Nat Immunol doi: 10.1038/ni.1864 – volume: 6 start-page: 128 year: 2021 ident: B122 article-title: Pyroptosis: Mechanisms and diseases publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00507-5 – volume: 12 year: 2021 ident: B84 article-title: PANoptosis: A new insight into oral infectious diseases publication-title: Front In Immunol doi: 10.3389/fimmu.2021.789610 – volume: 376 year: 1995 ident: B115 article-title: An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes publication-title: Nature doi: 10.1038/376596a0 – volume: 12 year: 2021 ident: B21 article-title: NLRP3 inflammasome: A new target for prevention and control of osteoporosis publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2021.752546 – volume: 17 year: 2015 ident: B113 article-title: Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against aspergillus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.01.006 – volume: 14 start-page: 3309 year: 2022 ident: B86 article-title: Non-canonical programmed cell death in colon cancer publication-title: Cancers (Basel) doi: 10.3390/cancers14143309 – volume: 297 start-page: 26 year: 2020 ident: B100 article-title: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Immunol Rev doi: 10.1111/imr.12909 – volume: 232 start-page: 108010 year: 2021 ident: B14 article-title: Programming inflammatory cell death for therapy publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2021.108010 – volume: 200 year: 2018 ident: B116 article-title: IRF1 is a transcriptional regulator of ZBP1 promoting NLRP3 inflammasome activation and cell death during influenza virus infection publication-title: J Immunol doi: 10.4049/jimmunol.1701538 – volume: 11 year: 2015 ident: B96 article-title: Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005337 – volume: 25 start-page: 2354 year: 2018 ident: B62 article-title: BAX/BAK-induced apoptosis results in caspase-8-Dependent IL-1β maturation in macrophages publication-title: Cell Rep doi: 10.1016/j.celrep.2018.10.087 – volume: 117 year: 2020 ident: B93 article-title: Orchestration of human macrophage NLRP3 inflammasome activation by staphylococcus aureus extracellular vesicles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1915829117 – volume: 88 year: 1997 ident: B37 article-title: p53, the cellular gatekeeper for growth and division publication-title: Cell doi: 10.1016/s0092-8674(00)81871-1 – volume: 7 year: 2022 ident: B89 article-title: ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection publication-title: Sci Immunol doi: 10.1126/sciimmunol.abo6294 – volume: 26 year: 2016 ident: B52 article-title: TNF and ROS crosstalk in inflammation publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2015.12.002 – volume: 16 year: 2015 ident: B110 article-title: The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by francisella infection publication-title: Nat Immunol doi: 10.1038/ni.3118 – volume: 575 year: 2019 ident: B65 article-title: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis publication-title: Nature doi: 10.1038/s41586-019-1770-6 – volume: 281 start-page: 99 year: 2018 ident: B33 article-title: The AIM2 inflammasome: Sensor of pathogens and cellular perturbations publication-title: Immunol Rev doi: 10.1111/imr.12618 – volume: 102 year: 2005 ident: B46 article-title: Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on apaf-1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0507900102 – volume: 49 start-page: 1998 year: 2019 ident: B111 article-title: Role of AIM2 inflammasome in inflammatory diseases, cancer and infection publication-title: Eur J Immunol doi: 10.1002/eji.201848070 – volume: 79 start-page: 531 year: 2022 ident: B99 article-title: Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method publication-title: Cell Mol Life Sci doi: 10.1007/s00018-022-04564-z – volume: 18 start-page: 100 year: 2019 ident: B51 article-title: The role of necroptosis in cancer biology and therapy publication-title: Mol Cancer doi: 10.1186/s12943-019-1029-8 – volume: 371 start-page: eabd0811 year: 2021 ident: B32 article-title: Human NLRP1 is a sensor for double-stranded RNA publication-title: Science doi: 10.1126/science.abd0811 – volume: 73 year: 2016 ident: B71 article-title: An outline of necrosome triggers publication-title: Cell Mol Life Sci doi: 10.1007/s00018-016-2189-y – volume: 18 start-page: 341 year: 2023 ident: B61 article-title: Commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons" publication-title: Neural Regeneration Res doi: 10.4103/1673-5374.346543 – volume: 16 year: 2016 ident: B28 article-title: Inflammasomes: Mechanism of assembly, regulation and signalling publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.58 – volume: 238 year: 2022 ident: B87 article-title: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer publication-title: Clin Immunol doi: 10.1016/j.clim.2022.109019 – volume: 292 year: 2017 ident: B119 article-title: PB1-F2 peptide derived from avian influenza a virus H7N9 induces inflammation via activation of the NLRP3 inflammasome publication-title: J Biol Chem doi: 10.1074/jbc.M116.756379 – volume: 181 start-page: 674 year: 2020 ident: B77 article-title: Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense publication-title: Cell doi: 10.1016/j.cell.2020.03.040 – volume: 11 start-page: 1885 year: 2022 ident: B13 article-title: Innate immune cell death in neuroinflammation and alzheimer's disease publication-title: Cells doi: 10.3390/cells11121885 – volume: 540 year: 2016 ident: B74 article-title: RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation publication-title: Nature doi: 10.1038/nature20558 – volume: 342 year: 2013 ident: B94 article-title: Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death publication-title: Science doi: 10.1126/science.1242255 – volume: 19 year: 2021 ident: B81 article-title: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.07.038 – volume: 30 year: 2009 ident: B105 article-title: The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA publication-title: Immunity doi: 10.1016/j.immuni.2009.02.005 – volume: 114 start-page: E961 year: 2017 ident: B67 article-title: Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1613305114 – volume: 111 year: 2014 ident: B109 article-title: Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1408987111 – volume: 9 year: 2019 ident: B68 article-title: ZBP1 and TAK1: Master regulators of NLRP3 Inflammasome/Pyroptosis, apoptosis, and necroptosis (PAN-optosis) publication-title: Front In Cell Infection Microbiol doi: 10.3389/fcimb.2019.00406 – volume: 156 year: 2014 ident: B30 article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.02.008 – volume: 149 year: 2021 ident: B36 article-title: Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer publication-title: Int J Cancer doi: 10.1002/ijc.33698 – volume: 471 year: 2015 ident: B58 article-title: Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop publication-title: Biochem J doi: 10.1042/bj20150678 – volume: 22 year: 2015 ident: B25 article-title: Old, new and emerging functions of caspases publication-title: Cell Death Differ doi: 10.1038/cdd.2014.216 – volume: 37 year: 2005 ident: B40 article-title: Caspase family proteases and apoptosis publication-title: Acta Biochim Biophys Sin (Shanghai) doi: 10.1111/j.1745-7270.2005.00108.x – volume: 18 year: 2021 ident: B3 article-title: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-00630-3 – volume: 17 year: 2022 ident: B69 article-title: Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? evidence from cell and rodent studies publication-title: Neural Regeneration Res doi: 10.4103/1673-5374.331539 – volume: 91 year: 1997 ident: B70 article-title: Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade publication-title: Cell doi: 10.1016/s0092-8674(00)80434-1 – volume: 115 start-page: E10888 year: 2018 ident: B63 article-title: Caspase-8 induces cleavage of gasdermin d to elicit pyroptosis during yersinia infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1809548115 – volume: 12 year: 2020 ident: B79 article-title: PANoptosis components, regulation, and implications publication-title: Aging doi: 10.18632/aging.103528 – volume: 21 year: 2020 ident: B2 article-title: Emerging connectivity of programmed cell death pathways and its physiological implications publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0270-8 – volume: 517 year: 2015 ident: B53 article-title: Necroptosis and its role in inflammation publication-title: Nature doi: 10.1038/nature14191 – volume: 30 year: 2009 ident: B104 article-title: The intracellular sensor NLRP3 mediates key innate and healing responses to influenza a virus via the regulation of caspase-1 publication-title: Immunity doi: 10.1016/j.immuni.2009.02.006 – volume: 81 year: 2013 ident: B29 article-title: Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1 publication-title: Proteins doi: 10.1002/prot.24287 – volume: 295 year: 2020 ident: B102 article-title: The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development publication-title: J Biol Chem doi: 10.1074/jbc.RA120.013752 – volume: 13 year: 1999 ident: B48 article-title: Caspase-9 and APAF-1 form an active holoenzyme publication-title: Genes Dev doi: 10.1101/gad.13.24.3179 – volume: 22 start-page: 11398 year: 2021 ident: B83 article-title: Nod-like receptors: Critical intracellular sensors for host protection and cell death in microbial and parasitic infections publication-title: Int J Mol Sci doi: 10.3390/ijms222111398 – volume: 6 start-page: 7515 year: 2015 ident: B59 article-title: Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3 publication-title: Nat Commun doi: 10.1038/ncomms8515 – year: 2014 ident: B123 article-title: Apoptosis and oxidative stress in neurodegenerative diseases publication-title: J Alzheimers Dis doi: 10.3233/jad-132738 – volume: 20 year: 2016 ident: B103 article-title: DAI senses influenza a virus genomic RNA and activates RIPK3-dependent cell death publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.014 – volume: 15 year: 2014 ident: B108 article-title: RNA Viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway publication-title: Nat Immunol doi: 10.1038/ni.3015 – volume: 11 start-page: 776 year: 2020 ident: B34 article-title: NLRP3 inflammasome in endothelial dysfunction publication-title: Cell Death Dis doi: 10.1038/s41419-020-02985-x – volume: 234 year: 2019 ident: B121 article-title: What role does pyroptosis play in microbial infection publication-title: J Cell Physiol doi: 10.1002/jcp.27909 – volume: 111 year: 2014 ident: B97 article-title: IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1320294111 – volume: 137 year: 2009 ident: B55 article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 184 year: 2020 ident: B91 article-title: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes publication-title: bioRxiv doi: 10.1101/2020.10.29.361048 – volume: 53 year: 2021 ident: B6 article-title: Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators publication-title: Exp Mol Med doi: 10.1038/s12276-021-00634-7 – volume: 597 year: 2021 ident: B8 article-title: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence publication-title: Nature doi: 10.1038/s41586-021-03875-8 – volume: 193 year: 2014 ident: B98 article-title: The receptor for the complement C3a anaphylatoxin (C3aR) provides host protection against listeria monocytogenes-induced apoptosis publication-title: J Immunol doi: 10.4049/jimmunol.1302787 – volume: 20 year: 2018 ident: B5 article-title: Apoptosis in infection publication-title: Microbes Infection doi: 10.1016/j.micinf.2017.10.006 – volume: 11 start-page: 23 year: 2016 ident: B24 article-title: The NLRP3 and NLRP1 inflammasomes are activated in alzheimer's disease publication-title: Mol Neurodegener doi: 10.1186/s13024-016-0088-1 – volume: 11 start-page: 1495 year: 2022 ident: B88 article-title: It's all in the PAN: Crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects publication-title: Cells doi: 10.3390/cells11091495 – volume: 5 start-page: e136720 year: 2020 ident: B117 article-title: Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer publication-title: JCI Insight doi: 10.1172/jci.insight.136720 – volume: 10 start-page: 2091 year: 2019 ident: B64 article-title: Caspase-1 initiates apoptosis in the absence of gasdermin d publication-title: Nat Commun doi: 10.1038/s41467-019-09753-2 – volume: 20 start-page: 19 year: 2019 ident: B50 article-title: Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases publication-title: Nat Rev Neurosci doi: 10.1038/s41583-018-0093-1 – volume: 21 start-page: 85 year: 2020 ident: B44 article-title: Mitochondria as multifaceted regulators of cell death publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-019-0173-8 – volume: 45 start-page: 496 year: 2012 ident: B72 article-title: The roles of FADD in extrinsic apoptosis and necroptosis publication-title: BMB Rep doi: 10.5483/bmbrep.2012.45.9.186 – volume: 137 year: 2009 ident: B54 article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 103 start-page: 102286 year: 2019 ident: B66 article-title: Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation publication-title: J Autoimmun doi: 10.1016/j.jaut.2019.05.014 – volume: 2 year: 2020 ident: B78 article-title: Newly identified function of caspase-6 in ZBP1-mediated innate immune responses, NLRP3 inflammasome activation, PANoptosis, and host defense publication-title: J Cell Immunol doi: 10.33696/immunology.2.064 – volume: 90 year: 1997 ident: B45 article-title: Apaf-1, a human protein homologous to c. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 publication-title: Cell doi: 10.1016/s0092-8674(00)80501-2 – volume: 9 year: 2002 ident: B47 article-title: Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation publication-title: Mol Cell doi: 10.1016/s1097-2765(02)00442-2 – volume: 1 start-page: aag2045 year: 2016 ident: B10 article-title: ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways publication-title: Sci Immunol doi: 10.1126/sciimmunol.aag2045 – volume: 130 year: 2017 ident: B26 article-title: Inflammasome activation and assembly at a glance publication-title: J Cell Sci doi: 10.1242/jcs.207365 |
SSID | ssj0000493335 |
Score | 2.613793 |
SecondaryResourceType | review_article |
Snippet | PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1120034 |
SubjectTerms | Apoptosis - physiology Cell Death Humans Immunology infection Necroptosis Neurodegenerative Diseases - therapy PANoptosis PANoptosome PCD Pyroptosis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUMgl9JGmmz5QobfiRrYk2-ptWxJCoSGUFHITelKXrh3Wu4f--85IzrIbQnPpxQdbwtI3IzTDzHxDyHsWeeVs6QsXHS-Ea2VhHPg8rol19MYrZrE4-dtFff5DfL2W11utvjAnLNMDZ-BOeFurJrTCRmtEVMLWdYUlOMo6GWyb6siZYlvO1K9s93LOZa6SAS9MncRusVh_xGbhWDWDtCw7N1Ei7L_PyrybLLl1-5w9IQeT2UjneblPyaPQPyOPcyPJP8_J93kO5Y-06-kiYDVvNy6o6T1d5mbzAD8dIr2cXww3q2Hsxk_0cjmkOss0aQrU0E3i-SG5Oju9-nJeTN0SCifqdlWUQRkvjRMNuChRYQi2CYI5q4KpmPWAvYXTWnIw0KKFRyNdLbxlLnoXA39B9vqhDy8JhSPqpRUqNgIGgP3lDNzq0ljmvWSunJHyFjjtJiZxbGjxW4NHgWDrBLZGsPUE9ox82My5yTwa_xz9GeWxGYkc2OkFaIaeNEM_pBkz8u5WmhrODAZCTB-G9agrZF0CV07CVo6ydDe_4nWLlG3VjDQ7ct9Zy-6XvvuZeLmVEuAuV8f_Y_GvyD4CkvLD1Wuyt1quwxswf1b2bdL0v286BMY priority: 102 providerName: Directory of Open Access Journals |
Title | Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36845112 https://www.proquest.com/docview/2780486251 https://pubmed.ncbi.nlm.nih.gov/PMC9948402 https://doaj.org/article/38697e84bfba4f94b66201659bc5eb87 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9qRfBFrJ-ntqzgm6Qm2Y9kC0VOsRahpUgL9xb2s0Z6SU3uwP73zmxyhyfVJ1_2Idklm5kMM7_Mzm8IeZMGlluTucQGyxJuS5FoC5jHFkEGp51KDRYnn5zK4wv-ZSZmW2TV7mgUYH8rtMN-Uhfd1f7PHzfvweAPEXGCv30X6vl8uY99wLEgBhlX7pC74JkkgrGTMdz_PkTDjDEx1M78ZemGf4o0_rfFnn8eofzNJx09JA_GYJJOB-3vkC3fPCL3hvaSN4_J1-mQ4O9p3dC5xxrfup9T3TjaDS3oQSm0DfRsetpeL9q-7g_oWdfG6su4aEzf0PVx9Cfk_OjT-cfjZOyhkFguy0WSeaWd0JYXAFyCwsRs4XlqjfI6T40DjRiw4YxB2BYMDIWwkjuT2uBs8Owp2W7axj8nFAzXCcNVKDhMgKjMavD1QpvUOZHabEKyleAqO_KLY5uLqwpwBgq7isKuUNjVKOwJebtecz2wa_xz9gfUx3omMmPHC213WY2GVrFSqsKX3ASjeVDcSJljyZYyVnhTFhPyeqXNCiwJ0yO68e2yr3LkYgKAJ-BVng3aXT-KyRKJ3PIJKTb0vrGXzTtN_S2ydSvFAUTnL_7H5l-S-yiQeGpcvSLbi27pdyEoWpi9-DMBxs-zbC9-9b8Aj0UPRw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+mechanism+and+regulation+of+PANoptosis%3A+Prospects+in+disease+treatment&rft.jtitle=Frontiers+in+immunology&rft.au=Peng+Zhu&rft.au=Zhuo-Ran+Ke&rft.au=Jing-Xian+Chen&rft.au=Shi-Jin+Li&rft.date=2023-02-09&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=14&rft_id=info:doi/10.3389%2Ffimmu.2023.1120034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38697e84bfba4f94b66201659bc5eb87 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |