State‐of‐Charge Distribution of Single‐Crystalline NMC532 Cathodes in Lithium‐Ion Batteries: A Critical Look at the Mesoscale
The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material util...
Saved in:
Published in | ChemSusChem Vol. 15; no. 21; pp. e202201169 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.11.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1864-5631 1864-564X 1864-564X |
DOI | 10.1002/cssc.202201169 |
Cover
Abstract | The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization.
State of charge: The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization. |
---|---|
AbstractList | The electrochemical response of layered lithium transition metal oxides LiMO
2
[M=Ni, Mn, Co; e. g., Li(Ni
0.5
Mn
0.3
Co
0.2
)O
2
(NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization.
State of charge
: The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization. The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization.The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization. The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. State of charge: The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization. The electrochemical response of layered lithium transition metal oxides LiMO [M=Ni, Mn, Co; e. g., Li(Ni Mn Co )O (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization. The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. The electrochemical response of layered lithium transition metal oxides LiMO 2 [M=Ni, Mn, Co; e. g., Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. |
Author | Harte, Patrick Nowak, Sascha Kröger, Till‐Niklas Wölke, Mathis Jan Wiemers‐Meyer, Simon Winter, Martin Beuse, Thomas |
AuthorAffiliation | 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany 2 Helmholtz-Institute Münster IEK-12 FZ Jülich Corrensstraße 46 48149 Münster Germany |
AuthorAffiliation_xml | – name: 2 Helmholtz-Institute Münster IEK-12 FZ Jülich Corrensstraße 46 48149 Münster Germany – name: 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany |
Author_xml | – sequence: 1 givenname: Till‐Niklas surname: Kröger fullname: Kröger, Till‐Niklas organization: University of Münster – sequence: 2 givenname: Mathis Jan surname: Wölke fullname: Wölke, Mathis Jan organization: University of Münster – sequence: 3 givenname: Patrick surname: Harte fullname: Harte, Patrick organization: University of Münster – sequence: 4 givenname: Thomas surname: Beuse fullname: Beuse, Thomas organization: University of Münster – sequence: 5 givenname: Martin orcidid: 0000-0003-4176-5811 surname: Winter fullname: Winter, Martin organization: Helmholtz-Institute Münster – sequence: 6 givenname: Sascha orcidid: 0000-0003-1508-6073 surname: Nowak fullname: Nowak, Sascha organization: University of Münster – sequence: 7 givenname: Simon orcidid: 0000-0001-8608-4521 surname: Wiemers‐Meyer fullname: Wiemers‐Meyer, Simon email: Simon.Wiemers-Meyer@uni-muenster.de organization: University of Münster |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36063139$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk2PFCEQholZ437o1aMh8eJlRqBpuvFgsrZfm8zqYTTxRmimeoaVgV2gNXPz4t3f6C-RyeyOuonxAqR43rcKqo7RgQ8eEHpIyZQSwp6alMyUEcYIpULeQUe0FXxSC_7pYH-u6CE6TumCEEGkEPfQYSVIiVbyCH2fZ53h57cfYShLt9JxCfilTTnafsw2eBwGPLd-6bZQFzcpa-esB_zuvKsrhjudV2EBCVuPZzav7Lgu4FkRvtA5Q7SQnuFT3EWbrdEOz0L4jHXGeQX4HFJIJQj30d1BuwQPrvcT9PH1qw_d28ns_Zuz7nQ2MVy0ctJUEoxmDTWGt33PgVWEtwMbaE_7Wix0TUQNWlItQQLlmg-gafkM3XLWyKo6Qc93vpdjv4aFAZ-jduoy2rWOGxW0VX_feLtSy_BFyZa1VNTF4Mm1QQxXI6Ss1jYZcE57CGNSrCFSloy1LOjjW-hFGKMvzytUVTVtXRwL9ejPival3HSoAHwHmBhSijAoY0vLSmdKgdYpStR2ENR2ENR-EIpsekt24_xPgdwJvloHm__QqpvPu9_aX25Ryqo |
CitedBy_id | crossref_primary_10_1002_aenm_202303758 crossref_primary_10_1021_acsaem_3c02741 crossref_primary_10_1149_1945_7111_ace65b crossref_primary_10_1002_batt_202400023 crossref_primary_10_1016_j_mtchem_2023_101889 crossref_primary_10_1016_j_flatc_2024_100693 crossref_primary_10_1039_D3CP02932H |
Cites_doi | 10.1126/science.abc3167 10.1149/2.0351701jes 10.1039/C4EE01400F 10.1021/acs.accounts.8b00123 10.1021/acs.chemmater.5b03500 10.1021/cr500003w 10.1039/C8TA03363C 10.1038/ncomms4529 10.1149/1945-7111/ab9a2c 10.1006/jssc.2001.9459 10.1016/j.jpowsour.2016.08.023 10.1002/aenm.202003400 10.1016/j.jpowsour.2016.09.071 10.1149/2.079112jes 10.1021/acs.accounts.7b00506 10.1021/acs.nanolett.7b03989 10.1016/j.jpowsour.2004.03.052 10.1002/anie.202012773 10.1016/j.nanoen.2020.104450 10.1016/j.mseb.2014.11.014 10.1016/j.jpowsour.2013.01.063 10.1016/S0167-2738(96)00389-X 10.1021/jp311431z 10.1021/acsenergylett.1c01089 10.1039/C8MH01533C 10.1002/aenm.201802057 10.1016/j.jpowsour.2022.231204 10.1038/ncomms14589 10.1039/C5TA04151A 10.1016/S0065-2156(08)70195-9 10.1016/j.electacta.2007.02.085 10.1016/j.joule.2017.12.008 10.1021/acsami.8b06399 10.1038/s41598-018-33608-3 10.1021/acs.nanolett.7b00379 10.1016/j.nanoen.2018.09.051 10.1038/ncomms14101 10.1016/j.mattod.2019.07.002 10.1021/acs.analchem.1c01283 10.1016/S0378-7753(96)02547-5 10.1039/D0TA11775G 10.1021/acs.nanolett.7b03985 10.1038/s41560-020-00693-6 10.1021/acs.accounts.7b00482 10.1002/aenm.202101126 10.1021/acsenergylett.7b00263 10.1016/j.ensm.2021.02.003 10.1016/j.electacta.2015.10.002 10.1016/j.jpowsour.2005.01.006 10.1002/aenm.201300787 10.1016/j.jpowsour.2017.02.028 10.1149/2.0491813jes 10.1149/2.0131608jes 10.1038/s41467-020-16824-2 10.1149/1945-7111/ab8409 10.1039/C9JA00428A 10.1039/C8TA10329A |
ContentType | Journal Article |
Copyright | 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH – notice: 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
DOI | 10.1002/cssc.202201169 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | PMC9828165 36063139 10_1002_cssc_202201169 CSSC202201169 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research funderid: Cell-Fill 03XP0237 C – fundername: Federal Ministry of Education and Research grantid: Cell-Fill 03XP0237 C – fundername: ; grantid: Cell-Fill 03XP0237 C |
GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4689-739eca271cc48bb4e23048f2f1b1b56da5065ea91a9e9e14a4fea1564a8427933 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Thu Aug 21 18:37:59 EDT 2025 Fri Jul 11 07:06:06 EDT 2025 Fri Jul 25 12:07:51 EDT 2025 Mon Jul 21 05:59:53 EDT 2025 Tue Jul 01 00:36:21 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Wed Jan 22 16:30:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | particle size state of charge lithium-ion batteries electrochemistry energy storage |
Language | English |
License | Attribution 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4689-739eca271cc48bb4e23048f2f1b1b56da5065ea91a9e9e14a4fea1564a8427933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4176-5811 0000-0003-1508-6073 0000-0001-8608-4521 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202201169 |
PMID | 36063139 |
PQID | 2733785816 |
PQPubID | 986333 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828165 proquest_miscellaneous_2709915659 proquest_journals_2733785816 pubmed_primary_36063139 crossref_citationtrail_10_1002_cssc_202201169 crossref_primary_10_1002_cssc_202201169 wiley_primary_10_1002_cssc_202201169_CSSC202201169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 8, 2022 |
PublicationDateYYYYMMDD | 2022-11-08 |
PublicationDate_xml | – month: 11 year: 2022 text: November 8, 2022 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 184 2011; 158 2018; 165 2017; 8 2017; 2 2020; 167 2020; 11 2004; 134 2018; 6 2021; 37 2020; 5 2018; 8 2014; 5 2018; 2 2014; 4 2005; 147 2020; 370 2020; 9 2013; 117 2013; 233 2017; 164 2022; 527 2014; 7 2019; 7 2021; 6 2019; 6 2015; 3 2016; 329 1997; 68 1996; 90 2020; 35 2007; 52 2020; 32 1989; 27 2021; 93 2014; 114 2016; 163 2015; 192 2021; 11 2002; 164 2017; 17 2020; 70 2018; 51 2016; 335 2016; 28 2021; 60 2018; 10 2018; 53 2017; 346 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Gent E. W. (e_1_2_8_8_1) 2016; 28 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 3 start-page: 18171 year: 2015 end-page: 18179 publication-title: J. Mater. Chem. – volume: 233 start-page: 121 year: 2013 end-page: 130 publication-title: J. Power Sources – volume: 9 start-page: 7546 year: 2020 end-page: 7555 publication-title: J. Mater. Chem. A – volume: 2 start-page: 464 year: 2018 end-page: 477 publication-title: Joule – volume: 6 start-page: 2726 year: 2021 end-page: 2734 publication-title: ACS Energy Lett. – volume: 68 start-page: 87 year: 1997 end-page: 90 publication-title: J. Power Sources – volume: 51 start-page: 299 year: 2018 end-page: 308 publication-title: Acc. Chem. Res. – volume: 8 start-page: 17575 year: 2018 publication-title: Sci. Rep. – volume: 17 start-page: 3452 year: 2017 end-page: 3457 publication-title: Nano Lett. – volume: 6 start-page: 12344 year: 2018 end-page: 12352 publication-title: J. Mater. Chem. – volume: 51 start-page: 290 year: 2018 end-page: 298 publication-title: Acc. Chem. Res. – volume: 37 start-page: 143 year: 2021 end-page: 160 publication-title: Energy Storage Mater. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 70 start-page: 10445 year: 2020 publication-title: Nano Energy – volume: 5 start-page: 3529 year: 2014 publication-title: Nat. Commun. – volume: 53 start-page: 753 year: 2018 end-page: 762 publication-title: Nano Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 329 start-page: 31 year: 2016 end-page: 40 publication-title: J. Power Sources – volume: 2 start-page: 1240 year: 2017 end-page: 1245 publication-title: ACS Energy Lett. – volume: 164 start-page: A6220 year: 2017 end-page: A6228 publication-title: Electrochem. Soc. Interface – volume: 17 start-page: 7789 year: 2017 end-page: 7795 publication-title: Nano Lett. – volume: 90 start-page: 281 year: 1996 end-page: 287 publication-title: Solid State Ionics – volume: 11 start-page: 3050 year: 2020 publication-title: Nat. Commun. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 52 start-page: 5422 year: 2007 end-page: 5429 publication-title: Electrochim. Acta – volume: 28 start-page: 6631 year: 2016 end-page: 6638 publication-title: Adv. Energy Mater. – volume: 17 start-page: 7782 year: 2017 end-page: 7788 publication-title: Nano Lett. – volume: 192 start-page: 3 year: 2015 end-page: 25 publication-title: Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. – volume: 93 start-page: 7532 year: 2021 end-page: 7539 publication-title: Anal. Chem. – volume: 8 start-page: 14101 year: 2017 publication-title: Nat. Commun. – volume: 134 start-page: 241 year: 2004 end-page: 251 publication-title: J. Power Sources – volume: 147 start-page: 269 year: 2005 end-page: 281 publication-title: J. Power Sources – volume: 163 start-page: A1512 year: 2016 end-page: A1517 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 5463 year: 2019 end-page: 5474 publication-title: J. Mater. Chem. A – volume: 335 start-page: 45 year: 2016 end-page: 55 publication-title: J. Power Sources – volume: 7 start-page: 3077 year: 2014 end-page: 3085 publication-title: Energy Environ. Sci. – volume: 158 start-page: A1393 year: 2011 publication-title: J. Electrochem. Soc. – volume: 35 start-page: 1156 year: 2020 end-page: 1166 publication-title: Anal. At. Spectrom. – volume: 184 start-page: 410 year: 2015 end-page: 416 publication-title: Electrochim. Acta – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. Interface – volume: 165 start-page: A3040 year: 2018 end-page: A3047 publication-title: Electrochem. Soc. Interface – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 28 start-page: 162 year: 2016 end-page: 171 publication-title: Chem. Mater. – volume: 51 start-page: 2484 year: 2018 end-page: 2492 publication-title: Acc. Chem. Res. – volume: 164 start-page: 1 year: 2002 end-page: 4 publication-title: J. Solid State Chem. – volume: 117 start-page: 6481 year: 2013 end-page: 6492 publication-title: J. Phys. Chem. Chem. Phys. – volume: 27 start-page: 83 year: 1989 end-page: 151 publication-title: Adv. Appl. Mech. – volume: 10 start-page: 23842 year: 2018 end-page: 23850 publication-title: ACS Appl. Mater. Interfaces – volume: 527 year: 2022 publication-title: J. Power Sources – volume: 32 start-page: 131 year: 2020 end-page: 146 publication-title: Mater. Today – volume: 60 start-page: 17350 year: 2021 end-page: 17355 publication-title: Angew. Chem. Int. Ed. – volume: 346 start-page: 63 year: 2017 end-page: 70 publication-title: J. Power Sources – volume: 8 start-page: 14589 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 612 year: 2019 end-page: 617 publication-title: Mater. Horiz. – volume: 370 start-page: 1313 year: 2020 end-page: 1318 publication-title: Science – volume: 5 start-page: 860 year: 2020 end-page: 869 publication-title: Nat. Energy – ident: e_1_2_8_50_1 doi: 10.1126/science.abc3167 – ident: e_1_2_8_52_1 doi: 10.1149/2.0351701jes – ident: e_1_2_8_17_1 doi: 10.1039/C4EE01400F – ident: e_1_2_8_16_1 doi: 10.1021/acs.accounts.8b00123 – ident: e_1_2_8_53_1 doi: 10.1021/acs.chemmater.5b03500 – ident: e_1_2_8_31_1 doi: 10.1021/cr500003w – ident: e_1_2_8_48_1 doi: 10.1039/C8TA03363C – ident: e_1_2_8_9_1 doi: 10.1038/ncomms4529 – ident: e_1_2_8_54_1 doi: 10.1149/1945-7111/ab9a2c – ident: e_1_2_8_44_1 doi: 10.1006/jssc.2001.9459 – ident: e_1_2_8_30_1 doi: 10.1016/j.jpowsour.2016.08.023 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.202003400 – ident: e_1_2_8_4_1 doi: 10.1016/j.jpowsour.2016.09.071 – ident: e_1_2_8_23_1 doi: 10.1149/2.079112jes – ident: e_1_2_8_5_1 doi: 10.1021/acs.accounts.7b00506 – ident: e_1_2_8_51_1 doi: 10.1021/acs.nanolett.7b03989 – ident: e_1_2_8_46_1 doi: 10.1016/j.jpowsour.2004.03.052 – volume: 28 start-page: 6631 year: 2016 ident: e_1_2_8_8_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_15_1 doi: 10.1002/anie.202012773 – ident: e_1_2_8_1_1 doi: 10.1016/j.nanoen.2020.104450 – ident: e_1_2_8_19_1 doi: 10.1016/j.mseb.2014.11.014 – ident: e_1_2_8_18_1 doi: 10.1016/j.jpowsour.2013.01.063 – ident: e_1_2_8_37_1 doi: 10.1016/S0167-2738(96)00389-X – ident: e_1_2_8_22_1 doi: 10.1021/jp311431z – ident: e_1_2_8_13_1 doi: 10.1021/acsenergylett.1c01089 – ident: e_1_2_8_45_1 doi: 10.1039/C8MH01533C – ident: e_1_2_8_29_1 doi: 10.1002/aenm.201802057 – ident: e_1_2_8_42_1 doi: 10.1016/j.jpowsour.2022.231204 – ident: e_1_2_8_28_1 doi: 10.1038/ncomms14589 – ident: e_1_2_8_7_1 doi: 10.1039/C5TA04151A – ident: e_1_2_8_24_1 doi: 10.1016/S0065-2156(08)70195-9 – ident: e_1_2_8_25_1 doi: 10.1016/j.electacta.2007.02.085 – ident: e_1_2_8_26_1 doi: 10.1016/j.joule.2017.12.008 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.8b06399 – ident: e_1_2_8_41_1 doi: 10.1038/s41598-018-33608-3 – ident: e_1_2_8_3_1 doi: 10.1021/acs.nanolett.7b00379 – ident: e_1_2_8_10_1 doi: 10.1016/j.nanoen.2018.09.051 – ident: e_1_2_8_47_1 doi: 10.1038/ncomms14101 – ident: e_1_2_8_56_1 doi: 10.1016/j.mattod.2019.07.002 – ident: e_1_2_8_35_1 doi: 10.1021/acs.analchem.1c01283 – ident: e_1_2_8_36_1 doi: 10.1016/S0378-7753(96)02547-5 – ident: e_1_2_8_11_1 doi: 10.1039/D0TA11775G – ident: e_1_2_8_33_1 doi: 10.1021/acs.nanolett.7b03985 – ident: e_1_2_8_14_1 doi: 10.1038/s41560-020-00693-6 – ident: e_1_2_8_38_1 doi: 10.1021/acs.accounts.7b00482 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.202101126 – ident: e_1_2_8_34_1 doi: 10.1021/acsenergylett.7b00263 – ident: e_1_2_8_2_1 doi: 10.1016/j.ensm.2021.02.003 – ident: e_1_2_8_32_1 doi: 10.1016/j.electacta.2015.10.002 – ident: e_1_2_8_20_1 doi: 10.1016/j.jpowsour.2005.01.006 – ident: e_1_2_8_55_1 doi: 10.1002/aenm.201300787 – ident: e_1_2_8_58_1 doi: 10.1016/j.jpowsour.2017.02.028 – ident: e_1_2_8_12_1 doi: 10.1149/2.0491813jes – ident: e_1_2_8_43_1 doi: 10.1149/2.0131608jes – ident: e_1_2_8_49_1 doi: 10.1038/s41467-020-16824-2 – ident: e_1_2_8_57_1 doi: 10.1149/1945-7111/ab8409 – ident: e_1_2_8_40_1 doi: 10.1039/C9JA00428A – ident: e_1_2_8_39_1 doi: 10.1039/C8TA10329A |
SSID | ssj0060966 |
Score | 2.4211724 |
Snippet | The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline... The electrochemical response of layered lithium transition metal oxides LiMO 2 [M=Ni, Mn, Co; e. g., Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC532)] with... The electrochemical response of layered lithium transition metal oxides LiMO [M=Ni, Mn, Co; e. g., Li(Ni Mn Co )O (NMC532)] with single-crystalline... The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202201169 |
SubjectTerms | Charge distribution electrochemistry Electrodes energy storage Evolution Failure mechanisms Heterogeneity Inductively coupled plasma Lithium-ion batteries Optical emission spectroscopy particle size Redox reactions Single crystals State of charge Transition metal oxides |
Title | State‐of‐Charge Distribution of Single‐Crystalline NMC532 Cathodes in Lithium‐Ion Batteries: A Critical Look at the Mesoscale |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202201169 https://www.ncbi.nlm.nih.gov/pubmed/36063139 https://www.proquest.com/docview/2733785816 https://www.proquest.com/docview/2709915659 https://pubmed.ncbi.nlm.nih.gov/PMC9828165 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1864-5631 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELWgG9jwfgRKZSQkVmnrZxJ2VaAqqK0Ql0rdRbYzaa8oCWpyF7Dqpnu-sV_SsfOglwohwSZK4nESJ2PPmdhzhpBXCrRGr8vFkpcQS1YlsQVu4srJUmVonysXVlvs650D-eFQHV6J4u_5IaYfbr5nhPHad3Bj241fpKGubT0FIfcWTPsIPiZUmKf9NPFHacTnIbwo1TJWWrCRtXGTbyxXX7ZK16Dm9RWTV5FsMEXbd4kZG9GvQPmyvujsuvvxG7_j_7TyHrkz4FS61SvWfXID6gfkVj6mh3tIzgNMvTj72VS48bP2R0Df-sIhgxZtKjpDw3jihfLT7whDPf830P29XAlOfexhU0JL5zXdnXfH88VXFHyPFXvOT3Th39AtOuZioLvoDlDTUUSsdA_apsWT8IgcbL_7nO_EQ06H2EmdZnEiMnCGJ8w5mVorwf-UTiteMcus0qVRiInAZMxkkAGTRlZgPKGNSSXHsUQ8Jit1U8NTQgW6Wo6XGhGjldIa40CUTNhMppvOKReRePymhRsIz33ejZOip2rmhX-5xfRyI_J6kv_WU338UXJ1VJFi6PJtgThQJKlKmY7Iy6kYP4qfgTE1NAsvg4AcW6PwEk96jZpuJdCVFIjHI5Is6dok4InAl0vq-XEgBM_QbWZaRYQHVfrL0xf5bJZPR8_-pdJzctvvh5jMdJWsdKcLeIHgrLNr5CaXH9dCN7wE8lc3UA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHMoF8SZQwEhInKKun0l6q0KrLeyukLaVuEWOM6ErlQQ1uwduXLjzG_tLmMmLriqExCVS4nFe4_F848c3jL01YC1GXT7UsoBQizIKc5AuLL0uTIL-ufTtaouFnZ7pD5_NsJqQ9sJ0_BDjgBtZRttfk4HTgPT-H9ZQ3zTEQSjJhdnkNrujrZxQw5b609AZW0To7Qaj2OrQWCUG3saJ3N-uv-2XboDNm2smr2PZ1hkd32f3ehTJDzu1P2C3oHrIdtMhedsj9rMFkVc_ftUlHmhO_Qvw91TY57fidcmX6LYuSCi9_I4gkdi5gS_mqVGS087AuoCGryo-W63PV5uvKHiCFTtGTgywD_ghHzIl8BmCde7WHPEkn0NTN3gRHrOz46PTdBr2GRdCr22chJFKwDsZCe91nOcaaMg4LmUpcpEbWziDiAVcIlwCCQjtdAmO6GZcrCVaunrCdqq6gmeMKwyEvCws4rlc69w5D6oQKk90PPHe-ICFw__OfE9HTlkxLrKOSFlmpJ9s1E_A3o3y3zoijr9K7g3qy3qDbDJEaSqKTSxswN6MxagUmh9xFdQbkkG4jF9j8BZPO22Pj1IY6ClEywGLttrBKEA03dsl1eq8petOMKgV1gRMti3mH2-fpctlOp49_59Kr9nu9HQ-y2Yni48v2F263u6ejPfYzvpyAy8RRq3zV62h_Ab_KRip |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQOKWtn0m4VSmrFrYrxFKpt8h2HLqiJFWTPcCJC3d-I7-EcV50qRASXCIlHiexPfZ848c3AM-lUwq9LhsKlrtQ0CIKjWM6LKzIZYL2ubDtbouZ2jsUr4_k0blT_B0_xDjh5ntGO177Dn6aF1u_SENtXXsKQuYtmEouwxWh0MXysOjdSCClEKC354tiJUKpOB1oG7fZ1mr-VbN0AWte3DJ5Hsq2tmhyE_RQim4LysfNZWM27ZffCB7_p5i34EYPVMlOp1m34ZIr78C1dIgPdxe-tTj1x9fvVYEXv2z_wZFdn9iH0CJVQeZoGU-8UHr2GXGoJwB3ZHaQSs6IP3xY5a4mi5JMF83xYvkJBfcxY0f6iT78S7JDhmAMZIr-ANENQchKDlxd1fjQ3YPDyav36V7YB3UIrVBxEkY8cVaziForYmOE87PSccEKaqiRKtcSQZHTCdWJSxwVWhROe0YbHQuGgwlfh7WyKt0DIBx9LctyhZDRCGG0to7nlJtExNvWShtAOLRpZnvGcx944yTruJpZ5is3Gys3gBej_GnH9fFHyY1BRbK-z9cZAkEexTKmKoBnYzI2il-C0aWrll4GETmWRuIr7ncaNX6Koy_JEZAHEK3o2ijgmcBXU8rFccsInqDfTJUMgLWq9Je_z9L5PB3vHv5Lpqdw9e3uJJvuz948guv-cXs-M96AteZs6R4jUGvMk7Yv_gQUqDlE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90Charge+Distribution+of+Single%E2%80%90Crystalline+NMC532+Cathodes+in+Lithium%E2%80%90Ion+Batteries%3A+A+Critical+Look+at+the+Mesoscale&rft.jtitle=ChemSusChem&rft.au=Kr%C3%B6ger%2C+Till%E2%80%90Niklas&rft.au=W%C3%B6lke%2C+Mathis+Jan&rft.au=Harte%2C+Patrick&rft.au=Beuse%2C+Thomas&rft.date=2022-11-08&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=15&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202201169&rft.externalDBID=10.1002%252Fcssc.202201169&rft.externalDocID=CSSC202201169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |