State‐of‐Charge Distribution of Single‐Crystalline NMC532 Cathodes in Lithium‐Ion Batteries: A Critical Look at the Mesoscale

The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material util...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 15; no. 21; pp. e202201169 - n/a
Main Authors Kröger, Till‐Niklas, Wölke, Mathis Jan, Harte, Patrick, Beuse, Thomas, Winter, Martin, Nowak, Sascha, Wiemers‐Meyer, Simon
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.11.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.202201169

Cover

Abstract The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. State of charge: The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization.
AbstractList The electrochemical response of layered lithium transition metal oxides LiMO 2 [M=Ni, Mn, Co; e. g., Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. State of charge : The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization.
The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization.The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization.
The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization. State of charge: The particle size‐ and rate‐dependent evolution of persistent mesoscale state‐of‐charge heterogeneity is revealed upon different cycling protocols for NMC532 with single‐crystalline architecture. The structural fatigue of the composite matrix is concluded to be the main driver for the observed non‐uniform active material utilization.
The electrochemical response of layered lithium transition metal oxides LiMO [M=Ni, Mn, Co; e. g., Li(Ni Mn Co )O (NMC532)] with single-crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification-single-particle inductively coupled plasma optical emission spectroscopy (CL-SP-ICP-OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface-dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non-uniform active material utilization.
The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization.
The electrochemical response of layered lithium transition metal oxides LiMO 2 [M=Ni, Mn, Co; e. g., Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC532)] with single‐crystalline architecture to slow and fast charging protocols and the implication of incomplete and heterogeneous redox reactions on the active material utilization during cycling were the subject of this work. The role of the active material size and the influence of the local microstructural and chemical ramifications in the composite electrode on the evolution of heterogeneous state of charge (SOC) distribution were deciphered. For this, classification‐single‐particle inductively coupled plasma optical emission spectroscopy (CL‐SP‐ICP‐OES) was comprehensively supplemented by various post mortem analytical techniques. The presented results question the impact of surface‐dependent failure mechanisms of single crystals for the evolution of SOC heterogeneity and identify the deficient structural flexibility of the composite electrode framework as the main driver for the observed non‐uniform active material utilization.
Author Harte, Patrick
Nowak, Sascha
Kröger, Till‐Niklas
Wölke, Mathis Jan
Wiemers‐Meyer, Simon
Winter, Martin
Beuse, Thomas
AuthorAffiliation 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany
2 Helmholtz-Institute Münster IEK-12 FZ Jülich Corrensstraße 46 48149 Münster Germany
AuthorAffiliation_xml – name: 2 Helmholtz-Institute Münster IEK-12 FZ Jülich Corrensstraße 46 48149 Münster Germany
– name: 1 MEET Battery Research Center University of Münster Corrensstraße 46 48149 Münster Germany
Author_xml – sequence: 1
  givenname: Till‐Niklas
  surname: Kröger
  fullname: Kröger, Till‐Niklas
  organization: University of Münster
– sequence: 2
  givenname: Mathis Jan
  surname: Wölke
  fullname: Wölke, Mathis Jan
  organization: University of Münster
– sequence: 3
  givenname: Patrick
  surname: Harte
  fullname: Harte, Patrick
  organization: University of Münster
– sequence: 4
  givenname: Thomas
  surname: Beuse
  fullname: Beuse, Thomas
  organization: University of Münster
– sequence: 5
  givenname: Martin
  orcidid: 0000-0003-4176-5811
  surname: Winter
  fullname: Winter, Martin
  organization: Helmholtz-Institute Münster
– sequence: 6
  givenname: Sascha
  orcidid: 0000-0003-1508-6073
  surname: Nowak
  fullname: Nowak, Sascha
  organization: University of Münster
– sequence: 7
  givenname: Simon
  orcidid: 0000-0001-8608-4521
  surname: Wiemers‐Meyer
  fullname: Wiemers‐Meyer, Simon
  email: Simon.Wiemers-Meyer@uni-muenster.de
  organization: University of Münster
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36063139$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2PFCEQholZ437o1aMh8eJlRqBpuvFgsrZfm8zqYTTxRmimeoaVgV2gNXPz4t3f6C-RyeyOuonxAqR43rcKqo7RgQ8eEHpIyZQSwp6alMyUEcYIpULeQUe0FXxSC_7pYH-u6CE6TumCEEGkEPfQYSVIiVbyCH2fZ53h57cfYShLt9JxCfilTTnafsw2eBwGPLd-6bZQFzcpa-esB_zuvKsrhjudV2EBCVuPZzav7Lgu4FkRvtA5Q7SQnuFT3EWbrdEOz0L4jHXGeQX4HFJIJQj30d1BuwQPrvcT9PH1qw_d28ns_Zuz7nQ2MVy0ctJUEoxmDTWGt33PgVWEtwMbaE_7Wix0TUQNWlItQQLlmg-gafkM3XLWyKo6Qc93vpdjv4aFAZ-jduoy2rWOGxW0VX_feLtSy_BFyZa1VNTF4Mm1QQxXI6Ss1jYZcE57CGNSrCFSloy1LOjjW-hFGKMvzytUVTVtXRwL9ejPival3HSoAHwHmBhSijAoY0vLSmdKgdYpStR2ENR2ENR-EIpsekt24_xPgdwJvloHm__QqpvPu9_aX25Ryqo
CitedBy_id crossref_primary_10_1002_aenm_202303758
crossref_primary_10_1021_acsaem_3c02741
crossref_primary_10_1149_1945_7111_ace65b
crossref_primary_10_1002_batt_202400023
crossref_primary_10_1016_j_mtchem_2023_101889
crossref_primary_10_1016_j_flatc_2024_100693
crossref_primary_10_1039_D3CP02932H
Cites_doi 10.1126/science.abc3167
10.1149/2.0351701jes
10.1039/C4EE01400F
10.1021/acs.accounts.8b00123
10.1021/acs.chemmater.5b03500
10.1021/cr500003w
10.1039/C8TA03363C
10.1038/ncomms4529
10.1149/1945-7111/ab9a2c
10.1006/jssc.2001.9459
10.1016/j.jpowsour.2016.08.023
10.1002/aenm.202003400
10.1016/j.jpowsour.2016.09.071
10.1149/2.079112jes
10.1021/acs.accounts.7b00506
10.1021/acs.nanolett.7b03989
10.1016/j.jpowsour.2004.03.052
10.1002/anie.202012773
10.1016/j.nanoen.2020.104450
10.1016/j.mseb.2014.11.014
10.1016/j.jpowsour.2013.01.063
10.1016/S0167-2738(96)00389-X
10.1021/jp311431z
10.1021/acsenergylett.1c01089
10.1039/C8MH01533C
10.1002/aenm.201802057
10.1016/j.jpowsour.2022.231204
10.1038/ncomms14589
10.1039/C5TA04151A
10.1016/S0065-2156(08)70195-9
10.1016/j.electacta.2007.02.085
10.1016/j.joule.2017.12.008
10.1021/acsami.8b06399
10.1038/s41598-018-33608-3
10.1021/acs.nanolett.7b00379
10.1016/j.nanoen.2018.09.051
10.1038/ncomms14101
10.1016/j.mattod.2019.07.002
10.1021/acs.analchem.1c01283
10.1016/S0378-7753(96)02547-5
10.1039/D0TA11775G
10.1021/acs.nanolett.7b03985
10.1038/s41560-020-00693-6
10.1021/acs.accounts.7b00482
10.1002/aenm.202101126
10.1021/acsenergylett.7b00263
10.1016/j.ensm.2021.02.003
10.1016/j.electacta.2015.10.002
10.1016/j.jpowsour.2005.01.006
10.1002/aenm.201300787
10.1016/j.jpowsour.2017.02.028
10.1149/2.0491813jes
10.1149/2.0131608jes
10.1038/s41467-020-16824-2
10.1149/1945-7111/ab8409
10.1039/C9JA00428A
10.1039/C8TA10329A
ContentType Journal Article
Copyright 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH
2022 The Authors. ChemSusChem published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH
– notice: 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/cssc.202201169
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID PMC9828165
36063139
10_1002_cssc_202201169
CSSC202201169
Genre article
Journal Article
GrantInformation_xml – fundername: Federal Ministry of Education and Research
  funderid: Cell-Fill 03XP0237 C
– fundername: Federal Ministry of Education and Research
  grantid: Cell-Fill 03XP0237 C
– fundername: ;
  grantid: Cell-Fill 03XP0237 C
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c4689-739eca271cc48bb4e23048f2f1b1b56da5065ea91a9e9e14a4fea1564a8427933
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Thu Aug 21 18:37:59 EDT 2025
Fri Jul 11 07:06:06 EDT 2025
Fri Jul 25 12:07:51 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Tue Jul 01 00:36:21 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Wed Jan 22 16:30:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords particle size
state of charge
lithium-ion batteries
electrochemistry
energy storage
Language English
License Attribution
2022 The Authors. ChemSusChem published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4689-739eca271cc48bb4e23048f2f1b1b56da5065ea91a9e9e14a4fea1564a8427933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4176-5811
0000-0003-1508-6073
0000-0001-8608-4521
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202201169
PMID 36063139
PQID 2733785816
PQPubID 986333
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828165
proquest_miscellaneous_2709915659
proquest_journals_2733785816
pubmed_primary_36063139
crossref_citationtrail_10_1002_cssc_202201169
crossref_primary_10_1002_cssc_202201169
wiley_primary_10_1002_cssc_202201169_CSSC202201169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 8, 2022
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: November 8, 2022
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 184
2011; 158
2018; 165
2017; 8
2017; 2
2020; 167
2020; 11
2004; 134
2018; 6
2021; 37
2020; 5
2018; 8
2014; 5
2018; 2
2014; 4
2005; 147
2020; 370
2020; 9
2013; 117
2013; 233
2017; 164
2022; 527
2014; 7
2019; 7
2021; 6
2019; 6
2015; 3
2016; 329
1997; 68
1996; 90
2020; 35
2007; 52
2020; 32
1989; 27
2021; 93
2014; 114
2016; 163
2015; 192
2021; 11
2002; 164
2017; 17
2020; 70
2018; 51
2016; 335
2016; 28
2021; 60
2018; 10
2018; 53
2017; 346
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Gent E. W. (e_1_2_8_8_1) 2016; 28
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 3
  start-page: 18171
  year: 2015
  end-page: 18179
  publication-title: J. Mater. Chem.
– volume: 233
  start-page: 121
  year: 2013
  end-page: 130
  publication-title: J. Power Sources
– volume: 9
  start-page: 7546
  year: 2020
  end-page: 7555
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 464
  year: 2018
  end-page: 477
  publication-title: Joule
– volume: 6
  start-page: 2726
  year: 2021
  end-page: 2734
  publication-title: ACS Energy Lett.
– volume: 68
  start-page: 87
  year: 1997
  end-page: 90
  publication-title: J. Power Sources
– volume: 51
  start-page: 299
  year: 2018
  end-page: 308
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 17575
  year: 2018
  publication-title: Sci. Rep.
– volume: 17
  start-page: 3452
  year: 2017
  end-page: 3457
  publication-title: Nano Lett.
– volume: 6
  start-page: 12344
  year: 2018
  end-page: 12352
  publication-title: J. Mater. Chem.
– volume: 51
  start-page: 290
  year: 2018
  end-page: 298
  publication-title: Acc. Chem. Res.
– volume: 37
  start-page: 143
  year: 2021
  end-page: 160
  publication-title: Energy Storage Mater.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 70
  start-page: 10445
  year: 2020
  publication-title: Nano Energy
– volume: 5
  start-page: 3529
  year: 2014
  publication-title: Nat. Commun.
– volume: 53
  start-page: 753
  year: 2018
  end-page: 762
  publication-title: Nano Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 329
  start-page: 31
  year: 2016
  end-page: 40
  publication-title: J. Power Sources
– volume: 2
  start-page: 1240
  year: 2017
  end-page: 1245
  publication-title: ACS Energy Lett.
– volume: 164
  start-page: A6220
  year: 2017
  end-page: A6228
  publication-title: Electrochem. Soc. Interface
– volume: 17
  start-page: 7789
  year: 2017
  end-page: 7795
  publication-title: Nano Lett.
– volume: 90
  start-page: 281
  year: 1996
  end-page: 287
  publication-title: Solid State Ionics
– volume: 11
  start-page: 3050
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 5422
  year: 2007
  end-page: 5429
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 6631
  year: 2016
  end-page: 6638
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 7782
  year: 2017
  end-page: 7788
  publication-title: Nano Lett.
– volume: 192
  start-page: 3
  year: 2015
  end-page: 25
  publication-title: Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol.
– volume: 93
  start-page: 7532
  year: 2021
  end-page: 7539
  publication-title: Anal. Chem.
– volume: 8
  start-page: 14101
  year: 2017
  publication-title: Nat. Commun.
– volume: 134
  start-page: 241
  year: 2004
  end-page: 251
  publication-title: J. Power Sources
– volume: 147
  start-page: 269
  year: 2005
  end-page: 281
  publication-title: J. Power Sources
– volume: 163
  start-page: A1512
  year: 2016
  end-page: A1517
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 5463
  year: 2019
  end-page: 5474
  publication-title: J. Mater. Chem. A
– volume: 335
  start-page: 45
  year: 2016
  end-page: 55
  publication-title: J. Power Sources
– volume: 7
  start-page: 3077
  year: 2014
  end-page: 3085
  publication-title: Energy Environ. Sci.
– volume: 158
  start-page: A1393
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 1156
  year: 2020
  end-page: 1166
  publication-title: Anal. At. Spectrom.
– volume: 184
  start-page: 410
  year: 2015
  end-page: 416
  publication-title: Electrochim. Acta
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc. Interface
– volume: 165
  start-page: A3040
  year: 2018
  end-page: A3047
  publication-title: Electrochem. Soc. Interface
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 28
  start-page: 162
  year: 2016
  end-page: 171
  publication-title: Chem. Mater.
– volume: 51
  start-page: 2484
  year: 2018
  end-page: 2492
  publication-title: Acc. Chem. Res.
– volume: 164
  start-page: 1
  year: 2002
  end-page: 4
  publication-title: J. Solid State Chem.
– volume: 117
  start-page: 6481
  year: 2013
  end-page: 6492
  publication-title: J. Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 83
  year: 1989
  end-page: 151
  publication-title: Adv. Appl. Mech.
– volume: 10
  start-page: 23842
  year: 2018
  end-page: 23850
  publication-title: ACS Appl. Mater. Interfaces
– volume: 527
  year: 2022
  publication-title: J. Power Sources
– volume: 32
  start-page: 131
  year: 2020
  end-page: 146
  publication-title: Mater. Today
– volume: 60
  start-page: 17350
  year: 2021
  end-page: 17355
  publication-title: Angew. Chem. Int. Ed.
– volume: 346
  start-page: 63
  year: 2017
  end-page: 70
  publication-title: J. Power Sources
– volume: 8
  start-page: 14589
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 612
  year: 2019
  end-page: 617
  publication-title: Mater. Horiz.
– volume: 370
  start-page: 1313
  year: 2020
  end-page: 1318
  publication-title: Science
– volume: 5
  start-page: 860
  year: 2020
  end-page: 869
  publication-title: Nat. Energy
– ident: e_1_2_8_50_1
  doi: 10.1126/science.abc3167
– ident: e_1_2_8_52_1
  doi: 10.1149/2.0351701jes
– ident: e_1_2_8_17_1
  doi: 10.1039/C4EE01400F
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.accounts.8b00123
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.chemmater.5b03500
– ident: e_1_2_8_31_1
  doi: 10.1021/cr500003w
– ident: e_1_2_8_48_1
  doi: 10.1039/C8TA03363C
– ident: e_1_2_8_9_1
  doi: 10.1038/ncomms4529
– ident: e_1_2_8_54_1
  doi: 10.1149/1945-7111/ab9a2c
– ident: e_1_2_8_44_1
  doi: 10.1006/jssc.2001.9459
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jpowsour.2016.08.023
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.202003400
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jpowsour.2016.09.071
– ident: e_1_2_8_23_1
  doi: 10.1149/2.079112jes
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.accounts.7b00506
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.nanolett.7b03989
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jpowsour.2004.03.052
– volume: 28
  start-page: 6631
  year: 2016
  ident: e_1_2_8_8_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202012773
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nanoen.2020.104450
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mseb.2014.11.014
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jpowsour.2013.01.063
– ident: e_1_2_8_37_1
  doi: 10.1016/S0167-2738(96)00389-X
– ident: e_1_2_8_22_1
  doi: 10.1021/jp311431z
– ident: e_1_2_8_13_1
  doi: 10.1021/acsenergylett.1c01089
– ident: e_1_2_8_45_1
  doi: 10.1039/C8MH01533C
– ident: e_1_2_8_29_1
  doi: 10.1002/aenm.201802057
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jpowsour.2022.231204
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms14589
– ident: e_1_2_8_7_1
  doi: 10.1039/C5TA04151A
– ident: e_1_2_8_24_1
  doi: 10.1016/S0065-2156(08)70195-9
– ident: e_1_2_8_25_1
  doi: 10.1016/j.electacta.2007.02.085
– ident: e_1_2_8_26_1
  doi: 10.1016/j.joule.2017.12.008
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.8b06399
– ident: e_1_2_8_41_1
  doi: 10.1038/s41598-018-33608-3
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.nanolett.7b00379
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nanoen.2018.09.051
– ident: e_1_2_8_47_1
  doi: 10.1038/ncomms14101
– ident: e_1_2_8_56_1
  doi: 10.1016/j.mattod.2019.07.002
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.analchem.1c01283
– ident: e_1_2_8_36_1
  doi: 10.1016/S0378-7753(96)02547-5
– ident: e_1_2_8_11_1
  doi: 10.1039/D0TA11775G
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.nanolett.7b03985
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-020-00693-6
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.accounts.7b00482
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.202101126
– ident: e_1_2_8_34_1
  doi: 10.1021/acsenergylett.7b00263
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ensm.2021.02.003
– ident: e_1_2_8_32_1
  doi: 10.1016/j.electacta.2015.10.002
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jpowsour.2005.01.006
– ident: e_1_2_8_55_1
  doi: 10.1002/aenm.201300787
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jpowsour.2017.02.028
– ident: e_1_2_8_12_1
  doi: 10.1149/2.0491813jes
– ident: e_1_2_8_43_1
  doi: 10.1149/2.0131608jes
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-020-16824-2
– ident: e_1_2_8_57_1
  doi: 10.1149/1945-7111/ab8409
– ident: e_1_2_8_40_1
  doi: 10.1039/C9JA00428A
– ident: e_1_2_8_39_1
  doi: 10.1039/C8TA10329A
SSID ssj0060966
Score 2.4211724
Snippet The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5Mn0.3Co0.2)O2 (NMC532)] with single‐crystalline...
The electrochemical response of layered lithium transition metal oxides LiMO 2 [M=Ni, Mn, Co; e. g., Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC532)] with...
The electrochemical response of layered lithium transition metal oxides LiMO [M=Ni, Mn, Co; e. g., Li(Ni Mn Co )O (NMC532)] with single-crystalline...
The electrochemical response of layered lithium transition metal oxides LiMO2 [M=Ni, Mn, Co; e. g., Li(Ni0.5 Mn0.3 Co0.2 )O2 (NMC532)] with single-crystalline...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202201169
SubjectTerms Charge distribution
electrochemistry
Electrodes
energy storage
Evolution
Failure mechanisms
Heterogeneity
Inductively coupled plasma
Lithium-ion batteries
Optical emission spectroscopy
particle size
Redox reactions
Single crystals
State of charge
Transition metal oxides
Title State‐of‐Charge Distribution of Single‐Crystalline NMC532 Cathodes in Lithium‐Ion Batteries: A Critical Look at the Mesoscale
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202201169
https://www.ncbi.nlm.nih.gov/pubmed/36063139
https://www.proquest.com/docview/2733785816
https://www.proquest.com/docview/2709915659
https://pubmed.ncbi.nlm.nih.gov/PMC9828165
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1864-5631
  databaseCode: DR2
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELWgG9jwfgRKZSQkVmnrZxJ2VaAqqK0Ql0rdRbYzaa8oCWpyF7Dqpnu-sV_SsfOglwohwSZK4nESJ2PPmdhzhpBXCrRGr8vFkpcQS1YlsQVu4srJUmVonysXVlvs650D-eFQHV6J4u_5IaYfbr5nhPHad3Bj241fpKGubT0FIfcWTPsIPiZUmKf9NPFHacTnIbwo1TJWWrCRtXGTbyxXX7ZK16Dm9RWTV5FsMEXbd4kZG9GvQPmyvujsuvvxG7_j_7TyHrkz4FS61SvWfXID6gfkVj6mh3tIzgNMvTj72VS48bP2R0Df-sIhgxZtKjpDw3jihfLT7whDPf830P29XAlOfexhU0JL5zXdnXfH88VXFHyPFXvOT3Th39AtOuZioLvoDlDTUUSsdA_apsWT8IgcbL_7nO_EQ06H2EmdZnEiMnCGJ8w5mVorwf-UTiteMcus0qVRiInAZMxkkAGTRlZgPKGNSSXHsUQ8Jit1U8NTQgW6Wo6XGhGjldIa40CUTNhMppvOKReRePymhRsIz33ejZOip2rmhX-5xfRyI_J6kv_WU338UXJ1VJFi6PJtgThQJKlKmY7Iy6kYP4qfgTE1NAsvg4AcW6PwEk96jZpuJdCVFIjHI5Is6dok4InAl0vq-XEgBM_QbWZaRYQHVfrL0xf5bJZPR8_-pdJzctvvh5jMdJWsdKcLeIHgrLNr5CaXH9dCN7wE8lc3UA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHMoF8SZQwEhInKKun0l6q0KrLeyukLaVuEWOM6ErlQQ1uwduXLjzG_tLmMmLriqExCVS4nFe4_F848c3jL01YC1GXT7UsoBQizIKc5AuLL0uTIL-ufTtaouFnZ7pD5_NsJqQ9sJ0_BDjgBtZRttfk4HTgPT-H9ZQ3zTEQSjJhdnkNrujrZxQw5b609AZW0To7Qaj2OrQWCUG3saJ3N-uv-2XboDNm2smr2PZ1hkd32f3ehTJDzu1P2C3oHrIdtMhedsj9rMFkVc_ftUlHmhO_Qvw91TY57fidcmX6LYuSCi9_I4gkdi5gS_mqVGS087AuoCGryo-W63PV5uvKHiCFTtGTgywD_ghHzIl8BmCde7WHPEkn0NTN3gRHrOz46PTdBr2GRdCr22chJFKwDsZCe91nOcaaMg4LmUpcpEbWziDiAVcIlwCCQjtdAmO6GZcrCVaunrCdqq6gmeMKwyEvCws4rlc69w5D6oQKk90PPHe-ICFw__OfE9HTlkxLrKOSFlmpJ9s1E_A3o3y3zoijr9K7g3qy3qDbDJEaSqKTSxswN6MxagUmh9xFdQbkkG4jF9j8BZPO22Pj1IY6ClEywGLttrBKEA03dsl1eq8petOMKgV1gRMti3mH2-fpctlOp49_59Kr9nu9HQ-y2Yni48v2F263u6ejPfYzvpyAy8RRq3zV62h_Ab_KRip
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJGQOKWtn0m4VSmrFrYrxFKpt8h2HLqiJFWTPcCJC3d-I7-EcV50qRASXCIlHiexPfZ848c3AM-lUwq9LhsKlrtQ0CIKjWM6LKzIZYL2ubDtbouZ2jsUr4_k0blT_B0_xDjh5ntGO177Dn6aF1u_SENtXXsKQuYtmEouwxWh0MXysOjdSCClEKC354tiJUKpOB1oG7fZ1mr-VbN0AWte3DJ5Hsq2tmhyE_RQim4LysfNZWM27ZffCB7_p5i34EYPVMlOp1m34ZIr78C1dIgPdxe-tTj1x9fvVYEXv2z_wZFdn9iH0CJVQeZoGU-8UHr2GXGoJwB3ZHaQSs6IP3xY5a4mi5JMF83xYvkJBfcxY0f6iT78S7JDhmAMZIr-ANENQchKDlxd1fjQ3YPDyav36V7YB3UIrVBxEkY8cVaziForYmOE87PSccEKaqiRKtcSQZHTCdWJSxwVWhROe0YbHQuGgwlfh7WyKt0DIBx9LctyhZDRCGG0to7nlJtExNvWShtAOLRpZnvGcx944yTruJpZ5is3Gys3gBej_GnH9fFHyY1BRbK-z9cZAkEexTKmKoBnYzI2il-C0aWrll4GETmWRuIr7ncaNX6Koy_JEZAHEK3o2ijgmcBXU8rFccsInqDfTJUMgLWq9Je_z9L5PB3vHv5Lpqdw9e3uJJvuz948guv-cXs-M96AteZs6R4jUGvMk7Yv_gQUqDlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90Charge+Distribution+of+Single%E2%80%90Crystalline+NMC532+Cathodes+in+Lithium%E2%80%90Ion+Batteries%3A+A+Critical+Look+at+the+Mesoscale&rft.jtitle=ChemSusChem&rft.au=Kr%C3%B6ger%2C+Till%E2%80%90Niklas&rft.au=W%C3%B6lke%2C+Mathis+Jan&rft.au=Harte%2C+Patrick&rft.au=Beuse%2C+Thomas&rft.date=2022-11-08&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=15&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202201169&rft.externalDBID=10.1002%252Fcssc.202201169&rft.externalDocID=CSSC202201169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon