An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images

Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 43; no. 9; pp. 1173 - 1180
Main Authors Wiemerslage, Lyle, Nilsson, Emil K., Solstrand Dahlberg, Linda, Ence-Eriksson, Fia, Castillo, Sandra, Larsen, Anna L., Bylund, Simon B. A., Hogenkamp, Pleunie S., Olivo, Gaia, Bandstein, Marcus, Titova, Olga E., Larsson, Elna-Marie, Benedict, Christian, Brooks, Samantha J., Schiöth, Helgi B.
Format Journal Article
LanguageEnglish
Published France Blackwell Publishing Ltd 01.05.2016
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.13177

Cover

Abstract Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via fMRI. In a whole‐brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non‐risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Participants were shown images of high‐ or low‐calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity‐associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background.
AbstractList Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low-or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via fMRI. In a whole‐brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non‐risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Participants were shown images of high‐ or low‐calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity‐associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background.
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (f MRI ). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via f MRI . In a whole‐brain analysis, we found that people with the FTO risk allele genotype ( AA ) had increased activity compared with the non‐risk ( TT ) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Participants were shown images of high- or low-calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity-associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background.
Author Ence-Eriksson, Fia
Hogenkamp, Pleunie S.
Nilsson, Emil K.
Larsen, Anna L.
Bandstein, Marcus
Bylund, Simon B. A.
Schiöth, Helgi B.
Benedict, Christian
Titova, Olga E.
Olivo, Gaia
Castillo, Sandra
Wiemerslage, Lyle
Brooks, Samantha J.
Solstrand Dahlberg, Linda
Larsson, Elna-Marie
Author_xml – sequence: 1
  givenname: Lyle
  surname: Wiemerslage
  fullname: Wiemerslage, Lyle
  email: : Dr L. Wiemerslage, as above., lyle.wiemerslage@neuro.uu.se
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 2
  givenname: Emil K.
  surname: Nilsson
  fullname: Nilsson, Emil K.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 3
  givenname: Linda
  surname: Solstrand Dahlberg
  fullname: Solstrand Dahlberg, Linda
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 4
  givenname: Fia
  surname: Ence-Eriksson
  fullname: Ence-Eriksson, Fia
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 5
  givenname: Sandra
  surname: Castillo
  fullname: Castillo, Sandra
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 6
  givenname: Anna L.
  surname: Larsen
  fullname: Larsen, Anna L.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 7
  givenname: Simon B. A.
  surname: Bylund
  fullname: Bylund, Simon B. A.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 8
  givenname: Pleunie S.
  surname: Hogenkamp
  fullname: Hogenkamp, Pleunie S.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 9
  givenname: Gaia
  surname: Olivo
  fullname: Olivo, Gaia
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 10
  givenname: Marcus
  surname: Bandstein
  fullname: Bandstein, Marcus
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 11
  givenname: Olga E.
  surname: Titova
  fullname: Titova, Olga E.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 12
  givenname: Elna-Marie
  surname: Larsson
  fullname: Larsson, Elna-Marie
  organization: Section of Neuroradiology, Department of Radiology, Uppsala University, Uppsala, Sweden
– sequence: 13
  givenname: Christian
  surname: Benedict
  fullname: Benedict, Christian
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
– sequence: 14
  givenname: Samantha J.
  surname: Brooks
  fullname: Brooks, Samantha J.
  organization: Department of Psychiatry, University of Cape Town, Old Groote Schuur Hospital, Cape Town, South Africa
– sequence: 15
  givenname: Helgi B.
  surname: Schiöth
  fullname: Schiöth, Helgi B.
  organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26797854$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297286$$DView record from Swedish Publication Index
BookMark eNqNkstu1DAUhi1URKeFBS-AvKRS0yZxbCfLaekFVLUClcvOcpyTGbeJHWyHYR6Jt8Rz6wKBhDeWjr__P9Y5_wHaM9YAQq-z9CSL5xQezElGMs6foUlWsDSpKCv30CStKEnKjH3bRwfeP6RpWrKCvkD7OeMVL2kxQb-mBtsavA7LRHpvlZYBGuy0f8Sy66ADvNBhrg0Oc8CX93d4BgawbFtQweP52EuDaycjIFXQP6IPbq3D0oH0WPeDdUGasK5Bb4O25nhVHjsPWFkTnO2wNLEjLKRrcPRx4Adr4nOwUWZjrZcz8C_R81ZG1avtfYg-X17cn18nN3dX78-nN4kqWMmToigbTlWpGG0z1RKARpaQS1pLVlSkrdqGF6ksmjYnDHLSUAKEEdYwlRLIanKIjje-fgHDWIvBxf5uKazU4p3-MhXWzcQ4irziecki_naDD85-H8EH0WuvoOukATt6kfFyPWtO_wcteEF5TiL6ZouOdQ_N0yd2i4vA6QZQznrvoBVKB7kab4jL6ESWilU0RIyGWEcjKo7-UOxM_8Zu3Re6g-W_QXHx4XanSDYK7QP8fFJI9ygYJ5yKr7dXIiuvydmnj7k4I78BA_zaLg
CitedBy_id crossref_primary_10_1038_s41398_017_0068_4
crossref_primary_10_1016_j_genrep_2021_101324
crossref_primary_10_1038_ijo_2017_43
crossref_primary_10_1080_27697061_2024_2406887
crossref_primary_10_1556_2006_8_2019_25
crossref_primary_10_1093_scan_nsz081
crossref_primary_10_1371_journal_pone_0173560
crossref_primary_10_1038_s41380_023_02025_y
crossref_primary_10_1038_s41398_019_0617_0
crossref_primary_10_1097_MED_0000000000000324
crossref_primary_10_1371_journal_pone_0211937
crossref_primary_10_3389_adar_2023_10871
crossref_primary_10_1002_oby_23926
crossref_primary_10_1093_ajcn_nqy344
crossref_primary_10_1024_0939_5911_a000775
crossref_primary_10_1186_s13578_019_0330_y
crossref_primary_10_1038_s44220_025_00396_5
crossref_primary_10_1080_1028415X_2021_1913316
crossref_primary_10_1073_pnas_1605548113
crossref_primary_10_1152_physrev_00032_2015
crossref_primary_10_1186_s12929_017_0372_6
crossref_primary_10_1016_j_physbeh_2023_114313
crossref_primary_10_1093_hmg_ddx128
crossref_primary_10_1038_s41598_019_53922_8
crossref_primary_10_3390_nu9111170
crossref_primary_10_1038_s41366_020_00702_4
crossref_primary_10_1007_s00406_020_01218_8
crossref_primary_10_1002_osp4_417
crossref_primary_10_1172_jci_insight_175967
crossref_primary_10_1097_MED_0000000000000340
crossref_primary_10_1111_jhn_12984
crossref_primary_10_1016_j_nicl_2019_101803
crossref_primary_10_3389_fendo_2023_1130203
crossref_primary_10_1038_s42003_021_02957_7
crossref_primary_10_12688_wellcomeopenres_16091_1
crossref_primary_10_1093_ajcn_nqx029
crossref_primary_10_12688_wellcomeopenres_16091_3
crossref_primary_10_1007_s13679_017_0282_7
crossref_primary_10_1038_s41537_017_0027_3
crossref_primary_10_12688_wellcomeopenres_16091_2
crossref_primary_10_1016_j_exger_2024_112463
Cites_doi 10.1210/en.2007-1457
10.18637/jss.v025.i01
10.1371/journal.pgen.0030115
10.1037/0022-3514.67.2.319
10.1126/science.1141634
10.1038/ijo.2012.57
10.1523/JNEUROSCI.0350-06.2006
10.1002/hbm.21268
10.1002/mnfr.200600243
10.1001/archgenpsychiatry.2011.32
10.1111/j.1460-9568.2009.06949.x
10.1523/JNEUROSCI.19-13-05506.1999
10.3389/fpsyg.2013.00177
10.1111/obr.12246
10.1111/j.1467-789X.2012.01031.x
10.1093/brain/awt162
10.1016/j.neuroscience.2013.04.048
10.1016/S1053-8119(03)00169-1
10.1186/1471-2202-10-129
10.1016/j.paid.2009.02.003
10.1002/hbm.22617
10.1016/j.mce.2014.09.012
10.1371/journal.pone.0060393
10.1007/s10571-007-9236-z
10.1196/annals.1390.002
10.1159/000353585
10.1016/j.neulet.2014.10.020
10.1016/j.neuroscience.2013.07.015
10.1371/journal.pone.0008771
10.1038/ijo.2014.206
10.1523/JNEUROSCI.1589-15.2015
10.1172/JCI44403
10.1002/oby.21191
10.1038/ng2048
10.1093/scan/nst059
10.1016/j.molmet.2013.11.009
10.1016/j.neuroimage.2010.05.059
10.1111/obr.12235
10.2337/dc14-0525
ContentType Journal Article
Copyright 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ADTPV
AOWAS
DF2
DOI 10.1111/ejn.13177
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
Editor Foxe, John
Editor_xml – sequence: 16
  givenname: John
  surname: Foxe
  fullname: Foxe, John
EndPage 1180
ExternalDocumentID oai_DiVA_org_uu_297286
26797854
10_1111_ejn_13177
EJN13177
ark_67375_WNG_18H3BRQ2_B
Genre article
Journal Article
GrantInformation_xml – fundername: Swedish Brain Research Foundation
– fundername: Swedish Research Council
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
RIG
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c4687-448d75c8c65f1cf3eeda8e2a5ba6493f9fd740a4df236e23d53e3636d6c03e1b3
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Thu Aug 21 06:55:50 EDT 2025
Fri Jul 11 13:53:17 EDT 2025
Fri Jul 11 01:20:21 EDT 2025
Thu Apr 03 07:07:14 EDT 2025
Tue Jul 01 03:02:13 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 15 06:20:16 EDT 2025
Sun Sep 21 06:16:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords FTO
fMRI
SNP
food
obesity
Language English
License 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4687-448d75c8c65f1cf3eeda8e2a5ba6493f9fd740a4df236e23d53e3636d6c03e1b3
Notes istex:1F7F83BCFC1BA1F068B2E5826B504160DF998506
ark:/67375/WNG-18H3BRQ2-B
ArticleID:EJN13177
Swedish Research Council
Table S1. Interaction between BMI and genotype.
Swedish Brain Research Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://researchonline.ljmu.ac.uk/id/eprint/9287/3/EJN-2015-09-23036_revizdManuscript.pdf
PMID 26797854
PQID 1784745723
PQPubID 23479
PageCount 8
ParticipantIDs swepub_primary_oai_DiVA_org_uu_297286
proquest_miscellaneous_1787978575
proquest_miscellaneous_1784745723
pubmed_primary_26797854
crossref_citationtrail_10_1111_ejn_13177
crossref_primary_10_1111_ejn_13177
wiley_primary_10_1111_ejn_13177_EJN13177
istex_primary_ark_67375_WNG_18H3BRQ2_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Schienle, A. & Scharmüller, W. (2013) Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience, 246, 375-381.
Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894.
Speakman, J.R. (2013) Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum. Hered., 75, 57-79.
Zhu, J.-N. & Wang, J.-J. (2007) The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol., 28, 469-478.
Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P. & Froguel, P. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet., 39, 724-726.
Maldjian, J.A., Laurienti, P.J., Kraft, R.A. & Burdette, J.H. (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233-1239.
Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V. & Evans, A.C. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci., 19, 5506-5513.
Boutelle, K.N., Wierenga, C.E., Bischoff-Grethe, A., Melrose, A.J., Grenesko-Stevens, E., Paulus, M.P. & Kaye, W.H. (2015) Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int. J. Obesity, 39, 620-628.
Singh, M. (2014) Mood, food, and obesity. Eat. Behav., 5, 925.
Karra, E., O'Daly, O.G., Choudhury, A.I., Yousseif, A., Millership, S., Neary, M.T. & Batterham, R.L. (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Invest., 123, 3539-3551.
Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. (2014) Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Eat. Behav., 5, 1073.
Yu, Y.-H., Vasselli, J.R., Zhang, Y., Mechanick, J.I., Korner, J. & Peterli, R. (2015) Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes. Rev., 16, 234-247.
Brooks, S.J., Cedernaes, J. & Schiöth, H.B. (2013) Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PLoS One, 8, e60393.
Voigt, D.C., Dillard, J.P., Braddock, K.H., Anderson, J.W., Sopory, P. & Stephenson, M.T. (2009) Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours. Pers. Indiv. Differ., 47, 89-93.
Fredriksson, R., Hägglund, M., Olszewski, P.K., Stephansson, O., Jacobsson, J.A., Olszewska, A.M. & Schiöth, H.B. (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149, 2062-2071.
Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. & Preissl, H. (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp., 33, 1052-1061.
Tomasi, D., Wang, G.-J., Wang, R., Caparelli, E.C., Logan, J. & Volkow, N.D. (2015) Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers. Hum. Brain Mapp., 36, 120-136.
Lê, S., Rennes, A., Josse, J., Rennes, A., Husson, F. & Rennes, A. (2008) FactoMineR: an R package for multivariate analysis. J. Stat. Softw., 25, 1-18.
Leech, R. & Sharp, D.J. (2014) The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12-32.
Frederiksen, H., Skakkebaek, N.E. & Andersson, A.-M. (2007) Metabolism of phthalates in humans. Mol. Nutr. Food Res., 51, 899-911.
Batterink, L., Yokum, S. & Stice, E. (2010) Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage, 52, 1696-1703.
Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J. & Abecasis, G.R. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., 3, e115.
Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., von Deneen, K.M. & Liu, Y. (2015) Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci. Lett., 584, 156-161.
Cole, J.H., Boyle, C.P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P. ... Fu, C.H.Y. (2013) Body mass index, but not FTO genotype or major depressive disorder, influences brain structure. Neuroscience, 252, 109-117.
Meule, A. (2013) Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale. Front. Psychol., 4, 177.
Gerlach, G., Herpertz, S. & Loeber, S. (2015) Personality traits and obesity: a systematic review. Obes. Rev., 16, 32-63.
Sevgi, M., Rigoux, L., Kühn, A.B., Mauer, J., Schilbach, L., Hess, M.E. & Tittgemeyer, M. (2015) An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J. Neurosci., 35, 12584-12592.
Volkow, N.D., Wang, G.-J., Tomasi, D. & Baler, R.D. (2013) Obesity and addiction: neurobiological overlaps. Obes. Rev., 14, 2-18.
Yeo, G.S.H. (2014) The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition. Mol. Cell. Endocrinol., 397, 34-41.
Beaver, J.D., Lawrence, A.D., van Ditzhuijzen, J., Davis, M.H., Woods, A. & Calder, A.J. (2006) Individual differences in reward drive predict neural responses to images of food. J. Neurosci., 26, 5160-5166.
Jastreboff, A.M., Lacadie, C., Seo, D., Kubat, J., Name, M.A.V., Giannini, C. & Sinha, R. (2014) Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37, 3061-3068.
de Groot, C., Felius, A., Trompet, S., de Craen, A.J.M., Blauw, G.J., van Buchem, M.A. & van der Grond, J. (2015) Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23, 2118-2122.
Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F. & Fritsche, A. (2014) Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol. Metab., 3, 109-113.
Sällman Almén, M., Rask-Andersen, M., Jacobsson, J.A., Ameur, A., Kalnina, I., Moschonis, G. & Schiöth, H.B. (2013) Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int. J. Obesity, 37, 424-431.
Delgado, M.R. (2007) Reward-related responses in the human striatum. Ann. N. Y. Acad. Sci., 1104, 70-88.
Tung, Y.-C.L., Ayuso, E., Shan, X., Bosch, F., O'Rahilly, S., Coll, A.P. & Yeo, G.S.H. (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One, 5, e8771.
Carver, C.S. & White, T.L. (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol., 67, 319-333.
Gearhardt, A.N., Yokum, S., Stice, E., Harris, J.L. & Brownell, K.D. (2014) Relation of obesity to neural activation in response to food commercials. Soc. Cogn. Affect. Neur., 9, 932-938.
Gearhardt, A.N., Yokum, S., Orr, P.T., Stice, E., Corbin, W.R. & Brownell, K.D. (2011) Neural correlates of food addiction. Arch. Gen. Psychiat., 68, 808-816.
Goldstone, A.P., Prechtl de Hernandez, C.G., Beaver, J.D., Muhammed, K., Croese, C., Bell, G. ... Bell, J.D. (2009) Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci., 30, 1625-1635.
Olszewski, P.K., Fredriksson, R., Olszewska, A.M., Stephansson, O., Alsiö, J., Radomska, K.J. & Schiöth, H.B. (2009) Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci., 10, 129.
2007; 39
2015; 35
2009; 47
2015; 36
2015; 39
2015; 16
2013; 4
2007; 1104
2015; 584
1994; 67
2013; 123
2013; 246
2008; 149
2007; 51
2003; 19
2013; 8
2014; 397
2012; 33
2014; 137
2007; 28
2015; 23
2014; 5
2007; 316
2009; 30
2013; 37
2013; 14
2014; 3
2009; 10
1999; 19
2013; 75
2006; 26
2008; 25
2014; 37
2011; 68
2013; 252
2007; 3
2014; 9
2010; 5
2010; 52
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Singh M. (e_1_2_7_33_1) 2014; 5
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Dietrich A. (e_1_2_7_9_1) 2014; 5
References_xml – reference: Brooks, S.J., Cedernaes, J. & Schiöth, H.B. (2013) Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PLoS One, 8, e60393.
– reference: Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. (2014) Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Eat. Behav., 5, 1073.
– reference: Olszewski, P.K., Fredriksson, R., Olszewska, A.M., Stephansson, O., Alsiö, J., Radomska, K.J. & Schiöth, H.B. (2009) Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci., 10, 129.
– reference: Gerlach, G., Herpertz, S. & Loeber, S. (2015) Personality traits and obesity: a systematic review. Obes. Rev., 16, 32-63.
– reference: Singh, M. (2014) Mood, food, and obesity. Eat. Behav., 5, 925.
– reference: Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P. & Froguel, P. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet., 39, 724-726.
– reference: Batterink, L., Yokum, S. & Stice, E. (2010) Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage, 52, 1696-1703.
– reference: Speakman, J.R. (2013) Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum. Hered., 75, 57-79.
– reference: Sällman Almén, M., Rask-Andersen, M., Jacobsson, J.A., Ameur, A., Kalnina, I., Moschonis, G. & Schiöth, H.B. (2013) Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int. J. Obesity, 37, 424-431.
– reference: Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894.
– reference: Tung, Y.-C.L., Ayuso, E., Shan, X., Bosch, F., O'Rahilly, S., Coll, A.P. & Yeo, G.S.H. (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One, 5, e8771.
– reference: Meule, A. (2013) Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale. Front. Psychol., 4, 177.
– reference: Yeo, G.S.H. (2014) The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition. Mol. Cell. Endocrinol., 397, 34-41.
– reference: Boutelle, K.N., Wierenga, C.E., Bischoff-Grethe, A., Melrose, A.J., Grenesko-Stevens, E., Paulus, M.P. & Kaye, W.H. (2015) Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int. J. Obesity, 39, 620-628.
– reference: Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., von Deneen, K.M. & Liu, Y. (2015) Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci. Lett., 584, 156-161.
– reference: Gearhardt, A.N., Yokum, S., Stice, E., Harris, J.L. & Brownell, K.D. (2014) Relation of obesity to neural activation in response to food commercials. Soc. Cogn. Affect. Neur., 9, 932-938.
– reference: Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F. & Fritsche, A. (2014) Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol. Metab., 3, 109-113.
– reference: Fredriksson, R., Hägglund, M., Olszewski, P.K., Stephansson, O., Jacobsson, J.A., Olszewska, A.M. & Schiöth, H.B. (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149, 2062-2071.
– reference: Maldjian, J.A., Laurienti, P.J., Kraft, R.A. & Burdette, J.H. (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233-1239.
– reference: Beaver, J.D., Lawrence, A.D., van Ditzhuijzen, J., Davis, M.H., Woods, A. & Calder, A.J. (2006) Individual differences in reward drive predict neural responses to images of food. J. Neurosci., 26, 5160-5166.
– reference: Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V. & Evans, A.C. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci., 19, 5506-5513.
– reference: Jastreboff, A.M., Lacadie, C., Seo, D., Kubat, J., Name, M.A.V., Giannini, C. & Sinha, R. (2014) Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37, 3061-3068.
– reference: Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. & Preissl, H. (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp., 33, 1052-1061.
– reference: Leech, R. & Sharp, D.J. (2014) The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12-32.
– reference: Tomasi, D., Wang, G.-J., Wang, R., Caparelli, E.C., Logan, J. & Volkow, N.D. (2015) Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers. Hum. Brain Mapp., 36, 120-136.
– reference: Delgado, M.R. (2007) Reward-related responses in the human striatum. Ann. N. Y. Acad. Sci., 1104, 70-88.
– reference: Schienle, A. & Scharmüller, W. (2013) Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience, 246, 375-381.
– reference: Frederiksen, H., Skakkebaek, N.E. & Andersson, A.-M. (2007) Metabolism of phthalates in humans. Mol. Nutr. Food Res., 51, 899-911.
– reference: Sevgi, M., Rigoux, L., Kühn, A.B., Mauer, J., Schilbach, L., Hess, M.E. & Tittgemeyer, M. (2015) An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J. Neurosci., 35, 12584-12592.
– reference: Yu, Y.-H., Vasselli, J.R., Zhang, Y., Mechanick, J.I., Korner, J. & Peterli, R. (2015) Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes. Rev., 16, 234-247.
– reference: Volkow, N.D., Wang, G.-J., Tomasi, D. & Baler, R.D. (2013) Obesity and addiction: neurobiological overlaps. Obes. Rev., 14, 2-18.
– reference: de Groot, C., Felius, A., Trompet, S., de Craen, A.J.M., Blauw, G.J., van Buchem, M.A. & van der Grond, J. (2015) Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23, 2118-2122.
– reference: Carver, C.S. & White, T.L. (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol., 67, 319-333.
– reference: Zhu, J.-N. & Wang, J.-J. (2007) The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol., 28, 469-478.
– reference: Cole, J.H., Boyle, C.P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P. ... Fu, C.H.Y. (2013) Body mass index, but not FTO genotype or major depressive disorder, influences brain structure. Neuroscience, 252, 109-117.
– reference: Voigt, D.C., Dillard, J.P., Braddock, K.H., Anderson, J.W., Sopory, P. & Stephenson, M.T. (2009) Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours. Pers. Indiv. Differ., 47, 89-93.
– reference: Gearhardt, A.N., Yokum, S., Orr, P.T., Stice, E., Corbin, W.R. & Brownell, K.D. (2011) Neural correlates of food addiction. Arch. Gen. Psychiat., 68, 808-816.
– reference: Lê, S., Rennes, A., Josse, J., Rennes, A., Husson, F. & Rennes, A. (2008) FactoMineR: an R package for multivariate analysis. J. Stat. Softw., 25, 1-18.
– reference: Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J. & Abecasis, G.R. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., 3, e115.
– reference: Goldstone, A.P., Prechtl de Hernandez, C.G., Beaver, J.D., Muhammed, K., Croese, C., Bell, G. ... Bell, J.D. (2009) Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci., 30, 1625-1635.
– reference: Karra, E., O'Daly, O.G., Choudhury, A.I., Yousseif, A., Millership, S., Neary, M.T. & Batterham, R.L. (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Invest., 123, 3539-3551.
– volume: 1104
  start-page: 70
  year: 2007
  end-page: 88
  article-title: Reward‐related responses in the human striatum
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 28
  start-page: 469
  year: 2007
  end-page: 478
  article-title: The cerebellum in feeding control: possible function and mechanism
  publication-title: Cell. Mol. Neurobiol.
– volume: 39
  start-page: 724
  year: 2007
  end-page: 726
  article-title: Variation in FTO contributes to childhood obesity and severe adult obesity
  publication-title: Nat. Genet.
– volume: 19
  start-page: 1233
  year: 2003
  end-page: 1239
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets
  publication-title: NeuroImage
– volume: 30
  start-page: 1625
  year: 2009
  end-page: 1635
  article-title: Fasting biases brain reward systems towards high‐calorie foods
  publication-title: Eur. J. Neurosci.
– volume: 37
  start-page: 3061
  year: 2014
  end-page: 3068
  article-title: Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity
  publication-title: Diabetes Care
– volume: 137
  start-page: 12
  year: 2014
  end-page: 32
  article-title: The role of the posterior cingulate cortex in cognition and disease
  publication-title: Brain
– volume: 25
  start-page: 1
  year: 2008
  end-page: 18
  article-title: FactoMineR: an R package for multivariate analysis
  publication-title: J. Stat. Softw.
– volume: 23
  start-page: 2118
  year: 2015
  end-page: 2122
  article-title: Association of the fat mass and obesity‐associated gene risk allele, rs9939609A, and reward‐related brain structures
  publication-title: Obesity
– volume: 123
  start-page: 3539
  year: 2013
  end-page: 3551
  article-title: A link between FTO, ghrelin, and impaired brain food‐cue responsivity
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 2
  year: 2013
  end-page: 18
  article-title: Obesity and addiction: neurobiological overlaps
  publication-title: Obes. Rev.
– volume: 9
  start-page: 932
  year: 2014
  end-page: 938
  article-title: Relation of obesity to neural activation in response to food commercials
  publication-title: Soc. Cogn. Affect. Neur.
– volume: 10
  start-page: 129
  year: 2009
  article-title: Hypothalamic FTO is associated with the regulation of energy intake not feeding reward
  publication-title: BMC Neurosci.
– volume: 3
  start-page: 109
  year: 2014
  end-page: 113
  article-title: Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex
  publication-title: Mol. Metab.
– volume: 35
  start-page: 12584
  year: 2015
  end-page: 12592
  article-title: An obesity‐predisposing variant of the FTO gene regulates D2R‐dependent reward learning
  publication-title: J. Neurosci.
– volume: 584
  start-page: 156
  year: 2015
  end-page: 161
  article-title: Altered baseline brain activities before food intake in obese men: a resting state fMRI study
  publication-title: Neurosci. Lett.
– volume: 4
  start-page: 177
  year: 2013
  article-title: Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale
  publication-title: Front. Psychol.
– volume: 75
  start-page: 57
  year: 2013
  end-page: 79
  article-title: Functional analysis of seven genes linked to body mass index and adiposity by genome‐wide association studies: a review
  publication-title: Hum. Hered.
– volume: 47
  start-page: 89
  year: 2009
  end-page: 93
  article-title: Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours
  publication-title: Pers. Indiv. Differ.
– volume: 26
  start-page: 5160
  year: 2006
  end-page: 5166
  article-title: Individual differences in reward drive predict neural responses to images of food
  publication-title: J. Neurosci.
– volume: 19
  start-page: 5506
  year: 1999
  end-page: 5513
  article-title: Brain mechanisms of propofol‐induced loss of consciousness in humans: a positron emission tomographic study
  publication-title: J. Neurosci.
– volume: 33
  start-page: 1052
  year: 2012
  end-page: 1061
  article-title: The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity
  publication-title: Hum. Brain Mapp.
– volume: 8
  start-page: e60393
  year: 2013
  article-title: Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta‐analysis of fMRI studies
  publication-title: PLoS One
– volume: 5
  start-page: 925
  year: 2014
  article-title: Mood, food, and obesity
  publication-title: Eat. Behav.
– volume: 246
  start-page: 375
  year: 2013
  end-page: 381
  article-title: Cerebellar activity and connectivity during the experience of disgust and happiness
  publication-title: Neuroscience
– volume: 252
  start-page: 109
  year: 2013
  end-page: 117
  article-title: Body mass index, but not FTO genotype or major depressive disorder, influences brain structure
  publication-title: Neuroscience
– volume: 16
  start-page: 32
  year: 2015
  end-page: 63
  article-title: Personality traits and obesity: a systematic review
  publication-title: Obes. Rev.
– volume: 39
  start-page: 620
  year: 2015
  end-page: 628
  article-title: Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated
  publication-title: Int. J. Obesity
– volume: 16
  start-page: 234
  year: 2015
  end-page: 247
  article-title: Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications
  publication-title: Obes. Rev.
– volume: 397
  start-page: 34
  year: 2014
  end-page: 41
  article-title: The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition
  publication-title: Mol. Cell. Endocrinol.
– volume: 149
  start-page: 2062
  year: 2008
  end-page: 2071
  article-title: The obesity gene, FTO, is of ancient origin, up‐regulated during food deprivation and expressed in neurons of feeding‐related nuclei of the brain
  publication-title: Endocrinology
– volume: 5
  start-page: 1073
  year: 2014
  article-title: Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies
  publication-title: Eat. Behav.
– volume: 36
  start-page: 120
  year: 2015
  end-page: 136
  article-title: Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers
  publication-title: Hum. Brain Mapp.
– volume: 67
  start-page: 319
  year: 1994
  end-page: 333
  article-title: Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales
  publication-title: J. Pers. Soc. Psychol.
– volume: 51
  start-page: 899
  year: 2007
  end-page: 911
  article-title: Metabolism of phthalates in humans
  publication-title: Mol. Nutr. Food Res.
– volume: 37
  start-page: 424
  year: 2013
  end-page: 431
  article-title: Determination of the obesity‐associated gene variants within the entire FTO gene by ultra‐deep targeted sequencing in obese and lean children
  publication-title: Int. J. Obesity
– volume: 316
  start-page: 889
  year: 2007
  end-page: 894
  article-title: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity
  publication-title: Science
– volume: 5
  start-page: e8771
  year: 2010
  article-title: Hypothalamic‐specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats
  publication-title: PLoS One
– volume: 52
  start-page: 1696
  year: 2010
  end-page: 1703
  article-title: Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study
  publication-title: NeuroImage
– volume: 3
  start-page: e115
  year: 2007
  article-title: Genome‐wide association scan shows genetic variants in the FTO gene are associated with obesity‐related traits
  publication-title: PLoS Genet.
– volume: 68
  start-page: 808
  year: 2011
  end-page: 816
  article-title: Neural correlates of food addiction
  publication-title: Arch. Gen. Psychiat.
– ident: e_1_2_7_14_1
  doi: 10.1210/en.2007-1457
– ident: e_1_2_7_24_1
  doi: 10.18637/jss.v025.i01
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pgen.0030115
– ident: e_1_2_7_6_1
  doi: 10.1037/0022-3514.67.2.319
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1141634
– ident: e_1_2_7_29_1
  doi: 10.1038/ijo.2012.57
– ident: e_1_2_7_3_1
  doi: 10.1523/JNEUROSCI.0350-06.2006
– ident: e_1_2_7_23_1
  doi: 10.1002/hbm.21268
– ident: e_1_2_7_13_1
  doi: 10.1002/mnfr.200600243
– ident: e_1_2_7_15_1
  doi: 10.1001/archgenpsychiatry.2011.32
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1460-9568.2009.06949.x
– ident: e_1_2_7_11_1
  doi: 10.1523/JNEUROSCI.19-13-05506.1999
– ident: e_1_2_7_27_1
  doi: 10.3389/fpsyg.2013.00177
– ident: e_1_2_7_40_1
  doi: 10.1111/obr.12246
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1467-789X.2012.01031.x
– ident: e_1_2_7_25_1
  doi: 10.1093/brain/awt162
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroscience.2013.04.048
– ident: e_1_2_7_26_1
  doi: 10.1016/S1053-8119(03)00169-1
– ident: e_1_2_7_28_1
  doi: 10.1186/1471-2202-10-129
– ident: e_1_2_7_37_1
  doi: 10.1016/j.paid.2009.02.003
– ident: e_1_2_7_35_1
  doi: 10.1002/hbm.22617
– ident: e_1_2_7_39_1
  doi: 10.1016/j.mce.2014.09.012
– volume: 5
  start-page: 925
  year: 2014
  ident: e_1_2_7_33_1
  article-title: Mood, food, and obesity
  publication-title: Eat. Behav.
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0060393
– ident: e_1_2_7_42_1
  doi: 10.1007/s10571-007-9236-z
– ident: e_1_2_7_8_1
  doi: 10.1196/annals.1390.002
– ident: e_1_2_7_34_1
  doi: 10.1159/000353585
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neulet.2014.10.020
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroscience.2013.07.015
– ident: e_1_2_7_36_1
  doi: 10.1371/journal.pone.0008771
– ident: e_1_2_7_4_1
  doi: 10.1038/ijo.2014.206
– ident: e_1_2_7_32_1
  doi: 10.1523/JNEUROSCI.1589-15.2015
– ident: e_1_2_7_22_1
  doi: 10.1172/JCI44403
– volume: 5
  start-page: 1073
  year: 2014
  ident: e_1_2_7_9_1
  article-title: Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies
  publication-title: Eat. Behav.
– ident: e_1_2_7_19_1
  doi: 10.1002/oby.21191
– ident: e_1_2_7_10_1
  doi: 10.1038/ng2048
– ident: e_1_2_7_16_1
  doi: 10.1093/scan/nst059
– ident: e_1_2_7_20_1
  doi: 10.1016/j.molmet.2013.11.009
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2010.05.059
– ident: e_1_2_7_17_1
  doi: 10.1111/obr.12235
– ident: e_1_2_7_21_1
  doi: 10.2337/dc14-0525
SSID ssj0008645
Score 2.3776705
Snippet Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss...
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1173
SubjectTerms Adult
Alleles
Alpha-Ketoglutarate-Dependent Dioxygenase FTO - genetics
Brain - physiology
Brain Mapping
Case-Control Studies
Emotions
fMRI
food
FTO
Humans
Imagination
Impulsive Behavior
Magnetic Resonance Imaging
Male
obesity
Obesity - genetics
Polymorphism, Single Nucleotide
Reward
SNP
Title An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images
URI https://api.istex.fr/ark:/67375/WNG-18H3BRQ2-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13177
https://www.ncbi.nlm.nih.gov/pubmed/26797854
https://www.proquest.com/docview/1784745723
https://www.proquest.com/docview/1787978575
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297286
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqsoANjxboUEAXBBULMprEiZ2I1fQxjLoYRNXCLJAsx3HQ0E5SzUwkYMUn8B_8FV_Cvc4DigpC7CLHSSbxte-x5_gcxp4IkzidJ28grPHCKLGexlTgGZNxaQIS4HRsi4kYn4SH02i6xl60e2FqfYhuwY16hhuvqYPrdPlLJ7cfir6P2Y92kvtckG7-_tFP6ahYOINiklPzYl9MG1UhYvF0V17IRVfos368DGh2KqIXAazLQKMb7F3722viyWm_WqV98_k3Wcf_fLmb7HqDTGFYh9IttmaLDbY5LHBWPv8EO-C4om4RfoNd3Wt94jbZt2EBZW0v8P3LV900t82AWOtAVi1nFmi5d1YAok0YHb8CjFoLuqaSgLMJhJS8KoC2WZCbBSCWBk2EeZjN3RShWLkyW9sOPafiCtM6NFx70AU-0RIHGPA-i5r6a2FV4mUlls1x4FzeZiejg-O9sddYQHgmFDj84eQxk5GJjYhy3-QcM7qObaCjVIsw4XmSZzIc6DDLAy5swLOIWy64yIQZcOun_A5bL8rCbjGwmoiTfmD8LA5zLrWRMoszhGShRVw06LFnbTAo0-ijk03HmWrnSdgoyjVKjz3uqp7XoiCXVdpxEdXV0ItTYtHJSL2dvFR-POa7R68Dtdtjj9qQU9h09IeNLmxZLZUvETuEkQz4X-vIRJLPao_dreO1e2Ig3Kmwx57WAdydIVHx_dmboSoX71VVqSCRQSzwE7ig_PNLqYPDiTu49-9Vt9k1RJmiZoneZ-urRWUfIJJbpQ9dl_0B4oBHEg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKuygbHi2P4XlBULEgo0mc2InEZlo6DKUMomrLbJDlcRw0tJOg6UQCVnwC_8Ff8SXc6zygqCDELnKcp699j52Tcxh7IEzidJ68nrDGC6PEehpTgWdMyqUJSIDTsS1GYngQ7oyj8RJ70vwLU-lDtAtu1DPceE0dnBakf-nl9n3e9TH9yXNsxX2fI0i091M8KhbOopgE1bzYF-NaV4h4PO2hp7LRCr3Yj2dBzVZH9DSEdTlocJG9be6-op4cdcvFpGs-_ybs-L-Pd4ldqMEp9KtousyWbL7G1vs5Tsxnn2ADHF3UrcOvsdWtxipunX3r51BUDgPfv3zVdYvbFIi4DuTWcmyBVnynOSDghMH-K8DAtaArNgk4p0CYkF0F0J8WZGgBCKdBE2cepjM3S8gXrsxWzkOPqbjEzA413R50jle0RAMGPM-8Yv9aWBR4WIFlMxw7T66wg8H2_tbQq10gPBMKHAFx_pjKyMRGRJlvMo5JXcc20NFEizDhWZKlMuzpMM0CLmzA04hbLrhIhelx60_4VbacF7m9zsBq4k76gfHTOMy41EbKNE4RlYUWoVGvwx410aBMLZFOTh3HqpkqYaMo1ygddr-t-qHSBTmr0oYLqbaGnh8RkU5G6s3omfLjId_cex2ozQ6718ScwqajbzY6t0V5onyJ8CGMZMD_WkcmkqxWO-xaFbDtFQPhdoUd9rCK4HYP6Yo_nR72VTF_p8pSBYkMYoGvwEXlnx9Kbe-M3MaNf696l60O91_uqt3noxc32XkEnaIijd5iy4t5aW8jsFtM7rj--wMmMksw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgEvXDYu5WoQTDyQqokdOxFP3aWUgQpMG_QByXJtB5WtydQ1EvDET-B_8K_4JZzjXGBoIMRb5Zw0TXzs89n98n2EPBAm9TpPQU84E_A4dYGGUhAYY5k0EQpwerbFSAz3-c44Hi-RJ827MJU-RLvhhiPDz9c4wI9s9ssgdx_ybgjVT54hK1xAmUREtPtTOyoR3qEY9dSCJBTjWlYIaTztqSeK0Qo-14-nIc1WRvQkgvUlaHCRvGt-fMU8OeiWi0nXfP5N1_E_7-4SuVBDU9qvcukyWXL5Klnr57Asn32i69STRf0u_Co5t9kYxa2Rb_2cFpW_wPcvX3Xd385SpK1T9Go5dBT3e6c5BbhJB3svKaSto7riklDvE0gnaFZB8T0LtLOgAKapRsY8nc78GiFf-DZX-Q49xuYS6jqtyfZU53BFhyRgCt8zr7i_ji4KOK2AthnMnMdXyP5ge29zGNQeEIHhAuY_WD1aGZvEiDgLTcagpOvERTqeaMFTlqWZlbynuc0iJlzEbMwcE0xYYXrMhRN2lSznRe6uE-o0MifDyIQ24RmT2khpEwuYjDsARr0OedQkgzK1QDr6dByqZqEEnaJ8p3TI_Tb0qFIFOS1o3WdUG6HnB0ijk7F6O3qqwmTINnZfR2qjQ-41Kaeg6_AfG527ojxWoQTwwGMZsb_GyFSi0WqHXKvytb1iJPwh3iEPqwRuj6Cq-Nb0TV8V8_eqLFWUyigR8Ah8Uv75ptT2zsh_uPHvoXfJ2VdbA_Xi2ej5TXIeEKeoGKO3yPJiXrrbgOoWkzt-9P4AFW9J3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+obesity%E2%80%90associated+risk+allele+within+the+FTO+gene+affects+human+brain+activity+for+areas+important+for+emotion%2C+impulse+control+and+reward+in+response+to+food+images&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Wiemerslage%2C+Lyle&rft.au=Nilsson%2C+Emil+K.&rft.au=Solstrand+Dahlberg%2C+Linda&rft.au=Ence%E2%80%90Eriksson%2C+Fia&rft.date=2016-05-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=43&rft.issue=9&rft.spage=1173&rft.epage=1180&rft_id=info:doi/10.1111%2Fejn.13177&rft.externalDBID=10.1111%252Fejn.13177&rft.externalDocID=EJN13177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon