An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined...
Saved in:
Published in | The European journal of neuroscience Vol. 43; no. 9; pp. 1173 - 1180 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Blackwell Publishing Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.13177 |
Cover
Abstract | Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via fMRI. In a whole‐brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non‐risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
Participants were shown images of high‐ or low‐calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity‐associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background. |
---|---|
AbstractList | Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low-or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via fMRI. In a whole‐brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non‐risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Participants were shown images of high‐ or low‐calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity‐associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background. Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (f MRI ). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low‐ or high‐calorie food while brain activity was measured via f MRI . In a whole‐brain analysis, we found that people with the FTO risk allele genotype ( AA ) had increased activity compared with the non‐risk ( TT ) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. Participants were shown images of high- or low-calorie food images while scanned via fMRI. Divergent patterns of neural activity were found between homozygous genotypes for an obesity-associated risk allele within the FTO gene (rs9939609). Areas included those important for emotion (cingulate cortex), impulse control (frontal gyri and lentiform nucleus), and reward (putamen). Thus, obesity may stem from differential functional processing regarding food depending on genetic background. |
Author | Ence-Eriksson, Fia Hogenkamp, Pleunie S. Nilsson, Emil K. Larsen, Anna L. Bandstein, Marcus Bylund, Simon B. A. Schiöth, Helgi B. Benedict, Christian Titova, Olga E. Olivo, Gaia Castillo, Sandra Wiemerslage, Lyle Brooks, Samantha J. Solstrand Dahlberg, Linda Larsson, Elna-Marie |
Author_xml | – sequence: 1 givenname: Lyle surname: Wiemerslage fullname: Wiemerslage, Lyle email: : Dr L. Wiemerslage, as above., lyle.wiemerslage@neuro.uu.se organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 2 givenname: Emil K. surname: Nilsson fullname: Nilsson, Emil K. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 3 givenname: Linda surname: Solstrand Dahlberg fullname: Solstrand Dahlberg, Linda organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 4 givenname: Fia surname: Ence-Eriksson fullname: Ence-Eriksson, Fia organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 5 givenname: Sandra surname: Castillo fullname: Castillo, Sandra organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 6 givenname: Anna L. surname: Larsen fullname: Larsen, Anna L. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 7 givenname: Simon B. A. surname: Bylund fullname: Bylund, Simon B. A. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 8 givenname: Pleunie S. surname: Hogenkamp fullname: Hogenkamp, Pleunie S. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 9 givenname: Gaia surname: Olivo fullname: Olivo, Gaia organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 10 givenname: Marcus surname: Bandstein fullname: Bandstein, Marcus organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 11 givenname: Olga E. surname: Titova fullname: Titova, Olga E. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 12 givenname: Elna-Marie surname: Larsson fullname: Larsson, Elna-Marie organization: Section of Neuroradiology, Department of Radiology, Uppsala University, Uppsala, Sweden – sequence: 13 givenname: Christian surname: Benedict fullname: Benedict, Christian organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden – sequence: 14 givenname: Samantha J. surname: Brooks fullname: Brooks, Samantha J. organization: Department of Psychiatry, University of Cape Town, Old Groote Schuur Hospital, Cape Town, South Africa – sequence: 15 givenname: Helgi B. surname: Schiöth fullname: Schiöth, Helgi B. organization: Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26797854$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297286$$DView record from Swedish Publication Index |
BookMark | eNqNkstu1DAUhi1URKeFBS-AvKRS0yZxbCfLaekFVLUClcvOcpyTGbeJHWyHYR6Jt8Rz6wKBhDeWjr__P9Y5_wHaM9YAQq-z9CSL5xQezElGMs6foUlWsDSpKCv30CStKEnKjH3bRwfeP6RpWrKCvkD7OeMVL2kxQb-mBtsavA7LRHpvlZYBGuy0f8Sy66ADvNBhrg0Oc8CX93d4BgawbFtQweP52EuDaycjIFXQP6IPbq3D0oH0WPeDdUGasK5Bb4O25nhVHjsPWFkTnO2wNLEjLKRrcPRx4Adr4nOwUWZjrZcz8C_R81ZG1avtfYg-X17cn18nN3dX78-nN4kqWMmToigbTlWpGG0z1RKARpaQS1pLVlSkrdqGF6ksmjYnDHLSUAKEEdYwlRLIanKIjje-fgHDWIvBxf5uKazU4p3-MhXWzcQ4irziecki_naDD85-H8EH0WuvoOukATt6kfFyPWtO_wcteEF5TiL6ZouOdQ_N0yd2i4vA6QZQznrvoBVKB7kab4jL6ESWilU0RIyGWEcjKo7-UOxM_8Zu3Re6g-W_QXHx4XanSDYK7QP8fFJI9ygYJ5yKr7dXIiuvydmnj7k4I78BA_zaLg |
CitedBy_id | crossref_primary_10_1038_s41398_017_0068_4 crossref_primary_10_1016_j_genrep_2021_101324 crossref_primary_10_1038_ijo_2017_43 crossref_primary_10_1080_27697061_2024_2406887 crossref_primary_10_1556_2006_8_2019_25 crossref_primary_10_1093_scan_nsz081 crossref_primary_10_1371_journal_pone_0173560 crossref_primary_10_1038_s41380_023_02025_y crossref_primary_10_1038_s41398_019_0617_0 crossref_primary_10_1097_MED_0000000000000324 crossref_primary_10_1371_journal_pone_0211937 crossref_primary_10_3389_adar_2023_10871 crossref_primary_10_1002_oby_23926 crossref_primary_10_1093_ajcn_nqy344 crossref_primary_10_1024_0939_5911_a000775 crossref_primary_10_1186_s13578_019_0330_y crossref_primary_10_1038_s44220_025_00396_5 crossref_primary_10_1080_1028415X_2021_1913316 crossref_primary_10_1073_pnas_1605548113 crossref_primary_10_1152_physrev_00032_2015 crossref_primary_10_1186_s12929_017_0372_6 crossref_primary_10_1016_j_physbeh_2023_114313 crossref_primary_10_1093_hmg_ddx128 crossref_primary_10_1038_s41598_019_53922_8 crossref_primary_10_3390_nu9111170 crossref_primary_10_1038_s41366_020_00702_4 crossref_primary_10_1007_s00406_020_01218_8 crossref_primary_10_1002_osp4_417 crossref_primary_10_1172_jci_insight_175967 crossref_primary_10_1097_MED_0000000000000340 crossref_primary_10_1111_jhn_12984 crossref_primary_10_1016_j_nicl_2019_101803 crossref_primary_10_3389_fendo_2023_1130203 crossref_primary_10_1038_s42003_021_02957_7 crossref_primary_10_12688_wellcomeopenres_16091_1 crossref_primary_10_1093_ajcn_nqx029 crossref_primary_10_12688_wellcomeopenres_16091_3 crossref_primary_10_1007_s13679_017_0282_7 crossref_primary_10_1038_s41537_017_0027_3 crossref_primary_10_12688_wellcomeopenres_16091_2 crossref_primary_10_1016_j_exger_2024_112463 |
Cites_doi | 10.1210/en.2007-1457 10.18637/jss.v025.i01 10.1371/journal.pgen.0030115 10.1037/0022-3514.67.2.319 10.1126/science.1141634 10.1038/ijo.2012.57 10.1523/JNEUROSCI.0350-06.2006 10.1002/hbm.21268 10.1002/mnfr.200600243 10.1001/archgenpsychiatry.2011.32 10.1111/j.1460-9568.2009.06949.x 10.1523/JNEUROSCI.19-13-05506.1999 10.3389/fpsyg.2013.00177 10.1111/obr.12246 10.1111/j.1467-789X.2012.01031.x 10.1093/brain/awt162 10.1016/j.neuroscience.2013.04.048 10.1016/S1053-8119(03)00169-1 10.1186/1471-2202-10-129 10.1016/j.paid.2009.02.003 10.1002/hbm.22617 10.1016/j.mce.2014.09.012 10.1371/journal.pone.0060393 10.1007/s10571-007-9236-z 10.1196/annals.1390.002 10.1159/000353585 10.1016/j.neulet.2014.10.020 10.1016/j.neuroscience.2013.07.015 10.1371/journal.pone.0008771 10.1038/ijo.2014.206 10.1523/JNEUROSCI.1589-15.2015 10.1172/JCI44403 10.1002/oby.21191 10.1038/ng2048 10.1093/scan/nst059 10.1016/j.molmet.2013.11.009 10.1016/j.neuroimage.2010.05.059 10.1111/obr.12235 10.2337/dc14-0525 |
ContentType | Journal Article |
Copyright | 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK ADTPV AOWAS DF2 |
DOI | 10.1111/ejn.13177 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
Editor | Foxe, John |
Editor_xml | – sequence: 16 givenname: John surname: Foxe fullname: Foxe, John |
EndPage | 1180 |
ExternalDocumentID | oai_DiVA_org_uu_297286 26797854 10_1111_ejn_13177 EJN13177 ark_67375_WNG_18H3BRQ2_B |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Swedish Brain Research Foundation – fundername: Swedish Research Council |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT RIG AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c4687-448d75c8c65f1cf3eeda8e2a5ba6493f9fd740a4df236e23d53e3636d6c03e1b3 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 06:55:50 EDT 2025 Fri Jul 11 13:53:17 EDT 2025 Fri Jul 11 01:20:21 EDT 2025 Thu Apr 03 07:07:14 EDT 2025 Tue Jul 01 03:02:13 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 15 06:20:16 EDT 2025 Sun Sep 21 06:16:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | FTO fMRI SNP food obesity |
Language | English |
License | 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4687-448d75c8c65f1cf3eeda8e2a5ba6493f9fd740a4df236e23d53e3636d6c03e1b3 |
Notes | istex:1F7F83BCFC1BA1F068B2E5826B504160DF998506 ark:/67375/WNG-18H3BRQ2-B ArticleID:EJN13177 Swedish Research Council Table S1. Interaction between BMI and genotype. Swedish Brain Research Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://researchonline.ljmu.ac.uk/id/eprint/9287/3/EJN-2015-09-23036_revizdManuscript.pdf |
PMID | 26797854 |
PQID | 1784745723 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_297286 proquest_miscellaneous_1787978575 proquest_miscellaneous_1784745723 pubmed_primary_26797854 crossref_citationtrail_10_1111_ejn_13177 crossref_primary_10_1111_ejn_13177 wiley_primary_10_1111_ejn_13177_EJN13177 istex_primary_ark_67375_WNG_18H3BRQ2_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Schienle, A. & Scharmüller, W. (2013) Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience, 246, 375-381. Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894. Speakman, J.R. (2013) Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum. Hered., 75, 57-79. Zhu, J.-N. & Wang, J.-J. (2007) The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol., 28, 469-478. Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P. & Froguel, P. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet., 39, 724-726. Maldjian, J.A., Laurienti, P.J., Kraft, R.A. & Burdette, J.H. (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233-1239. Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V. & Evans, A.C. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci., 19, 5506-5513. Boutelle, K.N., Wierenga, C.E., Bischoff-Grethe, A., Melrose, A.J., Grenesko-Stevens, E., Paulus, M.P. & Kaye, W.H. (2015) Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int. J. Obesity, 39, 620-628. Singh, M. (2014) Mood, food, and obesity. Eat. Behav., 5, 925. Karra, E., O'Daly, O.G., Choudhury, A.I., Yousseif, A., Millership, S., Neary, M.T. & Batterham, R.L. (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Invest., 123, 3539-3551. Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. (2014) Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Eat. Behav., 5, 1073. Yu, Y.-H., Vasselli, J.R., Zhang, Y., Mechanick, J.I., Korner, J. & Peterli, R. (2015) Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes. Rev., 16, 234-247. Brooks, S.J., Cedernaes, J. & Schiöth, H.B. (2013) Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PLoS One, 8, e60393. Voigt, D.C., Dillard, J.P., Braddock, K.H., Anderson, J.W., Sopory, P. & Stephenson, M.T. (2009) Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours. Pers. Indiv. Differ., 47, 89-93. Fredriksson, R., Hägglund, M., Olszewski, P.K., Stephansson, O., Jacobsson, J.A., Olszewska, A.M. & Schiöth, H.B. (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149, 2062-2071. Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. & Preissl, H. (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp., 33, 1052-1061. Tomasi, D., Wang, G.-J., Wang, R., Caparelli, E.C., Logan, J. & Volkow, N.D. (2015) Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers. Hum. Brain Mapp., 36, 120-136. Lê, S., Rennes, A., Josse, J., Rennes, A., Husson, F. & Rennes, A. (2008) FactoMineR: an R package for multivariate analysis. J. Stat. Softw., 25, 1-18. Leech, R. & Sharp, D.J. (2014) The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12-32. Frederiksen, H., Skakkebaek, N.E. & Andersson, A.-M. (2007) Metabolism of phthalates in humans. Mol. Nutr. Food Res., 51, 899-911. Batterink, L., Yokum, S. & Stice, E. (2010) Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage, 52, 1696-1703. Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J. & Abecasis, G.R. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., 3, e115. Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., von Deneen, K.M. & Liu, Y. (2015) Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci. Lett., 584, 156-161. Cole, J.H., Boyle, C.P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P. ... Fu, C.H.Y. (2013) Body mass index, but not FTO genotype or major depressive disorder, influences brain structure. Neuroscience, 252, 109-117. Meule, A. (2013) Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale. Front. Psychol., 4, 177. Gerlach, G., Herpertz, S. & Loeber, S. (2015) Personality traits and obesity: a systematic review. Obes. Rev., 16, 32-63. Sevgi, M., Rigoux, L., Kühn, A.B., Mauer, J., Schilbach, L., Hess, M.E. & Tittgemeyer, M. (2015) An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J. Neurosci., 35, 12584-12592. Volkow, N.D., Wang, G.-J., Tomasi, D. & Baler, R.D. (2013) Obesity and addiction: neurobiological overlaps. Obes. Rev., 14, 2-18. Yeo, G.S.H. (2014) The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition. Mol. Cell. Endocrinol., 397, 34-41. Beaver, J.D., Lawrence, A.D., van Ditzhuijzen, J., Davis, M.H., Woods, A. & Calder, A.J. (2006) Individual differences in reward drive predict neural responses to images of food. J. Neurosci., 26, 5160-5166. Jastreboff, A.M., Lacadie, C., Seo, D., Kubat, J., Name, M.A.V., Giannini, C. & Sinha, R. (2014) Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37, 3061-3068. de Groot, C., Felius, A., Trompet, S., de Craen, A.J.M., Blauw, G.J., van Buchem, M.A. & van der Grond, J. (2015) Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23, 2118-2122. Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F. & Fritsche, A. (2014) Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol. Metab., 3, 109-113. Sällman Almén, M., Rask-Andersen, M., Jacobsson, J.A., Ameur, A., Kalnina, I., Moschonis, G. & Schiöth, H.B. (2013) Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int. J. Obesity, 37, 424-431. Delgado, M.R. (2007) Reward-related responses in the human striatum. Ann. N. Y. Acad. Sci., 1104, 70-88. Tung, Y.-C.L., Ayuso, E., Shan, X., Bosch, F., O'Rahilly, S., Coll, A.P. & Yeo, G.S.H. (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One, 5, e8771. Carver, C.S. & White, T.L. (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol., 67, 319-333. Gearhardt, A.N., Yokum, S., Stice, E., Harris, J.L. & Brownell, K.D. (2014) Relation of obesity to neural activation in response to food commercials. Soc. Cogn. Affect. Neur., 9, 932-938. Gearhardt, A.N., Yokum, S., Orr, P.T., Stice, E., Corbin, W.R. & Brownell, K.D. (2011) Neural correlates of food addiction. Arch. Gen. Psychiat., 68, 808-816. Goldstone, A.P., Prechtl de Hernandez, C.G., Beaver, J.D., Muhammed, K., Croese, C., Bell, G. ... Bell, J.D. (2009) Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci., 30, 1625-1635. Olszewski, P.K., Fredriksson, R., Olszewska, A.M., Stephansson, O., Alsiö, J., Radomska, K.J. & Schiöth, H.B. (2009) Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci., 10, 129. 2007; 39 2015; 35 2009; 47 2015; 36 2015; 39 2015; 16 2013; 4 2007; 1104 2015; 584 1994; 67 2013; 123 2013; 246 2008; 149 2007; 51 2003; 19 2013; 8 2014; 397 2012; 33 2014; 137 2007; 28 2015; 23 2014; 5 2007; 316 2009; 30 2013; 37 2013; 14 2014; 3 2009; 10 1999; 19 2013; 75 2006; 26 2008; 25 2014; 37 2011; 68 2013; 252 2007; 3 2014; 9 2010; 5 2010; 52 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Singh M. (e_1_2_7_33_1) 2014; 5 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Dietrich A. (e_1_2_7_9_1) 2014; 5 |
References_xml | – reference: Brooks, S.J., Cedernaes, J. & Schiöth, H.B. (2013) Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies. PLoS One, 8, e60393. – reference: Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. (2014) Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Eat. Behav., 5, 1073. – reference: Olszewski, P.K., Fredriksson, R., Olszewska, A.M., Stephansson, O., Alsiö, J., Radomska, K.J. & Schiöth, H.B. (2009) Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci., 10, 129. – reference: Gerlach, G., Herpertz, S. & Loeber, S. (2015) Personality traits and obesity: a systematic review. Obes. Rev., 16, 32-63. – reference: Singh, M. (2014) Mood, food, and obesity. Eat. Behav., 5, 925. – reference: Dina, C., Meyre, D., Gallina, S., Durand, E., Körner, A., Jacobson, P. & Froguel, P. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet., 39, 724-726. – reference: Batterink, L., Yokum, S. & Stice, E. (2010) Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage, 52, 1696-1703. – reference: Speakman, J.R. (2013) Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum. Hered., 75, 57-79. – reference: Sällman Almén, M., Rask-Andersen, M., Jacobsson, J.A., Ameur, A., Kalnina, I., Moschonis, G. & Schiöth, H.B. (2013) Determination of the obesity-associated gene variants within the entire FTO gene by ultra-deep targeted sequencing in obese and lean children. Int. J. Obesity, 37, 424-431. – reference: Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889-894. – reference: Tung, Y.-C.L., Ayuso, E., Shan, X., Bosch, F., O'Rahilly, S., Coll, A.P. & Yeo, G.S.H. (2010) Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS One, 5, e8771. – reference: Meule, A. (2013) Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale. Front. Psychol., 4, 177. – reference: Yeo, G.S.H. (2014) The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition. Mol. Cell. Endocrinol., 397, 34-41. – reference: Boutelle, K.N., Wierenga, C.E., Bischoff-Grethe, A., Melrose, A.J., Grenesko-Stevens, E., Paulus, M.P. & Kaye, W.H. (2015) Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int. J. Obesity, 39, 620-628. – reference: Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., von Deneen, K.M. & Liu, Y. (2015) Altered baseline brain activities before food intake in obese men: a resting state fMRI study. Neurosci. Lett., 584, 156-161. – reference: Gearhardt, A.N., Yokum, S., Stice, E., Harris, J.L. & Brownell, K.D. (2014) Relation of obesity to neural activation in response to food commercials. Soc. Cogn. Affect. Neur., 9, 932-938. – reference: Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F. & Fritsche, A. (2014) Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol. Metab., 3, 109-113. – reference: Fredriksson, R., Hägglund, M., Olszewski, P.K., Stephansson, O., Jacobsson, J.A., Olszewska, A.M. & Schiöth, H.B. (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology, 149, 2062-2071. – reference: Maldjian, J.A., Laurienti, P.J., Kraft, R.A. & Burdette, J.H. (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233-1239. – reference: Beaver, J.D., Lawrence, A.D., van Ditzhuijzen, J., Davis, M.H., Woods, A. & Calder, A.J. (2006) Individual differences in reward drive predict neural responses to images of food. J. Neurosci., 26, 5160-5166. – reference: Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V. & Evans, A.C. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci., 19, 5506-5513. – reference: Jastreboff, A.M., Lacadie, C., Seo, D., Kubat, J., Name, M.A.V., Giannini, C. & Sinha, R. (2014) Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37, 3061-3068. – reference: Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. & Preissl, H. (2012) The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp., 33, 1052-1061. – reference: Leech, R. & Sharp, D.J. (2014) The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12-32. – reference: Tomasi, D., Wang, G.-J., Wang, R., Caparelli, E.C., Logan, J. & Volkow, N.D. (2015) Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers. Hum. Brain Mapp., 36, 120-136. – reference: Delgado, M.R. (2007) Reward-related responses in the human striatum. Ann. N. Y. Acad. Sci., 1104, 70-88. – reference: Schienle, A. & Scharmüller, W. (2013) Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience, 246, 375-381. – reference: Frederiksen, H., Skakkebaek, N.E. & Andersson, A.-M. (2007) Metabolism of phthalates in humans. Mol. Nutr. Food Res., 51, 899-911. – reference: Sevgi, M., Rigoux, L., Kühn, A.B., Mauer, J., Schilbach, L., Hess, M.E. & Tittgemeyer, M. (2015) An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J. Neurosci., 35, 12584-12592. – reference: Yu, Y.-H., Vasselli, J.R., Zhang, Y., Mechanick, J.I., Korner, J. & Peterli, R. (2015) Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes. Rev., 16, 234-247. – reference: Volkow, N.D., Wang, G.-J., Tomasi, D. & Baler, R.D. (2013) Obesity and addiction: neurobiological overlaps. Obes. Rev., 14, 2-18. – reference: de Groot, C., Felius, A., Trompet, S., de Craen, A.J.M., Blauw, G.J., van Buchem, M.A. & van der Grond, J. (2015) Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23, 2118-2122. – reference: Carver, C.S. & White, T.L. (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol., 67, 319-333. – reference: Zhu, J.-N. & Wang, J.-J. (2007) The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol., 28, 469-478. – reference: Cole, J.H., Boyle, C.P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P. ... Fu, C.H.Y. (2013) Body mass index, but not FTO genotype or major depressive disorder, influences brain structure. Neuroscience, 252, 109-117. – reference: Voigt, D.C., Dillard, J.P., Braddock, K.H., Anderson, J.W., Sopory, P. & Stephenson, M.T. (2009) Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours. Pers. Indiv. Differ., 47, 89-93. – reference: Gearhardt, A.N., Yokum, S., Orr, P.T., Stice, E., Corbin, W.R. & Brownell, K.D. (2011) Neural correlates of food addiction. Arch. Gen. Psychiat., 68, 808-816. – reference: Lê, S., Rennes, A., Josse, J., Rennes, A., Husson, F. & Rennes, A. (2008) FactoMineR: an R package for multivariate analysis. J. Stat. Softw., 25, 1-18. – reference: Scuteri, A., Sanna, S., Chen, W.-M., Uda, M., Albai, G., Strait, J. & Abecasis, G.R. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet., 3, e115. – reference: Goldstone, A.P., Prechtl de Hernandez, C.G., Beaver, J.D., Muhammed, K., Croese, C., Bell, G. ... Bell, J.D. (2009) Fasting biases brain reward systems towards high-calorie foods. Eur. J. Neurosci., 30, 1625-1635. – reference: Karra, E., O'Daly, O.G., Choudhury, A.I., Yousseif, A., Millership, S., Neary, M.T. & Batterham, R.L. (2013) A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Invest., 123, 3539-3551. – volume: 1104 start-page: 70 year: 2007 end-page: 88 article-title: Reward‐related responses in the human striatum publication-title: Ann. N. Y. Acad. Sci. – volume: 28 start-page: 469 year: 2007 end-page: 478 article-title: The cerebellum in feeding control: possible function and mechanism publication-title: Cell. Mol. Neurobiol. – volume: 39 start-page: 724 year: 2007 end-page: 726 article-title: Variation in FTO contributes to childhood obesity and severe adult obesity publication-title: Nat. Genet. – volume: 19 start-page: 1233 year: 2003 end-page: 1239 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas‐based interrogation of fMRI data sets publication-title: NeuroImage – volume: 30 start-page: 1625 year: 2009 end-page: 1635 article-title: Fasting biases brain reward systems towards high‐calorie foods publication-title: Eur. J. Neurosci. – volume: 37 start-page: 3061 year: 2014 end-page: 3068 article-title: Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity publication-title: Diabetes Care – volume: 137 start-page: 12 year: 2014 end-page: 32 article-title: The role of the posterior cingulate cortex in cognition and disease publication-title: Brain – volume: 25 start-page: 1 year: 2008 end-page: 18 article-title: FactoMineR: an R package for multivariate analysis publication-title: J. Stat. Softw. – volume: 23 start-page: 2118 year: 2015 end-page: 2122 article-title: Association of the fat mass and obesity‐associated gene risk allele, rs9939609A, and reward‐related brain structures publication-title: Obesity – volume: 123 start-page: 3539 year: 2013 end-page: 3551 article-title: A link between FTO, ghrelin, and impaired brain food‐cue responsivity publication-title: J. Clin. Invest. – volume: 14 start-page: 2 year: 2013 end-page: 18 article-title: Obesity and addiction: neurobiological overlaps publication-title: Obes. Rev. – volume: 9 start-page: 932 year: 2014 end-page: 938 article-title: Relation of obesity to neural activation in response to food commercials publication-title: Soc. Cogn. Affect. Neur. – volume: 10 start-page: 129 year: 2009 article-title: Hypothalamic FTO is associated with the regulation of energy intake not feeding reward publication-title: BMC Neurosci. – volume: 3 start-page: 109 year: 2014 end-page: 113 article-title: Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex publication-title: Mol. Metab. – volume: 35 start-page: 12584 year: 2015 end-page: 12592 article-title: An obesity‐predisposing variant of the FTO gene regulates D2R‐dependent reward learning publication-title: J. Neurosci. – volume: 584 start-page: 156 year: 2015 end-page: 161 article-title: Altered baseline brain activities before food intake in obese men: a resting state fMRI study publication-title: Neurosci. Lett. – volume: 4 start-page: 177 year: 2013 article-title: Impulsivity and overeating: a closer look at the subscales of the Barratt Impulsiveness Scale publication-title: Front. Psychol. – volume: 75 start-page: 57 year: 2013 end-page: 79 article-title: Functional analysis of seven genes linked to body mass index and adiposity by genome‐wide association studies: a review publication-title: Hum. Hered. – volume: 47 start-page: 89 year: 2009 end-page: 93 article-title: Carver and White's (1994) BIS/BAS scales and their relationship to risky health behaviours publication-title: Pers. Indiv. Differ. – volume: 26 start-page: 5160 year: 2006 end-page: 5166 article-title: Individual differences in reward drive predict neural responses to images of food publication-title: J. Neurosci. – volume: 19 start-page: 5506 year: 1999 end-page: 5513 article-title: Brain mechanisms of propofol‐induced loss of consciousness in humans: a positron emission tomographic study publication-title: J. Neurosci. – volume: 33 start-page: 1052 year: 2012 end-page: 1061 article-title: The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity publication-title: Hum. Brain Mapp. – volume: 8 start-page: e60393 year: 2013 article-title: Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta‐analysis of fMRI studies publication-title: PLoS One – volume: 5 start-page: 925 year: 2014 article-title: Mood, food, and obesity publication-title: Eat. Behav. – volume: 246 start-page: 375 year: 2013 end-page: 381 article-title: Cerebellar activity and connectivity during the experience of disgust and happiness publication-title: Neuroscience – volume: 252 start-page: 109 year: 2013 end-page: 117 article-title: Body mass index, but not FTO genotype or major depressive disorder, influences brain structure publication-title: Neuroscience – volume: 16 start-page: 32 year: 2015 end-page: 63 article-title: Personality traits and obesity: a systematic review publication-title: Obes. Rev. – volume: 39 start-page: 620 year: 2015 end-page: 628 article-title: Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated publication-title: Int. J. Obesity – volume: 16 start-page: 234 year: 2015 end-page: 247 article-title: Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications publication-title: Obes. Rev. – volume: 397 start-page: 34 year: 2014 end-page: 41 article-title: The role of the FTO (Fat Mass and Obesity Related) locus in regulating body size and composition publication-title: Mol. Cell. Endocrinol. – volume: 149 start-page: 2062 year: 2008 end-page: 2071 article-title: The obesity gene, FTO, is of ancient origin, up‐regulated during food deprivation and expressed in neurons of feeding‐related nuclei of the brain publication-title: Endocrinology – volume: 5 start-page: 1073 year: 2014 article-title: Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies publication-title: Eat. Behav. – volume: 36 start-page: 120 year: 2015 end-page: 136 article-title: Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers publication-title: Hum. Brain Mapp. – volume: 67 start-page: 319 year: 1994 end-page: 333 article-title: Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales publication-title: J. Pers. Soc. Psychol. – volume: 51 start-page: 899 year: 2007 end-page: 911 article-title: Metabolism of phthalates in humans publication-title: Mol. Nutr. Food Res. – volume: 37 start-page: 424 year: 2013 end-page: 431 article-title: Determination of the obesity‐associated gene variants within the entire FTO gene by ultra‐deep targeted sequencing in obese and lean children publication-title: Int. J. Obesity – volume: 316 start-page: 889 year: 2007 end-page: 894 article-title: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity publication-title: Science – volume: 5 start-page: e8771 year: 2010 article-title: Hypothalamic‐specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats publication-title: PLoS One – volume: 52 start-page: 1696 year: 2010 end-page: 1703 article-title: Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study publication-title: NeuroImage – volume: 3 start-page: e115 year: 2007 article-title: Genome‐wide association scan shows genetic variants in the FTO gene are associated with obesity‐related traits publication-title: PLoS Genet. – volume: 68 start-page: 808 year: 2011 end-page: 816 article-title: Neural correlates of food addiction publication-title: Arch. Gen. Psychiat. – ident: e_1_2_7_14_1 doi: 10.1210/en.2007-1457 – ident: e_1_2_7_24_1 doi: 10.18637/jss.v025.i01 – ident: e_1_2_7_31_1 doi: 10.1371/journal.pgen.0030115 – ident: e_1_2_7_6_1 doi: 10.1037/0022-3514.67.2.319 – ident: e_1_2_7_12_1 doi: 10.1126/science.1141634 – ident: e_1_2_7_29_1 doi: 10.1038/ijo.2012.57 – ident: e_1_2_7_3_1 doi: 10.1523/JNEUROSCI.0350-06.2006 – ident: e_1_2_7_23_1 doi: 10.1002/hbm.21268 – ident: e_1_2_7_13_1 doi: 10.1002/mnfr.200600243 – ident: e_1_2_7_15_1 doi: 10.1001/archgenpsychiatry.2011.32 – ident: e_1_2_7_18_1 doi: 10.1111/j.1460-9568.2009.06949.x – ident: e_1_2_7_11_1 doi: 10.1523/JNEUROSCI.19-13-05506.1999 – ident: e_1_2_7_27_1 doi: 10.3389/fpsyg.2013.00177 – ident: e_1_2_7_40_1 doi: 10.1111/obr.12246 – ident: e_1_2_7_38_1 doi: 10.1111/j.1467-789X.2012.01031.x – ident: e_1_2_7_25_1 doi: 10.1093/brain/awt162 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroscience.2013.04.048 – ident: e_1_2_7_26_1 doi: 10.1016/S1053-8119(03)00169-1 – ident: e_1_2_7_28_1 doi: 10.1186/1471-2202-10-129 – ident: e_1_2_7_37_1 doi: 10.1016/j.paid.2009.02.003 – ident: e_1_2_7_35_1 doi: 10.1002/hbm.22617 – ident: e_1_2_7_39_1 doi: 10.1016/j.mce.2014.09.012 – volume: 5 start-page: 925 year: 2014 ident: e_1_2_7_33_1 article-title: Mood, food, and obesity publication-title: Eat. Behav. – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0060393 – ident: e_1_2_7_42_1 doi: 10.1007/s10571-007-9236-z – ident: e_1_2_7_8_1 doi: 10.1196/annals.1390.002 – ident: e_1_2_7_34_1 doi: 10.1159/000353585 – ident: e_1_2_7_41_1 doi: 10.1016/j.neulet.2014.10.020 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroscience.2013.07.015 – ident: e_1_2_7_36_1 doi: 10.1371/journal.pone.0008771 – ident: e_1_2_7_4_1 doi: 10.1038/ijo.2014.206 – ident: e_1_2_7_32_1 doi: 10.1523/JNEUROSCI.1589-15.2015 – ident: e_1_2_7_22_1 doi: 10.1172/JCI44403 – volume: 5 start-page: 1073 year: 2014 ident: e_1_2_7_9_1 article-title: Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies publication-title: Eat. Behav. – ident: e_1_2_7_19_1 doi: 10.1002/oby.21191 – ident: e_1_2_7_10_1 doi: 10.1038/ng2048 – ident: e_1_2_7_16_1 doi: 10.1093/scan/nst059 – ident: e_1_2_7_20_1 doi: 10.1016/j.molmet.2013.11.009 – ident: e_1_2_7_2_1 doi: 10.1016/j.neuroimage.2010.05.059 – ident: e_1_2_7_17_1 doi: 10.1111/obr.12235 – ident: e_1_2_7_21_1 doi: 10.2337/dc14-0525 |
SSID | ssj0008645 |
Score | 2.3776705 |
Snippet | Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight‐loss... Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1173 |
SubjectTerms | Adult Alleles Alpha-Ketoglutarate-Dependent Dioxygenase FTO - genetics Brain - physiology Brain Mapping Case-Control Studies Emotions fMRI food FTO Humans Imagination Impulsive Behavior Magnetic Resonance Imaging Male obesity Obesity - genetics Polymorphism, Single Nucleotide Reward SNP |
Title | An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images |
URI | https://api.istex.fr/ark:/67375/WNG-18H3BRQ2-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13177 https://www.ncbi.nlm.nih.gov/pubmed/26797854 https://www.proquest.com/docview/1784745723 https://www.proquest.com/docview/1787978575 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297286 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqsoANjxboUEAXBBULMprEiZ2I1fQxjLoYRNXCLJAsx3HQ0E5SzUwkYMUn8B_8FV_Cvc4DigpC7CLHSSbxte-x5_gcxp4IkzidJ28grPHCKLGexlTgGZNxaQIS4HRsi4kYn4SH02i6xl60e2FqfYhuwY16hhuvqYPrdPlLJ7cfir6P2Y92kvtckG7-_tFP6ahYOINiklPzYl9MG1UhYvF0V17IRVfos368DGh2KqIXAazLQKMb7F3722viyWm_WqV98_k3Wcf_fLmb7HqDTGFYh9IttmaLDbY5LHBWPv8EO-C4om4RfoNd3Wt94jbZt2EBZW0v8P3LV900t82AWOtAVi1nFmi5d1YAok0YHb8CjFoLuqaSgLMJhJS8KoC2WZCbBSCWBk2EeZjN3RShWLkyW9sOPafiCtM6NFx70AU-0RIHGPA-i5r6a2FV4mUlls1x4FzeZiejg-O9sddYQHgmFDj84eQxk5GJjYhy3-QcM7qObaCjVIsw4XmSZzIc6DDLAy5swLOIWy64yIQZcOun_A5bL8rCbjGwmoiTfmD8LA5zLrWRMoszhGShRVw06LFnbTAo0-ijk03HmWrnSdgoyjVKjz3uqp7XoiCXVdpxEdXV0ItTYtHJSL2dvFR-POa7R68Dtdtjj9qQU9h09IeNLmxZLZUvETuEkQz4X-vIRJLPao_dreO1e2Ig3Kmwx57WAdydIVHx_dmboSoX71VVqSCRQSzwE7ig_PNLqYPDiTu49-9Vt9k1RJmiZoneZ-urRWUfIJJbpQ9dl_0B4oBHEg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKuygbHi2P4XlBULEgo0mc2InEZlo6DKUMomrLbJDlcRw0tJOg6UQCVnwC_8Ff8SXc6zygqCDELnKcp699j52Tcxh7IEzidJ68nrDGC6PEehpTgWdMyqUJSIDTsS1GYngQ7oyj8RJ70vwLU-lDtAtu1DPceE0dnBakf-nl9n3e9TH9yXNsxX2fI0i091M8KhbOopgE1bzYF-NaV4h4PO2hp7LRCr3Yj2dBzVZH9DSEdTlocJG9be6-op4cdcvFpGs-_ybs-L-Pd4ldqMEp9KtousyWbL7G1vs5Tsxnn2ADHF3UrcOvsdWtxipunX3r51BUDgPfv3zVdYvbFIi4DuTWcmyBVnynOSDghMH-K8DAtaArNgk4p0CYkF0F0J8WZGgBCKdBE2cepjM3S8gXrsxWzkOPqbjEzA413R50jle0RAMGPM-8Yv9aWBR4WIFlMxw7T66wg8H2_tbQq10gPBMKHAFx_pjKyMRGRJlvMo5JXcc20NFEizDhWZKlMuzpMM0CLmzA04hbLrhIhelx60_4VbacF7m9zsBq4k76gfHTOMy41EbKNE4RlYUWoVGvwx410aBMLZFOTh3HqpkqYaMo1ygddr-t-qHSBTmr0oYLqbaGnh8RkU5G6s3omfLjId_cex2ozQ6718ScwqajbzY6t0V5onyJ8CGMZMD_WkcmkqxWO-xaFbDtFQPhdoUd9rCK4HYP6Yo_nR72VTF_p8pSBYkMYoGvwEXlnx9Kbe-M3MaNf696l60O91_uqt3noxc32XkEnaIijd5iy4t5aW8jsFtM7rj--wMmMksw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgEvXDYu5WoQTDyQqokdOxFP3aWUgQpMG_QByXJtB5WtydQ1EvDET-B_8K_4JZzjXGBoIMRb5Zw0TXzs89n98n2EPBAm9TpPQU84E_A4dYGGUhAYY5k0EQpwerbFSAz3-c44Hi-RJ827MJU-RLvhhiPDz9c4wI9s9ssgdx_ybgjVT54hK1xAmUREtPtTOyoR3qEY9dSCJBTjWlYIaTztqSeK0Qo-14-nIc1WRvQkgvUlaHCRvGt-fMU8OeiWi0nXfP5N1_E_7-4SuVBDU9qvcukyWXL5Klnr57Asn32i69STRf0u_Co5t9kYxa2Rb_2cFpW_wPcvX3Xd385SpK1T9Go5dBT3e6c5BbhJB3svKaSto7riklDvE0gnaFZB8T0LtLOgAKapRsY8nc78GiFf-DZX-Q49xuYS6jqtyfZU53BFhyRgCt8zr7i_ji4KOK2AthnMnMdXyP5ge29zGNQeEIHhAuY_WD1aGZvEiDgLTcagpOvERTqeaMFTlqWZlbynuc0iJlzEbMwcE0xYYXrMhRN2lSznRe6uE-o0MifDyIQ24RmT2khpEwuYjDsARr0OedQkgzK1QDr6dByqZqEEnaJ8p3TI_Tb0qFIFOS1o3WdUG6HnB0ijk7F6O3qqwmTINnZfR2qjQ-41Kaeg6_AfG527ojxWoQTwwGMZsb_GyFSi0WqHXKvytb1iJPwh3iEPqwRuj6Cq-Nb0TV8V8_eqLFWUyigR8Ah8Uv75ptT2zsh_uPHvoXfJ2VdbA_Xi2ej5TXIeEKeoGKO3yPJiXrrbgOoWkzt-9P4AFW9J3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+obesity%E2%80%90associated+risk+allele+within+the+FTO+gene+affects+human+brain+activity+for+areas+important+for+emotion%2C+impulse+control+and+reward+in+response+to+food+images&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Wiemerslage%2C+Lyle&rft.au=Nilsson%2C+Emil+K.&rft.au=Solstrand+Dahlberg%2C+Linda&rft.au=Ence%E2%80%90Eriksson%2C+Fia&rft.date=2016-05-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=43&rft.issue=9&rft.spage=1173&rft.epage=1180&rft_id=info:doi/10.1111%2Fejn.13177&rft.externalDBID=10.1111%252Fejn.13177&rft.externalDocID=EJN13177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |