Predictive Value of Computed Tomography Angiography–Determined Occlusion Type in Stent Retriever Thrombectomy

BACKGROUND AND PURPOSE—We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy. METHODS—Consecutive patients with stroke who underwent CTA and then endo...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 48; no. 10; pp. 2746 - 2752
Main Authors Baek, Jang-Hyun, Kim, Byung Moon, Yoo, Joonsang, Nam, Hyo Suk, Kim, Young Dae, Kim, Dong Joon, Heo, Ji Hoe, Bang, Oh Young
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.10.2017
Subjects
Online AccessGet full text
ISSN0039-2499
1524-4628
1524-4628
DOI10.1161/STROKEAHA.117.018096

Cover

Abstract BACKGROUND AND PURPOSE—We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy. METHODS—Consecutive patients with stroke who underwent CTA and then endovascular treatment for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography–determined occlusion type during endovascular treatment. Three rapidly- and readily-assessable pre-procedural findings (CTA-determined occlusion type, atrial fibrillation, and hyperdense artery sign), which may infer occlusion pathomechanism (embolic versus nonembolic) before endovascular treatment, were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 pre-procedural findings for SR success was compared with receiver operating characteristic curve analyses. RESULTS—A total of 238 patients (mean age, 70.0 years; male patients, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with digital subtraction angiography–determined occlusion type (P=0.453). Atrial fibrillation (odds ratio, 2.66; 95% confidence interval, 1.25–5.66) and CTA-determined branching-site occlusion (odds ratio, 8.20; confidence interval, 3.45–19.5) were independent predictors for SR success. For predicting SR success, the area under the receiver operating characteristic curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.594; P=0.038) and hyperdense artery sign (0.603; P=0.023). CONCLUSIONS—CTA-determined branching-site occlusion was significantly associated with SR success. Furthermore, among the 3 rapidly- and readily-assessable pre-procedural findings, CTA-determined branching-site occlusion had the greatest predictive power for SR success.
AbstractList We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy. Consecutive patients with stroke who underwent CTA and then endovascular treatment for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography-determined occlusion type during endovascular treatment. Three rapidly- and readily-assessable pre-procedural findings (CTA-determined occlusion type, atrial fibrillation, and hyperdense artery sign), which may infer occlusion pathomechanism (embolic versus nonembolic) before endovascular treatment, were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 pre-procedural findings for SR success was compared with receiver operating characteristic curve analyses. A total of 238 patients (mean age, 70.0 years; male patients, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with digital subtraction angiography-determined occlusion type ( =0.453). Atrial fibrillation (odds ratio, 2.66; 95% confidence interval, 1.25-5.66) and CTA-determined branching-site occlusion (odds ratio, 8.20; confidence interval, 3.45-19.5) were independent predictors for SR success. For predicting SR success, the area under the receiver operating characteristic curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.594; =0.038) and hyperdense artery sign (0.603; =0.023). CTA-determined branching-site occlusion was significantly associated with SR success. Furthermore, among the 3 rapidly- and readily-assessable pre-procedural findings, CTA-determined branching-site occlusion had the greatest predictive power for SR success.
We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy.BACKGROUND AND PURPOSEWe investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy.Consecutive patients with stroke who underwent CTA and then endovascular treatment for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography-determined occlusion type during endovascular treatment. Three rapidly- and readily-assessable pre-procedural findings (CTA-determined occlusion type, atrial fibrillation, and hyperdense artery sign), which may infer occlusion pathomechanism (embolic versus nonembolic) before endovascular treatment, were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 pre-procedural findings for SR success was compared with receiver operating characteristic curve analyses.METHODSConsecutive patients with stroke who underwent CTA and then endovascular treatment for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography-determined occlusion type during endovascular treatment. Three rapidly- and readily-assessable pre-procedural findings (CTA-determined occlusion type, atrial fibrillation, and hyperdense artery sign), which may infer occlusion pathomechanism (embolic versus nonembolic) before endovascular treatment, were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 pre-procedural findings for SR success was compared with receiver operating characteristic curve analyses.A total of 238 patients (mean age, 70.0 years; male patients, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with digital subtraction angiography-determined occlusion type (P=0.453). Atrial fibrillation (odds ratio, 2.66; 95% confidence interval, 1.25-5.66) and CTA-determined branching-site occlusion (odds ratio, 8.20; confidence interval, 3.45-19.5) were independent predictors for SR success. For predicting SR success, the area under the receiver operating characteristic curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.594; P=0.038) and hyperdense artery sign (0.603; P=0.023).RESULTSA total of 238 patients (mean age, 70.0 years; male patients, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with digital subtraction angiography-determined occlusion type (P=0.453). Atrial fibrillation (odds ratio, 2.66; 95% confidence interval, 1.25-5.66) and CTA-determined branching-site occlusion (odds ratio, 8.20; confidence interval, 3.45-19.5) were independent predictors for SR success. For predicting SR success, the area under the receiver operating characteristic curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.594; P=0.038) and hyperdense artery sign (0.603; P=0.023).CTA-determined branching-site occlusion was significantly associated with SR success. Furthermore, among the 3 rapidly- and readily-assessable pre-procedural findings, CTA-determined branching-site occlusion had the greatest predictive power for SR success.CONCLUSIONSCTA-determined branching-site occlusion was significantly associated with SR success. Furthermore, among the 3 rapidly- and readily-assessable pre-procedural findings, CTA-determined branching-site occlusion had the greatest predictive power for SR success.
BACKGROUND AND PURPOSE—We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment success using stent retriever (SR) thrombectomy. METHODS—Consecutive patients with stroke who underwent CTA and then endovascular treatment for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography–determined occlusion type during endovascular treatment. Three rapidly- and readily-assessable pre-procedural findings (CTA-determined occlusion type, atrial fibrillation, and hyperdense artery sign), which may infer occlusion pathomechanism (embolic versus nonembolic) before endovascular treatment, were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 pre-procedural findings for SR success was compared with receiver operating characteristic curve analyses. RESULTS—A total of 238 patients (mean age, 70.0 years; male patients, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with digital subtraction angiography–determined occlusion type (P=0.453). Atrial fibrillation (odds ratio, 2.66; 95% confidence interval, 1.25–5.66) and CTA-determined branching-site occlusion (odds ratio, 8.20; confidence interval, 3.45–19.5) were independent predictors for SR success. For predicting SR success, the area under the receiver operating characteristic curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.594; P=0.038) and hyperdense artery sign (0.603; P=0.023). CONCLUSIONS—CTA-determined branching-site occlusion was significantly associated with SR success. Furthermore, among the 3 rapidly- and readily-assessable pre-procedural findings, CTA-determined branching-site occlusion had the greatest predictive power for SR success.
Author Heo, Ji Hoe
Kim, Young Dae
Kim, Dong Joon
Nam, Hyo Suk
Bang, Oh Young
Yoo, Joonsang
Kim, Byung Moon
Baek, Jang-Hyun
AuthorAffiliation From the Department of Neurology, National Medical Center, Seoul, Korea (J.-H.B.); Departments of Radiology (B.M.K., D.J.K.) and Neurology (J.-H.B., J.Y., H.S.N., Y.D.K., J.H.H.), Yonsei University College of Medicine, Seoul, Korea; Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea (O.Y.B.); and Department of Neurology, Keimyung University College of Medicine, Daegu, Korea (J.Y.)
AuthorAffiliation_xml – name: From the Department of Neurology, National Medical Center, Seoul, Korea (J.-H.B.); Departments of Radiology (B.M.K., D.J.K.) and Neurology (J.-H.B., J.Y., H.S.N., Y.D.K., J.H.H.), Yonsei University College of Medicine, Seoul, Korea; Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea (O.Y.B.); and Department of Neurology, Keimyung University College of Medicine, Daegu, Korea (J.Y.)
Author_xml – sequence: 1
  givenname: Jang-Hyun
  surname: Baek
  fullname: Baek, Jang-Hyun
  organization: From the Department of Neurology, National Medical Center, Seoul, Korea (J.-H.B.); Departments of Radiology (B.M.K., D.J.K.) and Neurology (J.-H.B., J.Y., H.S.N., Y.D.K., J.H.H.), Yonsei University College of Medicine, Seoul, Korea; Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea (O.Y.B.); and Department of Neurology, Keimyung University College of Medicine, Daegu, Korea (J.Y.)
– sequence: 2
  givenname: Byung
  surname: Kim
  middlename: Moon
  fullname: Kim, Byung Moon
– sequence: 3
  givenname: Joonsang
  surname: Yoo
  fullname: Yoo, Joonsang
– sequence: 4
  givenname: Hyo
  surname: Nam
  middlename: Suk
  fullname: Nam, Hyo Suk
– sequence: 5
  givenname: Young
  surname: Kim
  middlename: Dae
  fullname: Kim, Young Dae
– sequence: 6
  givenname: Dong
  surname: Kim
  middlename: Joon
  fullname: Kim, Dong Joon
– sequence: 7
  givenname: Ji
  surname: Heo
  middlename: Hoe
  fullname: Heo, Ji Hoe
– sequence: 8
  givenname: Oh
  surname: Bang
  middlename: Young
  fullname: Bang, Oh Young
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28864601$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS3Uik4Lf4CQl2xS7Njx2OxGQ6EVlQa1gW3ksV86BidObafV7PgH_pAvaaqZdsECVs_POuct7j1GB33oAaE3lJxSKuj76_pq9eVscb6Y1vkpoZIo8QLNaFXygotSHqAZIUwVJVfqCB2n9IMQUjJZvURHpZSCC0JnKHyNYJ3J7g7wd-1HwKHFy9ANYwaL69CFm6iHzRYv-hu3f__59fsjZIid6ydmZYwfkws9rrcDYNfj6wx9xleQo4M7iLjexNCtweTQbV-hw1b7BK_38wR9-3RWL8-Ly9Xni-XisjBcSFEokOuKW2lbUJwJaZS2FiQwuQYoW045WKasopTPQfDHH1lNMLOaypZpdoLe7e4OMdyOkHLTuWTAe91DGFNDFRO0UrQSE_p2j47rDmwzRNfpuG2eQpoAvgNMDClFaJ8RSprHLprnLqZ13uy6mLQPf2nGZZ2npHLUzv9Pljv5Pvgp6vTTj_cQmw1onzf_Vh8AZvCk4Q
CitedBy_id crossref_primary_10_3389_fneur_2021_696042
crossref_primary_10_3389_fneur_2020_598216
crossref_primary_10_1177_1591019920949674
crossref_primary_10_1111_ene_70028
crossref_primary_10_1161_STROKEAHA_117_020072
crossref_primary_10_3389_fneur_2023_1280181
crossref_primary_10_3390_jcm9113759
crossref_primary_10_12677_ACM_2023_134924
crossref_primary_10_3390_jcm9092784
crossref_primary_10_1136_neurintsurg_2022_018946
crossref_primary_10_2174_0115672026356656241118065115
crossref_primary_10_1016_j_wneu_2019_06_112
crossref_primary_10_1016_j_metrad_2023_100021
crossref_primary_10_3389_fneur_2019_00215
crossref_primary_10_1161_SVIN_123_000850
crossref_primary_10_5692_clinicalneurol_cn_001255
crossref_primary_10_3389_fneur_2019_00298
crossref_primary_10_1159_000542388
crossref_primary_10_1161_SVIN_123_001303
crossref_primary_10_1136_neurintsurg_2019_015221
crossref_primary_10_1007_s11042_022_13735_w
crossref_primary_10_1097_JCMA_0000000000000434
crossref_primary_10_1111_cns_13729
crossref_primary_10_1186_s41016_020_00213_1
crossref_primary_10_3389_fneur_2023_1139756
crossref_primary_10_3389_fneur_2018_01195
crossref_primary_10_2301_neurosonology_33_14
crossref_primary_10_1016_j_wneu_2022_07_001
crossref_primary_10_1136_neurintsurg_2018_014696
crossref_primary_10_1097_RCT_0000000000001447
crossref_primary_10_1148_radiol_2020191227
crossref_primary_10_3389_fneur_2019_00308
crossref_primary_10_1177_17474930251318921
crossref_primary_10_1055_s_0043_1771207
crossref_primary_10_3171_2020_8_JNS202504
crossref_primary_10_3389_fmedt_2022_748949
crossref_primary_10_1159_000503001
crossref_primary_10_1161_SVIN_123_000881
crossref_primary_10_1161_STROKEAHA_118_022327
crossref_primary_10_3389_fneur_2023_1168004
crossref_primary_10_1007_s40120_021_00301_z
crossref_primary_10_3389_fneur_2024_1395764
Cites_doi 10.1161/STROKEAHA.112.674127
10.1161/STROKEAHA.110.605576
10.1016/S0140-6736(16)00163-X
10.5469/neuroint.2015.10.2.51
10.5853/jos.2014.16.3.105
10.1136/neurintsurg-2016-012391
10.1136/neurintsurg-2013-011017
10.5469/neuroint.2016.11.2.114
10.5469/neuroint.2015.10.1.22
10.1136/neurintsurg-2012-010313
10.1001/archneur.1986.00520010065026
10.1161/STROKEAHA.116.014073
10.1136/neurintsurg-2012-010395
10.5853/jos.2015.01347
10.1161/STROKEAHA.116.013046
10.1159/000108438
10.1159/000362435
10.1148/radiol.2273020530
10.1160/TH09-03-0199
10.1016/j.neurad.2014.01.124
10.1212/WNL.0000000000003202
10.1161/STR.0000000000000074
10.3174/ajnr.A2485
10.5853/jos.2015.17.3.268
10.1016/j.thromres.2012.04.008
10.1161/STROKEAHA.115.008781
10.3174/ajnr.A4402
ContentType Journal Article
Copyright 2017 American Heart Association, Inc.
Copyright_xml – notice: 2017 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/STROKEAHA.117.018096
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
EndPage 2752
ExternalDocumentID 28864601
10_1161_STROKEAHA_117_018096
10.1161/STROKEAHA.117.018096
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.XZ
.Z2
01R
0R~
123
1J1
2WC
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAUEB
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
DU5
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB3
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
ZB8
.3C
.55
.GJ
3O-
A9M
AAQQT
AAYJJ
AAYXX
ADFPA
ADGHP
ADNKB
AFFNX
AHRYX
AJNYG
BS7
CITATION
DUNZO
FW0
M18
N4W
N~M
OCUKA
ODA
ORVUJ
OUVQU
P-K
R58
T8P
X7M
YHZ
YQJ
YYP
ZGI
ZZMQN
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OJAPA
OLW
RHF
YCJ
7X8
AAFWJ
ADKSD
ADSXY
ID FETCH-LOGICAL-c4686-9e8b54d8dfe94368c9adde8e38bee2f414ed39d91147e642f4185dfe3da18f3a3
ISSN 0039-2499
1524-4628
IngestDate Sun Sep 28 00:57:39 EDT 2025
Wed Feb 19 02:40:58 EST 2025
Thu Apr 24 23:08:52 EDT 2025
Tue Jul 01 03:31:52 EDT 2025
Fri May 16 03:42:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords computed tomography angiography
angiography, digital subtraction
intracranial atherosclerosis
stroke
thrombectomy
Language English
License 2017 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4686-9e8b54d8dfe94368c9adde8e38bee2f414ed39d91147e642f4185dfe3da18f3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://stroke.ahajournals.org/content/48/10/2746.long
PMID 28864601
PQID 1936159156
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1936159156
pubmed_primary_28864601
crossref_primary_10_1161_STROKEAHA_117_018096
crossref_citationtrail_10_1161_STROKEAHA_117_018096
wolterskluwer_health_10_1161_STROKEAHA_117_018096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2017
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_21_2
  doi: 10.1161/STROKEAHA.112.674127
– ident: e_1_3_3_23_2
  doi: 10.1161/STROKEAHA.110.605576
– ident: e_1_3_3_3_2
  doi: 10.1016/S0140-6736(16)00163-X
– ident: e_1_3_3_5_2
  doi: 10.5469/neuroint.2015.10.2.51
– ident: e_1_3_3_15_2
  doi: 10.5853/jos.2014.16.3.105
– ident: e_1_3_3_17_2
  doi: 10.1136/neurintsurg-2016-012391
– ident: e_1_3_3_20_2
  doi: 10.1136/neurintsurg-2013-011017
– ident: e_1_3_3_10_2
  doi: 10.5469/neuroint.2016.11.2.114
– ident: e_1_3_3_11_2
  doi: 10.5469/neuroint.2015.10.1.22
– ident: e_1_3_3_16_2
  doi: 10.1136/neurintsurg-2012-010313
– ident: e_1_3_3_19_2
  doi: 10.1001/archneur.1986.00520010065026
– ident: e_1_3_3_7_2
  doi: 10.1161/STROKEAHA.116.014073
– ident: e_1_3_3_12_2
  doi: 10.1136/neurintsurg-2012-010395
– ident: e_1_3_3_9_2
  doi: 10.5853/jos.2015.01347
– ident: e_1_3_3_13_2
  doi: 10.1161/STROKEAHA.116.013046
– ident: e_1_3_3_18_2
  doi: 10.1159/000108438
– ident: e_1_3_3_8_2
  doi: 10.1159/000362435
– ident: e_1_3_3_22_2
  doi: 10.1148/radiol.2273020530
– ident: e_1_3_3_26_2
  doi: 10.1160/TH09-03-0199
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neurad.2014.01.124
– ident: e_1_3_3_6_2
  doi: 10.1212/WNL.0000000000003202
– ident: e_1_3_3_2_2
  doi: 10.1161/STR.0000000000000074
– ident: e_1_3_3_25_2
  doi: 10.3174/ajnr.A2485
– ident: e_1_3_3_4_2
  doi: 10.5853/jos.2015.17.3.268
– ident: e_1_3_3_28_2
  doi: 10.1016/j.thromres.2012.04.008
– ident: e_1_3_3_14_2
  doi: 10.1161/STROKEAHA.115.008781
– ident: e_1_3_3_27_2
  doi: 10.3174/ajnr.A4402
SSID ssj0002385
Score 2.4423516
Snippet BACKGROUND AND PURPOSE—We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict...
We investigated whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2746
SubjectTerms Aged
Aged, 80 and over
Computed Tomography Angiography - methods
Endovascular Procedures - methods
Female
Humans
Male
Middle Aged
Multidetector Computed Tomography - methods
Predictive Value of Tests
Retrospective Studies
Stents
Stroke - diagnostic imaging
Stroke - surgery
Thrombectomy - methods
Title Predictive Value of Computed Tomography Angiography–Determined Occlusion Type in Stent Retriever Thrombectomy
URI https://www.ncbi.nlm.nih.gov/pubmed/28864601
https://www.proquest.com/docview/1936159156
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB50BVFEvFtvjOBbydokk9tjV7sEXbe6TaU-hVxm6tI2kTZB1l_vOTPTJGWLrr6EMEw6JefLmfOd2xDyxhFg82cWN9Clb8CXODB8JjzkPAIeEI7LZbbFqRtO2YeZM2tTgmR1SZUeZr_21pX8j1RhDOSKVbL_INnmR2EA7kG-cAUJw_VKMv68xjCLTP75mixrSf_1MQ2YILPS7aj7w2J-ru-N9zr_BWaMs2xZo7esj2wUPR-TClMDzuQpW_A2-tH3dblK0bG_2gn_Tqp1uZDWqRl4g4434SjhC5V8W8yN8KLuxPgl8I5gaA6KpA3-fytV7AeGNoneRtE5rYAaXpSg2xZd3wTsd9sst0adWszA6le12-wZ0zqY-V2sDboa1VMuysuq3kVVP4nOxh9Hw3CI0edD2Y1sT2ft03F8PD05iaPRLLpOblge2FkYwP_SdpYH08WRvXX1v9NllrDK231r7Joxl7jJbXLnZ4npDpuFrHbo2CzRPXJXkw06VMi5T67x4gG5-UmnUzwkqxZAVAKIloJuAURbANH9AKINgCgCiJ4XVAKINgCiXQA9ItPjUfQuNPT5G0bGXN81Au6nDsv9XPAADyrIAtwMfW77KeeWYCbjuR3ksF0yjwOPFdgICSbbeWL6wk7sx-SgKAv-lFAgEUA9UuzvBpQ8NQPheBmzUzBwM094aY_Y29cZZ7o5PZ6RsowlSXXNuBECtqePlRB6xGie-qGas_xl_uutpGLQohgaSwpe1psYaAyY9oHpwJwnSoTNL1q-7zJ3YPaIuSPTWFUq_3HFZ1dY8Tm51X47L8hBta75S7B0q_SVhOhvbUymeQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Value+of+Computed+Tomography+Angiography-Determined+Occlusion+Type+in+Stent+Retriever+Thrombectomy&rft.jtitle=Stroke+%281970%29&rft.au=Baek%2C+Jang-Hyun&rft.au=Kim%2C+Byung+Moon&rft.au=Yoo%2C+Joonsang&rft.au=Nam%2C+Hyo+Suk&rft.date=2017-10-01&rft.issn=1524-4628&rft.eissn=1524-4628&rft.volume=48&rft.issue=10&rft.spage=2746&rft_id=info:doi/10.1161%2FSTROKEAHA.117.018096&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon