Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions
Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and sub...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 12458 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-90663-z |
Cover
Abstract | Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity. |
---|---|
AbstractList | Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced
signal propagation after perturbation of two distinct brain networks. For this purpose,
24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over
cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity. Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity. Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity. Abstract Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity. |
ArticleNumber | 12458 |
Author | Di Domenico, Alberto Fasolo, Mirco Momi, Davide Santarnecchi, Emiliano Boucher, Pierre Ozdemir, Recep A. Tadayon, Ehsan Pascual-Leone, Alvaro Shafi, Mouhsin M. |
Author_xml | – sequence: 1 givenname: Davide surname: Momi fullname: Momi, Davide organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara – sequence: 2 givenname: Recep A. surname: Ozdemir fullname: Ozdemir, Recep A. organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 3 givenname: Ehsan surname: Tadayon fullname: Tadayon, Ehsan organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 4 givenname: Pierre surname: Boucher fullname: Boucher, Pierre organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 5 givenname: Alberto surname: Di Domenico fullname: Di Domenico, Alberto organization: Department of Psychological, Health and Territorial Sciences , University of Chieti-Pescara – sequence: 6 givenname: Mirco surname: Fasolo fullname: Fasolo, Mirco organization: Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara – sequence: 7 givenname: Mouhsin M. surname: Shafi fullname: Shafi, Mouhsin M. organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 8 givenname: Alvaro surname: Pascual-Leone fullname: Pascual-Leone, Alvaro organization: Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Department of Neurology, Harvard Medical School, Guttmann Brain Health Institute – sequence: 9 givenname: Emiliano surname: Santarnecchi fullname: Santarnecchi, Emiliano email: esantarn@bidmc.harvard.edu organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena |
BookMark | eNp9Ustu1TAQjVARLaU_wCoSGzYBv-LHBglVPCpVggWsLceZ5OaSa19sp6hd8elMc4ugXdQb2zPnnPGMz_PqKMQAVfWSkjeUcP02C9oa3RBGG0Ok5M3Nk-qEEdE2jDN29N_5uDrLeUtwtcwIap5Vx1xQpqTWJ9Xvr5DKkjpXphjqONQJcpnC2OTiCtQByq-YftQh9pDrfYIBEoQyuXm-xmvcuxFhuS6xziUtHqXWVHJlA6kuGxfqYQn-Vn1N-BgC-AI9FhoxmF9UTwc3Zzi720-r7x8_fDv_3Fx--XRx_v6y8UJqbMS0rSJGABe-F3Jwgx7AKaYVYX3HnVZyUNJQYzg4priEoZMOpNdEez30_LS6OOj20W3tPk07l65tdJNdAzGN1qUy-RmsoqqjhIFykgrHvDOqI53vuWasbRmg1ruD1n7pdtB7nAi2fU_0fiZMGzvGK6sZ4UppFHh9J5DizwUnbndT9jDPLkBcsmWtoByxQiH01QPoNi4Jh7miiJDK8BZR-oDyKeaM32T9VNY_xfrTbCmxt66xB9dYdI1dXWNvkMoeUP_28SiJH0gZwWGE9O9Vj7D-ADuM2ek |
CitedBy_id | crossref_primary_10_1038_s41467_024_54244_8 crossref_primary_10_1371_journal_pcbi_1011274 crossref_primary_10_1016_j_dscb_2023_100071 crossref_primary_10_3389_fnhum_2022_937515 crossref_primary_10_1073_pnas_2314918121 crossref_primary_10_1016_j_clinph_2025_01_002 crossref_primary_10_1186_s12984_023_01223_7 crossref_primary_10_1002_mds_29901 crossref_primary_10_1038_s44220_023_00046_8 crossref_primary_10_1002_hbm_70029 crossref_primary_10_3389_fnhum_2024_1477049 crossref_primary_10_1016_j_bpsc_2021_11_004 crossref_primary_10_1016_j_ijchp_2023_100382 crossref_primary_10_1038_s12276_024_01253_8 crossref_primary_10_7554_eLife_83232 crossref_primary_10_1016_j_brs_2024_11_006 crossref_primary_10_1109_TNSRE_2023_3282659 |
Cites_doi | 10.1016/0028-3932(71)90067-4 10.1016/j.neuroimage.2010.09.025 10.1152/jn.00338.2011 10.1007/s00221-004-2140-6 10.1371/journal.pone.0027633 10.1016/j.tics.2009.01.004 10.1016/j.clinph.2009.08.016 10.1109/42.906424 10.1038/s42003-020-0764-0 10.1073/pnas.1311772110 10.1093/cercor/bhl183 10.1073/pnas.1519890113 10.1007/s00429-009-0208-6 10.1038/nm.4246 10.1126/science.1238411 10.1038/nature05758 10.1016/j.neuroimage.2015.10.019 10.1016/j.neuroimage.2020.116596 10.1038/nn.4135 10.1016/j.medengphy.2006.03.001 10.1007/s00221-006-0639-8 10.1007/s10548-008-0067-0 10.1016/j.clinph.2015.02.001 10.1002/ima.22005 10.1016/j.neuroimage.2012.06.005 10.1016/j.neuroimage.2014.12.033 10.1016/j.neuroimage.2016.10.031 10.1016/j.biopsych.2010.06.021 10.1038/s41467-019-10638-7 10.1016/j.neuroimage.2011.09.015 10.1227/NEU.0b013e31823020e6 10.1152/jn.2001.86.4.1983 10.1016/j.clineuro.2015.05.023 10.1006/nimg.2001.0889 10.1073/pnas.0504136102 10.1016/j.neuroimage.2016.08.016 10.1016/j.neuron.2011.09.006 10.1089/brain.2016.0462 10.1073/pnas.1911240117 10.1016/j.neuroimage.2013.05.078 10.1097/00001756-200112040-00048 10.1016/j.jneumeth.2014.08.003 10.1113/jphysiol.2003.050153 10.1016/j.clinph.2020.10.003 10.1016/j.neuroimage.2007.02.016 10.1007/BF02512476 10.1016/j.neuroimage.2006.09.018 10.1162/neco.1997.9.7.1483 10.1016/j.neuroimage.2017.03.064 10.1186/1475-925X-9-45 10.1038/s41467-018-04920-3 10.1016/j.tics.2011.08.003 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2009.07.049 10.1007/s10548-013-0312-z 10.3389/fnins.2019.00076 10.1109/MEMB.2005.1384097 10.1016/j.jneumeth.2003.10.009 10.1523/JNEUROSCI.1091-13.2013 10.1016/j.neuroimage.2012.05.059 10.1016/j.neuron.2007.08.023 10.1093/cercor/bhg087 10.1093/cercor/bhm128 10.1016/j.neulet.2013.02.063 10.1016/j.jneumeth.2007.03.024 10.1016/j.neuroimage.2020.117698 10.1073/pnas.1113103109 10.1049/cp.2015.0787 10.1109/EMBC.2015.7318340 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-90663-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_717b102e7a614a2ca97b0bcd3822552e PMC8203778 10_1038_s41598_021_90663_z |
GrantInformation_xml | – fundername: MIT-Harvard Broad institute – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4685-29557094e34cd46faf8fea728702db3a876f7691993ea2736efb6ae6c808c8fd3 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:06 EDT 2025 Thu Aug 21 18:36:08 EDT 2025 Thu Sep 04 19:06:11 EDT 2025 Wed Aug 13 09:30:39 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 03:48:40 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4685-29557094e34cd46faf8fea728702db3a876f7691993ea2736efb6ae6c808c8fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.nature.com/articles/s41598-021-90663-z |
PMID | 34127688 |
PQID | 2540467935 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_717b102e7a614a2ca97b0bcd3822552e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8203778 proquest_miscellaneous_2541320347 proquest_journals_2540467935 crossref_citationtrail_10_1038_s41598_021_90663_z crossref_primary_10_1038_s41598_021_90663_z springer_journals_10_1038_s41598_021_90663_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-14 |
PublicationDateYYYYMMDD | 2021-06-14 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Voineskos (CR51) 2010; 68 Adelstein (CR60) 2011; 6 Rossi, Hallett, Rossini, Pascual-Leone (CR35) 2009; 120 Deco (CR46) 2013; 33 Momi (CR13) 2020 Finn (CR59) 2015; 18 Bai, Stewart, Plenz, Basser (CR56) 2016; 113 Duval, Stikov, Cohen-Adad (CR70) 2017; 31 Rothwell (CR34) 1999; 52 Peters (CR15) 2020; 3 ter Braack, de Vos, van Putten (CR36) 2015; 28 Chu (CR52) 2015; 108 Valero-Cabré, Payne, Rushmore, Lomber, Pascual-Leone (CR55) 2005; 163 Fischl (CR26) 2004; 1991 Amico (CR14) 2017; 7 Vincent (CR57) 2007; 447 Oldfield (CR20) 1971; 9 Smith, Tournier, Calamante, Connelly (CR23) 2012; 62 Rossi (CR21) 2020 Power (CR9) 2011; 72 Menon (CR65) 2011; 15 Ruff (CR67) 2008; 1991 Silvanto, Pascual-Leone (CR7) 2008; 21 Veraart (CR28) 2016; 142 CR44 Valero-Cabré, Pascual-Leone (CR4) 2005; 24 Fox (CR10) 2005; 102 Romero, Davare, Armendariz, Janssen (CR22) 2019; 10 Ozdemir (CR12) 2020 Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR24) 2012; 62 Hämäläinen, Ilmoniemi (CR42) 1994; 32 Hagmann (CR8) 2008; 6 Gramfort, Papadopoulo, Olivi, Clerc (CR41) 2010; 9 Maris, Oostenveld (CR43) 2007; 164 Setsompop (CR69) 2013; 80 Lv, Simpson, Bell (CR18) 2007; 29 Frey (CR71) 2012; 62 Moliadze, Zhao, Eysel, Funke (CR48) 2003; 553 CR16 Thut, Miniussi (CR2) 2009; 13 Pernet, Latinus, Nichols, Rousselet (CR19) 2015; 250 Tournier, Calamante, Connelly (CR31) 2007; 35 Hannula (CR53) 2010; 49 Zhang, Brady, Smith (CR30) 2001; 20 Finn (CR62) 2017; 160 Beynel, Powers, Appelbaum (CR58) 2020; 211 Cheng, Baillet, Hsiao, Lin (CR17) 2013; 544 Hyvärinen, Oja (CR38) 1997; 9 Damoiseaux, Greicius (CR47) 2009; 213 Greene, Gao, Scheinost, Constable (CR63) 2018; 9 Chen (CR64) 2013; 110 Park, Friston (CR45) 2013; 342 Valero-Cabré, Oliveri, Gangitano, Pascual-Leone (CR3) 2001; 12 Sollmann (CR72) 2015; 136 Paus, Sipila, Strafella (CR5) 2001; 86 Eldaief, Halko, Buckner, Pascual-Leone (CR11) 2011; 108 Andersson, Sotiropoulos (CR29) 2016; 125 Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR68) 2007; 34 Yeo (CR32) 2011; 106 Tadel (CR40) 2019; 13 CR66 Rossini (CR33) 2015; 126 Rogasch (CR39) 2017; 147 Hoffman (CR50) 2007; 17 Avants (CR27) 2011; 54 Fox, Snyder, Vincent, Raichle (CR61) 2007; 56 Delorme, Makeig (CR37) 2004; 134 Drysdale (CR49) 2017; 23 Tournier, Calamante, Connelly (CR25) 2012; 22 Siebner (CR1) 2001; 14 Ohue (CR54) 2012; 70 Valero-Cabré, Payne, Pascual-Leone (CR6) 2007; 176 HR Siebner (90663_CR1) 2001; 14 J Lv (90663_CR18) 2007; 29 J Silvanto (90663_CR7) 2008; 21 ES Finn (90663_CR62) 2017; 160 R Bai (90663_CR56) 2016; 113 P Hagmann (90663_CR8) 2008; 6 C-H Cheng (90663_CR17) 2013; 544 MC Romero (90663_CR22) 2019; 10 BTT Yeo (90663_CR32) 2011; 106 E Maris (90663_CR43) 2007; 164 RA Ozdemir (90663_CR12) 2020 MD Fox (90663_CR10) 2005; 102 A Valero-Cabré (90663_CR4) 2005; 24 JD Power (90663_CR9) 2011; 72 Y Zhang (90663_CR30) 2001; 20 90663_CR16 AT Drysdale (90663_CR49) 2017; 23 AS Greene (90663_CR63) 2018; 9 MD Fox (90663_CR61) 2007; 56 CC Ruff (90663_CR67) 2008; 1991 D Frey (90663_CR71) 2012; 62 ES Finn (90663_CR59) 2015; 18 T Paus (90663_CR5) 2001; 86 JS Damoiseaux (90663_CR47) 2009; 213 N Sollmann (90663_CR72) 2015; 136 C Chu (90663_CR52) 2015; 108 L Beynel (90663_CR58) 2020; 211 K Setsompop (90663_CR69) 2013; 80 E Amico (90663_CR14) 2017; 7 H-J Park (90663_CR45) 2013; 342 MC Eldaief (90663_CR11) 2011; 108 JC Rothwell (90663_CR34) 1999; 52 AN Voineskos (90663_CR51) 2010; 68 90663_CR44 TEJ Behrens (90663_CR68) 2007; 34 PM Rossini (90663_CR33) 2015; 126 A Valero-Cabré (90663_CR55) 2005; 163 JL Vincent (90663_CR57) 2007; 447 A Delorme (90663_CR37) 2004; 134 A Hyvärinen (90663_CR38) 1997; 9 RC Oldfield (90663_CR20) 1971; 9 NC Rogasch (90663_CR39) 2017; 147 RE Smith (90663_CR23) 2012; 62 A Valero-Cabré (90663_CR6) 2007; 176 M Jenkinson (90663_CR24) 2012; 62 JLR Andersson (90663_CR29) 2016; 125 AC Chen (90663_CR64) 2013; 110 V Moliadze (90663_CR48) 2003; 553 A Valero-Cabré (90663_CR3) 2001; 12 A Gramfort (90663_CR41) 2010; 9 H Hannula (90663_CR53) 2010; 49 G Thut (90663_CR2) 2009; 13 MS Hämäläinen (90663_CR42) 1994; 32 S Rossi (90663_CR35) 2009; 120 T Duval (90663_CR70) 2017; 31 JS Adelstein (90663_CR60) 2011; 6 J-D Tournier (90663_CR31) 2007; 35 CR Pernet (90663_CR19) 2015; 250 BB Avants (90663_CR27) 2011; 54 F Tadel (90663_CR40) 2019; 13 J Veraart (90663_CR28) 2016; 142 JC Peters (90663_CR15) 2020; 3 S Rossi (90663_CR21) 2020 J-D Tournier (90663_CR25) 2012; 22 90663_CR66 B Fischl (90663_CR26) 2004; 1991 RE Hoffman (90663_CR50) 2007; 17 D Momi (90663_CR13) 2020 EM ter Braack (90663_CR36) 2015; 28 G Deco (90663_CR46) 2013; 33 S Ohue (90663_CR54) 2012; 70 V Menon (90663_CR65) 2011; 15 |
References_xml | – volume: 9 start-page: 97 year: 1971 end-page: 113 ident: CR20 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: CR27 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: CR32 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – ident: CR16 – volume: 163 start-page: 1 year: 2005 end-page: 12 ident: CR55 article-title: Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: A 14C–2DG tracing study in the cat publication-title: Exp. Brain Res. doi: 10.1007/s00221-004-2140-6 – volume: 6 start-page: e27633 year: 2011 ident: CR60 article-title: Personality is reflected in the brain’s intrinsic functional architecture publication-title: PLoS ONE doi: 10.1371/journal.pone.0027633 – volume: 13 start-page: 182 year: 2009 end-page: 189 ident: CR2 article-title: New insights into rhythmic brain activity from TMS–EEG studies publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2009.01.004 – volume: 120 start-page: 2008 year: 2009 end-page: 2039 ident: CR35 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.08.016 – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: CR30 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 3 start-page: 1 year: 2020 end-page: 11 ident: CR15 article-title: Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity publication-title: Commun. Biol. doi: 10.1038/s42003-020-0764-0 – volume: 110 start-page: 19944 year: 2013 end-page: 19949 ident: CR64 article-title: Causal interactions between fronto-parietal central executive and default-mode networks in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311772110 – volume: 17 start-page: 2733 year: 2007 end-page: 2743 ident: CR50 article-title: Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation publication-title: Cereb. Cortex doi: 10.1093/cercor/bhl183 – volume: 113 start-page: E1728 year: 2016 end-page: E1737 ident: CR56 article-title: Assessing the sensitivity of diffusion MRI to detect neuronal activity directly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519890113 – volume: 213 start-page: 525 year: 2009 end-page: 533 ident: CR47 article-title: Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-009-0208-6 – volume: 23 start-page: 28 year: 2017 end-page: 38 ident: CR49 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat. Med. doi: 10.1038/nm.4246 – volume: 342 start-page: 1238411 year: 2013 ident: CR45 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 447 start-page: 83 year: 2007 end-page: 86 ident: CR57 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature doi: 10.1038/nature05758 – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: CR29 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 211 start-page: 116596 year: 2020 ident: CR58 article-title: Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116596 – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: CR59 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 29 start-page: 191 year: 2007 end-page: 198 ident: CR18 article-title: Objective detection of evoked potentials using a bootstrap technique publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2006.03.001 – volume: 176 start-page: 603 year: 2007 end-page: 615 ident: CR6 article-title: Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0639-8 – volume: 21 start-page: 1 year: 2008 end-page: 10 ident: CR7 article-title: State-dependency of transcranial magnetic stimulation publication-title: Brain Topogr. doi: 10.1007/s10548-008-0067-0 – volume: 126 start-page: 1071 year: 2015 end-page: 1107 ident: CR33 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.02.001 – volume: 22 start-page: 53 year: 2012 end-page: 66 ident: CR25 article-title: MRtrix: Diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22005 – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: CR23 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 108 start-page: 23 year: 2015 end-page: 33 ident: CR52 article-title: EEG functional connectivity is partially predicted by underlying white matter connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.033 – volume: 147 start-page: 934 year: 2017 end-page: 951 ident: CR39 article-title: Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.031 – volume: 68 start-page: 825 year: 2010 end-page: 831 ident: CR51 article-title: The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.06.021 – volume: 10 start-page: 2642 year: 2019 ident: CR22 article-title: Neural effects of transcranial magnetic stimulation at the single-cell level publication-title: Nat. Commun. doi: 10.1038/s41467-019-10638-7 – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: CR24 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 70 start-page: 283 year: 2012 end-page: 293 ident: CR54 article-title: Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: A significant correlation between subcortical electrical stimulation and postoperative tractography publication-title: Neurosurgery doi: 10.1227/NEU.0b013e31823020e6 – volume: 86 start-page: 1983 year: 2001 end-page: 1990 ident: CR5 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.4.1983 – volume: 136 start-page: 25 year: 2015 end-page: 28 ident: CR72 article-title: nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia: A case report publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2015.05.023 – volume: 14 start-page: 883 year: 2001 end-page: 890 ident: CR1 article-title: Continuous transcranial magnetic stimulation during positron emission tomography: A suitable tool for imaging regional excitability of the human cortex publication-title: Neuroimage doi: 10.1006/nimg.2001.0889 – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: CR10 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504136102 – volume: 142 start-page: 394 year: 2016 end-page: 406 ident: CR28 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: CR9 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 7 start-page: 84 year: 2017 end-page: 97 ident: CR14 article-title: Tracking dynamic interactions between structural and functional connectivity: A TMS/EEG-dMRI study publication-title: Brain Connect. doi: 10.1089/brain.2016.0462 – year: 2020 ident: CR12 article-title: Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1911240117 – volume: 31 start-page: 217 year: 2017 end-page: 228 ident: CR70 article-title: Modeling white matter microstructure publication-title: Funct. Neurol. – ident: CR66 – volume: 80 start-page: 220 year: 2013 end-page: 233 ident: CR69 article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – volume: 12 start-page: 3845 year: 2001 end-page: 3848 ident: CR3 article-title: Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans publication-title: NeuroReport doi: 10.1097/00001756-200112040-00048 – volume: 250 start-page: 85 year: 2015 end-page: 93 ident: CR19 article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.003 – volume: 553 start-page: 665 year: 2003 end-page: 679 ident: CR48 article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.050153 – year: 2020 ident: CR21 article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.10.003 – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: CR31 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 32 start-page: 35 year: 1994 end-page: 42 ident: CR42 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02512476 – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: CR68 article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: CR38 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Comput. doi: 10.1162/neco.1997.9.7.1483 – volume: 52 start-page: 97 year: 1999 end-page: 103 ident: CR34 article-title: Magnetic stimulation: Motor evoked potentials. The International Federation of Clinical Neurophysiology publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl. – volume: 160 start-page: 140 year: 2017 end-page: 151 ident: CR62 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.064 – volume: 9 start-page: 45 year: 2010 ident: CR41 article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics publication-title: Biomed. Eng. OnLine doi: 10.1186/1475-925X-9-45 – volume: 9 start-page: 1 year: 2018 end-page: 13 ident: CR63 article-title: Task-induced brain state manipulation improves prediction of individual traits publication-title: Nat. Commun. doi: 10.1038/s41467-018-04920-3 – volume: 15 start-page: 483 year: 2011 end-page: 506 ident: CR65 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.08.003 – volume: 6 start-page: e159 year: 2008 ident: CR8 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 49 start-page: 1091 year: 2010 end-page: 1098 ident: CR53 article-title: Increasing top-down suppression from prefrontal cortex facilitates tactile working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.049 – volume: 28 start-page: 520 year: 2015 end-page: 528 ident: CR36 article-title: Masking the auditory evoked potential in TMS-EEG: A comparison of various methods publication-title: Brain Topogr. doi: 10.1007/s10548-013-0312-z – volume: 13 start-page: 76 year: 2019 ident: CR40 article-title: MEG/EEG group analysis with brainstorm publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00076 – ident: CR44 – volume: 24 start-page: 29 year: 2005 end-page: 35 ident: CR4 article-title: Impact of TMS on the primary motor cortex and associated spinal systems publication-title: IEEE Eng. Med. Biol. Mag. Q doi: 10.1109/MEMB.2005.1384097 – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: CR37 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 33 start-page: 11239 year: 2013 end-page: 11252 ident: CR46 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-13.2013 – volume: 62 start-page: 1600 year: 2012 end-page: 1609 ident: CR71 article-title: A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.059 – volume: 56 start-page: 171 year: 2007 end-page: 184 ident: CR61 article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior publication-title: Neuron doi: 10.1016/j.neuron.2007.08.023 – volume: 1991 start-page: 11 issue: 14 year: 2004 end-page: 22 ident: CR26 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex N. Y doi: 10.1093/cercor/bhg087 – volume: 1991 start-page: 817 issue: 18 year: 2008 end-page: 827 ident: CR67 article-title: Distinct causal influences of parietal versus frontal areas on human visual cortex: Evidence from concurrent TMS-fMRI publication-title: Cereb. Cortex N. Y doi: 10.1093/cercor/bhm128 – volume: 544 start-page: 20 year: 2013 end-page: 24 ident: CR17 article-title: Effects of aging on neuromagnetic mismatch responses to pitch changes publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.02.063 – volume: 164 start-page: 177 year: 2007 end-page: 190 ident: CR43 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2020 ident: CR13 article-title: Network-level macroscale structural connectivity predicts propagation of transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117698 – volume: 108 start-page: 21229 year: 2011 end-page: 21234 ident: CR11 article-title: Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1113103109 – volume: 15 start-page: 483 year: 2011 ident: 90663_CR65 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.08.003 – volume: 126 start-page: 1071 year: 2015 ident: 90663_CR33 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.02.001 – volume: 62 start-page: 1924 year: 2012 ident: 90663_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 12 start-page: 3845 year: 2001 ident: 90663_CR3 publication-title: NeuroReport doi: 10.1097/00001756-200112040-00048 – volume: 134 start-page: 9 year: 2004 ident: 90663_CR37 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 34 start-page: 144 year: 2007 ident: 90663_CR68 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 108 start-page: 21229 year: 2011 ident: 90663_CR11 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1113103109 – volume: 142 start-page: 394 year: 2016 ident: 90663_CR28 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 176 start-page: 603 year: 2007 ident: 90663_CR6 publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0639-8 – volume: 9 start-page: 1483 year: 1997 ident: 90663_CR38 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.7.1483 – volume: 70 start-page: 283 year: 2012 ident: 90663_CR54 publication-title: Neurosurgery doi: 10.1227/NEU.0b013e31823020e6 – volume: 553 start-page: 665 year: 2003 ident: 90663_CR48 publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.050153 – volume: 86 start-page: 1983 year: 2001 ident: 90663_CR5 publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.86.4.1983 – ident: 90663_CR66 doi: 10.1049/cp.2015.0787 – volume: 163 start-page: 1 year: 2005 ident: 90663_CR55 publication-title: Exp. Brain Res. doi: 10.1007/s00221-004-2140-6 – volume: 54 start-page: 2033 year: 2011 ident: 90663_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – year: 2020 ident: 90663_CR12 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1911240117 – volume: 164 start-page: 177 year: 2007 ident: 90663_CR43 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 213 start-page: 525 year: 2009 ident: 90663_CR47 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-009-0208-6 – volume: 110 start-page: 19944 year: 2013 ident: 90663_CR64 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311772110 – volume: 102 start-page: 9673 year: 2005 ident: 90663_CR10 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504136102 – volume: 31 start-page: 217 year: 2017 ident: 90663_CR70 publication-title: Funct. Neurol. – volume: 106 start-page: 1125 year: 2011 ident: 90663_CR32 publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 113 start-page: E1728 year: 2016 ident: 90663_CR56 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519890113 – volume: 250 start-page: 85 year: 2015 ident: 90663_CR19 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.003 – volume: 7 start-page: 84 year: 2017 ident: 90663_CR14 publication-title: Brain Connect. doi: 10.1089/brain.2016.0462 – volume: 13 start-page: 76 year: 2019 ident: 90663_CR40 publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00076 – volume: 6 start-page: e159 year: 2008 ident: 90663_CR8 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – year: 2020 ident: 90663_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117698 – volume: 33 start-page: 11239 year: 2013 ident: 90663_CR46 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-13.2013 – volume: 342 start-page: 1238411 year: 2013 ident: 90663_CR45 publication-title: Science doi: 10.1126/science.1238411 – volume: 544 start-page: 20 year: 2013 ident: 90663_CR17 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.02.063 – volume: 28 start-page: 520 year: 2015 ident: 90663_CR36 publication-title: Brain Topogr. doi: 10.1007/s10548-013-0312-z – volume: 80 start-page: 220 year: 2013 ident: 90663_CR69 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – volume: 9 start-page: 45 year: 2010 ident: 90663_CR41 publication-title: Biomed. Eng. OnLine doi: 10.1186/1475-925X-9-45 – volume: 72 start-page: 665 year: 2011 ident: 90663_CR9 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 160 start-page: 140 year: 2017 ident: 90663_CR62 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.064 – volume: 14 start-page: 883 year: 2001 ident: 90663_CR1 publication-title: Neuroimage doi: 10.1006/nimg.2001.0889 – volume: 147 start-page: 934 year: 2017 ident: 90663_CR39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.031 – year: 2020 ident: 90663_CR21 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.10.003 – volume: 3 start-page: 1 year: 2020 ident: 90663_CR15 publication-title: Commun. Biol. doi: 10.1038/s42003-020-0764-0 – volume: 20 start-page: 45 year: 2001 ident: 90663_CR30 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 68 start-page: 825 year: 2010 ident: 90663_CR51 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.06.021 – ident: 90663_CR16 doi: 10.1109/EMBC.2015.7318340 – volume: 23 start-page: 28 year: 2017 ident: 90663_CR49 publication-title: Nat. Med. doi: 10.1038/nm.4246 – volume: 56 start-page: 171 year: 2007 ident: 90663_CR61 publication-title: Neuron doi: 10.1016/j.neuron.2007.08.023 – volume: 10 start-page: 2642 year: 2019 ident: 90663_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10638-7 – volume: 447 start-page: 83 year: 2007 ident: 90663_CR57 publication-title: Nature doi: 10.1038/nature05758 – volume: 211 start-page: 116596 year: 2020 ident: 90663_CR58 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116596 – volume: 13 start-page: 182 year: 2009 ident: 90663_CR2 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2009.01.004 – volume: 120 start-page: 2008 year: 2009 ident: 90663_CR35 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.08.016 – volume: 108 start-page: 23 year: 2015 ident: 90663_CR52 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.033 – volume: 125 start-page: 1063 year: 2016 ident: 90663_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 52 start-page: 97 year: 1999 ident: 90663_CR34 publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl. – volume: 17 start-page: 2733 year: 2007 ident: 90663_CR50 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhl183 – volume: 22 start-page: 53 year: 2012 ident: 90663_CR25 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22005 – volume: 9 start-page: 97 year: 1971 ident: 90663_CR20 publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 62 start-page: 782 year: 2012 ident: 90663_CR24 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 6 start-page: e27633 year: 2011 ident: 90663_CR60 publication-title: PLoS ONE doi: 10.1371/journal.pone.0027633 – volume: 1991 start-page: 817 issue: 18 year: 2008 ident: 90663_CR67 publication-title: Cereb. Cortex N. Y doi: 10.1093/cercor/bhm128 – volume: 62 start-page: 1600 year: 2012 ident: 90663_CR71 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.059 – volume: 49 start-page: 1091 year: 2010 ident: 90663_CR53 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.049 – volume: 9 start-page: 1 year: 2018 ident: 90663_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04920-3 – volume: 32 start-page: 35 year: 1994 ident: 90663_CR42 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02512476 – volume: 24 start-page: 29 year: 2005 ident: 90663_CR4 publication-title: IEEE Eng. Med. Biol. Mag. Q doi: 10.1109/MEMB.2005.1384097 – ident: 90663_CR44 – volume: 136 start-page: 25 year: 2015 ident: 90663_CR72 publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2015.05.023 – volume: 21 start-page: 1 year: 2008 ident: 90663_CR7 publication-title: Brain Topogr. doi: 10.1007/s10548-008-0067-0 – volume: 18 start-page: 1664 year: 2015 ident: 90663_CR59 publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 35 start-page: 1459 year: 2007 ident: 90663_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 29 start-page: 191 year: 2007 ident: 90663_CR18 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2006.03.001 – volume: 1991 start-page: 11 issue: 14 year: 2004 ident: 90663_CR26 publication-title: Cereb. Cortex N. Y doi: 10.1093/cercor/bhg087 |
SSID | ssj0000529419 |
Score | 2.430697 |
Snippet | Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high... Abstract Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12458 |
SubjectTerms | 631/378/2649 631/378/3920 692/617 692/698/1688/64 Brain mapping EEG Electroencephalography Functional magnetic resonance imaging Humanities and Social Sciences Magnetic fields multidisciplinary Neural networks Neuroimaging Propagation Science Science (multidisciplinary) Structure-function relationships Substantia alba Transcranial magnetic stimulation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SEHoRqxVXW4ngrS7N28nmx7EVSxEUDy30FpJsFoXHbumrh_bUP70zyb5nt6BePO5L3u4mM7PfTDL5hrEPEDorZVI1dCLVMjVQGwURBbIIUUAwWtPZ4a_f1Om5_HLRXjwo9UU5YYUeuEzcIYYbAUEwaY9A4pvorQ4ixA4Q2dq2SfT1FVY8CKYKq3dj5cJOp2QEmMMVIhWdJssZCQiz9e0MiTJh_8zLfJwj-WijNOPPyXP2bHIc-VF54R32JA0v2NNSSvLmJbv7nq4QPUKeaD72nGpu4I3qfGKIDyXbmw9jl1b8ciougta9XN7gJUbOtJy24tcjL4yyxMaBTVfZQeS0vs4JAsvKITZESpCJ6K5yKu2AqrvLzk8-n306rafqCnWUyrR1Y4l9y8oEMnZS9b43ffKaNj6bLoDHz2SvlaUEv-TRyVGpD8onFY0w0fQdvGJbwzik14wL76ONC4U39lIEjTFcj26d19DqDkBXbLGeaRcn6nGqgLF0eQscjCvScSgdl6Xjbit2sPnPZSHe-GvvYxLgpieRZucfUJXcpEruX6pUsb21-N1kySuHAbRAMLHQVuz9phltkDZW_JDGX7kPnUQHiSPVM7WZvdC8Zfj5I7N5owsGWpuKfVwr2O-H_3nAb_7HgN-y7YYMgkoxyT22hfqV9tHHug7vsjndA8KvJec priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyQuCFoQKQUZiRu1msSO7ZwQIKoKiYoDlfZm-RVAWiXbTXtoT_x0ZhzvVqlEj7v2ZpPMjOebNyHvuQutEFEyHsrIRKw505J7IEjlfMmdVgprh7-fy7ML8W3RLLLDbcxplZszMR3UYfDoIz8BQwZMOeCm5uPqkuHUKIyu5hEaj8heBUgERzeohdr6WDCKJao218qUXJ-MoK-wpizlJYCyZbczfZTa9s-w5v1MyXvh0qSFTp-Rpxk-0k8TvZ-Tndjvk8fTQMmbA_L3R1yDDnHpddOhozh5Ay7EUt0Q7aecb9oPIY50lUeMgIwvlzfwEexndKqN9GqgU19Z7MkBS-sEEyl62Skqwsl_CAse02Q8gFaKAx6AgV-Qi9OvP7-csTxjgXkhdcPqFntwtSJy4YOQne10F63C8GcdHLdwWHZKtpjmFy1AHRk7J22UXpfa6y7wl2S3H_r4itDSWt_6SsKFrSidAkuuA3BnFW9U4FwVpNq8aeNzA3Kcg7E0KRDOtZmoY4A6JlHH3Bbkw_Y3q6n9xoO7PyMBtzuxdXb6Ylj_MlkSDdivDlBVVBaQia29bZUrnQ8coFLT1LEgRxvymyzPo7njvoK82y6DJGJ4xfZxuE57sB6dC3hSNWOb2Q3NV_o_v1NPbwBiXCldkOMNg939-f8f-PDhe31NntTI6jhqSRyRXeCc-AYw1JV7mwTlH3yFHdc priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402pfk-bjIKLisgiKBx_sLSRpqguPdn1vBd-e_NOdSdonXVbBY5v0KzPT-U3mC-Ap960RIsqSt1UsRax5qSUPSJCFDxX3WinKHf74SR4txYfj5ngPpnZH4wJuLjXtqJ_Ucr168fP79jUK_KucMq5fblAJUaJYCjZADVqeX4GryV9EoXwj3M-1vmsjFmbMnbn80pl-SmX8Z9jzYuTkBfdp0kqHN-HGCCfZm0z_W7AX-9twLTeY3N6BX5_jGnWKT8vPho5RJw68UZnyiFifY8BZP7Rxw07HliMo86vVFg_RnqZNtg07G1iuM0s1OnBonWAjo113Roox7yfiQKCwmYAgllHDB2Tou7A8fP_l3VE59lwog5C6KWtDNbmMiFyEVsjOdbqLTpE7tG49d_jz7JQ0FPYXHUIfGTsvXZRBVzroruX3YL8f-ngfWOVcMGEh8cZOVF6hZdch2HOKN6rlXBWwmFbahrEgOfXFWNnkGOfaZupYpI5N1LHnBTzbXXOay3H8c_ZbIuBuJpXSTieG9Vc7SqZFe9YjyorKIVJxdXBG-cqHliN0apo6FnAwkd9O7GnRrK5QxRjeFPBkN4ySSe4W18fhR5pD-elc4JeqGdvMXmg-0p98SzW-EZhxpXQBzycG-_Pwv3_wg_-b_hCu18T61IpJHMA-clJ8hBjrzD9OgvMbsPQl1A priority: 102 providerName: Scholars Portal |
Title | Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions |
URI | https://link.springer.com/article/10.1038/s41598-021-90663-z https://www.proquest.com/docview/2540467935 https://www.proquest.com/docview/2541320347 https://pubmed.ncbi.nlm.nih.gov/PMC8203778 https://doaj.org/article/717b102e7a614a2ca97b0bcd3822552e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-0KYNdxj6Z1y5osNtm5liyJB_T0FICLWVbITchyfI2CHZJukN72p_e92Q7w2Ub7OJgS3Ysvye9n94nwHvuqlKIIFNeZSEVIeepltwjQWbOZ9xppSh2-PxCnl2J5apY7UE-xMJEp_2Y0jIu04N32KctChoKBosOBSgl07t9ONAKl98JHMznyy_LnWaFbFdiVvYRMhnXf7h5JIVisv4RwnzoH_nASBplz-lTeNKDRjbvXvMZ7IXmOTzqykjevoBfl2GDY3HxI7O2ZlRvAx-Uxmgh1nSe3qxpq7Bl131hEZzZ6_UtnuKumVRpW3bTsi6bLGXiwKZNBIeMdOuMxF-nNcQGT84xHqEqo7IOyLYv4er05OviLO0rK6ReSF2keUmZt0oRuPCVkLWtdR2sIqNnXjlucYmslSzJuS9YBDgy1E7aIL3OtNd1xV_BpGmb8BpYZq0v_Uzig63InML9W42QzipeqIpzlcBs-NLG92nHqfrF2kTzN9emo45B6phIHXOXwIfdPddd0o1_9j4mAu56UsLseKHdfDM9AxnctTrEUkFZxCM297ZULnO-4giQiiIPCRwN5Df9LN4a3DxnKEhKXiTwbteM84-MKrYJ7c_Yh6LQucCRqhHbjF5o3NL8-B4zeSP84krpBD4ODPb7z_8-4Df_1_0QHufE-lRwSRzBBDkpvEUkdeOmsK9WatpPIPw9Prm4_IxXF3IxjdoJPJ4LfQ_PmCLD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEJ9aYICR4AmipbETJw8TYrCpY1s1oU3am7EdB5CqpDRDqHviL-Nv485JOmUSe9tjazdNcuf7vvsBvOamyIVwaciLyIXCxTzMUm6RIGNjI24yKal3-GiaTk7F57PkbA3-9r0wVFbZy0QvqIvaUox8Cx0ZdOWQm5L3858hoUZRdrWH0NAdtEKx7UeMdY0dB275G124Znv_E9L7TRzv7Z58nIQdykBoRZolYZzTFKpcOC5sIdJSl1nptKQEYFwYrlFclDLNqdDNaVT2qStNql1qsyizWVlwvO4tWBcUQBnB-s7u9PjLKspDeTQxzrtunYhnWw1qTOpq85URqO7Di4FG9MABA2v3aq3mlYSt14N79-FeZ8CyDy3HPYA1Vz2E2y2k5fIR_Dl2C9RixhOc1SUj7A-8UOg7l1jVVp2zqi5cw-YdyAlKmdlsiR_Rg6ewXsPOa9ZOtqWpILi08IYqozg_I1XcRjBxwVKhjkWzmRHEBB6hx3B6I-__CYyqunIbwCKtbW7HKV5Yi8hI9CVLNC-15IksOJcBjPs3rWw3Ap2QOGbKp-J5plrqKKSO8tRRFwG8Xf1m3g4AuXb3DhFwtZOGd_sv6sU31ckChR60QbvOSY22kY6tzqWJjC04GmtJErsANnvyq06iNOqS_wN4tVpGWUAJHl25-pffQx3xXOCTygHbDG5ouFL9-O6niqMpyKXMAnjXM9jln___gZ9ef68v4c7k5OhQHe5PD57B3ZjYnoCfxCaMkIvcc7Tozs2L7tgw-HrTJ_UfJDZg_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxFMNFDASnCDabOzYyaFClHbVUlitEJV6M7bjANIqWTZFaHvi9_GrmHGcrVKJ3nrc2PEmmfE8PI-PkJfMlAXnTsSsTFzMXcriXDALBBkbmzCTS4m1w5-m4vCEfzjNTjfI374WBtMqe5noBXXZWDwjH4EjA64ccFM2qkJaxGx_8nbxM0YEKYy09nAaOsAslLu-3Vgo8jh2q9_gzrW7R_tA-1dpOjn48v4wDogDseUiz-K0wI5UBXeM25KLSld55bTEYGBaGqZBdFRSFJj05jQofuEqI7QTNk9ym1clg3VvkC0JWh8cwa29g-ns8_rEB2NqfFyEyp2E5aMWtCdWuPksCVD98flAO3oQgYHlezlv81Lw1uvEyV1yJxiz9F3HfffIhqvvk5sdvOXqAfkzc0vQaMYTnzYVRRwQWCj2VUy07jLQad2UrqWLAHgCEmc-X8FP8ObxiK-lZw3tutxihxAYWnqjleKZP0W13J1mwoDFpB0LJjRFuAnYTg_JybV8_0dks25qt01oorUt7FjAwponRoJfWYGpqSXLZMmYjMi4_9LKhnboiMoxVz4sz3LVUUcBdZSnjjqPyOv1PYuuGciVs_eQgOuZ2MjbX2iW31SQCwq8aQM2npMa7CSdWl1IkxhbMjDcsix1Ednpya-CdGnVxV6IyIv1MMgFDPbo2jW__Bysjmcc3lQO2GbwQMOR-sd332EczEImZR6RNz2DXfz5_1_48dXP-pzcgh2rPh5Nj5-Q2ylyPWJA8R2yCUzknoJxd2aehV1Dydfr3qj_AKtSZUM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbation+of+resting-state+network+nodes+preferentially+propagates+to+structurally+rather+than+functionally+connected+regions&rft.jtitle=Scientific+reports&rft.au=Momi%2C+Davide&rft.au=Ozdemir%2C+Recep+A.&rft.au=Tadayon%2C+Ehsan&rft.au=Boucher%2C+Pierre&rft.date=2021-06-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-90663-z&rft.externalDocID=10_1038_s41598_021_90663_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |