Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions

Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and sub...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 12458 - 11
Main Authors Momi, Davide, Ozdemir, Recep A., Tadayon, Ehsan, Boucher, Pierre, Di Domenico, Alberto, Fasolo, Mirco, Shafi, Mouhsin M., Pascual-Leone, Alvaro, Santarnecchi, Emiliano
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-90663-z

Cover

Abstract Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
AbstractList Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
Abstract Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced signal propagation after perturbation of two distinct brain networks. For this purpose, 24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
ArticleNumber 12458
Author Di Domenico, Alberto
Fasolo, Mirco
Momi, Davide
Santarnecchi, Emiliano
Boucher, Pierre
Ozdemir, Recep A.
Tadayon, Ehsan
Pascual-Leone, Alvaro
Shafi, Mouhsin M.
Author_xml – sequence: 1
  givenname: Davide
  surname: Momi
  fullname: Momi, Davide
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
– sequence: 2
  givenname: Recep A.
  surname: Ozdemir
  fullname: Ozdemir, Recep A.
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 3
  givenname: Ehsan
  surname: Tadayon
  fullname: Tadayon, Ehsan
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 4
  givenname: Pierre
  surname: Boucher
  fullname: Boucher, Pierre
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 5
  givenname: Alberto
  surname: Di Domenico
  fullname: Di Domenico, Alberto
  organization: Department of Psychological, Health and Territorial Sciences , University of Chieti-Pescara
– sequence: 6
  givenname: Mirco
  surname: Fasolo
  fullname: Fasolo, Mirco
  organization: Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara
– sequence: 7
  givenname: Mouhsin M.
  surname: Shafi
  fullname: Shafi, Mouhsin M.
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 8
  givenname: Alvaro
  surname: Pascual-Leone
  fullname: Pascual-Leone, Alvaro
  organization: Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Department of Neurology, Harvard Medical School, Guttmann Brain Health Institute
– sequence: 9
  givenname: Emiliano
  surname: Santarnecchi
  fullname: Santarnecchi, Emiliano
  email: esantarn@bidmc.harvard.edu
  organization: Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena
BookMark eNp9Ustu1TAQjVARLaU_wCoSGzYBv-LHBglVPCpVggWsLceZ5OaSa19sp6hd8elMc4ugXdQb2zPnnPGMz_PqKMQAVfWSkjeUcP02C9oa3RBGG0Ok5M3Nk-qEEdE2jDN29N_5uDrLeUtwtcwIap5Vx1xQpqTWJ9Xvr5DKkjpXphjqONQJcpnC2OTiCtQByq-YftQh9pDrfYIBEoQyuXm-xmvcuxFhuS6xziUtHqXWVHJlA6kuGxfqYQn-Vn1N-BgC-AI9FhoxmF9UTwc3Zzi720-r7x8_fDv_3Fx--XRx_v6y8UJqbMS0rSJGABe-F3Jwgx7AKaYVYX3HnVZyUNJQYzg4priEoZMOpNdEez30_LS6OOj20W3tPk07l65tdJNdAzGN1qUy-RmsoqqjhIFykgrHvDOqI53vuWasbRmg1ruD1n7pdtB7nAi2fU_0fiZMGzvGK6sZ4UppFHh9J5DizwUnbndT9jDPLkBcsmWtoByxQiH01QPoNi4Jh7miiJDK8BZR-oDyKeaM32T9VNY_xfrTbCmxt66xB9dYdI1dXWNvkMoeUP_28SiJH0gZwWGE9O9Vj7D-ADuM2ek
CitedBy_id crossref_primary_10_1038_s41467_024_54244_8
crossref_primary_10_1371_journal_pcbi_1011274
crossref_primary_10_1016_j_dscb_2023_100071
crossref_primary_10_3389_fnhum_2022_937515
crossref_primary_10_1073_pnas_2314918121
crossref_primary_10_1016_j_clinph_2025_01_002
crossref_primary_10_1186_s12984_023_01223_7
crossref_primary_10_1002_mds_29901
crossref_primary_10_1038_s44220_023_00046_8
crossref_primary_10_1002_hbm_70029
crossref_primary_10_3389_fnhum_2024_1477049
crossref_primary_10_1016_j_bpsc_2021_11_004
crossref_primary_10_1016_j_ijchp_2023_100382
crossref_primary_10_1038_s12276_024_01253_8
crossref_primary_10_7554_eLife_83232
crossref_primary_10_1016_j_brs_2024_11_006
crossref_primary_10_1109_TNSRE_2023_3282659
Cites_doi 10.1016/0028-3932(71)90067-4
10.1016/j.neuroimage.2010.09.025
10.1152/jn.00338.2011
10.1007/s00221-004-2140-6
10.1371/journal.pone.0027633
10.1016/j.tics.2009.01.004
10.1016/j.clinph.2009.08.016
10.1109/42.906424
10.1038/s42003-020-0764-0
10.1073/pnas.1311772110
10.1093/cercor/bhl183
10.1073/pnas.1519890113
10.1007/s00429-009-0208-6
10.1038/nm.4246
10.1126/science.1238411
10.1038/nature05758
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroimage.2020.116596
10.1038/nn.4135
10.1016/j.medengphy.2006.03.001
10.1007/s00221-006-0639-8
10.1007/s10548-008-0067-0
10.1016/j.clinph.2015.02.001
10.1002/ima.22005
10.1016/j.neuroimage.2012.06.005
10.1016/j.neuroimage.2014.12.033
10.1016/j.neuroimage.2016.10.031
10.1016/j.biopsych.2010.06.021
10.1038/s41467-019-10638-7
10.1016/j.neuroimage.2011.09.015
10.1227/NEU.0b013e31823020e6
10.1152/jn.2001.86.4.1983
10.1016/j.clineuro.2015.05.023
10.1006/nimg.2001.0889
10.1073/pnas.0504136102
10.1016/j.neuroimage.2016.08.016
10.1016/j.neuron.2011.09.006
10.1089/brain.2016.0462
10.1073/pnas.1911240117
10.1016/j.neuroimage.2013.05.078
10.1097/00001756-200112040-00048
10.1016/j.jneumeth.2014.08.003
10.1113/jphysiol.2003.050153
10.1016/j.clinph.2020.10.003
10.1016/j.neuroimage.2007.02.016
10.1007/BF02512476
10.1016/j.neuroimage.2006.09.018
10.1162/neco.1997.9.7.1483
10.1016/j.neuroimage.2017.03.064
10.1186/1475-925X-9-45
10.1038/s41467-018-04920-3
10.1016/j.tics.2011.08.003
10.1371/journal.pbio.0060159
10.1016/j.neuroimage.2009.07.049
10.1007/s10548-013-0312-z
10.3389/fnins.2019.00076
10.1109/MEMB.2005.1384097
10.1016/j.jneumeth.2003.10.009
10.1523/JNEUROSCI.1091-13.2013
10.1016/j.neuroimage.2012.05.059
10.1016/j.neuron.2007.08.023
10.1093/cercor/bhg087
10.1093/cercor/bhm128
10.1016/j.neulet.2013.02.063
10.1016/j.jneumeth.2007.03.024
10.1016/j.neuroimage.2020.117698
10.1073/pnas.1113103109
10.1049/cp.2015.0787
10.1109/EMBC.2015.7318340
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-90663-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_717b102e7a614a2ca97b0bcd3822552e
PMC8203778
10_1038_s41598_021_90663_z
GrantInformation_xml – fundername: MIT-Harvard Broad institute
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4685-29557094e34cd46faf8fea728702db3a876f7691993ea2736efb6ae6c808c8fd3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:06 EDT 2025
Thu Aug 21 18:36:08 EDT 2025
Thu Sep 04 19:06:11 EDT 2025
Wed Aug 13 09:30:39 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 03:48:40 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4685-29557094e34cd46faf8fea728702db3a876f7691993ea2736efb6ae6c808c8fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.nature.com/articles/s41598-021-90663-z
PMID 34127688
PQID 2540467935
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_717b102e7a614a2ca97b0bcd3822552e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8203778
proquest_miscellaneous_2541320347
proquest_journals_2540467935
crossref_citationtrail_10_1038_s41598_021_90663_z
crossref_primary_10_1038_s41598_021_90663_z
springer_journals_10_1038_s41598_021_90663_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-14
PublicationDateYYYYMMDD 2021-06-14
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Voineskos (CR51) 2010; 68
Adelstein (CR60) 2011; 6
Rossi, Hallett, Rossini, Pascual-Leone (CR35) 2009; 120
Deco (CR46) 2013; 33
Momi (CR13) 2020
Finn (CR59) 2015; 18
Bai, Stewart, Plenz, Basser (CR56) 2016; 113
Duval, Stikov, Cohen-Adad (CR70) 2017; 31
Rothwell (CR34) 1999; 52
Peters (CR15) 2020; 3
ter Braack, de Vos, van Putten (CR36) 2015; 28
Chu (CR52) 2015; 108
Valero-Cabré, Payne, Rushmore, Lomber, Pascual-Leone (CR55) 2005; 163
Fischl (CR26) 2004; 1991
Amico (CR14) 2017; 7
Vincent (CR57) 2007; 447
Oldfield (CR20) 1971; 9
Smith, Tournier, Calamante, Connelly (CR23) 2012; 62
Rossi (CR21) 2020
Power (CR9) 2011; 72
Menon (CR65) 2011; 15
Ruff (CR67) 2008; 1991
Silvanto, Pascual-Leone (CR7) 2008; 21
Veraart (CR28) 2016; 142
CR44
Valero-Cabré, Pascual-Leone (CR4) 2005; 24
Fox (CR10) 2005; 102
Romero, Davare, Armendariz, Janssen (CR22) 2019; 10
Ozdemir (CR12) 2020
Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR24) 2012; 62
Hämäläinen, Ilmoniemi (CR42) 1994; 32
Hagmann (CR8) 2008; 6
Gramfort, Papadopoulo, Olivi, Clerc (CR41) 2010; 9
Maris, Oostenveld (CR43) 2007; 164
Setsompop (CR69) 2013; 80
Lv, Simpson, Bell (CR18) 2007; 29
Frey (CR71) 2012; 62
Moliadze, Zhao, Eysel, Funke (CR48) 2003; 553
CR16
Thut, Miniussi (CR2) 2009; 13
Pernet, Latinus, Nichols, Rousselet (CR19) 2015; 250
Tournier, Calamante, Connelly (CR31) 2007; 35
Hannula (CR53) 2010; 49
Zhang, Brady, Smith (CR30) 2001; 20
Finn (CR62) 2017; 160
Beynel, Powers, Appelbaum (CR58) 2020; 211
Cheng, Baillet, Hsiao, Lin (CR17) 2013; 544
Hyvärinen, Oja (CR38) 1997; 9
Damoiseaux, Greicius (CR47) 2009; 213
Greene, Gao, Scheinost, Constable (CR63) 2018; 9
Chen (CR64) 2013; 110
Park, Friston (CR45) 2013; 342
Valero-Cabré, Oliveri, Gangitano, Pascual-Leone (CR3) 2001; 12
Sollmann (CR72) 2015; 136
Paus, Sipila, Strafella (CR5) 2001; 86
Eldaief, Halko, Buckner, Pascual-Leone (CR11) 2011; 108
Andersson, Sotiropoulos (CR29) 2016; 125
Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR68) 2007; 34
Yeo (CR32) 2011; 106
Tadel (CR40) 2019; 13
CR66
Rossini (CR33) 2015; 126
Rogasch (CR39) 2017; 147
Hoffman (CR50) 2007; 17
Avants (CR27) 2011; 54
Fox, Snyder, Vincent, Raichle (CR61) 2007; 56
Delorme, Makeig (CR37) 2004; 134
Drysdale (CR49) 2017; 23
Tournier, Calamante, Connelly (CR25) 2012; 22
Siebner (CR1) 2001; 14
Ohue (CR54) 2012; 70
Valero-Cabré, Payne, Pascual-Leone (CR6) 2007; 176
HR Siebner (90663_CR1) 2001; 14
J Lv (90663_CR18) 2007; 29
J Silvanto (90663_CR7) 2008; 21
ES Finn (90663_CR62) 2017; 160
R Bai (90663_CR56) 2016; 113
P Hagmann (90663_CR8) 2008; 6
C-H Cheng (90663_CR17) 2013; 544
MC Romero (90663_CR22) 2019; 10
BTT Yeo (90663_CR32) 2011; 106
E Maris (90663_CR43) 2007; 164
RA Ozdemir (90663_CR12) 2020
MD Fox (90663_CR10) 2005; 102
A Valero-Cabré (90663_CR4) 2005; 24
JD Power (90663_CR9) 2011; 72
Y Zhang (90663_CR30) 2001; 20
90663_CR16
AT Drysdale (90663_CR49) 2017; 23
AS Greene (90663_CR63) 2018; 9
MD Fox (90663_CR61) 2007; 56
CC Ruff (90663_CR67) 2008; 1991
D Frey (90663_CR71) 2012; 62
ES Finn (90663_CR59) 2015; 18
T Paus (90663_CR5) 2001; 86
JS Damoiseaux (90663_CR47) 2009; 213
N Sollmann (90663_CR72) 2015; 136
C Chu (90663_CR52) 2015; 108
L Beynel (90663_CR58) 2020; 211
K Setsompop (90663_CR69) 2013; 80
E Amico (90663_CR14) 2017; 7
H-J Park (90663_CR45) 2013; 342
MC Eldaief (90663_CR11) 2011; 108
JC Rothwell (90663_CR34) 1999; 52
AN Voineskos (90663_CR51) 2010; 68
90663_CR44
TEJ Behrens (90663_CR68) 2007; 34
PM Rossini (90663_CR33) 2015; 126
A Valero-Cabré (90663_CR55) 2005; 163
JL Vincent (90663_CR57) 2007; 447
A Delorme (90663_CR37) 2004; 134
A Hyvärinen (90663_CR38) 1997; 9
RC Oldfield (90663_CR20) 1971; 9
NC Rogasch (90663_CR39) 2017; 147
RE Smith (90663_CR23) 2012; 62
A Valero-Cabré (90663_CR6) 2007; 176
M Jenkinson (90663_CR24) 2012; 62
JLR Andersson (90663_CR29) 2016; 125
AC Chen (90663_CR64) 2013; 110
V Moliadze (90663_CR48) 2003; 553
A Valero-Cabré (90663_CR3) 2001; 12
A Gramfort (90663_CR41) 2010; 9
H Hannula (90663_CR53) 2010; 49
G Thut (90663_CR2) 2009; 13
MS Hämäläinen (90663_CR42) 1994; 32
S Rossi (90663_CR35) 2009; 120
T Duval (90663_CR70) 2017; 31
JS Adelstein (90663_CR60) 2011; 6
J-D Tournier (90663_CR31) 2007; 35
CR Pernet (90663_CR19) 2015; 250
BB Avants (90663_CR27) 2011; 54
F Tadel (90663_CR40) 2019; 13
J Veraart (90663_CR28) 2016; 142
JC Peters (90663_CR15) 2020; 3
S Rossi (90663_CR21) 2020
J-D Tournier (90663_CR25) 2012; 22
90663_CR66
B Fischl (90663_CR26) 2004; 1991
RE Hoffman (90663_CR50) 2007; 17
D Momi (90663_CR13) 2020
EM ter Braack (90663_CR36) 2015; 28
G Deco (90663_CR46) 2013; 33
S Ohue (90663_CR54) 2012; 70
V Menon (90663_CR65) 2011; 15
References_xml – volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  ident: CR20
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: CR27
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: CR32
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– ident: CR16
– volume: 163
  start-page: 1
  year: 2005
  end-page: 12
  ident: CR55
  article-title: Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: A 14C–2DG tracing study in the cat
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-004-2140-6
– volume: 6
  start-page: e27633
  year: 2011
  ident: CR60
  article-title: Personality is reflected in the brain’s intrinsic functional architecture
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027633
– volume: 13
  start-page: 182
  year: 2009
  end-page: 189
  ident: CR2
  article-title: New insights into rhythmic brain activity from TMS–EEG studies
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2009.01.004
– volume: 120
  start-page: 2008
  year: 2009
  end-page: 2039
  ident: CR35
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.08.016
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: CR30
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 3
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR15
  article-title: Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0764-0
– volume: 110
  start-page: 19944
  year: 2013
  end-page: 19949
  ident: CR64
  article-title: Causal interactions between fronto-parietal central executive and default-mode networks in humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311772110
– volume: 17
  start-page: 2733
  year: 2007
  end-page: 2743
  ident: CR50
  article-title: Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl183
– volume: 113
  start-page: E1728
  year: 2016
  end-page: E1737
  ident: CR56
  article-title: Assessing the sensitivity of diffusion MRI to detect neuronal activity directly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519890113
– volume: 213
  start-page: 525
  year: 2009
  end-page: 533
  ident: CR47
  article-title: Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-009-0208-6
– volume: 23
  start-page: 28
  year: 2017
  end-page: 38
  ident: CR49
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat. Med.
  doi: 10.1038/nm.4246
– volume: 342
  start-page: 1238411
  year: 2013
  ident: CR45
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 447
  start-page: 83
  year: 2007
  end-page: 86
  ident: CR57
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
  doi: 10.1038/nature05758
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: CR29
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 211
  start-page: 116596
  year: 2020
  ident: CR58
  article-title: Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116596
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: CR59
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 29
  start-page: 191
  year: 2007
  end-page: 198
  ident: CR18
  article-title: Objective detection of evoked potentials using a bootstrap technique
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.03.001
– volume: 176
  start-page: 603
  year: 2007
  end-page: 615
  ident: CR6
  article-title: Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-006-0639-8
– volume: 21
  start-page: 1
  year: 2008
  end-page: 10
  ident: CR7
  article-title: State-dependency of transcranial magnetic stimulation
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0067-0
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 1107
  ident: CR33
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.02.001
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: CR25
  article-title: MRtrix: Diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22005
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: CR23
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 108
  start-page: 23
  year: 2015
  end-page: 33
  ident: CR52
  article-title: EEG functional connectivity is partially predicted by underlying white matter connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.033
– volume: 147
  start-page: 934
  year: 2017
  end-page: 951
  ident: CR39
  article-title: Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.031
– volume: 68
  start-page: 825
  year: 2010
  end-page: 831
  ident: CR51
  article-title: The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.06.021
– volume: 10
  start-page: 2642
  year: 2019
  ident: CR22
  article-title: Neural effects of transcranial magnetic stimulation at the single-cell level
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10638-7
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: CR24
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 70
  start-page: 283
  year: 2012
  end-page: 293
  ident: CR54
  article-title: Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: A significant correlation between subcortical electrical stimulation and postoperative tractography
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e31823020e6
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: CR5
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.4.1983
– volume: 136
  start-page: 25
  year: 2015
  end-page: 28
  ident: CR72
  article-title: nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia: A case report
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2015.05.023
– volume: 14
  start-page: 883
  year: 2001
  end-page: 890
  ident: CR1
  article-title: Continuous transcranial magnetic stimulation during positron emission tomography: A suitable tool for imaging regional excitability of the human cortex
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0889
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: CR10
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504136102
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: CR28
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: CR9
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 7
  start-page: 84
  year: 2017
  end-page: 97
  ident: CR14
  article-title: Tracking dynamic interactions between structural and functional connectivity: A TMS/EEG-dMRI study
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0462
– year: 2020
  ident: CR12
  article-title: Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1911240117
– volume: 31
  start-page: 217
  year: 2017
  end-page: 228
  ident: CR70
  article-title: Modeling white matter microstructure
  publication-title: Funct. Neurol.
– ident: CR66
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  ident: CR69
  article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.078
– volume: 12
  start-page: 3845
  year: 2001
  end-page: 3848
  ident: CR3
  article-title: Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans
  publication-title: NeuroReport
  doi: 10.1097/00001756-200112040-00048
– volume: 250
  start-page: 85
  year: 2015
  end-page: 93
  ident: CR19
  article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.003
– volume: 553
  start-page: 665
  year: 2003
  end-page: 679
  ident: CR48
  article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.050153
– year: 2020
  ident: CR21
  article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.10.003
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: CR31
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  ident: CR42
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02512476
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: CR68
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 9
  start-page: 1483
  year: 1997
  end-page: 1492
  ident: CR38
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.7.1483
– volume: 52
  start-page: 97
  year: 1999
  end-page: 103
  ident: CR34
  article-title: Magnetic stimulation: Motor evoked potentials. The International Federation of Clinical Neurophysiology
  publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl.
– volume: 160
  start-page: 140
  year: 2017
  end-page: 151
  ident: CR62
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.064
– volume: 9
  start-page: 45
  year: 2010
  ident: CR41
  article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/1475-925X-9-45
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR63
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04920-3
– volume: 15
  start-page: 483
  year: 2011
  end-page: 506
  ident: CR65
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.08.003
– volume: 6
  start-page: e159
  year: 2008
  ident: CR8
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 49
  start-page: 1091
  year: 2010
  end-page: 1098
  ident: CR53
  article-title: Increasing top-down suppression from prefrontal cortex facilitates tactile working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.049
– volume: 28
  start-page: 520
  year: 2015
  end-page: 528
  ident: CR36
  article-title: Masking the auditory evoked potential in TMS-EEG: A comparison of various methods
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0312-z
– volume: 13
  start-page: 76
  year: 2019
  ident: CR40
  article-title: MEG/EEG group analysis with brainstorm
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00076
– ident: CR44
– volume: 24
  start-page: 29
  year: 2005
  end-page: 35
  ident: CR4
  article-title: Impact of TMS on the primary motor cortex and associated spinal systems
  publication-title: IEEE Eng. Med. Biol. Mag. Q
  doi: 10.1109/MEMB.2005.1384097
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: CR37
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 33
  start-page: 11239
  year: 2013
  end-page: 11252
  ident: CR46
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-13.2013
– volume: 62
  start-page: 1600
  year: 2012
  end-page: 1609
  ident: CR71
  article-title: A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.059
– volume: 56
  start-page: 171
  year: 2007
  end-page: 184
  ident: CR61
  article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.023
– volume: 1991
  start-page: 11
  issue: 14
  year: 2004
  end-page: 22
  ident: CR26
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex N. Y
  doi: 10.1093/cercor/bhg087
– volume: 1991
  start-page: 817
  issue: 18
  year: 2008
  end-page: 827
  ident: CR67
  article-title: Distinct causal influences of parietal versus frontal areas on human visual cortex: Evidence from concurrent TMS-fMRI
  publication-title: Cereb. Cortex N. Y
  doi: 10.1093/cercor/bhm128
– volume: 544
  start-page: 20
  year: 2013
  end-page: 24
  ident: CR17
  article-title: Effects of aging on neuromagnetic mismatch responses to pitch changes
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.02.063
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  ident: CR43
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– year: 2020
  ident: CR13
  article-title: Network-level macroscale structural connectivity predicts propagation of transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117698
– volume: 108
  start-page: 21229
  year: 2011
  end-page: 21234
  ident: CR11
  article-title: Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1113103109
– volume: 15
  start-page: 483
  year: 2011
  ident: 90663_CR65
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.08.003
– volume: 126
  start-page: 1071
  year: 2015
  ident: 90663_CR33
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.02.001
– volume: 62
  start-page: 1924
  year: 2012
  ident: 90663_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 12
  start-page: 3845
  year: 2001
  ident: 90663_CR3
  publication-title: NeuroReport
  doi: 10.1097/00001756-200112040-00048
– volume: 134
  start-page: 9
  year: 2004
  ident: 90663_CR37
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 34
  start-page: 144
  year: 2007
  ident: 90663_CR68
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 108
  start-page: 21229
  year: 2011
  ident: 90663_CR11
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1113103109
– volume: 142
  start-page: 394
  year: 2016
  ident: 90663_CR28
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 176
  start-page: 603
  year: 2007
  ident: 90663_CR6
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-006-0639-8
– volume: 9
  start-page: 1483
  year: 1997
  ident: 90663_CR38
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.7.1483
– volume: 70
  start-page: 283
  year: 2012
  ident: 90663_CR54
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e31823020e6
– volume: 553
  start-page: 665
  year: 2003
  ident: 90663_CR48
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.050153
– volume: 86
  start-page: 1983
  year: 2001
  ident: 90663_CR5
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.86.4.1983
– ident: 90663_CR66
  doi: 10.1049/cp.2015.0787
– volume: 163
  start-page: 1
  year: 2005
  ident: 90663_CR55
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-004-2140-6
– volume: 54
  start-page: 2033
  year: 2011
  ident: 90663_CR27
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– year: 2020
  ident: 90663_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1911240117
– volume: 164
  start-page: 177
  year: 2007
  ident: 90663_CR43
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 213
  start-page: 525
  year: 2009
  ident: 90663_CR47
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-009-0208-6
– volume: 110
  start-page: 19944
  year: 2013
  ident: 90663_CR64
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311772110
– volume: 102
  start-page: 9673
  year: 2005
  ident: 90663_CR10
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504136102
– volume: 31
  start-page: 217
  year: 2017
  ident: 90663_CR70
  publication-title: Funct. Neurol.
– volume: 106
  start-page: 1125
  year: 2011
  ident: 90663_CR32
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 113
  start-page: E1728
  year: 2016
  ident: 90663_CR56
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519890113
– volume: 250
  start-page: 85
  year: 2015
  ident: 90663_CR19
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.003
– volume: 7
  start-page: 84
  year: 2017
  ident: 90663_CR14
  publication-title: Brain Connect.
  doi: 10.1089/brain.2016.0462
– volume: 13
  start-page: 76
  year: 2019
  ident: 90663_CR40
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00076
– volume: 6
  start-page: e159
  year: 2008
  ident: 90663_CR8
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– year: 2020
  ident: 90663_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117698
– volume: 33
  start-page: 11239
  year: 2013
  ident: 90663_CR46
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-13.2013
– volume: 342
  start-page: 1238411
  year: 2013
  ident: 90663_CR45
  publication-title: Science
  doi: 10.1126/science.1238411
– volume: 544
  start-page: 20
  year: 2013
  ident: 90663_CR17
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.02.063
– volume: 28
  start-page: 520
  year: 2015
  ident: 90663_CR36
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0312-z
– volume: 80
  start-page: 220
  year: 2013
  ident: 90663_CR69
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.078
– volume: 9
  start-page: 45
  year: 2010
  ident: 90663_CR41
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/1475-925X-9-45
– volume: 72
  start-page: 665
  year: 2011
  ident: 90663_CR9
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 160
  start-page: 140
  year: 2017
  ident: 90663_CR62
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.064
– volume: 14
  start-page: 883
  year: 2001
  ident: 90663_CR1
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0889
– volume: 147
  start-page: 934
  year: 2017
  ident: 90663_CR39
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.031
– year: 2020
  ident: 90663_CR21
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.10.003
– volume: 3
  start-page: 1
  year: 2020
  ident: 90663_CR15
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0764-0
– volume: 20
  start-page: 45
  year: 2001
  ident: 90663_CR30
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 68
  start-page: 825
  year: 2010
  ident: 90663_CR51
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.06.021
– ident: 90663_CR16
  doi: 10.1109/EMBC.2015.7318340
– volume: 23
  start-page: 28
  year: 2017
  ident: 90663_CR49
  publication-title: Nat. Med.
  doi: 10.1038/nm.4246
– volume: 56
  start-page: 171
  year: 2007
  ident: 90663_CR61
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.023
– volume: 10
  start-page: 2642
  year: 2019
  ident: 90663_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10638-7
– volume: 447
  start-page: 83
  year: 2007
  ident: 90663_CR57
  publication-title: Nature
  doi: 10.1038/nature05758
– volume: 211
  start-page: 116596
  year: 2020
  ident: 90663_CR58
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116596
– volume: 13
  start-page: 182
  year: 2009
  ident: 90663_CR2
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2009.01.004
– volume: 120
  start-page: 2008
  year: 2009
  ident: 90663_CR35
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.08.016
– volume: 108
  start-page: 23
  year: 2015
  ident: 90663_CR52
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.033
– volume: 125
  start-page: 1063
  year: 2016
  ident: 90663_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 52
  start-page: 97
  year: 1999
  ident: 90663_CR34
  publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl.
– volume: 17
  start-page: 2733
  year: 2007
  ident: 90663_CR50
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl183
– volume: 22
  start-page: 53
  year: 2012
  ident: 90663_CR25
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22005
– volume: 9
  start-page: 97
  year: 1971
  ident: 90663_CR20
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 62
  start-page: 782
  year: 2012
  ident: 90663_CR24
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 6
  start-page: e27633
  year: 2011
  ident: 90663_CR60
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027633
– volume: 1991
  start-page: 817
  issue: 18
  year: 2008
  ident: 90663_CR67
  publication-title: Cereb. Cortex N. Y
  doi: 10.1093/cercor/bhm128
– volume: 62
  start-page: 1600
  year: 2012
  ident: 90663_CR71
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.059
– volume: 49
  start-page: 1091
  year: 2010
  ident: 90663_CR53
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.049
– volume: 9
  start-page: 1
  year: 2018
  ident: 90663_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04920-3
– volume: 32
  start-page: 35
  year: 1994
  ident: 90663_CR42
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02512476
– volume: 24
  start-page: 29
  year: 2005
  ident: 90663_CR4
  publication-title: IEEE Eng. Med. Biol. Mag. Q
  doi: 10.1109/MEMB.2005.1384097
– ident: 90663_CR44
– volume: 136
  start-page: 25
  year: 2015
  ident: 90663_CR72
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2015.05.023
– volume: 21
  start-page: 1
  year: 2008
  ident: 90663_CR7
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-008-0067-0
– volume: 18
  start-page: 1664
  year: 2015
  ident: 90663_CR59
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 35
  start-page: 1459
  year: 2007
  ident: 90663_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 29
  start-page: 191
  year: 2007
  ident: 90663_CR18
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.03.001
– volume: 1991
  start-page: 11
  issue: 14
  year: 2004
  ident: 90663_CR26
  publication-title: Cereb. Cortex N. Y
  doi: 10.1093/cercor/bhg087
SSID ssj0000529419
Score 2.430697
Snippet Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high...
Abstract Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12458
SubjectTerms 631/378/2649
631/378/3920
692/617
692/698/1688/64
Brain mapping
EEG
Electroencephalography
Functional magnetic resonance imaging
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Neural networks
Neuroimaging
Propagation
Science
Science (multidisciplinary)
Structure-function relationships
Substantia alba
Transcranial magnetic stimulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SEHoRqxVXW4ngrS7N28nmx7EVSxEUDy30FpJsFoXHbumrh_bUP70zyb5nt6BePO5L3u4mM7PfTDL5hrEPEDorZVI1dCLVMjVQGwURBbIIUUAwWtPZ4a_f1Om5_HLRXjwo9UU5YYUeuEzcIYYbAUEwaY9A4pvorQ4ixA4Q2dq2SfT1FVY8CKYKq3dj5cJOp2QEmMMVIhWdJssZCQiz9e0MiTJh_8zLfJwj-WijNOPPyXP2bHIc-VF54R32JA0v2NNSSvLmJbv7nq4QPUKeaD72nGpu4I3qfGKIDyXbmw9jl1b8ciougta9XN7gJUbOtJy24tcjL4yyxMaBTVfZQeS0vs4JAsvKITZESpCJ6K5yKu2AqrvLzk8-n306rafqCnWUyrR1Y4l9y8oEMnZS9b43ffKaNj6bLoDHz2SvlaUEv-TRyVGpD8onFY0w0fQdvGJbwzik14wL76ONC4U39lIEjTFcj26d19DqDkBXbLGeaRcn6nGqgLF0eQscjCvScSgdl6Xjbit2sPnPZSHe-GvvYxLgpieRZucfUJXcpEruX6pUsb21-N1kySuHAbRAMLHQVuz9phltkDZW_JDGX7kPnUQHiSPVM7WZvdC8Zfj5I7N5owsGWpuKfVwr2O-H_3nAb_7HgN-y7YYMgkoxyT22hfqV9tHHug7vsjndA8KvJec
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyQuCFoQKQUZiRu1msSO7ZwQIKoKiYoDlfZm-RVAWiXbTXtoT_x0ZhzvVqlEj7v2ZpPMjOebNyHvuQutEFEyHsrIRKw505J7IEjlfMmdVgprh7-fy7ML8W3RLLLDbcxplZszMR3UYfDoIz8BQwZMOeCm5uPqkuHUKIyu5hEaj8heBUgERzeohdr6WDCKJao218qUXJ-MoK-wpizlJYCyZbczfZTa9s-w5v1MyXvh0qSFTp-Rpxk-0k8TvZ-Tndjvk8fTQMmbA_L3R1yDDnHpddOhozh5Ay7EUt0Q7aecb9oPIY50lUeMgIwvlzfwEexndKqN9GqgU19Z7MkBS-sEEyl62Skqwsl_CAse02Q8gFaKAx6AgV-Qi9OvP7-csTxjgXkhdcPqFntwtSJy4YOQne10F63C8GcdHLdwWHZKtpjmFy1AHRk7J22UXpfa6y7wl2S3H_r4itDSWt_6SsKFrSidAkuuA3BnFW9U4FwVpNq8aeNzA3Kcg7E0KRDOtZmoY4A6JlHH3Bbkw_Y3q6n9xoO7PyMBtzuxdXb6Ylj_MlkSDdivDlBVVBaQia29bZUrnQ8coFLT1LEgRxvymyzPo7njvoK82y6DJGJ4xfZxuE57sB6dC3hSNWOb2Q3NV_o_v1NPbwBiXCldkOMNg939-f8f-PDhe31NntTI6jhqSRyRXeCc-AYw1JV7mwTlH3yFHdc
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402pfk-bjIKLisgiKBx_sLSRpqguPdn1vBd-e_NOdSdonXVbBY5v0KzPT-U3mC-Ap960RIsqSt1UsRax5qSUPSJCFDxX3WinKHf74SR4txYfj5ngPpnZH4wJuLjXtqJ_Ucr168fP79jUK_KucMq5fblAJUaJYCjZADVqeX4GryV9EoXwj3M-1vmsjFmbMnbn80pl-SmX8Z9jzYuTkBfdp0kqHN-HGCCfZm0z_W7AX-9twLTeY3N6BX5_jGnWKT8vPho5RJw68UZnyiFifY8BZP7Rxw07HliMo86vVFg_RnqZNtg07G1iuM0s1OnBonWAjo113Roox7yfiQKCwmYAgllHDB2Tou7A8fP_l3VE59lwog5C6KWtDNbmMiFyEVsjOdbqLTpE7tG49d_jz7JQ0FPYXHUIfGTsvXZRBVzroruX3YL8f-ngfWOVcMGEh8cZOVF6hZdch2HOKN6rlXBWwmFbahrEgOfXFWNnkGOfaZupYpI5N1LHnBTzbXXOay3H8c_ZbIuBuJpXSTieG9Vc7SqZFe9YjyorKIVJxdXBG-cqHliN0apo6FnAwkd9O7GnRrK5QxRjeFPBkN4ySSe4W18fhR5pD-elc4JeqGdvMXmg-0p98SzW-EZhxpXQBzycG-_Pwv3_wg_-b_hCu18T61IpJHMA-clJ8hBjrzD9OgvMbsPQl1A
  priority: 102
  providerName: Scholars Portal
Title Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions
URI https://link.springer.com/article/10.1038/s41598-021-90663-z
https://www.proquest.com/docview/2540467935
https://www.proquest.com/docview/2541320347
https://pubmed.ncbi.nlm.nih.gov/PMC8203778
https://doaj.org/article/717b102e7a614a2ca97b0bcd3822552e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-0KYNdxj6Z1y5osNtm5liyJB_T0FICLWVbITchyfI2CHZJukN72p_e92Q7w2Ub7OJgS3Ysvye9n94nwHvuqlKIIFNeZSEVIeepltwjQWbOZ9xppSh2-PxCnl2J5apY7UE-xMJEp_2Y0jIu04N32KctChoKBosOBSgl07t9ONAKl98JHMznyy_LnWaFbFdiVvYRMhnXf7h5JIVisv4RwnzoH_nASBplz-lTeNKDRjbvXvMZ7IXmOTzqykjevoBfl2GDY3HxI7O2ZlRvAx-Uxmgh1nSe3qxpq7Bl131hEZzZ6_UtnuKumVRpW3bTsi6bLGXiwKZNBIeMdOuMxF-nNcQGT84xHqEqo7IOyLYv4er05OviLO0rK6ReSF2keUmZt0oRuPCVkLWtdR2sIqNnXjlucYmslSzJuS9YBDgy1E7aIL3OtNd1xV_BpGmb8BpYZq0v_Uzig63InML9W42QzipeqIpzlcBs-NLG92nHqfrF2kTzN9emo45B6phIHXOXwIfdPddd0o1_9j4mAu56UsLseKHdfDM9AxnctTrEUkFZxCM297ZULnO-4giQiiIPCRwN5Df9LN4a3DxnKEhKXiTwbteM84-MKrYJ7c_Yh6LQucCRqhHbjF5o3NL8-B4zeSP84krpBD4ODPb7z_8-4Df_1_0QHufE-lRwSRzBBDkpvEUkdeOmsK9WatpPIPw9Prm4_IxXF3IxjdoJPJ4LfQ_PmCLD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEJ9aYICR4AmipbETJw8TYrCpY1s1oU3am7EdB5CqpDRDqHviL-Nv485JOmUSe9tjazdNcuf7vvsBvOamyIVwaciLyIXCxTzMUm6RIGNjI24yKal3-GiaTk7F57PkbA3-9r0wVFbZy0QvqIvaUox8Cx0ZdOWQm5L3858hoUZRdrWH0NAdtEKx7UeMdY0dB275G124Znv_E9L7TRzv7Z58nIQdykBoRZolYZzTFKpcOC5sIdJSl1nptKQEYFwYrlFclDLNqdDNaVT2qStNql1qsyizWVlwvO4tWBcUQBnB-s7u9PjLKspDeTQxzrtunYhnWw1qTOpq85URqO7Di4FG9MABA2v3aq3mlYSt14N79-FeZ8CyDy3HPYA1Vz2E2y2k5fIR_Dl2C9RixhOc1SUj7A-8UOg7l1jVVp2zqi5cw-YdyAlKmdlsiR_Rg6ewXsPOa9ZOtqWpILi08IYqozg_I1XcRjBxwVKhjkWzmRHEBB6hx3B6I-__CYyqunIbwCKtbW7HKV5Yi8hI9CVLNC-15IksOJcBjPs3rWw3Ap2QOGbKp-J5plrqKKSO8tRRFwG8Xf1m3g4AuXb3DhFwtZOGd_sv6sU31ckChR60QbvOSY22kY6tzqWJjC04GmtJErsANnvyq06iNOqS_wN4tVpGWUAJHl25-pffQx3xXOCTygHbDG5ouFL9-O6niqMpyKXMAnjXM9jln___gZ9ef68v4c7k5OhQHe5PD57B3ZjYnoCfxCaMkIvcc7Tozs2L7tgw-HrTJ_UfJDZg_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxFMNFDASnCDabOzYyaFClHbVUlitEJV6M7bjANIqWTZFaHvi9_GrmHGcrVKJ3nrc2PEmmfE8PI-PkJfMlAXnTsSsTFzMXcriXDALBBkbmzCTS4m1w5-m4vCEfzjNTjfI374WBtMqe5noBXXZWDwjH4EjA64ccFM2qkJaxGx_8nbxM0YEKYy09nAaOsAslLu-3Vgo8jh2q9_gzrW7R_tA-1dpOjn48v4wDogDseUiz-K0wI5UBXeM25KLSld55bTEYGBaGqZBdFRSFJj05jQofuEqI7QTNk9ym1clg3VvkC0JWh8cwa29g-ns8_rEB2NqfFyEyp2E5aMWtCdWuPksCVD98flAO3oQgYHlezlv81Lw1uvEyV1yJxiz9F3HfffIhqvvk5sdvOXqAfkzc0vQaMYTnzYVRRwQWCj2VUy07jLQad2UrqWLAHgCEmc-X8FP8ObxiK-lZw3tutxihxAYWnqjleKZP0W13J1mwoDFpB0LJjRFuAnYTg_JybV8_0dks25qt01oorUt7FjAwponRoJfWYGpqSXLZMmYjMi4_9LKhnboiMoxVz4sz3LVUUcBdZSnjjqPyOv1PYuuGciVs_eQgOuZ2MjbX2iW31SQCwq8aQM2npMa7CSdWl1IkxhbMjDcsix1Ednpya-CdGnVxV6IyIv1MMgFDPbo2jW__Bysjmcc3lQO2GbwQMOR-sd332EczEImZR6RNz2DXfz5_1_48dXP-pzcgh2rPh5Nj5-Q2ylyPWJA8R2yCUzknoJxd2aehV1Dydfr3qj_AKtSZUM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbation+of+resting-state+network+nodes+preferentially+propagates+to+structurally+rather+than+functionally+connected+regions&rft.jtitle=Scientific+reports&rft.au=Momi%2C+Davide&rft.au=Ozdemir%2C+Recep+A.&rft.au=Tadayon%2C+Ehsan&rft.au=Boucher%2C+Pierre&rft.date=2021-06-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-90663-z&rft.externalDocID=10_1038_s41598_021_90663_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon