On the evolution of carry-over effects
The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these ‘carry‐over effects’ influence fitness outco...
Saved in:
Published in | The Journal of animal ecology Vol. 88; no. 12; pp. 1832 - 1844 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.12.2019
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8790 1365-2656 1365-2656 |
DOI | 10.1111/1365-2656.13081 |
Cover
Abstract | The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these ‘carry‐over effects’ influence fitness outcomes across the entire life cycle.
While the last two decades have witnessed an explosion of studies documenting the occurrence of carry‐over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry‐over effects.
Carry‐over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., ‘adaptive decoupling’). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle.
Adaptive evolution of a carry‐over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry‐over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage‐specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage.
Considering the evolution of carry‐over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry‐over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry‐over effects that influence sexually selected traits.
Despite two decades of research on carry‐over effects, little previous consideration has been given to how they adapt and diversify. Unifying theory from the study of life histories and phenotypic plasticity, the authors describe evolutionary trajectories of carry‐over effects, provide illustrative examples and offer recommendations for future work. Photo Credit: M.P Moore |
---|---|
AbstractList | The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these ‘carry‐over effects’ influence fitness outcomes across the entire life cycle.
While the last two decades have witnessed an explosion of studies documenting the occurrence of carry‐over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry‐over effects.
Carry‐over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., ‘adaptive decoupling’). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle.
Adaptive evolution of a carry‐over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry‐over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage‐specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage.
Considering the evolution of carry‐over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry‐over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry‐over effects that influence sexually selected traits. The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these ‘carry‐over effects’ influence fitness outcomes across the entire life cycle.While the last two decades have witnessed an explosion of studies documenting the occurrence of carry‐over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry‐over effects.Carry‐over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., ‘adaptive decoupling’). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle.Adaptive evolution of a carry‐over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry‐over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage‐specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage.Considering the evolution of carry‐over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry‐over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry‐over effects that influence sexually selected traits. The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these ‘carry‐over effects’ influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry‐over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry‐over effects. Carry‐over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., ‘adaptive decoupling’). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry‐over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry‐over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage‐specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry‐over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry‐over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry‐over effects that influence sexually selected traits. Despite two decades of research on carry‐over effects, little previous consideration has been given to how they adapt and diversify. Unifying theory from the study of life histories and phenotypic plasticity, the authors describe evolutionary trajectories of carry‐over effects, provide illustrative examples and offer recommendations for future work. Photo Credit: M.P Moore The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits.The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits. |
Author | Moore, Michael P. Martin, Ryan A. |
Author_xml | – sequence: 1 givenname: Michael P. surname: Moore fullname: Moore, Michael P. – sequence: 2 givenname: Ryan A. surname: Martin fullname: Martin, Ryan A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31402447$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LwzAYh4MouqlnT0pBEC_VN0nz0aPI_EL0oueQtm-wo2s0aZX993bO7bCD5hIIz5O8-f3GZLv1LRJyROGCDuuScilSJoW8oBw03SKj9ck2GQEwmmqVwx4ZxzgFAMWA75I9TjNgWaZG5Oy5Tbo3TPDTN31X-zbxLiltCPPUf2JI0Dksu3hAdpxtIh7-7vvk9Wbycn2XPj7f3l9fPaZlJjVNHdcZr3ItssJKxFxS0HnmoLJCgWWQc1c4UXHUmjOel7rQhWUFKquUKlTF98n58t734D96jJ2Z1bHEprEt-j4aJgTNuRxG_x9lijGaMxADerqBTn0f2uEjhnHGJGcgYaBOfqm-mGFl3kM9s2FuVmENwOUSKIOPMaBbIxTMog6zCN8swjc_dQyG2DDKurOLmLtg6-YPTy69r7rB-X_PmIerp8lKPF6K09j5sBYzLfTQvuDfEWGhyw |
CitedBy_id | crossref_primary_10_1111_eea_13383 crossref_primary_10_1002_eap_2315 crossref_primary_10_1002_ece3_7860 crossref_primary_10_1007_s00265_023_03301_1 crossref_primary_10_1016_j_yebeh_2025_110307 crossref_primary_10_1093_biolinnean_blaa133 crossref_primary_10_3390_ani14192869 crossref_primary_10_1007_s00442_020_04723_8 crossref_primary_10_1086_715845 crossref_primary_10_1111_een_12839 crossref_primary_10_1038_s41598_024_69915_1 crossref_primary_10_1016_j_jtherbio_2024_103880 crossref_primary_10_3390_microorganisms12030471 crossref_primary_10_1038_s41598_022_19466_0 crossref_primary_10_1186_s13071_023_06037_z crossref_primary_10_3389_fevo_2021_734031 crossref_primary_10_1016_j_aquaculture_2021_737505 crossref_primary_10_1111_ele_13604 crossref_primary_10_1016_j_ecoenv_2023_115899 crossref_primary_10_1002_ece3_10095 crossref_primary_10_3354_meps14069 crossref_primary_10_1016_j_jtherbio_2024_103836 crossref_primary_10_1111_jeb_13711 crossref_primary_10_1016_j_jtherbio_2023_103577 crossref_primary_10_3389_fevo_2020_00190 crossref_primary_10_1098_rsbl_2023_0108 crossref_primary_10_1242_jeb_246239 crossref_primary_10_1111_1365_2435_13650 crossref_primary_10_1098_rsos_211179 crossref_primary_10_1016_j_cobeha_2020_07_009 crossref_primary_10_1086_714048 crossref_primary_10_1093_ornithology_ukae011 crossref_primary_10_1007_s10530_024_03380_9 crossref_primary_10_33256_hj30_3_126134 crossref_primary_10_1086_716000 crossref_primary_10_1086_719030 crossref_primary_10_1098_rspb_2021_2500 crossref_primary_10_1016_j_anbehav_2025_123101 crossref_primary_10_1016_j_ygcen_2023_114291 crossref_primary_10_1093_cz_zoaf006 crossref_primary_10_1093_iob_obae012 crossref_primary_10_1093_beheco_arad029 crossref_primary_10_1111_evo_14191 crossref_primary_10_24332_aospt_2020_16_2_03 crossref_primary_10_1093_femsmc_xtae002 crossref_primary_10_1146_annurev_ecolsys_011720_124613 crossref_primary_10_1016_j_jinsphys_2021_104273 crossref_primary_10_1002_ecs2_4059 crossref_primary_10_1016_j_yhbeh_2022_105261 crossref_primary_10_1242_jeb_249299 crossref_primary_10_1098_rsbl_2021_0023 crossref_primary_10_1111_acv_12880 crossref_primary_10_7717_peerj_18990 crossref_primary_10_1098_rspb_2020_1140 crossref_primary_10_1016_j_cris_2025_100109 crossref_primary_10_1007_s00265_023_03420_9 crossref_primary_10_1002_ecy_70022 crossref_primary_10_3389_fphys_2021_738338 crossref_primary_10_1098_rspb_2020_2467 crossref_primary_10_1186_s13104_021_05808_0 crossref_primary_10_1093_conphys_coad058 crossref_primary_10_3390_insects12100862 crossref_primary_10_1007_s11160_025_09923_0 crossref_primary_10_1098_rspb_2022_0554 crossref_primary_10_1139_cjfas_2024_0217 crossref_primary_10_1093_conphys_coab039 crossref_primary_10_1002_aff2_153 |
Cites_doi | 10.1098/rspb.2011.0971 10.1111/j.1558-5646.2011.01342.x 10.1111/nyas.13256 10.1016/j.cub.2006.03.017 10.1111/j.1558-5646.1979.tb04694.x 10.1111/j.1365-2656.2010.01740.x 10.1111/eva.12267 10.1086/675302 10.1111/j.1558-5646.2010.01122.x 10.1098/rstb.2018.0184 10.1890/0012-9658(2001)082[0541:TRBPRA]2.0.CO;2 10.1098/rspb.2017.2304 10.1111/j.1461-0248.2010.01491.x 10.1111/1365-2435.12117 10.1017/CBO9780511525711 10.1111/1365-2435.12765 10.1007/s10682-012-9563-5 10.1111/gcb.13624 10.1038/150563a0 10.1146/annurev.es.25.110194.003041 10.1371/journal.pbio.3000128 10.1890/12-0567.1 10.1086/341015 10.1111/j.0014-3820.2001.tb00773.x 10.1111/j.0014-3820.2004.tb01592.x 10.1111/evo.12795 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2 10.1038/s41559-017-0268-6 10.1046/j.1523-1739.2002.00433.x 10.1098/rspb.2019.0445 10.1111/j.1558-5646.1984.tb00344.x 10.1111/jeb.12892 10.1016/S0022-5193(84)80050-8 10.1111/oik.05033 10.1007/s00442-018-4171-x 10.1643/CE-12-091 10.1016/j.cub.2011.08.022 10.1111/1365-2435.12435 10.1038/nature03084 10.1890/04-0116 10.1186/s12862-017-0907-1 10.1016/S0169-5347(00)89061-8 10.1146/annurev.ento.45.1.661 10.1038/40618 10.1016/j.anbehav.2013.02.009 10.1111/j.1558-5646.2009.00762.x 10.1073/pnas.1703877114 10.2307/1938700 10.1111/evo.12952 10.1093/icb/icj028 10.1021/acs.est.6b04989 10.1111/gcb.12472 10.1111/jeb.13337 10.1016/j.cub.2008.04.059 10.1098/rspb.2010.0877 10.1111/j.1365-2745.2009.01634.x 10.1126/science.1224286 10.1111/j.1365-2311.2008.01024.x 10.1016/j.cub.2009.09.065 10.1073/pnas.0603562103 10.1038/hdy.2015.8 10.1046/j.1420-9101.1999.00004.x 10.1111/j.1365-2435.2007.01283.x 10.1371/journal.pone.0011680 10.1146/annurev.es.24.110193.000343 10.1007/s12038-007-0046-8 10.1016/0022-5193(66)90184-6 10.1111/j.1558-5646.1985.tb00391.x 10.1016/S0169-5347(00)89117-X 10.1002/ecs2.2151 10.1086/588063 10.1038/ncomms15213 10.1007/s00265-016-2133-z 10.1111/1365-2435.12104 10.1890/14-0262.1 10.1111/j.0014-3820.2003.tb01528.x 10.1046/j.1525-142x.2001.003002059.x 10.2307/1312173 10.1111/1365-2435.12006 10.1890/ES13-00388.1 10.1111/j.1558-5646.1987.tb02457.x 10.1098/rstb.2009.0150 10.1196/annals.1438.010 10.1007/s00442-002-1161-8 10.1111/jeb.13119 10.1111/evo.12744 10.1890/11-0890.1 10.1146/annurev-ento-120710-100557 10.1111/evo.13694 10.1086/663198 10.1111/evo.13074 10.1016/j.tree.2019.02.006 10.1093/icb/icx014 10.1073/pnas.1805435115 10.1111/j.1558-5646.2010.00991.x 10.1073/pnas.95.1.213 10.1111/j.1365-294X.2011.05006.x 10.1007/s11692-015-9363-2 10.1098/rspb.2007.0242 10.1098/rspb.1996.0207 10.2307/1936778 10.1098/rspb.2014.1091 10.1111/brv.12198 10.1111/ele.12953 10.1111/jeb.12629 10.1002/ecy.2056 10.1111/j.0014-3820.2001.tb01301.x 10.1111/eva.12396 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2 10.1111/j.1365-294X.2011.05016.x |
ContentType | Journal Article |
Copyright | 2019 The Authors. © 2019 British Ecological Society 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society. 2019 British Ecological Society |
Copyright_xml | – notice: 2019 The Authors. © 2019 British Ecological Society – notice: 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society – notice: 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society. – notice: 2019 British Ecological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/1365-2656.13081 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1365-2656 |
EndPage | 1844 |
ExternalDocumentID | 31402447 10_1111_1365_2656_13081 JANE13081 48580005 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: GAANN Fellowship |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1OC 29J 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPFR ABPLY ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EYRJQ F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JAS JBS JENOY JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TN5 UB1 UPT W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 2AX 31~ AAHHS AAISJ ABBHK ABPQH ABTAH ABXSQ ABYAD ACCFJ ACHIC ACKIV ACTWD ACUBG ADULT ADZOD AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AI. AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF EJD ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JBZCM JEB JHFFW JKQEH JLEZI JLXEF JPL JPM JSODD LW6 MVM NHB SA0 VH1 WHG WRC ZCG ZY4 AAYXX ABAWQ ABSQW ACHJO AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4681-f3843d9854ba6ee9610894f0da570a2093fbf5d3e883239c8b8ba2be7a777b7d3 |
IEDL.DBID | DR2 |
ISSN | 0021-8790 1365-2656 |
IngestDate | Fri Jul 11 18:38:16 EDT 2025 Fri Jul 11 01:01:34 EDT 2025 Fri Jul 25 10:58:13 EDT 2025 Thu Apr 03 07:09:10 EDT 2025 Tue Jul 01 03:10:02 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:36:35 EST 2025 Thu Jul 03 21:32:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | fitness trade-offs life-history variation quantitative genetics complex life cycles developmental plasticity |
Language | English |
License | 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4681-f3843d9854ba6ee9610894f0da570a2093fbf5d3e883239c8b8ba2be7a777b7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8255-4247 0000-0002-7448-5907 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2656.13081 |
PMID | 31402447 |
PQID | 2322632060 |
PQPubID | 37522 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2551936447 proquest_miscellaneous_2272219205 proquest_journals_2322632060 pubmed_primary_31402447 crossref_primary_10_1111_1365_2656_13081 crossref_citationtrail_10_1111_1365_2656_13081 wiley_primary_10_1111_1365_2656_13081_JANE13081 jstor_primary_48580005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191201 December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of animal ecology |
PublicationTitleAlternate | J Anim Ecol |
PublicationYear | 2019 |
Publisher | Wiley Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley – name: Blackwell Publishing Ltd |
References | 2002; 16 2018; 285 2010; 98 1993; 24 2010; 13 2017; 1389 2019; 17 2003; 57 2008; 33 1996; 263 1979; 33 2019; 286 2014; 20 1997; 388 2018; 9 1987; 41 2013; 2013 1982; 63 2016; 43 2011; 65 2012; 26 2001; 55 1992; 42 1998; 95 2009; 19 2010; 5 1988 2018; 188 2009; 63 2011; 80 2019; 34 2013; 85 1998 2005; 86 1994 2016; 91 2018; 21 2017; 51 2015; 69 2004; 432 2015; 115 2006; 46 1984; 38 2004; 58 2017; 57 2018; 115 2007; 274 2000; 81 2018b; 99 2016; 29 2016; 9 2006; 103 2011; 278 2017; 8 2017; 1 2013; 27 2018; 127 2000; 45 1930 1994; 25 2016; 70 1966; 12 2007; 32 2012; 57 2017; 114 2017; 31 2010; 64 2017; 30 1984; 110 2014; 5 2012; 179 2010; 277 2011; 20 1999; 12 2003; 5 2011; 21 2014; 281 2012; 337 2008; 1133 2019; 73 2006; 16 2008; 18 2015; 96 2010; 365 1995; 10 2017; 23 2018a; 31 2003 2015; 8 2003; 134 1942; 150 2012; 93 2001; 82 1985; 39 2015; 28 1991; 246 2002; 160 2015; 29 2017; 17 1986; 67 2014; 183 2001; 3 2008; 172 2019; 374 e_1_2_11_70_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 De Block M. (e_1_2_11_28_1) 2008; 33 e_1_2_11_102_1 e_1_2_11_81_1 Schlichting C. D. (e_1_2_11_93_1) 1998 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 Schluter D. (e_1_2_11_95_1) 1991; 246 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 Lorch P. D. (e_1_2_11_67_1) 2003; 5 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_37_1 Grafen A. (e_1_2_11_43_1) 1988 e_1_2_11_112_1 |
References_xml | – volume: 33 start-page: 796 year: 2008 end-page: 801 article-title: Short‐term larval food stress and associated compensatory growth reduce adult immune function in a damselfly publication-title: Ecological Entomology – volume: 8 start-page: 15213 year: 2017 article-title: Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases publication-title: Nature Communications – volume: 93 start-page: 2758 year: 2012 end-page: 2768 article-title: Persistent carry‐over effects of planktonic exposure to ocean acidification in the Olympia oyster publication-title: Ecology – volume: 57 start-page: 2879 year: 2003 end-page: 2892 article-title: Estimating selection on neonatal traits in red deer using elasticity path analysis publication-title: Evolution – volume: 82 start-page: 541 year: 2001 end-page: 554 article-title: The relationship between predation risk and antipredator responses in larval anurans publication-title: Ecology – volume: 16 start-page: R242 year: 2006 end-page: R243 article-title: Male development tracks rapidly shifting sexual versus natural selection pressures publication-title: Current Biology – volume: 18 start-page: 751 year: 2008 end-page: 757 article-title: Environmental heterogeneity generates fluctuating selection on a secondary sexual trait publication-title: Current Biology – volume: 20 start-page: 1558 year: 2011 end-page: 1567 article-title: Potential for evolutionary coupling and decoupling of larval and adult immune gene expression publication-title: Molecular Ecology – volume: 99 start-page: 224 year: 2018b end-page: 230 article-title: Larval body condition regulates predator‐induced life‐history variation in a dragonfly publication-title: Ecology – volume: 46 start-page: 323 year: 2006 end-page: 333 article-title: Larval experience and latent effects—metamorphosis is not a new beginning publication-title: Integrative and Comparative Biology – volume: 160 start-page: 271 year: 2002 end-page: 283 article-title: Metapopulation structure favors plasticity over local adaptation publication-title: The American Naturalist – volume: 13 start-page: 998 year: 2010 end-page: 1007 article-title: Juvenile compensatory growth has negative consequences for reproduction in Trinidadian guppies ( ) publication-title: Ecology Letters – volume: 374 start-page: 20180184 year: 2019 article-title: Sexual selection, phenotypic plasticity and female reproductive output publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – volume: 32 start-page: 465 year: 2007 end-page: 475 article-title: Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in butterflies publication-title: Journal of Biosciences – volume: 188 start-page: 97 year: 2018 end-page: 106 article-title: Trade‐offs between larval survival and adult ornament development depend on predator regime in a territorial dragonfly publication-title: Oecologia – volume: 19 start-page: 1996 year: 2009 end-page: 2002 article-title: Sex differences in the persistence of natal environmental effects on life histories publication-title: Current Biology – volume: 17 year: 2019 article-title: Genetic redundancy fuels polygenic adaptation in publication-title: PLoS Biology – year: 1998 – volume: 110 start-page: 155 year: 1984 end-page: 171 article-title: Quantitative genetics and developmental constraints on evolution by selection publication-title: Journal of Theoretical Biology – volume: 31 start-page: 1365 year: 2018a end-page: 1376 article-title: Immune deployment increases larval vulnerability to predators and inhibits adult life‐history traits in a dragonfly publication-title: Journal of Evolutionary Biology – volume: 96 start-page: 1128 year: 2015 end-page: 1138 article-title: The interplay of adult and larval time constraints shapes species differences in larval life history publication-title: Ecology – volume: 9 start-page: 1189 year: 2016 end-page: 1201 article-title: Global change, life‐history complexity and the potential for evolutionary rescue publication-title: Evolutionary Applications – volume: 278 start-page: 2705 year: 2011 end-page: 2713 article-title: The role of developmental plasticity in evolutionary innovation publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 43 start-page: 242 year: 2016 end-page: 256 article-title: Morphological consequences of developmental plasticity in are not accommodated into among‐population or among‐species variation publication-title: Evolutionary Biology – volume: 12 start-page: 12 year: 1966 end-page: 45 article-title: Moulding of senescence by natural selection publication-title: Journal of Theoretical Biology – volume: 281 start-page: 20141091 issue: 1788 year: 2014 article-title: The genetic covariance between life cycle stages separated by metamorphosis publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 2013 start-page: 717 year: 2013 end-page: 722 article-title: Carry‐over effects in nature: Effects of canopy cover and individual pond on size, shape, and locomotor performance of metamorphosing wood frogs publication-title: Copeia – volume: 21 start-page: R718 year: 2011 end-page: R725 article-title: Ecological and evolutionary consequences of linked life‐history stages in the sea publication-title: Current Biology – volume: 103 start-page: 19021 year: 2006 end-page: 19026 article-title: Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity publication-title: Proceedings of the National Academy of Sciences – volume: 172 start-page: E35 year: 2008 end-page: E47 article-title: Unifying life‐history analyses for inference of fitness and population growth publication-title: The American Naturalist – volume: 115 start-page: 293 year: 2015 end-page: 301 article-title: Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity publication-title: Heredity – volume: 274 start-page: 1575 year: 2007 end-page: 1582 article-title: Survival against the odds: ontogenetic changes in selective pressure mediate growth‐mortality trade‐offs in a marine fish publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 45 start-page: 661 year: 2000 end-page: 708 article-title: The development and evolution of exaggerated morphologies in insects publication-title: Annual Review of Entomology – start-page: 454 year: 1988 end-page: 463 – volume: 3 start-page: 59 year: 2001 end-page: 72 article-title: Modularity, evolvability, and adaptive radiations: A comparison of the hemi‐ and holometabolous insects publication-title: Evolution & Development – volume: 65 start-page: 684 year: 2011 end-page: 697 article-title: Gene flow and selection on phenotypic plasticity in an island system of publication-title: Evolution – volume: 86 start-page: 185 year: 2005 end-page: 197 article-title: Fitness effects from egg to reproduction: Bridging the life history transition publication-title: Ecology – volume: 69 start-page: 2525 year: 2015 end-page: 2532 article-title: An integrated analysis of phenotypic selection on insect body size and development time publication-title: Evolution – volume: 27 start-page: 1358 year: 2013 end-page: 1366 article-title: Phenotypic links among life‐history stages are complex and context‐dependent in a marine invertebrate: Interactions among offspring size, larval nutrition, and post‐metamorphic density publication-title: Functional Ecology – volume: 286 start-page: 20190445 year: 2019 article-title: Do traits separated by metamorphosis evolve independently? Concepts and methods publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 63 start-page: 607 year: 1982 end-page: 615 article-title: A quantitative genetic theory of life history evolution publication-title: Ecology – volume: 10 start-page: 313 year: 1995 end-page: 318 article-title: Visualizing and quantifying natural selection publication-title: Trends in Ecology and Evolution – volume: 114 start-page: 9936 issue: 37 year: 2017 end-page: 9941 article-title: Evidence for complex life cycle constraints on salamander body form diversification publication-title: Proceedings of the National Academy of Sciences – volume: 277 start-page: 3569 year: 2010 end-page: 3578 article-title: Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 1389 start-page: 76 year: 2017 end-page: 91 article-title: Pleiotropy, constraint, and modularity in the evolution of life histories: Insights from genomic analyses publication-title: Annals of the New York Academy of Sciences – volume: 246 start-page: 11 year: 1991 end-page: 17 article-title: Conflicting selection pressures and life history trade‐offs publication-title: Evolution – volume: 183 start-page: 453 year: 2014 end-page: 467 article-title: Evolutionary change in continuous reaction norms publication-title: The American Naturalist – volume: 27 start-page: 1134 year: 2013 end-page: 1144 article-title: Dietary protein mediates a trade‐off between larval survival and the development of male secondary sexual traits publication-title: Functional Ecology – volume: 1133 start-page: 187 year: 2008 end-page: 203 article-title: Hidden reaction norms, crytpic genetic variation, and evolvability publication-title: Annals of the New York Academy of Sciences – volume: 57 start-page: 207 year: 2017 end-page: 216 article-title: Performance tradeoffs, ontogenetic conflict, and multisport athletes: How is an ironman triathlete like a frog? publication-title: Integrative and Comparative Biology – volume: 73 start-page: 803 year: 2019 end-page: 816 article-title: Prepared for the future: A strong signal of evolution toward the adult benthic niche during the pelagic stage in Labid fishes publication-title: Evolution – volume: 39 start-page: 505 year: 1985 end-page: 522 article-title: Genotype‐environment interaction and the evolution of phenotypic plasticity publication-title: Evolution – volume: 432 start-page: 1024 year: 2004 end-page: 2017 article-title: High‐quality male field crickets invest heavily in sexual display but die young publication-title: Nature – volume: 16 start-page: 728 year: 2002 end-page: 734 article-title: What is missing in amphibian decline research: Insights from ecological sensitivity analysis publication-title: Conservation Biology – volume: 38 start-page: 709 year: 1984 end-page: 719 article-title: On the measurement of natural and sexual selection: Theory publication-title: Evolution – volume: 150 start-page: 563 year: 1942 end-page: 565 article-title: Canalization of development and the inheritance of acquired characters publication-title: Nature – volume: 20 start-page: 1347 year: 2011 end-page: 1363 article-title: Evolution and molecular mechanisms of adaptive developmental plasticity publication-title: Molecular Ecology – volume: 58 start-page: 2133 year: 2004 end-page: 2143 article-title: Comparing strengths of directional selection: How strong is strong? publication-title: Evolution – volume: 85 start-page: 1049 year: 2013 end-page: 1059 article-title: The multidimensional consequences of the juvenile environment: Towards an integrative view of the phenotype publication-title: Animal Behaviour – volume: 25 start-page: 573 year: 1994 end-page: 600 article-title: Adaptation and constraint in the complex life cycles of animals publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 70 start-page: 2746 year: 2016 end-page: 2751 article-title: Sexual selection expedites the evolution of pesticide resistance publication-title: Evolution – volume: 42 start-page: 671 year: 1992 end-page: 678 article-title: Adaptive plasticity in amphibian metamorphosis publication-title: BioScience – volume: 24 start-page: 35 year: 1993 end-page: 68 article-title: Genetics and evolution of phenotypic plasticity publication-title: Annual Review of Ecology and Systematics – volume: 81 start-page: 666 year: 2000 end-page: 679 article-title: Elasticities and the link between demographic and evolutionary dynamics publication-title: Ecology – volume: 30 start-page: 1409 year: 2017 end-page: 1419 article-title: Telomere attrition and growth: A life‐history framework and case study in common terns publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 3321 year: 2017 end-page: 3334 article-title: Estimating the ability of plants to plastically track temperature‐mediated shifts in the spring phenological optimum publication-title: Global Change Biology – volume: 12 start-page: 27 year: 1999 end-page: 37 article-title: Proximate determination of male horn dimorphism in the beetle (Coleoptera: Scarabaeidae) publication-title: Journal of Evolutionary Biology – volume: 8 start-page: 586 year: 2015 end-page: 596 article-title: The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations publication-title: Evolutionary Applications – volume: 5 year: 2010 article-title: Trait performance correlations across life stages under environmental stress conditions in the common frog, publication-title: PLoS ONE – volume: 5 start-page: 28 year: 2014 article-title: Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution publication-title: Ecosphere – volume: 93 start-page: 902 year: 2012 end-page: 912 article-title: The pattern of early growth trajectories affects adult breeding performance publication-title: Ecology – volume: 65 start-page: 2893 year: 2011 end-page: 2906 article-title: Evolution of a plastic quantitative trait in an age‐structured population in a fluctuating environment publication-title: Evolution – volume: 70 start-page: 1247 year: 2016 end-page: 1255 article-title: Natal philopatry varies with larval condition in salamanders publication-title: Behavioral Ecology and Sociobiology – year: 1994 – volume: 55 start-page: 380 year: 2001 end-page: 391 article-title: Countergradient variation and secondary sexual color: Phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon ( ) publication-title: Evolution – year: 1930 – volume: 29 start-page: 1569 year: 2016 end-page: 1584 article-title: Carry‐over effects of conditions at the wintering grounds on breeding plumage singals in a migratory bird: Roles of phenotypic plasticity and selection publication-title: Journal of Evolutionary Biology – volume: 63 start-page: 2831 year: 2009 end-page: 2837 article-title: Environment specific pleiotropy facilitates divergence at the locus in threespine stickleback publication-title: Evolution – volume: 21 start-page: 857 year: 2018 end-page: 864 article-title: Canalisation in the wild: Effects of developmental conditions on physiological traits are inversely linked to their association with fitness publication-title: Ecology Letters – volume: 263 start-page: 1415 year: 1996 end-page: 1421 article-title: The lek paradox and the capture of genetic variance by condition dependent traits publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 10 start-page: 212 year: 1995 end-page: 217 article-title: Adaptive phenotypic plasticity: Consensus and controversy publication-title: Trends in Ecology and Evolution – volume: 70 start-page: 1486 year: 2016 end-page: 1500 article-title: Harvest‐induced phenotypic selection in an island population of moose, publication-title: Evolution – volume: 64 start-page: 2221 year: 2010 end-page: 2237 article-title: Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit ( ) populations publication-title: Evolution – volume: 33 start-page: 402 year: 1979 end-page: 416 article-title: Quantitative genetic analysis of multivariate evolution, applied to brain:Body size allometry publication-title: Evolution – volume: 26 start-page: 1101 year: 2012 end-page: 1118 article-title: Synthetic analyses of phenotypic selection in natural populations: Lessons, limitations and future directions publication-title: Evolutionary Ecology – volume: 127 start-page: 949 year: 2018 end-page: 959 article-title: Pathways to fitness: Carry‐over effects of late hatching and urbanisation on lifetime mating success publication-title: Oikos – volume: 31 start-page: 719 year: 2017 end-page: 727 article-title: Canalization of development reduces the utility of traits as fitness biomarkers: Feather fault bars in nestling birds publication-title: Functional Ecology – volume: 337 start-page: 860 year: 2012 end-page: 864 article-title: A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons publication-title: Science – volume: 5 start-page: 867 year: 2003 end-page: 881 article-title: Condition‐dependent sexual selection can accelerate adaptation publication-title: Evolutionary Ecology Research – volume: 285 start-page: 20172304 issue: 1871 year: 2018 article-title: Rapid phenotypic evolution following shifts in life cycle complexity publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 91 start-page: 867 year: 2016 end-page: 882 article-title: When is dispersal for dispersal? Unifying marine and terrestrial perspectives publication-title: Biological Reviews – volume: 95 start-page: 213 issue: 1 year: 1998 end-page: 218 article-title: Patterns of variance in stage‐structured populations: Evolutionary predictions and ecological implications publication-title: Proceedings of the National Academy of Sciences – volume: 67 start-page: 1427 year: 1986 end-page: 1431 article-title: Elasticity: The relative contribution of demographic parameters to populations growth rate publication-title: Ecology – volume: 28 start-page: 1057 year: 2015 end-page: 1066 article-title: Interplay of robustness and plasticity of life‐history traits drives ecotypic differentiation in thermally distinct habitats publication-title: Journal of Evolutionary Biology – year: 2003 – volume: 80 start-page: 4 year: 2011 end-page: 18 article-title: Carry‐over effects as drivers of fitness differences in animals publication-title: Journal of Animal Ecology – volume: 9 year: 2018 article-title: Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly publication-title: Ecosphere – volume: 57 start-page: 249 year: 2012 end-page: 265 article-title: Evolutionary ecology of odonata: A complex life cycle perspective publication-title: Annual Review of Entomology – volume: 27 start-page: 145 year: 2013 end-page: 154 article-title: Linking nutrition and sexual selection across life stages in a model butterfly system publication-title: Functional Ecology – volume: 179 start-page: 79 year: 2012 end-page: 94 article-title: Quantitative genetics of a carotenoid‐based color: Heritability and persistent natal environmental effects in the great tit publication-title: The American Naturalist – volume: 365 start-page: 87 year: 2010 end-page: 97 article-title: Fluctuating selection: The perpetual renewal of adaptation in variable environments publication-title: Philosophical Transactions of the Royal Society of London B: Biological Series – volume: 17 start-page: 59 year: 2017 article-title: Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies publication-title: BMC Evolutionary Biology – volume: 55 start-page: 2611 year: 2001 end-page: 2614 article-title: Is survivorship a better fitness surrogate than fecundity? publication-title: Evolution – volume: 29 start-page: 1292 year: 2015 end-page: 1299 article-title: Larval UV exposure impairs adult immune function through a trade‐off with larval investment in cuticular melanin publication-title: Functional Ecology – volume: 41 start-page: 1149 year: 1987 end-page: 1161 article-title: Regression analysis of natural selection: Statistical inference and biological interpretation publication-title: Evolution – volume: 134 start-page: 596 year: 2003 end-page: 604 article-title: The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs publication-title: Oecologia – volume: 98 start-page: 334 year: 2010 end-page: 344 article-title: Empirical tests of life‐history evolution theory using phylogenetic analysis of plant demography publication-title: Journal of Ecology – volume: 51 start-page: 2409 year: 2017 end-page: 2417 article-title: Strong delayed interactive effects of metal exposure and warming: Latitude‐dependent synergisms persist across metamorphosis publication-title: Environmental Science & Technology – volume: 34 start-page: 519 year: 2019 end-page: 530 article-title: Evolutionary ecology of senescence and a reassessment of Williams’ ‘Extrinsic Mortality’ hypothesis publication-title: Trends in Ecology & Evolution – volume: 1 start-page: 1385 year: 2017 article-title: Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent publication-title: Nature Ecology & Evolution – volume: 115 start-page: 6762 year: 2018 end-page: 6767 article-title: Competition for mates and the improvement of nonsexual fitness publication-title: Proceedings of the National Academy of Sciences – volume: 388 start-page: 167 year: 1997 end-page: 171 article-title: Evolution of genetic redundancy publication-title: Nature – volume: 69 start-page: 2927 year: 2015 end-page: 2940 article-title: Environmental effects on the structure of the G‐matrix publication-title: Evolution – volume: 20 start-page: 2108–2116. a year: 2014 article-title: Carryover effects of multiple stressors on benthic embryos are mediated by larval exposure to elevated UVB and temperature publication-title: Global Change Biology – ident: e_1_2_11_74_1 doi: 10.1098/rspb.2011.0971 – ident: e_1_2_11_35_1 doi: 10.1111/j.1558-5646.2011.01342.x – ident: e_1_2_11_49_1 doi: 10.1111/nyas.13256 – ident: e_1_2_11_57_1 doi: 10.1016/j.cub.2006.03.017 – ident: e_1_2_11_61_1 doi: 10.1111/j.1558-5646.1979.tb04694.x – ident: e_1_2_11_45_1 doi: 10.1111/j.1365-2656.2010.01740.x – ident: e_1_2_11_48_1 doi: 10.1111/eva.12267 – ident: e_1_2_11_82_1 doi: 10.1086/675302 – ident: e_1_2_11_66_1 doi: 10.1111/j.1558-5646.2010.01122.x – ident: e_1_2_11_40_1 doi: 10.1098/rstb.2018.0184 – ident: e_1_2_11_88_1 doi: 10.1890/0012-9658(2001)082[0541:TRBPRA]2.0.CO;2 – ident: e_1_2_11_13_1 doi: 10.1098/rspb.2017.2304 – ident: e_1_2_11_5_1 doi: 10.1111/j.1461-0248.2010.01491.x – ident: e_1_2_11_3_1 doi: 10.1111/1365-2435.12117 – ident: e_1_2_11_21_1 doi: 10.1017/CBO9780511525711 – ident: e_1_2_11_14_1 doi: 10.1111/1365-2435.12765 – start-page: 454 volume-title: Reproductive Success year: 1988 ident: e_1_2_11_43_1 – ident: e_1_2_11_58_1 doi: 10.1007/s10682-012-9563-5 – ident: e_1_2_11_101_1 doi: 10.1111/gcb.13624 – ident: e_1_2_11_109_1 doi: 10.1038/150563a0 – ident: e_1_2_11_80_1 doi: 10.1146/annurev.es.25.110194.003041 – ident: e_1_2_11_6_1 doi: 10.1371/journal.pbio.3000128 – ident: e_1_2_11_47_1 doi: 10.1890/12-0567.1 – ident: e_1_2_11_100_1 doi: 10.1086/341015 – ident: e_1_2_11_26_1 doi: 10.1111/j.0014-3820.2001.tb00773.x – ident: e_1_2_11_46_1 doi: 10.1111/j.0014-3820.2004.tb01592.x – ident: e_1_2_11_113_1 doi: 10.1111/evo.12795 – ident: e_1_2_11_105_1 doi: 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2 – ident: e_1_2_11_98_1 doi: 10.1038/s41559-017-0268-6 – ident: e_1_2_11_10_1 doi: 10.1046/j.1523-1739.2002.00433.x – ident: e_1_2_11_23_1 doi: 10.1098/rspb.2019.0445 – ident: e_1_2_11_4_1 doi: 10.1111/j.1558-5646.1984.tb00344.x – ident: e_1_2_11_53_1 doi: 10.1111/jeb.12892 – ident: e_1_2_11_22_1 doi: 10.1016/S0022-5193(84)80050-8 – ident: e_1_2_11_103_1 doi: 10.1111/oik.05033 – ident: e_1_2_11_78_1 doi: 10.1007/s00442-018-4171-x – ident: e_1_2_11_11_1 doi: 10.1643/CE-12-091 – ident: e_1_2_11_69_1 doi: 10.1016/j.cub.2011.08.022 – volume: 246 start-page: 11 year: 1991 ident: e_1_2_11_95_1 article-title: Conflicting selection pressures and life history trade‐offs publication-title: Evolution – ident: e_1_2_11_31_1 doi: 10.1111/1365-2435.12435 – ident: e_1_2_11_50_1 doi: 10.1038/nature03084 – ident: e_1_2_11_27_1 doi: 10.1890/04-0116 – ident: e_1_2_11_104_1 doi: 10.1186/s12862-017-0907-1 – ident: e_1_2_11_107_1 doi: 10.1016/S0169-5347(00)89061-8 – ident: e_1_2_11_33_1 doi: 10.1146/annurev.ento.45.1.661 – ident: e_1_2_11_84_1 doi: 10.1038/40618 – ident: e_1_2_11_56_1 doi: 10.1016/j.anbehav.2013.02.009 – ident: e_1_2_11_7_1 doi: 10.1111/j.1558-5646.2009.00762.x – ident: e_1_2_11_12_1 doi: 10.1073/pnas.1703877114 – ident: e_1_2_11_29_1 doi: 10.2307/1938700 – volume-title: Phenotypic evolution: A reaction norm perspective year: 1998 ident: e_1_2_11_93_1 – ident: e_1_2_11_60_1 doi: 10.1111/evo.12952 – ident: e_1_2_11_86_1 doi: 10.1093/icb/icj028 – ident: e_1_2_11_30_1 doi: 10.1021/acs.est.6b04989 – ident: e_1_2_11_38_1 doi: 10.1111/gcb.12472 – ident: e_1_2_11_76_1 doi: 10.1111/jeb.13337 – ident: e_1_2_11_90_1 doi: 10.1016/j.cub.2008.04.059 – ident: e_1_2_11_63_1 doi: 10.1098/rspb.2010.0877 – ident: e_1_2_11_19_1 doi: 10.1111/j.1365-2745.2009.01634.x – ident: e_1_2_11_34_1 doi: 10.1126/science.1224286 – volume: 33 start-page: 796 year: 2008 ident: e_1_2_11_28_1 article-title: Short‐term larval food stress and associated compensatory growth reduce adult immune function in a damselfly publication-title: Ecological Entomology doi: 10.1111/j.1365-2311.2008.01024.x – ident: e_1_2_11_111_1 doi: 10.1016/j.cub.2009.09.065 – ident: e_1_2_11_42_1 doi: 10.1073/pnas.0603562103 – ident: e_1_2_11_81_1 doi: 10.1038/hdy.2015.8 – ident: e_1_2_11_73_1 doi: 10.1046/j.1420-9101.1999.00004.x – ident: e_1_2_11_110_1 doi: 10.1111/j.1365-2435.2007.01283.x – ident: e_1_2_11_54_1 doi: 10.1371/journal.pone.0011680 – ident: e_1_2_11_92_1 doi: 10.1146/annurev.es.24.110193.000343 – ident: e_1_2_11_16_1 doi: 10.1007/s12038-007-0046-8 – ident: e_1_2_11_44_1 doi: 10.1016/0022-5193(66)90184-6 – ident: e_1_2_11_108_1 doi: 10.1111/j.1558-5646.1985.tb00391.x – ident: e_1_2_11_17_1 doi: 10.1016/S0169-5347(00)89117-X – ident: e_1_2_11_70_1 doi: 10.1002/ecs2.2151 – ident: e_1_2_11_97_1 doi: 10.1086/588063 – ident: e_1_2_11_112_1 doi: 10.1038/ncomms15213 – ident: e_1_2_11_79_1 doi: 10.1007/s00265-016-2133-z – ident: e_1_2_11_96_1 doi: 10.1111/1365-2435.12104 – ident: e_1_2_11_71_1 doi: 10.1890/14-0262.1 – ident: e_1_2_11_24_1 doi: 10.1111/j.0014-3820.2003.tb01528.x – ident: e_1_2_11_114_1 doi: 10.1046/j.1525-142x.2001.003002059.x – ident: e_1_2_11_83_1 doi: 10.2307/1312173 – ident: e_1_2_11_102_1 doi: 10.1111/1365-2435.12006 – ident: e_1_2_11_85_1 doi: 10.1890/ES13-00388.1 – ident: e_1_2_11_72_1 doi: 10.1111/j.1558-5646.1987.tb02457.x – ident: e_1_2_11_9_1 doi: 10.1098/rstb.2009.0150 – volume: 5 start-page: 867 year: 2003 ident: e_1_2_11_67_1 article-title: Condition‐dependent sexual selection can accelerate adaptation publication-title: Evolutionary Ecology Research – ident: e_1_2_11_94_1 doi: 10.1196/annals.1438.010 – ident: e_1_2_11_89_1 doi: 10.1007/s00442-002-1161-8 – ident: e_1_2_11_106_1 doi: 10.1111/jeb.13119 – ident: e_1_2_11_32_1 doi: 10.1111/evo.12744 – ident: e_1_2_11_64_1 doi: 10.1890/11-0890.1 – ident: e_1_2_11_99_1 doi: 10.1146/annurev-ento-120710-100557 – ident: e_1_2_11_59_1 doi: 10.1111/evo.13694 – ident: e_1_2_11_36_1 doi: 10.1086/663198 – ident: e_1_2_11_52_1 doi: 10.1111/evo.13074 – ident: e_1_2_11_75_1 doi: 10.1016/j.tree.2019.02.006 – ident: e_1_2_11_20_1 doi: 10.1093/icb/icx014 – ident: e_1_2_11_115_1 doi: 10.1073/pnas.1805435115 – ident: e_1_2_11_51_1 doi: 10.1111/j.1558-5646.2010.00991.x – ident: e_1_2_11_87_1 doi: 10.1073/pnas.95.1.213 – ident: e_1_2_11_37_1 doi: 10.1111/j.1365-294X.2011.05006.x – ident: e_1_2_11_55_1 doi: 10.1007/s11692-015-9363-2 – ident: e_1_2_11_41_1 doi: 10.1098/rspb.2007.0242 – ident: e_1_2_11_91_1 doi: 10.1098/rspb.1996.0207 – ident: e_1_2_11_62_1 doi: 10.2307/1936778 – ident: e_1_2_11_2_1 doi: 10.1098/rspb.2014.1091 – ident: e_1_2_11_18_1 doi: 10.1111/brv.12198 – ident: e_1_2_11_15_1 doi: 10.1111/ele.12953 – ident: e_1_2_11_65_1 doi: 10.1111/jeb.12629 – ident: e_1_2_11_77_1 doi: 10.1002/ecy.2056 – ident: e_1_2_11_25_1 doi: 10.1111/j.0014-3820.2001.tb01301.x – ident: e_1_2_11_68_1 doi: 10.1111/eva.12396 – ident: e_1_2_11_39_1 doi: 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2 – ident: e_1_2_11_8_1 doi: 10.1111/j.1365-294X.2011.05016.x |
SSID | ssj0007203 |
Score | 2.5489345 |
SecondaryResourceType | review_article |
Snippet | The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1832 |
SubjectTerms | Adaptation, Physiological adults animal ecology Animals Biological Evolution complex life cycles Decoupling Developmental plasticity Developmental stages Evolution Evolution & development evolutionary adaptation Fitness fitness trade‐offs Juveniles Life Cycle Stages Life cycles life‐history variation Maximization Optimization Phenotype Phenotypes Phenotypic plasticity Plastic properties Plasticity quantitative genetics Reproduction Reproductive fitness REVIEW |
Title | On the evolution of carry-over effects |
URI | https://www.jstor.org/stable/48580005 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2656.13081 https://www.ncbi.nlm.nih.gov/pubmed/31402447 https://www.proquest.com/docview/2322632060 https://www.proquest.com/docview/2272219205 https://www.proquest.com/docview/2551936447 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CoJBL_9K0bpPgQA65eOu1JEs-hjYhTUkKpYHSi9FY8qXBWza7heSUR-gz9kk6I9lOExpK6U1Ykq2_GX1jfZoB2LXTFlvS_CRpTmUSfZnZUmHmNOYtH_uh5dvIJ6fl0Zk8_qwGNiHfhYn-IcYfbiwZQV-zgFu8-E3Ie36WKjmgcbh8TU_Ye_7bjzcOpPhrkeQxpdZUee_ch7k8d-rf2pciNfFPoPM2hg2b0OEjwKH5kXvydbJc4KS5uuPZ8b_69xge9hA13Y9r6gms-O4pPIhBKy8p9WUWUuuw96FLCT-m_nu_ftNZmzZ2Pr_8ef2DqaFpzxZ5BmeHB5_eHGV95IWskaWZZq0wUrjKKIm29L4ijGUq2ebOKp3bIq8EzbBywhtSCKJqDBq0BXpttdaondiA1W7W-ReQYiVdIxRZZY2TGgWSxeamKPICC2t8k8BkGPe66d2Sc3SM83owT3ggah6IOgxEAntjhW_RI8f9RTfCRI7lpFGGUWoCm8PM1r3MXtSELdl5fV7mCeyM2SRtfIRiOz9bUplCF6TjC37FvWUUo2LCmTqB53HVjA0QZM8WIed1mPu_9aA-3j89CKmX_1zjFawRuqsi92YTVhfzpd8iBLXAbRKSd--3g6j8Aog7C2Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVgguUB4toQWCxKGXLNnYjp1jVbXavhYJtVLFJfIrl1ZZtOwilRM_gd_YX9IZOxvaqhVCvVny2IlnPONv7PEY4JMeNqZBy4-a5kTGjS8zXQqTOWnyho79jKbbyEfjcnTC90_F6bW7MDE_RL_hRpoR7DUpOG1IX9PyLkBLlPSiMd2-Xg6ndASMvv5NIUXfi2EeQ_yfKu_S-1A0z60ObqxMMTjxLth5E8WGZWj3OdjFAGL0ydlgPjMD--tWbseHjXAFnnUoNd2K0-oFPPLtS3gc3628wNK3SSi9gs0vbYoQMvU_uymcTprU6un04vL3H4oOTbuAkddwsrtzvD3KuscXMstLNcwapjhzlRLc6NL7CmGWqniTOy1krou8Yihk4ZhXaBNYZZVRRhfGSy2lNNKxVVhqJ61_A6mpuLNMoGNmHZeGGXTa3NCwvDCFVt4mMFgwvrZdZnJ6IOO8XngoxIiaGFEHRiSw2Tf4HpNy3E-6GiTZ03ElFAHVBDYWoq07tf1RI7yk_PV5mSfwsa9GhaNTFN36yRxpClmgmS-oi3tpBAFjhJoygbU4bfofYOjSFqHmcxD-v0ZQ72-Nd0Lp7X-3-ABPRsdHh_Xh3vhgHZ4i2KtiKM4GLM2mc_8OAdXMvA8acwUOXg6L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIhAX3i0pBYLEoZcs2diOnWMFXZUCC0JUQlwiT-xcQNlq2UVqT_wEfiO_hBk7CbSiQoibJT_i14y_iT_PADyx0xZb0vwkaU5lEn2Z2VJh5jTmLV_7oeXXyK_n5cGRPPygBjYhv4WJ_iHGH24sGUFfs4Afu_Y3Ie_5WarkgMb8-PqyLOmwZFz07pcHKf5cZHlMqTtV3nv3YTLPuQbOHEyRm_gn1HkWxIZTaHYDcOh_JJ98mqxXOGlOz7l2_K8B3oTrPUZN9-KmugWXfHcbrsSolSeU-rgIqTuw-6ZLCUCm_mu_gdNFmzZ2uTz58e07c0PTni5yF45m---fHWR96IWskaWZZq0wUrjKKIm29L4ikGUq2ebOKp3bIq8ELbFywhvSCKJqDBq0BXpttdaondiEjW7R-XuQYiVdIxSZZY2TGgWSyeamKPICC2t8k8BkmPe66f2Sc3iMz_Vgn_BE1DwRdZiIBHbHCsfRJcfFRTfDQo7lpFGGYWoCO8PK1r3QfqkJXLL3-rzME3g8ZpO48R2K7fxiTWUKXZCSL7iJC8sohsUENHUCW3HXjB0QZNAWIedpWPu_jaA-3Jvvh9T2P9d4BFffPp_Vr17MX96Ha4T0qsjD2YGN1XLtHxCaWuHDIC8_Ab1TDTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+evolution+of+carry-over+effects&rft.jtitle=The+Journal+of+animal+ecology&rft.au=Moore%2C+Michael+P.&rft.au=Martin%2C+Ryan+A.&rft.date=2019-12-01&rft.pub=Wiley&rft.issn=0021-8790&rft.eissn=1365-2656&rft.volume=88&rft.issue=12&rft.spage=1832&rft.epage=1844&rft_id=info:doi/10.1111%2F1365-2656.13081&rft.externalDocID=48580005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8790&client=summon |