Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2
The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a successful retrieval of phenology with Sentinel-2 for relatively stable annual growi...
Saved in:
Published in | Remote sensing of environment Vol. 248; p. 112004 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0034-4257 1879-0704 |
DOI | 10.1016/j.rse.2020.112004 |
Cover
Abstract | The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a successful retrieval of phenology with Sentinel-2 for relatively stable annual growing seasons. In semi-arid East Africa however, vegetation responds rapidly to a concentration of rainfall over short periods and consequently is subject to strong interannual variability. Obtaining a sufficient density of cloud-free acquisitions to accurately describe these short vegetation cycles is therefore challenging. The objective of this study is to evaluate if data from two satellite constellations, i.e., PlanetScope (3 m resolution) and Sentinel-2 (10 m resolution), each independently allow for accurate mapping of vegetation phenology under these challenging conditions. The study area is a rangeland with bimodal seasonality located at the 128-km2 Kapiti Farm in Machakos County, Kenya. Using all the available PlanetScope and Sentinel-2 imagery between March 2017 and February 2019, we derived temporal NDVI profiles and fitted double hyperbolic tangent models (equivalent to commonly-used logistic functions), separately for the two rainy seasons locally referred to as the short and long rains. We estimated start- and end-of-season for the series using a 50% threshold between minimum and maximum levels of the modelled time series (SOS50/EOS50). We compared our estimates against those obtained from vegetation index series from two alternative sources, i.e. a) greenness chromatic coordinate (GCC) series obtained from digital repeat photography, and b) MODIS NDVI. We found that both PlanetScope and Sentinel-2 series resulted in acceptable retrievals of phenology (RMSD of ~8 days for SOS50 and ~15 days for EOS50 when compared against GCC series) suggesting that the sensors individually provide sufficient temporal detail. However, when applying the model to the entire study area, fewer spatial artefacts occurred in the PlanetScope results. This could be explained by the higher observation frequency of PlanetScope, which becomes critical during periods of persistent cloud cover. We further illustrated that PlanetScope series could differentiate the phenology of individual trees from grassland surroundings, whereby tree green-up was found to be both earlier and later than for grass, depending on location. The spatially-detailed phenology retrievals, as achieved in this study, are expected to help in better understanding climate and degradation impacts on rangeland vegetation, particularly for heterogeneous rangeland systems with large interannual variability in phenology and productivity.
•Phenology was retrieved for multiple rainfall seasons from PlanetScope and Sentinel-2.•Retrievals were compared with greenness series from RGB-cameras and MODIS imagery.•PlanetScope resulted in phenology maps with fewer spatial artefacts than Sentinel-2.•Phenology patterns suggest that vegetation response to rainfall differs per season. |
---|---|
AbstractList | The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a successful retrieval of phenology with Sentinel-2 for relatively stable annual growing seasons. In semi-arid East Africa however, vegetation responds rapidly to a concentration of rainfall over short periods and consequently is subject to strong interannual variability. Obtaining a sufficient density of cloud-free acquisitions to accurately describe these short vegetation cycles is therefore challenging. The objective of this study is to evaluate if data from two satellite constellations, i.e., PlanetScope (3 m resolution) and Sentinel-2 (10 m resolution), each independently allow for accurate mapping of vegetation phenology under these challenging conditions. The study area is a rangeland with bimodal seasonality located at the 128-km² Kapiti Farm in Machakos County, Kenya. Using all the available PlanetScope and Sentinel-2 imagery between March 2017 and February 2019, we derived temporal NDVI profiles and fitted double hyperbolic tangent models (equivalent to commonly-used logistic functions), separately for the two rainy seasons locally referred to as the short and long rains. We estimated start- and end-of-season for the series using a 50% threshold between minimum and maximum levels of the modelled time series (SOS₅₀/EOS₅₀). We compared our estimates against those obtained from vegetation index series from two alternative sources, i.e. a) greenness chromatic coordinate (GCC) series obtained from digital repeat photography, and b) MODIS NDVI. We found that both PlanetScope and Sentinel-2 series resulted in acceptable retrievals of phenology (RMSD of ~8 days for SOS₅₀ and ~15 days for EOS₅₀ when compared against GCC series) suggesting that the sensors individually provide sufficient temporal detail. However, when applying the model to the entire study area, fewer spatial artefacts occurred in the PlanetScope results. This could be explained by the higher observation frequency of PlanetScope, which becomes critical during periods of persistent cloud cover. We further illustrated that PlanetScope series could differentiate the phenology of individual trees from grassland surroundings, whereby tree green-up was found to be both earlier and later than for grass, depending on location. The spatially-detailed phenology retrievals, as achieved in this study, are expected to help in better understanding climate and degradation impacts on rangeland vegetation, particularly for heterogeneous rangeland systems with large interannual variability in phenology and productivity. The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a successful retrieval of phenology with Sentinel-2 for relatively stable annual growing seasons. In semi-arid East Africa however, vegetation responds rapidly to a concentration of rainfall over short periods and consequently is subject to strong interannual variability. Obtaining a sufficient density of cloud-free acquisitions to accurately describe these short vegetation cycles is therefore challenging. The objective of this study is to evaluate if data from two satellite constellations, i.e., PlanetScope (3 m resolution) and Sentinel-2 (10 m resolution), each independently allow for accurate mapping of vegetation phenology under these challenging conditions. The study area is a rangeland with bimodal seasonality located at the 128-km2 Kapiti Farm in Machakos County, Kenya. Using all the available PlanetScope and Sentinel-2 imagery between March 2017 and February 2019, we derived temporal NDVI profiles and fitted double hyperbolic tangent models (equivalent to commonly-used logistic functions), separately for the two rainy seasons locally referred to as the short and long rains. We estimated start- and end-of-season for the series using a 50% threshold between minimum and maximum levels of the modelled time series (SOS50/EOS50). We compared our estimates against those obtained from vegetation index series from two alternative sources, i.e. a) greenness chromatic coordinate (GCC) series obtained from digital repeat photography, and b) MODIS NDVI. We found that both PlanetScope and Sentinel-2 series resulted in acceptable retrievals of phenology (RMSD of ~8 days for SOS50 and ~15 days for EOS50 when compared against GCC series) suggesting that the sensors individually provide sufficient temporal detail. However, when applying the model to the entire study area, fewer spatial artefacts occurred in the PlanetScope results. This could be explained by the higher observation frequency of PlanetScope, which becomes critical during periods of persistent cloud cover. We further illustrated that PlanetScope series could differentiate the phenology of individual trees from grassland surroundings, whereby tree green-up was found to be both earlier and later than for grass, depending on location. The spatially-detailed phenology retrievals, as achieved in this study, are expected to help in better understanding climate and degradation impacts on rangeland vegetation, particularly for heterogeneous rangeland systems with large interannual variability in phenology and productivity. The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study seasonal vegetation dynamics. Previous studies demonstrated a successful retrieval of phenology with Sentinel-2 for relatively stable annual growing seasons. In semi-arid East Africa however, vegetation responds rapidly to a concentration of rainfall over short periods and consequently is subject to strong interannual variability. Obtaining a sufficient density of cloud-free acquisitions to accurately describe these short vegetation cycles is therefore challenging. The objective of this study is to evaluate if data from two satellite constellations, i.e., PlanetScope (3 m resolution) and Sentinel-2 (10 m resolution), each independently allow for accurate mapping of vegetation phenology under these challenging conditions. The study area is a rangeland with bimodal seasonality located at the 128-km2 Kapiti Farm in Machakos County, Kenya. Using all the available PlanetScope and Sentinel-2 imagery between March 2017 and February 2019, we derived temporal NDVI profiles and fitted double hyperbolic tangent models (equivalent to commonly-used logistic functions), separately for the two rainy seasons locally referred to as the short and long rains. We estimated start- and end-of-season for the series using a 50% threshold between minimum and maximum levels of the modelled time series (SOS50/EOS50). We compared our estimates against those obtained from vegetation index series from two alternative sources, i.e. a) greenness chromatic coordinate (GCC) series obtained from digital repeat photography, and b) MODIS NDVI. We found that both PlanetScope and Sentinel-2 series resulted in acceptable retrievals of phenology (RMSD of ~8 days for SOS50 and ~15 days for EOS50 when compared against GCC series) suggesting that the sensors individually provide sufficient temporal detail. However, when applying the model to the entire study area, fewer spatial artefacts occurred in the PlanetScope results. This could be explained by the higher observation frequency of PlanetScope, which becomes critical during periods of persistent cloud cover. We further illustrated that PlanetScope series could differentiate the phenology of individual trees from grassland surroundings, whereby tree green-up was found to be both earlier and later than for grass, depending on location. The spatially-detailed phenology retrievals, as achieved in this study, are expected to help in better understanding climate and degradation impacts on rangeland vegetation, particularly for heterogeneous rangeland systems with large interannual variability in phenology and productivity. •Phenology was retrieved for multiple rainfall seasons from PlanetScope and Sentinel-2.•Retrievals were compared with greenness series from RGB-cameras and MODIS imagery.•PlanetScope resulted in phenology maps with fewer spatial artefacts than Sentinel-2.•Phenology patterns suggest that vegetation response to rainfall differs per season. |
ArticleNumber | 112004 |
Author | Fava, Francesco Gachoki, Stella Cheng, Yan Vrieling, Anton Marshall, Michael Meroni, Michele |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0001-8658-4673 surname: Cheng fullname: Cheng, Yan organization: University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 7500 AE Enschede, the Netherlands – sequence: 2 givenname: Anton orcidid: 0000-0002-7979-1540 surname: Vrieling fullname: Vrieling, Anton email: a.vrieling@utwente.nl organization: University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 7500 AE Enschede, the Netherlands – sequence: 3 givenname: Francesco surname: Fava fullname: Fava, Francesco organization: International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya – sequence: 4 givenname: Michele surname: Meroni fullname: Meroni, Michele organization: European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, I-21027 Ispra, VA, Italy – sequence: 5 givenname: Michael orcidid: 0000-0002-9738-5036 surname: Marshall fullname: Marshall, Michael organization: University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 7500 AE Enschede, the Netherlands – sequence: 6 givenname: Stella surname: Gachoki fullname: Gachoki, Stella organization: University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 217, 7500 AE Enschede, the Netherlands |
BookMark | eNp9kEFrHCEUgKWk0E3SH9Cb0Esvs3k6Os7QUwlNGxJIIO2lF3Gd58ZlVrfqLuy_j8vklENO6uP75PGdk7MQAxLyhcGSAeuuNsuUccmB1zfjAOIDWbBeDQ0oEGdkAdCKRnCpPpHznDcATPaKLci_x2cMcYrrI42O5ueYCj3gGospPgZqj3bCTH2ght5hOJpAkwlrnEwYqUtxSx_rFcuTjTukp-EThuIDTg2_JB-dmTJ-fj0vyN-bn3-ufzf3D79ur3_cN1Z0qjQolO07CXLorQEuHFgnle1GGIxcdcIM0LleSLHqpLMjMMTVwI1pHQx9O8r2gnyb_92l-H-Pueitzxan02JxnzWXkkPb952o6Nc36CbuU6jbaS4kY6qCrFJspmyKOSd0epf81qSjZqBPtfVG19r6VFvPtauj3jjWzw1LMn561_w-m1gbHTwmna3HYHH0CW3RY_Tv2C_uHpqB |
CitedBy_id | crossref_primary_10_3390_f16020239 crossref_primary_10_1016_j_jag_2021_102670 crossref_primary_10_1038_s41370_022_00467_0 crossref_primary_10_1002_ldr_3976 crossref_primary_10_3389_fpls_2023_1283315 crossref_primary_10_1016_j_agrformet_2023_109532 crossref_primary_10_3390_rs13132548 crossref_primary_10_3390_rs16071212 crossref_primary_10_1016_j_jag_2021_102398 crossref_primary_10_3390_rs14174310 crossref_primary_10_1002_rse2_263 crossref_primary_10_3390_earth2020018 crossref_primary_10_3390_su14095458 crossref_primary_10_3390_su132413554 crossref_primary_10_1016_j_isprsjprs_2024_03_017 crossref_primary_10_3390_rs14091957 crossref_primary_10_1088_1755_1315_1430_1_012020 crossref_primary_10_1016_j_ecolind_2022_109492 crossref_primary_10_3390_rs15123041 crossref_primary_10_3389_feart_2021_633665 crossref_primary_10_3390_rs16030463 crossref_primary_10_3390_rs14195003 crossref_primary_10_1038_s41598_024_63650_3 crossref_primary_10_3390_rs13245176 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_3390_rs13132533 crossref_primary_10_3390_su15086949 crossref_primary_10_1016_j_agrformet_2025_110497 crossref_primary_10_1016_j_isprsjprs_2022_01_017 crossref_primary_10_1088_2752_664X_ad9eb8 crossref_primary_10_1016_j_rse_2022_113110 crossref_primary_10_1016_j_compag_2024_109764 crossref_primary_10_1016_j_isprsjprs_2023_07_017 crossref_primary_10_1016_j_isprsjprs_2024_09_023 crossref_primary_10_1016_j_ecolind_2024_112356 crossref_primary_10_1016_j_jag_2020_102291 crossref_primary_10_1016_j_gloplacha_2021_103516 crossref_primary_10_1038_s41598_021_90078_w crossref_primary_10_1109_LGRS_2021_3122964 crossref_primary_10_1016_j_rse_2025_114650 crossref_primary_10_32604_csse_2022_023221 crossref_primary_10_3390_rs17020189 crossref_primary_10_1016_j_rsase_2022_100764 crossref_primary_10_3390_rs16173336 crossref_primary_10_3390_rs13152983 crossref_primary_10_1016_j_srs_2021_100014 crossref_primary_10_3390_f14061193 crossref_primary_10_3390_rs13152981 crossref_primary_10_1093_forestry_cpad039 crossref_primary_10_1016_j_agrformet_2023_109372 crossref_primary_10_3389_fsufs_2022_730836 crossref_primary_10_3390_rs13193930 crossref_primary_10_3390_rs13245074 crossref_primary_10_1016_j_rse_2025_114646 crossref_primary_10_1016_j_rse_2021_112586 crossref_primary_10_1080_15481603_2024_2426598 crossref_primary_10_3390_rs16234521 crossref_primary_10_1016_j_rse_2022_113429 crossref_primary_10_1016_j_isprsjprs_2020_10_017 crossref_primary_10_3390_rs13173449 crossref_primary_10_1016_j_rsase_2024_101230 crossref_primary_10_3390_rs13193982 crossref_primary_10_17221_60_2023_SWR crossref_primary_10_3390_fi17010016 crossref_primary_10_3390_rs15020521 crossref_primary_10_1007_s40003_023_00681_8 crossref_primary_10_1126_sciadv_adh4097 crossref_primary_10_1016_j_rse_2021_112604 crossref_primary_10_1002_rse2_296 crossref_primary_10_1016_j_cosust_2020_09_006 crossref_primary_10_3390_agriculture12060842 crossref_primary_10_3390_rs13112060 crossref_primary_10_1016_j_rse_2025_114624 crossref_primary_10_1016_j_ufug_2022_127583 crossref_primary_10_1002_eco_2460 crossref_primary_10_1038_s41597_022_01570_5 crossref_primary_10_1080_01431161_2022_2106801 crossref_primary_10_3390_land10121384 crossref_primary_10_1007_s12145_024_01497_y crossref_primary_10_1016_j_rse_2022_113310 crossref_primary_10_1038_s41598_023_38470_6 crossref_primary_10_3390_f12030297 crossref_primary_10_3390_rs14071573 crossref_primary_10_1016_j_ecolind_2022_109223 crossref_primary_10_1117_1_JRS_16_034516 crossref_primary_10_34133_2021_9859103 crossref_primary_10_1007_s12145_022_00922_4 crossref_primary_10_1016_j_agrformet_2023_109676 crossref_primary_10_1016_j_rse_2021_112716 crossref_primary_10_3390_rs13152932 crossref_primary_10_1016_j_srs_2025_100205 crossref_primary_10_1080_01431161_2023_2275321 crossref_primary_10_3389_fenvs_2022_880626 crossref_primary_10_1016_j_rse_2021_112670 crossref_primary_10_3390_rs14051296 crossref_primary_10_1016_j_rse_2020_112232 crossref_primary_10_1007_s00271_023_00874_7 crossref_primary_10_1016_j_jag_2022_103152 crossref_primary_10_3390_w14213363 crossref_primary_10_5194_bg_19_4747_2022 crossref_primary_10_1111_1440_1703_12382 crossref_primary_10_3390_f12020147 crossref_primary_10_3390_rs15245642 crossref_primary_10_5194_essd_16_5375_2024 crossref_primary_10_1016_j_indic_2024_100574 crossref_primary_10_1016_j_rse_2024_114027 crossref_primary_10_1016_j_compag_2022_107409 crossref_primary_10_1155_2024_6668228 crossref_primary_10_1016_j_rse_2022_113136 crossref_primary_10_3390_rs16173268 |
Cites_doi | 10.1016/j.agrformet.2016.03.024 10.1080/01431160701227703 10.3390/rs8090715 10.3390/rs6065868 10.1111/j.1365-2486.2009.01910.x 10.1111/j.1365-2699.2011.02549.x 10.1016/j.rse.2016.09.014 10.1111/j.1365-2486.2008.01838.x 10.1016/j.rse.2013.01.011 10.1071/RJ17066 10.1016/j.cageo.2004.05.006 10.1016/S0034-4257(02)00135-9 10.1080/01431161.2018.1430914 10.1016/j.rse.2016.02.018 10.1890/140266 10.1016/j.rse.2005.10.022 10.1016/j.rse.2018.02.067 10.1016/j.isprsjprs.2020.01.012 10.1080/01436597.2010.541085 10.3390/rs1040620 10.1016/j.isprsjprs.2019.08.018 10.1111/gcb.15137 10.1111/j.1461-0248.2004.00596.x 10.3390/rs10040635 10.1641/B580908 10.1016/j.agsy.2018.07.002 10.1007/s10584-011-0049-1 10.1111/j.1467-7660.2008.00497.x 10.1016/j.agrformet.2011.05.012 10.1016/j.sajb.2016.09.003 10.3390/rs6032572 10.3390/rs70709122 10.1002/2013JG002572 10.1016/0034-4257(87)90088-5 10.1046/j.1365-2699.2003.00873.x 10.1109/TGRS.2016.2537929 10.1016/j.rse.2017.01.001 10.1016/j.rse.2010.05.005 10.1016/j.isprsjprs.2017.09.002 10.1016/j.rse.2018.03.014 10.1364/AO.45.006762 10.13031/2013.27838 10.1016/j.ecoinf.2013.12.011 10.1016/j.agrformet.2011.09.009 10.1038/s41558-018-0081-5 10.1080/01431169408954343 10.1016/j.rse.2018.09.002 10.1186/s13021-018-0097-1 10.1080/01431160802549237 10.1016/j.agrformet.2017.02.026 10.1038/sdata.2018.28 10.1111/gcb.13486 10.1080/01431161.2015.1117681 10.1016/j.rse.2005.10.021 10.1016/j.rse.2004.03.014 10.1016/j.rse.2006.11.025 10.1109/36.752194 10.1016/j.rse.2013.01.010 10.1016/j.agee.2017.09.017 10.1016/j.jaridenv.2004.07.019 10.3390/rs10020160 10.5194/bg-12-4407-2015 10.1111/j.1365-2486.2011.02521.x 10.1890/120333 10.3390/rs11212558 10.1364/AO.46.004455 10.1016/j.rse.2014.01.007 10.3390/rs12040725 10.1029/97GB00330 10.1146/annurev.ecolsys.28.1.517 10.1016/j.rse.2011.08.001 10.1016/j.rse.2020.111865 10.1023/A:1009752606688 10.1016/j.rse.2014.03.017 10.1007/s11258-004-5800-5 10.1073/pnas.0703427104 10.2111/1551-5028(2005)58<1:SMTARH>2.0.CO;2 10.1016/j.rse.2015.01.011 10.1016/S0034-4257(02)00096-2 10.1016/j.tree.2007.04.003 10.1007/s00442-004-1507-5 10.3390/rs12040639 10.3390/rs8080666 10.1080/01431161.2014.883090 10.1080/01431160110114547 10.1016/j.rse.2020.111685 10.1029/1998JD200032 10.1111/j.0906-7590.2004.03631.x 10.1007/s00442-006-0657-z 10.1016/j.rse.2015.12.003 10.1016/j.rse.2017.01.026 10.1016/j.ecoinf.2016.05.004 10.1016/j.rse.2019.111511 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright Elsevier BV Oct 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2020.112004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
ExternalDocumentID | 10_1016_j_rse_2020_112004 S0034425720303746 |
GeographicLocations | Kenya |
GeographicLocations_xml | – name: Kenya |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-e47c8650598ca024f0cf57c6d09a5b64a906f8454b65fcd01eeb92aa3f0983d53 |
IEDL.DBID | AIKHN |
ISSN | 0034-4257 |
IngestDate | Sun Sep 28 12:01:24 EDT 2025 Wed Aug 13 02:44:00 EDT 2025 Thu Sep 25 00:33:39 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Fri Feb 23 02:49:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digital repeat photography NDVI time series Phenology Multi-temporal analysis PlanetScope Sentinel-2 Landscape variability Semi-arid rangelands Spatial resolution |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-e47c8650598ca024f0cf57c6d09a5b64a906f8454b65fcd01eeb92aa3f0983d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9738-5036 0000-0001-8658-4673 0000-0002-7979-1540 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0034425720303746 |
PQID | 2451172031 |
PQPubID | 2045405 |
ParticipantIDs | proquest_miscellaneous_2552038864 proquest_journals_2451172031 crossref_primary_10_1016_j_rse_2020_112004 crossref_citationtrail_10_1016_j_rse_2020_112004 elsevier_sciencedirect_doi_10_1016_j_rse_2020_112004 |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Kotchenova, Vermote, Matarrese, Klemm (bb0240) 2006; 45 Sayre, McAllister, Bestelmeyer, Moritz, Turner (bb0395) 2013; 11 Alberton, Almeida, Helm, Torres, Menzel, Morellato (bb0015) 2014; 19 Gillespie, Kahle, Walker (bb0140) 1987; 22 Adole, Dash, Atkinson (bb0010) 2016; 34 Dronova, Taddeo, Hemes, Knox, Valach, Oikawa, Kasak, Baldocchi (bb0115) 2020 Guuroh, Ruppert, Ferner, Čanak, Schmidtlein, Linstädter (bb0160) 2018; 251 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0200) 2002; 83 Shendryk, Rist, Ticehurst, Thorburn (bb0435) 2019; 157 Scheiter, Higgins (bb0400) 2009; 15 Schucknecht, Meroni, Kayitakire, Boureima (bb0420) 2017 de Beurs, Henebry (bb0095) 2010 Guan, Wood, Medvigy, Kimball, Pan, Caylor, Sheffield, Xu, Jones (bb0155) 2014; 119 Sloat, Gerber, Samberg, Smith, Herrero, Ferreira, Godde, West (bb0440) 2018; 8 Zhang, Wang, Henebry, Gao (bb0535) 2020; 161 Sonnentag, Hufkens, Teshera-Sterne, Young, Friedl, Braswell, Milliman, O’Keefe, Richardson (bb0450) 2012; 152 Gross (bb0150) 2017; 39 Meynard, Lecoq, Chapuis, Piou (bb0300) 2020; 26 Melaas, Sulla-Menashe, Gray, Black, Morin, Richardson, Friedl (bb0275) 2016; 186 Fisher, Mustard, Vadeboncoeur (bb0130) 2006; 100 Jönsson, Cai, Melaas, Friedl, Eklundh (bb0225) 2018; 10 Scholes, Archer (bb0405) 1997; 28 Meroni, Verstraete, Rembold, Urbano, Kayitakire (bb0285) 2014; 35 Whitecross, Witkowski, Archibald (bb0505) 2017; 108 Zeng, Wardlow, Xiang, Hu, Li (bb0515) 2020; 237 Reid, Galvin, Kruska (bb0370) 2008 Liu, Hill, Zhang, Wang, Richardson, Hufkens, Filippa, Baldocchi, Ma, Verfaillie, Schaaf (bb0260) 2017; 237-238 Li, Shen, Li, Xia, Gamba, Zhang (bb0245) 2017; 191 Ogle, Reynolds (bb0340) 2004; 141 Higgins, Delgado-Cartay, February, Combrink (bb0175) 2011; 38 Meroni, d’Andrimont, Vrieling, Fasbender, Lemoine, Rembold, Seguini, Verhegghen (bb0290) 2020 Sankaran, Ratnam, Hanan (bb0390) 2004; 7 Frantz, Stellmes, Röder, Udelhoven, Mader, Hill (bb0135) 2016; 54 Sellers, Tucker, Collatz, Los, Justice, Dazlich, Randall (bb0430) 1994; 15 Vrieling, Meroni, Darvishzadeh, Skidmore, Wang, Zurita-Milla, Oosterbeek, O’Connor, Paganini (bb0475) 2018; 215 Newville, Stensitzki, Allen, Ingargiola (bb0330) 2014 Woebbecke, Meyer, Von Bargen, Mortensen (bb0510) 1995; 38 Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bb0080) 2004; 91 Zhang, Wang, Gao, Liu, Schaaf, Friedl, Yu, Jayavelu, Gray, Liu, Yan, Henebry (bb0530) 2017; 190 Metzger, Coughenour, Reich, Boone (bb0295) 2005; 61 Little, McPeak, Barrett, Kristjanson (bb0250) 2008; 39 Hmimina, Dufrêne, Pontailler, Delpierre, Aubinet, Caquet, de Grandcourt, Burban, Flechard, Granier, Gross, Heinesch, Longdoz, Moureaux, Ourcival, Rambal, Saint André, Soudani (bb0180) 2013; 132 Didan (bb0100) 2015 Lu (bb0265) 2007; 28 Stumpf, Michéa, Malet (bb0455) 2018; 10 Pastick, Dahal, Wylie, Parajuli, Boyte, Wu (bb0350) 2020; 12 Meroni, Rembold, Verstraete, Gommes, Schucknecht, Beye (bb0280) 2014; 6 White, Pontius, Schaberg (bb0500) 2014; 148 Pan, Huang, Zhou, Wang, Cheng, Zhang, Blackburn, Yan, Liu (bb5000) 2015; 34 Richardson, Jenkins, Braswell, Hollinger, Ollinger, Smith (bb0380) 2007; 152 Jansen, Kolden, Taylor, Newingham (bb0215) 2016; 37 Scholes, Walker (bb0410) 1993 Wang, Yang, Detto, Nelson, Chen, Guan, Wu, Yan, Wu (bb0485) 2020; 246 Migliavacca, Galvagno, Cremonese, Rossini, Meroni, Sonnentag, Cogliati, Manca, Diotri, Busetto, Cescatti, Colombo, Fava, Morra di Cella, Pari, Siniscalco, Richardson (bb0305) 2011; 151 Cleland, Chuine, Menzel, Mooney, Schwartz (bb0090) 2007; 22 Didan (bb0105) 2015 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed, Huete (bb0520) 2003; 84 Jönsson, Eklundh (bb0220) 2004; 30 White, de Beurs, Didan, Inouye, Richardson, Jensen, O’Keefe, Zhang, Nemani, van Leeuwen, Brown, de Wit, Schaepman, Lin, Dettinger, Bailey, Kimball, Schwartz, Baldocchi, Lee, Lauenroth (bb0495) 2009; 15 House, Archer, Breshears, Scholes, Coughenour, Dodd, Gignoux, Hall, Hanan, Joffre, Le Roux, Ludwig, Menaut, Montes, Parton, San Jose, Scanlan, Scurlock, Simioni, Thorrold (bb0195) 2003; 30 Archibald, Scholes (bb0025) 2007; 18 Hiernaux (bb0170) 1998; 138 Brown, de Beurs, Vrieling (bb0070) 2010; 114 Ackerman, Strabala, Menzel, Frey, Moeller, Gumley (bb0005) 1998; 103 White, Thornton, Running (bb0490) 1997; 11 Diouf, Brandt, Verger, Jarroudi, Djaby, Fensholt, Ndione, Tychon (bb0110) 2015; 7 Melaas, Friedl, Zhu (bb0270) 2013; 132 Planet Labs Inc (bb0360) 2019 Hüttich, Gessner, Herold, Strohbach, Schmidt, Keil, Dech (bb0205) 2009; 1 Schwieder, Leitão, Pinto, Teixeira, Pedroni, Sanchez, Bustamante, Hostert (bb0425) 2018; 13 Moré (bb0315) 1978 Vrieling, Meroni, Mude, Chantarat, Ummenhofer, de Bie (bb0465) 2016; 174 Bailey, Horner-Devine, Luck, Moore, Carney, Anderson, Betrus, Fleishman (bb0035) 2004; 27 Houborg, McCabe (bb0190) 2018; 209 Hollstein, Segl, Guanter, Brell, Enesco (bb0185) 2016; 8 Bai, Li, Sun, Chen, Li (bb0030) 2016; 8 Richardson, Hufkens, Milliman, Aubrecht, Chen, Gray, Johnston, Keenan, Klosterman, Kosmala, Melaas, Friedl, Frolking (bb0385) 2018; 5 Knapp, Beier, Briske, Classen, Luo, Reichstein, Smith, Smith, Bell, Fay, Heisler, Leavitt, Sherry, Smith, Weng (bb0230) 2008; 58 Miles, Bolton, Davis, Dennis, Broad, Robertson, Riddiford, Harvey, Riddington, Shaw, Parnaby, Reid (bb0310) 2017; 23 Briske, Joyce, Polley, Brown, Wolter, Morgan, McCarl, Bailey (bb0065) 2015; 13 Myers, Kerekes, Daughtry, Russ (bb0325) 2019; 11 Planet Labs Inc (bb0365) 2020 Vrieling, de Beurs, Brown (bb0460) 2011; 109 Beck, Atzberger, Høgda, Johansen, Skidmore (bb0040) 2006; 100 Fischer, Hauck, Brandhuber, Weigl, Maier, Auerswald (bb0125) 2016; 223 Walker, de Beurs, Wynne (bb0480) 2014; 144 Butt, Turner, Singh, Brottem (bb0075) 2011; 115 Zhang, Friedl, Schaaf (bb0525) 2009; 30 Blackwell (bb0050) 2010; 31 Granero-Belinchon, Adeline, Lemonsu, Briottet (bb0145) 2020; 12 Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0085) 2018; 219 Olsen, Miehe, Ceccato, Fensholt (bb0345) 2015; 12 Heumann, Seaquist, Eklundh, Jönsson (bb0165) 2007; 108 Briske, Fuhlendorf, Smeins (bb0060) 2005; 58 Kotchenova, Vermote (bb0235) 2007; 46 Vrieling, Skidmore, Wang, Meroni, Ens, Oosterbeek, O’Connor, Darvishzadeh, Heurich, Shepherd, Paganini (bb0470) 2017; 59 Schröder, Bennartz, Schüller, Preusker, Albert, Fischer (bb0415) 2002; 23 Nijland, Bolton, Coops, Stenhouse (bb0335) 2016; 177 Rembold, Meroni, Urbano, Csak, Kerdiles, Perez-Hoyos, Lemoine, Leo, Negre (bb0375) 2019; 168 Peng, Zhang, Zhang, Liu, Liu, Huete, Huang, Wang, Luo, Zhang, Zhang (bb0355) 2017; 132 Ibrahim, Balzter, Tansey, Tsutsumida, Mathieu (bb0210) 2018; 39 Behling, Roessner, Segl, Kleinschmit, Kaufmann (bb0045) 2014; 6 Morgan, Milchunas, LeCain, West, Mosier (bb0320) 2007; 104 Soh, Tsatsoulis (bb0445) 1999; 37 Liu, Liang, Schwartz, Donnelly, Wang, Schaaf, Liu (bb0255) 2015; 160 Elmore, Guinn, Minsley, Richardson (bb0120) 2012; 18 Bolton, Gray, Melaas, Moon, Eklundh, Friedl (bb0055) 2020; 240 Altesor, Oesterheld, Leoni, Lezama, Rodríguez (bb0020) 2005; 179 Myers (10.1016/j.rse.2020.112004_bb0325) 2019; 11 Briske (10.1016/j.rse.2020.112004_bb0060) 2005; 58 de Beurs (10.1016/j.rse.2020.112004_bb0095) 2010 Schröder (10.1016/j.rse.2020.112004_bb0415) 2002; 23 Diouf (10.1016/j.rse.2020.112004_bb0110) 2015; 7 Sloat (10.1016/j.rse.2020.112004_bb0440) 2018; 8 Guuroh (10.1016/j.rse.2020.112004_bb0160) 2018; 251 Sankaran (10.1016/j.rse.2020.112004_bb0390) 2004; 7 Meroni (10.1016/j.rse.2020.112004_bb0280) 2014; 6 Lu (10.1016/j.rse.2020.112004_bb0265) 2007; 28 Walker (10.1016/j.rse.2020.112004_bb0480) 2014; 144 Pastick (10.1016/j.rse.2020.112004_bb0350) 2020; 12 Stumpf (10.1016/j.rse.2020.112004_bb0455) 2018; 10 Jönsson (10.1016/j.rse.2020.112004_bb0220) 2004; 30 Jansen (10.1016/j.rse.2020.112004_bb0215) 2016; 37 Jönsson (10.1016/j.rse.2020.112004_bb0225) 2018; 10 Melaas (10.1016/j.rse.2020.112004_bb0275) 2016; 186 Zeng (10.1016/j.rse.2020.112004_bb0515) 2020; 237 Richardson (10.1016/j.rse.2020.112004_bb0380) 2007; 152 Hüttich (10.1016/j.rse.2020.112004_bb0205) 2009; 1 Meroni (10.1016/j.rse.2020.112004_bb0290) 2020 Planet Labs Inc (10.1016/j.rse.2020.112004_bb0360) Vrieling (10.1016/j.rse.2020.112004_bb0460) 2011; 109 Morgan (10.1016/j.rse.2020.112004_bb0320) 2007; 104 Metzger (10.1016/j.rse.2020.112004_bb0295) 2005; 61 Liu (10.1016/j.rse.2020.112004_bb0255) 2015; 160 Pan (10.1016/j.rse.2020.112004_bb5000) 2015; 34 Altesor (10.1016/j.rse.2020.112004_bb0020) 2005; 179 Briske (10.1016/j.rse.2020.112004_bb0065) 2015; 13 White (10.1016/j.rse.2020.112004_bb0495) 2009; 15 Gross (10.1016/j.rse.2020.112004_bb0150) 2017; 39 Li (10.1016/j.rse.2020.112004_bb0245) 2017; 191 Rembold (10.1016/j.rse.2020.112004_bb0375) 2019; 168 Ibrahim (10.1016/j.rse.2020.112004_bb0210) 2018; 39 Peng (10.1016/j.rse.2020.112004_bb0355) 2017; 132 Zhang (10.1016/j.rse.2020.112004_bb0525) 2009; 30 Melaas (10.1016/j.rse.2020.112004_bb0270) 2013; 132 Blackwell (10.1016/j.rse.2020.112004_bb0050) 2010; 31 Chen (10.1016/j.rse.2020.112004_bb0080) 2004; 91 Fisher (10.1016/j.rse.2020.112004_bb0130) 2006; 100 Scholes (10.1016/j.rse.2020.112004_bb0410) 1993 Zhang (10.1016/j.rse.2020.112004_bb0535) 2020; 161 Ackerman (10.1016/j.rse.2020.112004_bb0005) 1998; 103 Gillespie (10.1016/j.rse.2020.112004_bb0140) 1987; 22 Sonnentag (10.1016/j.rse.2020.112004_bb0450) 2012; 152 Zhang (10.1016/j.rse.2020.112004_bb0530) 2017; 190 Beck (10.1016/j.rse.2020.112004_bb0040) 2006; 100 Bailey (10.1016/j.rse.2020.112004_bb0035) 2004; 27 Moré (10.1016/j.rse.2020.112004_bb0315) 1978 Olsen (10.1016/j.rse.2020.112004_bb0345) 2015; 12 Houborg (10.1016/j.rse.2020.112004_bb0190) 2018; 209 Adole (10.1016/j.rse.2020.112004_bb0010) 2016; 34 Meynard (10.1016/j.rse.2020.112004_bb0300) 2020; 26 Vrieling (10.1016/j.rse.2020.112004_bb0470) 2017; 59 Archibald (10.1016/j.rse.2020.112004_bb0025) 2007; 18 Dronova (10.1016/j.rse.2020.112004_bb0115) 2020 White (10.1016/j.rse.2020.112004_bb0490) 1997; 11 Reid (10.1016/j.rse.2020.112004_bb0370) 2008 Scholes (10.1016/j.rse.2020.112004_bb0405) 1997; 28 Soh (10.1016/j.rse.2020.112004_bb0445) 1999; 37 Huete (10.1016/j.rse.2020.112004_bb0200) 2002; 83 House (10.1016/j.rse.2020.112004_bb0195) 2003; 30 Schwieder (10.1016/j.rse.2020.112004_bb0425) 2018; 13 Kotchenova (10.1016/j.rse.2020.112004_bb0240) 2006; 45 Zhang (10.1016/j.rse.2020.112004_bb0520) 2003; 84 White (10.1016/j.rse.2020.112004_bb0500) 2014; 148 Claverie (10.1016/j.rse.2020.112004_bb0085) 2018; 219 Ogle (10.1016/j.rse.2020.112004_bb0340) 2004; 141 Shendryk (10.1016/j.rse.2020.112004_bb0435) 2019; 157 Hiernaux (10.1016/j.rse.2020.112004_bb0170) 1998; 138 Bolton (10.1016/j.rse.2020.112004_bb0055) 2020; 240 Newville (10.1016/j.rse.2020.112004_bb0330) 2014 Hollstein (10.1016/j.rse.2020.112004_bb0185) 2016; 8 Miles (10.1016/j.rse.2020.112004_bb0310) 2017; 23 Schucknecht (10.1016/j.rse.2020.112004_bb0420) 2017 Alberton (10.1016/j.rse.2020.112004_bb0015) 2014; 19 Planet Labs Inc (10.1016/j.rse.2020.112004_bb0365) Knapp (10.1016/j.rse.2020.112004_bb0230) 2008; 58 Woebbecke (10.1016/j.rse.2020.112004_bb0510) 1995; 38 Butt (10.1016/j.rse.2020.112004_bb0075) 2011; 115 Cleland (10.1016/j.rse.2020.112004_bb0090) 2007; 22 Higgins (10.1016/j.rse.2020.112004_bb0175) 2011; 38 Didan (10.1016/j.rse.2020.112004_bb0100) 2015 Frantz (10.1016/j.rse.2020.112004_bb0135) 2016; 54 Wang (10.1016/j.rse.2020.112004_bb0485) 2020; 246 Liu (10.1016/j.rse.2020.112004_bb0260) 2017; 237-238 Vrieling (10.1016/j.rse.2020.112004_bb0475) 2018; 215 Richardson (10.1016/j.rse.2020.112004_bb0385) 2018; 5 Vrieling (10.1016/j.rse.2020.112004_bb0465) 2016; 174 Elmore (10.1016/j.rse.2020.112004_bb0120) 2012; 18 Guan (10.1016/j.rse.2020.112004_bb0155) 2014; 119 Bai (10.1016/j.rse.2020.112004_bb0030) 2016; 8 Granero-Belinchon (10.1016/j.rse.2020.112004_bb0145) 2020; 12 Scheiter (10.1016/j.rse.2020.112004_bb0400) 2009; 15 Fischer (10.1016/j.rse.2020.112004_bb0125) 2016; 223 Migliavacca (10.1016/j.rse.2020.112004_bb0305) 2011; 151 Behling (10.1016/j.rse.2020.112004_bb0045) 2014; 6 Kotchenova (10.1016/j.rse.2020.112004_bb0235) 2007; 46 Little (10.1016/j.rse.2020.112004_bb0250) 2008; 39 Hmimina (10.1016/j.rse.2020.112004_bb0180) 2013; 132 Meroni (10.1016/j.rse.2020.112004_bb0285) 2014; 35 Sellers (10.1016/j.rse.2020.112004_bb0430) 1994; 15 Heumann (10.1016/j.rse.2020.112004_bb0165) 2007; 108 Brown (10.1016/j.rse.2020.112004_bb0070) 2010; 114 Sayre (10.1016/j.rse.2020.112004_bb0395) 2013; 11 Whitecross (10.1016/j.rse.2020.112004_bb0505) 2017; 108 Didan (10.1016/j.rse.2020.112004_bb0105) 2015 Nijland (10.1016/j.rse.2020.112004_bb0335) 2016; 177 |
References_xml | – volume: 8 start-page: 666 year: 2016 ident: bb0185 article-title: Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images publication-title: Remote Sens. – volume: 6 start-page: 5868 year: 2014 end-page: 5884 ident: bb0280 article-title: Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel publication-title: Remote Sens. – volume: 39 start-page: 2718 year: 2018 end-page: 2745 ident: bb0210 article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data publication-title: Int. J. Remote Sens. – volume: 160 start-page: 156 year: 2015 end-page: 165 ident: bb0255 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. – year: 2015 ident: bb0105 article-title: MYD13A1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. MYD13A1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 – start-page: 9 year: 2017 ident: bb0420 article-title: Phenology-based biomass estimation to support rangeland management in semi-arid environments publication-title: Remote Sens. – volume: 37 start-page: 150 year: 2016 end-page: 175 ident: bb0215 article-title: Quantifying livestock effects on bunchgrass vegetation with Landsat ETM+ data across a single growing season publication-title: Int. J. Remote Sens. – volume: 31 start-page: 1321 year: 2010 end-page: 1338 ident: bb0050 article-title: East Africa’s pastoralist emergency: is climate change the straw that breaks the camel’s back? publication-title: Third World Q. – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0085 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 8 start-page: 715 year: 2016 ident: bb0030 article-title: Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion publication-title: Remote Sens. – volume: 22 start-page: 343 year: 1987 end-page: 365 ident: bb0140 article-title: Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques publication-title: Remote Sens. Environ. – volume: 91 start-page: 332 year: 2004 end-page: 344 ident: bb0080 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter publication-title: Remote Sens. Environ. – volume: 1 start-page: 620 year: 2009 end-page: 643 ident: bb0205 article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia publication-title: Remote Sens. – volume: 28 start-page: 4027 year: 2007 end-page: 4035 ident: bb0265 article-title: Detection and substitution of clouds/hazes and their cast shadows on IKONOS images publication-title: Int. J. Remote Sens. – volume: 39 start-page: 587 year: 2008 end-page: 611 ident: bb0250 article-title: Challenging orthodoxies: understanding poverty in pastoral areas of East Africa publication-title: Dev. Chang. – volume: 12 start-page: 725 year: 2020 ident: bb0350 article-title: Characterizing land surface phenology and exotic annual grasses in dryland ecosystems using Landsat and Sentinel-2 data in harmony publication-title: Remote Sens. – volume: 58 start-page: 811 year: 2008 end-page: 821 ident: bb0230 article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems publication-title: BioScience – volume: 23 start-page: 1400 year: 2017 end-page: 1414 ident: bb0310 article-title: Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds publication-title: Glob. Chang. Biol. – volume: 109 start-page: 455 year: 2011 end-page: 477 ident: bb0460 article-title: Variability of African farming systems from phenological analysis of NDVI time series publication-title: Clim. Chang. – volume: 59 start-page: 19 year: 2017 end-page: 30 ident: bb0470 article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 6 start-page: 2572 year: 2014 end-page: 2600 ident: bb0045 article-title: Robust automated image co-registration of optical multi-sensor time series data: database generation for multi-temporal landslide detection publication-title: Remote Sens. – year: 2015 ident: bb0100 article-title: MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 – volume: 30 start-page: 2061 year: 2009 end-page: 2074 ident: bb0525 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. – volume: 10 start-page: 635 year: 2018 ident: bb0225 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. – volume: 174 start-page: 44 year: 2016 end-page: 55 ident: bb0465 article-title: Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists publication-title: Remote Sens. Environ. – volume: 148 start-page: 97 year: 2014 end-page: 107 ident: bb0500 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. – volume: 237-238 start-page: 311 year: 2017 end-page: 325 ident: bb0260 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. – volume: 7 start-page: 9122 year: 2015 ident: bb0110 article-title: Fodder biomass monitoring in Sahelian rangelands using phenological metrics from FAPAR time series publication-title: Remote Sens. – volume: 5 start-page: 180028 year: 2018 ident: bb0385 article-title: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery publication-title: Sci. Data – volume: 168 start-page: 247 year: 2019 end-page: 257 ident: bb0375 article-title: ASAP: a new global early warning system to detect anomaly hot spots of agricultural production for food security analysis publication-title: Agric. Syst. – volume: 15 start-page: 2335 year: 2009 end-page: 2359 ident: bb0495 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Chang. Biol. – volume: 151 start-page: 1325 year: 2011 end-page: 1337 ident: bb0305 article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake publication-title: Agric. For. Meteorol. – volume: 34 start-page: 188 year: 2015 end-page: 197 ident: bb5000 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 251 start-page: 257 year: 2018 end-page: 267 ident: bb0160 article-title: Drivers of forage provision and erosion control in West African savannas—a macroecological perspective publication-title: Agric. Ecosyst. Environ. – year: 2020 ident: bb0290 article-title: Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2 publication-title: Remote Sens. Environ. – volume: 108 start-page: 385 year: 2007 end-page: 392 ident: bb0165 article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005 publication-title: Remote Sens. Environ. – volume: 179 start-page: 83 year: 2005 end-page: 91 ident: bb0020 article-title: Effect of grazing on community structure and productivity of a Uruguayan grassland publication-title: Plant Ecol. – volume: 22 start-page: 357 year: 2007 end-page: 365 ident: bb0090 article-title: Shifting plant phenology in response to global change publication-title: Trends Ecol. Evol. – volume: 34 start-page: 117 year: 2016 end-page: 128 ident: bb0010 article-title: A systematic review of vegetation phenology in Africa publication-title: Ecol. Inform. – volume: 39 start-page: 499 year: 2017 end-page: 522 ident: bb0150 article-title: Improving vegetation quality for the restoration of pollinators - the relevance of co-flowering species in space and time publication-title: Rangel. J. – year: 2019 ident: bb0360 article-title: Clear for Analysis With Planet's new Usable Data Masks – volume: 141 start-page: 282 year: 2004 end-page: 294 ident: bb0340 article-title: Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays publication-title: Oecologia – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb0520 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – volume: 152 start-page: 159 year: 2012 end-page: 177 ident: bb0450 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. – volume: 103 start-page: 32141 year: 1998 end-page: 32157 ident: bb0005 article-title: Discriminating clear sky from clouds with MODIS publication-title: J. Geophys. Res. Atmos. – volume: 58 start-page: 1 year: 2005 end-page: 10 ident: bb0060 article-title: State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives publication-title: Rangel. Ecol. Manag. – year: 1993 ident: bb0410 article-title: An African Savanna: Synthesis of the Nylsvley Study – volume: 223 start-page: 72 year: 2016 end-page: 80 ident: bb0125 article-title: Spatio-temporal variability of erosivity estimated from highly resolved and adjusted radar rain data (RADOLAN) publication-title: Agric. For. Meteorol. – volume: 12 start-page: 4407 year: 2015 end-page: 4419 ident: bb0345 article-title: Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas? publication-title: Biogeosciences – start-page: 1 year: 2008 end-page: 24 ident: bb0370 article-title: Global significance of extensive grazing lands and pastoral societies: an introduction publication-title: Fragmentation in Semi-arid and Arid Landscapes: Consequences for Human and Natural Systems – volume: 26 start-page: 3753 year: 2020 end-page: 3755 ident: bb0300 article-title: On the relative role of climate change and management in the current desert locust outbreak in East Africa publication-title: Global Change Biol. – volume: 10 year: 2018 ident: bb0455 article-title: Improved co-registration of Sentinel-2 and Landsat-8 imagery for Earth surface motion measurements publication-title: Remote Sens. – volume: 144 start-page: 85 year: 2014 end-page: 97 ident: bb0480 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. – volume: 108 start-page: 29 year: 2017 end-page: 40 ident: bb0505 article-title: Savanna tree-grass interactions: a phenological investigation of green-up in relation to water availability over three seasons publication-title: S. Afr. J. Bot. – volume: 132 start-page: 185 year: 2017 end-page: 198 ident: bb0355 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 217 year: 1997 end-page: 234 ident: bb0490 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Glob. Biogeochem. Cycles – volume: 8 start-page: 214 year: 2018 end-page: 218 ident: bb0440 article-title: Increasing importance of precipitation variability on global livestock grazing lands publication-title: Nat. Clim. Chang. – volume: 191 start-page: 342 year: 2017 end-page: 358 ident: bb0245 article-title: Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery publication-title: Remote Sens. Environ. – volume: 132 start-page: 176 year: 2013 end-page: 185 ident: bb0270 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data publication-title: Remote Sens. Environ. – volume: 237 start-page: 111511 year: 2020 ident: bb0515 article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data publication-title: Remote Sens. Environ. – volume: 11 start-page: 2558 year: 2019 ident: bb0325 article-title: Assessing the impact of satellite revisit rate on estimation of corn phenological transition timing through shape model fitting publication-title: Remote Sens. – volume: 23 start-page: 4247 year: 2002 end-page: 4261 ident: bb0415 article-title: Generating cloudmasks in spatial high-resolution observations of clouds using texture and radiance information publication-title: Int. J. Remote Sens. – volume: 104 start-page: 14724 year: 2007 end-page: 14729 ident: bb0320 article-title: Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe publication-title: Proc. Natl. Acad. Sci. – volume: 114 start-page: 2286 year: 2010 end-page: 2296 ident: bb0070 article-title: The response of African land surface phenology to large scale climate oscillations publication-title: Remote Sens. Environ. – volume: 15 start-page: 3519 year: 1994 end-page: 3545 ident: bb0430 article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI publication-title: Int. J. Remote Sens. – volume: 177 start-page: 13 year: 2016 end-page: 20 ident: bb0335 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. – start-page: 177 year: 2010 end-page: 208 ident: bb0095 article-title: Spatio-temporal statistical methods for modeling land surface phenology publication-title: Phenological Research: Methods for Environmental and Climate Change Analysis – volume: 152 start-page: 323 year: 2007 end-page: 334 ident: bb0380 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia – volume: 38 start-page: 259 year: 1995 end-page: 269 ident: bb0510 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Trans. Am. Soc. Agric. Eng. – volume: 12 year: 2020 ident: bb0145 article-title: Phenological dynamics characterization of alignment trees with Sentinel-2 imagery: a vegetation indices time series reconstruction methodology adapted to urban areas publication-title: Remote Sens. – volume: 209 start-page: 211 year: 2018 end-page: 226 ident: bb0190 article-title: A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing Planet, Landsat and MODIS data publication-title: Remote Sens. Environ. – start-page: 105 year: 1978 end-page: 116 ident: bb0315 article-title: The Levenberg-Marquardt algorithm: Implementation and theory publication-title: Numerical Analysis – volume: 138 start-page: 191 year: 1998 end-page: 202 ident: bb0170 article-title: Effects of grazing on plant species composition and spatial distribution in rangelands of the Sahel publication-title: Plant Ecol. – volume: 100 start-page: 321 year: 2006 end-page: 334 ident: bb0040 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. – volume: 61 start-page: 147 year: 2005 end-page: 160 ident: bb0295 article-title: Effects of seasonal grazing on plant species diversity and vegetation structure in a semi-arid ecosystem publication-title: J. Arid Environ. – volume: 18 start-page: 656 year: 2012 end-page: 674 ident: bb0120 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests publication-title: Glob. Chang. Biol. – volume: 30 start-page: 833 year: 2004 end-page: 845 ident: bb0220 article-title: TIMESAT - a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. – volume: 186 start-page: 452 year: 2016 end-page: 464 ident: bb0275 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. – volume: 132 start-page: 145 year: 2013 end-page: 158 ident: bb0180 article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements publication-title: Remote Sens. Environ. – volume: 7 start-page: 480 year: 2004 end-page: 490 ident: bb0390 article-title: Tree–grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models publication-title: Ecol. Lett. – volume: 37 start-page: 780 year: 1999 end-page: 795 ident: bb0445 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 240 start-page: 111685 year: 2020 ident: bb0055 article-title: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery publication-title: Remote Sens. Environ. – volume: 28 start-page: 517 year: 1997 end-page: 544 ident: bb0405 article-title: Tree-grass interactions in savannas publication-title: Annu. Rev. Ecol. Syst. – volume: 54 start-page: 4153 year: 2016 end-page: 4164 ident: bb0135 article-title: Improving the spatial resolution of land surface phenology by fusing medium- and coarse-resolution inputs publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: bb0115 article-title: Phenological heterogeneity of restored wetlands: linking vegetation structure and function publication-title: Agric. Forest Meteorol. – volume: 30 start-page: 1763 year: 2003 end-page: 1777 ident: bb0195 article-title: Conundrums in mixed woody-herbaceous plant systems publication-title: J. Biogeogr. – volume: 13 start-page: 7 year: 2018 ident: bb0425 article-title: Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna publication-title: Carbon Balance Manag. – volume: 246 start-page: 111865 year: 2020 ident: bb0485 article-title: Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest publication-title: Remote Sens. Environ. – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bb0130 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. – volume: 215 start-page: 517 year: 2018 end-page: 529 ident: bb0475 article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island publication-title: Remote Sens. Environ. – volume: 35 start-page: 2472 year: 2014 end-page: 2492 ident: bb0285 article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa publication-title: Int. J. Remote Sens. – volume: 19 start-page: 62 year: 2014 end-page: 70 ident: bb0015 article-title: Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation publication-title: Ecol. Inform. – year: 2020 ident: bb0365 article-title: Planet Imagery and Archive – volume: 119 start-page: 1652 year: 2014 end-page: 1669 ident: bb0155 article-title: Terrestrial hydrological controls on land surface phenology of African savannas and woodlands publication-title: J. Geophys. Res. G – volume: 38 start-page: 2165 year: 2011 end-page: 2175 ident: bb0175 article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses? publication-title: J. Biogeogr. – volume: 11 start-page: 348 year: 2013 end-page: 354 ident: bb0395 article-title: Earth stewardship of rangelands: coping with ecological, economic, and political marginality publication-title: Front. Ecol. Environ. – volume: 27 start-page: 207 year: 2004 end-page: 217 ident: bb0035 article-title: Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales publication-title: Ecography – volume: 46 start-page: 4455 year: 2007 end-page: 4464 ident: bb0235 article-title: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces publication-title: Appl. Opt. – volume: 161 start-page: 37 year: 2020 end-page: 51 ident: bb0535 article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 190 start-page: 318 year: 2017 end-page: 330 ident: bb0530 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. – volume: 115 start-page: 3367 year: 2011 end-page: 3376 ident: bb0075 article-title: Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa publication-title: Remote Sens. Environ. – volume: 157 start-page: 124 year: 2019 end-page: 136 ident: bb0435 article-title: Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0200 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – year: 2014 ident: bb0330 article-title: LMFIT: Non-linear Least-square Minimization and Curve-fitting for Python – volume: 18 start-page: 583 year: 2007 end-page: 594 ident: bb0025 article-title: Leaf green-up in a semi-arid African savanna - separating tree and grass responses to environmental cues publication-title: J. Veg. Sci. – volume: 13 start-page: 249 year: 2015 end-page: 256 ident: bb0065 article-title: Climate-change adaptation on rangelands: linking regional exposure with diverse adaptive capacity publication-title: Front. Ecol. Environ. – volume: 45 start-page: 6762 year: 2006 end-page: 6774 ident: bb0240 article-title: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance publication-title: Appl. Opt. – volume: 15 start-page: 2224 year: 2009 end-page: 2246 ident: bb0400 article-title: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach publication-title: Glob. Chang. Biol. – start-page: 1 year: 2008 ident: 10.1016/j.rse.2020.112004_bb0370 article-title: Global significance of extensive grazing lands and pastoral societies: an introduction – volume: 223 start-page: 72 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0125 article-title: Spatio-temporal variability of erosivity estimated from highly resolved and adjusted radar rain data (RADOLAN) publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.03.024 – volume: 28 start-page: 4027 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0265 article-title: Detection and substitution of clouds/hazes and their cast shadows on IKONOS images publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701227703 – volume: 8 start-page: 715 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0030 article-title: Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion publication-title: Remote Sens. doi: 10.3390/rs8090715 – volume: 6 start-page: 5868 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0280 article-title: Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel publication-title: Remote Sens. doi: 10.3390/rs6065868 – volume: 15 start-page: 2335 year: 2009 ident: 10.1016/j.rse.2020.112004_bb0495 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01910.x – volume: 59 start-page: 19 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0470 article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 38 start-page: 2165 year: 2011 ident: 10.1016/j.rse.2020.112004_bb0175 article-title: Is there a temporal niche separation in the leaf phenology of savanna trees and grasses? publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2011.02549.x – year: 2020 ident: 10.1016/j.rse.2020.112004_bb0115 article-title: Phenological heterogeneity of restored wetlands: linking vegetation structure and function publication-title: Agric. Forest Meteorol. – volume: 186 start-page: 452 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0275 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.014 – volume: 15 start-page: 2224 year: 2009 ident: 10.1016/j.rse.2020.112004_bb0400 article-title: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01838.x – volume: 132 start-page: 176 year: 2013 ident: 10.1016/j.rse.2020.112004_bb0270 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.011 – volume: 39 start-page: 499 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0150 article-title: Improving vegetation quality for the restoration of pollinators - the relevance of co-flowering species in space and time publication-title: Rangel. J. doi: 10.1071/RJ17066 – volume: 30 start-page: 833 year: 2004 ident: 10.1016/j.rse.2020.112004_bb0220 article-title: TIMESAT - a program for analyzing time-series of satellite sensor data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.006 – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.rse.2020.112004_bb0520 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 39 start-page: 2718 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0210 article-title: Estimating fractional cover of plant functional types in African savannah from harmonic analysis of MODIS time-series data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1430914 – volume: 177 start-page: 13 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0335 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.018 – volume: 13 start-page: 249 year: 2015 ident: 10.1016/j.rse.2020.112004_bb0065 article-title: Climate-change adaptation on rangelands: linking regional exposure with diverse adaptive capacity publication-title: Front. Ecol. Environ. doi: 10.1890/140266 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2020.112004_bb0130 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.022 – volume: 209 start-page: 211 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0190 article-title: A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing Planet, Landsat and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.067 – volume: 161 start-page: 37 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0535 article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.012 – volume: 31 start-page: 1321 year: 2010 ident: 10.1016/j.rse.2020.112004_bb0050 article-title: East Africa’s pastoralist emergency: is climate change the straw that breaks the camel’s back? publication-title: Third World Q. doi: 10.1080/01436597.2010.541085 – volume: 1 start-page: 620 year: 2009 ident: 10.1016/j.rse.2020.112004_bb0205 article-title: On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: a case study in the Kalahari of NE Namibia publication-title: Remote Sens. doi: 10.3390/rs1040620 – volume: 157 start-page: 124 year: 2019 ident: 10.1016/j.rse.2020.112004_bb0435 article-title: Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.08.018 – volume: 26 start-page: 3753 issue: 7 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0300 article-title: On the relative role of climate change and management in the current desert locust outbreak in East Africa publication-title: Global Change Biol. doi: 10.1111/gcb.15137 – volume: 7 start-page: 480 year: 2004 ident: 10.1016/j.rse.2020.112004_bb0390 article-title: Tree–grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2004.00596.x – volume: 10 start-page: 635 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0225 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. doi: 10.3390/rs10040635 – volume: 58 start-page: 811 year: 2008 ident: 10.1016/j.rse.2020.112004_bb0230 article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems publication-title: BioScience doi: 10.1641/B580908 – volume: 168 start-page: 247 year: 2019 ident: 10.1016/j.rse.2020.112004_bb0375 article-title: ASAP: a new global early warning system to detect anomaly hot spots of agricultural production for food security analysis publication-title: Agric. Syst. doi: 10.1016/j.agsy.2018.07.002 – volume: 109 start-page: 455 year: 2011 ident: 10.1016/j.rse.2020.112004_bb0460 article-title: Variability of African farming systems from phenological analysis of NDVI time series publication-title: Clim. Chang. doi: 10.1007/s10584-011-0049-1 – volume: 39 start-page: 587 year: 2008 ident: 10.1016/j.rse.2020.112004_bb0250 article-title: Challenging orthodoxies: understanding poverty in pastoral areas of East Africa publication-title: Dev. Chang. doi: 10.1111/j.1467-7660.2008.00497.x – volume: 151 start-page: 1325 year: 2011 ident: 10.1016/j.rse.2020.112004_bb0305 article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.05.012 – volume: 108 start-page: 29 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0505 article-title: Savanna tree-grass interactions: a phenological investigation of green-up in relation to water availability over three seasons publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2016.09.003 – volume: 6 start-page: 2572 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0045 article-title: Robust automated image co-registration of optical multi-sensor time series data: database generation for multi-temporal landslide detection publication-title: Remote Sens. doi: 10.3390/rs6032572 – volume: 7 start-page: 9122 year: 2015 ident: 10.1016/j.rse.2020.112004_bb0110 article-title: Fodder biomass monitoring in Sahelian rangelands using phenological metrics from FAPAR time series publication-title: Remote Sens. doi: 10.3390/rs70709122 – volume: 119 start-page: 1652 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0155 article-title: Terrestrial hydrological controls on land surface phenology of African savannas and woodlands publication-title: J. Geophys. Res. G doi: 10.1002/2013JG002572 – start-page: 9 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0420 article-title: Phenology-based biomass estimation to support rangeland management in semi-arid environments publication-title: Remote Sens. – volume: 22 start-page: 343 year: 1987 ident: 10.1016/j.rse.2020.112004_bb0140 article-title: Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90088-5 – year: 2015 ident: 10.1016/j.rse.2020.112004_bb0105 – volume: 30 start-page: 1763 year: 2003 ident: 10.1016/j.rse.2020.112004_bb0195 article-title: Conundrums in mixed woody-herbaceous plant systems publication-title: J. Biogeogr. doi: 10.1046/j.1365-2699.2003.00873.x – volume: 54 start-page: 4153 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0135 article-title: Improving the spatial resolution of land surface phenology by fusing medium- and coarse-resolution inputs publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2537929 – volume: 190 start-page: 318 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0530 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.001 – volume: 114 start-page: 2286 year: 2010 ident: 10.1016/j.rse.2020.112004_bb0070 article-title: The response of African land surface phenology to large scale climate oscillations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.005 – start-page: 177 year: 2010 ident: 10.1016/j.rse.2020.112004_bb0095 article-title: Spatio-temporal statistical methods for modeling land surface phenology – volume: 132 start-page: 185 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0355 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.09.002 – volume: 215 start-page: 517 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0475 article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.014 – year: 2020 ident: 10.1016/j.rse.2020.112004_bb0290 article-title: Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2 publication-title: Remote Sens. Environ. – year: 2015 ident: 10.1016/j.rse.2020.112004_bb0100 – volume: 45 start-page: 6762 year: 2006 ident: 10.1016/j.rse.2020.112004_bb0240 article-title: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance publication-title: Appl. Opt. doi: 10.1364/AO.45.006762 – volume: 38 start-page: 259 year: 1995 ident: 10.1016/j.rse.2020.112004_bb0510 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.27838 – volume: 19 start-page: 62 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0015 article-title: Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2013.12.011 – volume: 152 start-page: 159 year: 2012 ident: 10.1016/j.rse.2020.112004_bb0450 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.09.009 – volume: 8 start-page: 214 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0440 article-title: Increasing importance of precipitation variability on global livestock grazing lands publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-018-0081-5 – volume: 15 start-page: 3519 year: 1994 ident: 10.1016/j.rse.2020.112004_bb0430 article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954343 – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0085 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – year: 1993 ident: 10.1016/j.rse.2020.112004_bb0410 – volume: 13 start-page: 7 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0425 article-title: Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna publication-title: Carbon Balance Manag. doi: 10.1186/s13021-018-0097-1 – volume: 30 start-page: 2061 year: 2009 ident: 10.1016/j.rse.2020.112004_bb0525 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802549237 – volume: 237-238 start-page: 311 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0260 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.02.026 – volume: 5 start-page: 180028 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0385 article-title: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery publication-title: Sci. Data doi: 10.1038/sdata.2018.28 – volume: 23 start-page: 1400 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0310 article-title: Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13486 – ident: 10.1016/j.rse.2020.112004_bb0360 – volume: 37 start-page: 150 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0215 article-title: Quantifying livestock effects on bunchgrass vegetation with Landsat ETM+ data across a single growing season publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1117681 – start-page: 105 year: 1978 ident: 10.1016/j.rse.2020.112004_bb0315 article-title: The Levenberg-Marquardt algorithm: Implementation and theory – volume: 100 start-page: 321 year: 2006 ident: 10.1016/j.rse.2020.112004_bb0040 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.021 – volume: 91 start-page: 332 year: 2004 ident: 10.1016/j.rse.2020.112004_bb0080 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.014 – volume: 108 start-page: 385 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0165 article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.025 – volume: 37 start-page: 780 year: 1999 ident: 10.1016/j.rse.2020.112004_bb0445 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.752194 – volume: 132 start-page: 145 year: 2013 ident: 10.1016/j.rse.2020.112004_bb0180 article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.010 – volume: 251 start-page: 257 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0160 article-title: Drivers of forage provision and erosion control in West African savannas—a macroecological perspective publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.09.017 – volume: 61 start-page: 147 year: 2005 ident: 10.1016/j.rse.2020.112004_bb0295 article-title: Effects of seasonal grazing on plant species diversity and vegetation structure in a semi-arid ecosystem publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2004.07.019 – volume: 10 year: 2018 ident: 10.1016/j.rse.2020.112004_bb0455 article-title: Improved co-registration of Sentinel-2 and Landsat-8 imagery for Earth surface motion measurements publication-title: Remote Sens. doi: 10.3390/rs10020160 – volume: 12 start-page: 4407 year: 2015 ident: 10.1016/j.rse.2020.112004_bb0345 article-title: Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas? publication-title: Biogeosciences doi: 10.5194/bg-12-4407-2015 – volume: 18 start-page: 656 year: 2012 ident: 10.1016/j.rse.2020.112004_bb0120 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02521.x – volume: 11 start-page: 348 year: 2013 ident: 10.1016/j.rse.2020.112004_bb0395 article-title: Earth stewardship of rangelands: coping with ecological, economic, and political marginality publication-title: Front. Ecol. Environ. doi: 10.1890/120333 – volume: 11 start-page: 2558 year: 2019 ident: 10.1016/j.rse.2020.112004_bb0325 article-title: Assessing the impact of satellite revisit rate on estimation of corn phenological transition timing through shape model fitting publication-title: Remote Sens. doi: 10.3390/rs11212558 – volume: 46 start-page: 4455 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0235 article-title: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces publication-title: Appl. Opt. doi: 10.1364/AO.46.004455 – volume: 144 start-page: 85 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0480 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.007 – volume: 12 start-page: 725 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0350 article-title: Characterizing land surface phenology and exotic annual grasses in dryland ecosystems using Landsat and Sentinel-2 data in harmony publication-title: Remote Sens. doi: 10.3390/rs12040725 – volume: 11 start-page: 217 year: 1997 ident: 10.1016/j.rse.2020.112004_bb0490 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Glob. Biogeochem. Cycles doi: 10.1029/97GB00330 – volume: 28 start-page: 517 year: 1997 ident: 10.1016/j.rse.2020.112004_bb0405 article-title: Tree-grass interactions in savannas publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.28.1.517 – volume: 115 start-page: 3367 year: 2011 ident: 10.1016/j.rse.2020.112004_bb0075 article-title: Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.001 – volume: 246 start-page: 111865 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0485 article-title: Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111865 – volume: 138 start-page: 191 year: 1998 ident: 10.1016/j.rse.2020.112004_bb0170 article-title: Effects of grazing on plant species composition and spatial distribution in rangelands of the Sahel publication-title: Plant Ecol. doi: 10.1023/A:1009752606688 – volume: 148 start-page: 97 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0500 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.017 – volume: 179 start-page: 83 year: 2005 ident: 10.1016/j.rse.2020.112004_bb0020 article-title: Effect of grazing on community structure and productivity of a Uruguayan grassland publication-title: Plant Ecol. doi: 10.1007/s11258-004-5800-5 – volume: 34 start-page: 188 year: 2015 ident: 10.1016/j.rse.2020.112004_bb5000 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 104 start-page: 14724 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0320 article-title: Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0703427104 – volume: 58 start-page: 1 year: 2005 ident: 10.1016/j.rse.2020.112004_bb0060 article-title: State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives publication-title: Rangel. Ecol. Manag. doi: 10.2111/1551-5028(2005)58<1:SMTARH>2.0.CO;2 – volume: 160 start-page: 156 year: 2015 ident: 10.1016/j.rse.2020.112004_bb0255 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.011 – ident: 10.1016/j.rse.2020.112004_bb0365 – volume: 83 start-page: 195 year: 2002 ident: 10.1016/j.rse.2020.112004_bb0200 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 18 start-page: 583 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0025 article-title: Leaf green-up in a semi-arid African savanna - separating tree and grass responses to environmental cues publication-title: J. Veg. Sci. – volume: 22 start-page: 357 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0090 article-title: Shifting plant phenology in response to global change publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.04.003 – volume: 141 start-page: 282 year: 2004 ident: 10.1016/j.rse.2020.112004_bb0340 article-title: Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays publication-title: Oecologia doi: 10.1007/s00442-004-1507-5 – volume: 12 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0145 article-title: Phenological dynamics characterization of alignment trees with Sentinel-2 imagery: a vegetation indices time series reconstruction methodology adapted to urban areas publication-title: Remote Sens. doi: 10.3390/rs12040639 – volume: 8 start-page: 666 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0185 article-title: Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images publication-title: Remote Sens. doi: 10.3390/rs8080666 – volume: 35 start-page: 2472 year: 2014 ident: 10.1016/j.rse.2020.112004_bb0285 article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.883090 – year: 2014 ident: 10.1016/j.rse.2020.112004_bb0330 – volume: 23 start-page: 4247 year: 2002 ident: 10.1016/j.rse.2020.112004_bb0415 article-title: Generating cloudmasks in spatial high-resolution observations of clouds using texture and radiance information publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110114547 – volume: 240 start-page: 111685 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0055 article-title: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111685 – volume: 103 start-page: 32141 year: 1998 ident: 10.1016/j.rse.2020.112004_bb0005 article-title: Discriminating clear sky from clouds with MODIS publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1998JD200032 – volume: 27 start-page: 207 year: 2004 ident: 10.1016/j.rse.2020.112004_bb0035 article-title: Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales publication-title: Ecography doi: 10.1111/j.0906-7590.2004.03631.x – volume: 152 start-page: 323 year: 2007 ident: 10.1016/j.rse.2020.112004_bb0380 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia doi: 10.1007/s00442-006-0657-z – volume: 174 start-page: 44 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0465 article-title: Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.003 – volume: 191 start-page: 342 year: 2017 ident: 10.1016/j.rse.2020.112004_bb0245 article-title: Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.026 – volume: 34 start-page: 117 year: 2016 ident: 10.1016/j.rse.2020.112004_bb0010 article-title: A systematic review of vegetation phenology in Africa publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2016.05.004 – volume: 237 start-page: 111511 year: 2020 ident: 10.1016/j.rse.2020.112004_bb0515 article-title: A review of vegetation phenological metrics extraction using time-series, multispectral satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111511 |
SSID | ssj0015871 |
Score | 2.6308994 |
Snippet | The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study... The short revisit times afforded by recently-deployed optical satellite sensors that acquire 3–30 m resolution imagery provide new opportunities to study... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112004 |
SubjectTerms | Aridity climate Climate and vegetation Cloud cover Digital repeat photography environment farms grasses Grasslands Growing season Herbivores Image acquisition Interannual variability Kenya Landscape variability Mapping Multi-temporal analysis NDVI time series Phenology Photography PlanetScope rain Rainfall Rainy season Rangelands Satellite constellations satellites Seasonal variations Semi-arid rangelands Sensors Sentinel-2 Spatial resolution time series analysis Vegetation Vegetation index Vegetation surveys |
Title | Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2 |
URI | https://dx.doi.org/10.1016/j.rse.2020.112004 https://www.proquest.com/docview/2451172031 https://www.proquest.com/docview/2552038864 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDaW9hHbb0G0eqNBTwY2sl-1jCEk3KQ2FJBB6EZIsdbcEb9jdFPbS316NLW9IKTn0YrAe2GhGM4P0fTMAH7gtZFFRm6FDyEQeqswyFh9eME-tFdwiOfnrhRpfi_MbebMBxz0XBmGVyfZ3Nr211qnlMK3m4d10ihxfLlDjWNRTXgi1CVssevtyAFtHZ1_GF-vLBFkWXeE8LjKc0F9utjCv-QKTZbKWS0NTubZ_uKe_DHXrfU5fwnYKG8lR92evYMM3Q9g5eWCpxc60TRdDeJ5Km09WQ3j2ua3du3oN379NfHeKTmaBLCYx8Ca__I-ENyRuhQA5Mm2IIdH8rkxD5sg8QOgjQRYKwQJHfnmJPBaCjZeINGr8bcbewPXpydXxOEulFTIXLeMy86JwZQzOZFU6E910oC7IwqmaVkZaJUxFVSiFFFbJ4Gqae28rZgwPtCp5LfkODJpZ498CMYqFGAbW1gUlaoMZ5ItScM6Nyo1zbAS0X1HtUt5xLH9xq3uA2U8dhaBRCLoTwgg-rqfcdUk3nhosejHpR5qjo1N4atpeL1Kdtu1CM8zWhgqVj-D9ujtuOLxFiUs8u49jpGSYQkeJd__35V14gW8dInAPBsv5vd-Pkc3SHsDmp9_5QdLfPwbk9Y0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_sSdGXYq-VntU2hT4VFnP52t1HEe1Z9SioIH0JSTbpncie3J3C_ffN7GavtBQf-rIP-WCXmcnMsPn9ZgA-c5vLvKQ2w4CQiWEoM8tYfHjBPLVWcIvk5MuxGt2Ib7fydgOOOy4MwiqT7299euOt08hhkubhw3SKHF8u0OJYtFOeC_UCNgU2te7B5tHZ-Wi8vkyQRd42zuMiww3d5WYD85ovsFgma7g0NLVr-0d4-stRN9HndAdepbSRHLVf9ho2fN2H3ZPfLLU4mY7pog9bqbX5ZNWHl1-b3r2rN_Dj-8S3f9HJLJDFJCbe5Mn_THhD4lYIkCPTmhgS3e_K1GSOzAOEPhJkoRBscOSXV8hjITh4hUij2t9n7C3cnJ5cH4-y1Fohc9EzLjMvclfE5EyWhTMxTAfqgsydqmhppFXClFSFIorTKhlcRYfe25IZwwMtC15Jvgu9elb7d0CMYiGmgZV1QYnKYAX5vBCcc6OGxjk2ANpJVLtUdxzbX9zrDmB2p6MSNCpBt0oYwJf1loe26MZzi0WnJv2H5egYFJ7btt-pVKdju9AMq7WhQQ0H8Gk9HQ8c3qJEEc8e4xopGZbQUWLv_978EbZG15cX-uJsfP4etnGmRQfuQ285f_QHMctZ2g_Jin8B0PH3cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenology+of+short+vegetation+cycles+in+a+Kenyan+rangeland+from+PlanetScope+and+Sentinel-2&rft.jtitle=Remote+sensing+of+environment&rft.au=Cheng%2C+Yan&rft.au=Vrieling%2C+Anton&rft.au=Fava%2C+Francesco&rft.au=Meroni%2C+Michele&rft.date=2020-10-01&rft.issn=0034-4257&rft.volume=248&rft.spage=112004&rft_id=info:doi/10.1016%2Fj.rse.2020.112004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2020_112004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |