A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features

Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overc...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 14; p. 25
Main Authors Castellazzi, Gloria, Cuzzoni, Maria Giovanna, Cotta Ramusino, Matteo, Martinelli, Daniele, Denaro, Federica, Ricciardi, Antonio, Vitali, Paolo, Anzalone, Nicoletta, Bernini, Sara, Palesi, Fulvia, Sinforiani, Elena, Costa, Alfredo, Micieli, Giuseppe, D'Angelo, Egidio, Magenes, Giovanni, Gandini Wheeler-Kingshott, Claudia A. M.
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 11.06.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2020.00025

Cover

Abstract Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study we investigated, first, whether different kind of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD; secondly, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial Neural Network (ANN), support vector machine (SVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and Diffusion Tensor Imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD-AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a three years clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature dataset (e.g. DTI + rs-fMRI metrics) rather than a unimodal feature dataset. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach have a high discriminant power to classify AD and VD profiles. Moreover, the same approach showed also potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians’ diagnostic evaluations.
AbstractList Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a "mixed VD-AD dementia" (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations.Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a "mixed VD-AD dementia" (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations.
Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD–AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations.
Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study we investigated, first, whether different kind of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD; secondly, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial Neural Network (ANN), support vector machine (SVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and Diffusion Tensor Imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD-AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a three years clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature dataset (e.g. DTI + rs-fMRI metrics) rather than a unimodal feature dataset. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach have a high discriminant power to classify AD and VD profiles. Moreover, the same approach showed also potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians’ diagnostic evaluations.
Author Vitali, Paolo
Cotta Ramusino, Matteo
Magenes, Giovanni
Palesi, Fulvia
Cuzzoni, Maria Giovanna
Costa, Alfredo
Ricciardi, Antonio
Anzalone, Nicoletta
Martinelli, Daniele
Sinforiani, Elena
Bernini, Sara
D'Angelo, Egidio
Castellazzi, Gloria
Gandini Wheeler-Kingshott, Claudia A. M.
Micieli, Giuseppe
Denaro, Federica
AuthorAffiliation 1 NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology , London , United Kingdom
2 Department of Electrical, Computer and Biomedical Engineering, University of Pavia , Pavia , Italy
5 Laboratory of Neuropsychology and Unit of Behavioral Neurology, IRCCS Mondino Foundation , Pavia , Italy
12 Brain Connectivity Center, IRCCS Mondino Foundation , Pavia , Italy
9 Radiology Unit, IRCCS Policlinico San Donato , Milan , Italy
3 Brain MRI 3T Research Center, IRCCS Mondino Foundation , Pavia , Italy
7 Headache Center, IRCCS Mondino Foundation , Pavia , Italy
6 Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy
8 Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London , London , United Kingdom
4 Stroke Unit, IRCCS Mondino Foundation , Pavia , Italy
10 Scientific Institute H.S. Raffaele Vita e Salute University , Milan , Ital
AuthorAffiliation_xml – name: 4 Stroke Unit, IRCCS Mondino Foundation , Pavia , Italy
– name: 3 Brain MRI 3T Research Center, IRCCS Mondino Foundation , Pavia , Italy
– name: 10 Scientific Institute H.S. Raffaele Vita e Salute University , Milan , Italy
– name: 6 Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy
– name: 5 Laboratory of Neuropsychology and Unit of Behavioral Neurology, IRCCS Mondino Foundation , Pavia , Italy
– name: 9 Radiology Unit, IRCCS Policlinico San Donato , Milan , Italy
– name: 1 NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology , London , United Kingdom
– name: 8 Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London , London , United Kingdom
– name: 7 Headache Center, IRCCS Mondino Foundation , Pavia , Italy
– name: 11 Department of Emergency Neurology, IRCCS Mondino Foundation , Pavia , Italy
– name: 12 Brain Connectivity Center, IRCCS Mondino Foundation , Pavia , Italy
– name: 2 Department of Electrical, Computer and Biomedical Engineering, University of Pavia , Pavia , Italy
Author_xml – sequence: 1
  givenname: Gloria
  surname: Castellazzi
  fullname: Castellazzi, Gloria
– sequence: 2
  givenname: Maria Giovanna
  surname: Cuzzoni
  fullname: Cuzzoni, Maria Giovanna
– sequence: 3
  givenname: Matteo
  surname: Cotta Ramusino
  fullname: Cotta Ramusino, Matteo
– sequence: 4
  givenname: Daniele
  surname: Martinelli
  fullname: Martinelli, Daniele
– sequence: 5
  givenname: Federica
  surname: Denaro
  fullname: Denaro, Federica
– sequence: 6
  givenname: Antonio
  surname: Ricciardi
  fullname: Ricciardi, Antonio
– sequence: 7
  givenname: Paolo
  surname: Vitali
  fullname: Vitali, Paolo
– sequence: 8
  givenname: Nicoletta
  surname: Anzalone
  fullname: Anzalone, Nicoletta
– sequence: 9
  givenname: Sara
  surname: Bernini
  fullname: Bernini, Sara
– sequence: 10
  givenname: Fulvia
  surname: Palesi
  fullname: Palesi, Fulvia
– sequence: 11
  givenname: Elena
  surname: Sinforiani
  fullname: Sinforiani, Elena
– sequence: 12
  givenname: Alfredo
  surname: Costa
  fullname: Costa, Alfredo
– sequence: 13
  givenname: Giuseppe
  surname: Micieli
  fullname: Micieli, Giuseppe
– sequence: 14
  givenname: Egidio
  surname: D'Angelo
  fullname: D'Angelo, Egidio
– sequence: 15
  givenname: Giovanni
  surname: Magenes
  fullname: Magenes, Giovanni
– sequence: 16
  givenname: Claudia A. M.
  surname: Gandini Wheeler-Kingshott
  fullname: Gandini Wheeler-Kingshott, Claudia A. M.
BookMark eNqFkc2PEyEYxidmjfuhd48kXry0MjDAcDFpdq026cbErythmJeWhkKFmTXdv17aboy7Bz0BL8_zg_d9LquzEANU1esaTylt5TsbXLBTggmeYowJe1Zd1JyTCaslP_trf15d5rzBmBPOxIvqnBImWcPZRXU_Q7farF0AtASdCm-FZrtdiqWIbExoWAO6cdZCgjA47ctBr0LMLqNo0czfr8FtISEdevRDZzN6ndANbI9qNIcedXt0-2WBvoIHM5TzHPQwJsgvq-dW-wyvHtar6vv8w7frT5Pl54-L69lyYhouhklPZMcbjQkIbgjXQGvTydrKFpNWG9YaTTnuREeIFZRZQxmjPWcNFlJY0tCranHi9lFv1C65rU57FbVTx0JMK6XT4IwHJQwxDW5t1wJrgNNO9r0UuKWi0S3pobDqE2sMO73_pb3_A6yxOmSijpmoQybqmEnxvD95dmO3hd6UySTtH33k8U1wa7WKd0rQ4pd1Abx9AKT4c4Q8qK3LBrzXAeKYFWnqVlDC64P0zRPpJo4plPEeVLUksuW4qPhJZVLMOYFVxg16cPHwvvP_agU_Mf63-9_iWNKm
CitedBy_id crossref_primary_10_3389_fmed_2024_1412592
crossref_primary_10_1186_s13195_023_01250_5
crossref_primary_10_1177_17562864221138154
crossref_primary_10_3390_ai4030030
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_3390_app13063453
crossref_primary_10_3280_RSF2024_003008
crossref_primary_10_1016_j_ejmp_2021_04_010
crossref_primary_10_3389_fncel_2022_958437
crossref_primary_10_1002_alz_14398
crossref_primary_10_1002_mp_15936
crossref_primary_10_1162_netn_a_00285
crossref_primary_10_1097_WCO_0000000000001198
crossref_primary_10_1016_j_compbiomed_2023_107441
crossref_primary_10_1016_j_rxeng_2024_03_013
crossref_primary_10_3389_fnagi_2022_868342
crossref_primary_10_3390_cells11081367
crossref_primary_10_1155_2021_9523039
crossref_primary_10_3389_fgene_2021_641100
crossref_primary_10_1016_j_imu_2021_100513
crossref_primary_10_1038_s41591_024_03118_z
crossref_primary_10_1140_epjp_s13360_024_05367_w
crossref_primary_10_1007_s11042_023_16026_0
crossref_primary_10_3390_biomedicines10020315
crossref_primary_10_1016_j_bspc_2024_106101
crossref_primary_10_1007_s10115_024_02106_6
crossref_primary_10_1007_s10278_022_00709_5
crossref_primary_10_1016_j_compbiomed_2023_107777
crossref_primary_10_1007_s40745_024_00550_3
crossref_primary_10_1007_s10479_021_04006_2
crossref_primary_10_1007_s11831_023_10003_4
crossref_primary_10_3389_fnagi_2024_1488050
crossref_primary_10_1007_s11682_022_00631_y
crossref_primary_10_1186_s13195_024_01540_6
crossref_primary_10_1038_s41746_024_01123_7
crossref_primary_10_1016_j_iswa_2024_200388
crossref_primary_10_3390_a16080377
crossref_primary_10_1016_j_mjafi_2021_06_003
crossref_primary_10_1016_j_procs_2023_01_414
crossref_primary_10_3390_toxins15060364
crossref_primary_10_37394_232029_2025_4_3
crossref_primary_10_3389_fnagi_2023_1094233
crossref_primary_10_3390_s22093102
crossref_primary_10_12720_jait_15_1_1_9
crossref_primary_10_1038_s41598_024_51846_6
crossref_primary_10_1155_2022_1519451
crossref_primary_10_12688_openreseurope_16244_1
crossref_primary_10_26599_BSA_2021_9050005
crossref_primary_10_1007_s11831_023_09957_2
crossref_primary_10_3390_cells13231965
crossref_primary_10_1051_matecconf_202439201132
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_1155_2022_2535954
crossref_primary_10_1038_s41467_022_31037_5
crossref_primary_10_1097_YCO_0000000000000920
crossref_primary_10_3389_fnagi_2022_999787
crossref_primary_10_3389_fpubh_2020_584430
crossref_primary_10_1186_s13195_023_01195_9
crossref_primary_10_1038_s41598_023_49461_y
crossref_primary_10_1093_cercor_bhae341
crossref_primary_10_1007_s00521_022_07099_3
crossref_primary_10_1111_jnp_12409
crossref_primary_10_1109_TVCG_2021_3137174
crossref_primary_10_1016_j_rx_2024_03_006
crossref_primary_10_1038_s41598_024_75011_1
crossref_primary_10_1186_s40001_024_02172_0
crossref_primary_10_3389_fnagi_2023_1096808
crossref_primary_10_1159_000518102
crossref_primary_10_3390_s22082911
crossref_primary_10_3390_pr10102088
crossref_primary_10_7717_peerj_cs_2538
crossref_primary_10_1088_1742_6596_2571_1_012022
crossref_primary_10_1002_alz_13412
crossref_primary_10_1002_hbm_25679
crossref_primary_10_1007_s11042_022_12754_x
crossref_primary_10_3233_JAD_210573
Cites_doi 10.3389/fnins.2014.00223
10.1002/hbm.22254
10.1038/323533a0
10.1016/j.biopsych.2017.08.010
10.1111/nan.12472
10.1016/0165-0114(78)90029-5
10.3389/fnins.2018.00274
10.1002/hbm.22759
10.1001/archneur.1975.00490510088009
10.3389/fnagi.2019.00008
10.1016/0022-3956(75)90026-6
10.1161/STROKEAHA.107.513176
10.1023/a:1008280620621
10.1002/widm.2
10.1007/BF00994018
10.1016/j.neuroimage.2017.04.014
10.1016/j.dadm.2018.07.004
10.1212/WNL.0000000000004059
10.1016/j.jalz.2011.03.005
10.1093/cercor/bhr099
10.31887/DCNS.2013.15.4/hjahn
10.1016/j.trsl.2018.01.001
10.1176/jnp.12.3.305
10.1016/0165-1684(95)00041-B
10.3233/JAD-161120
10.1148/radiology.143.1.7063747
10.1006/nimg.2001.0978
10.1371/journal.pone.0179804
10.1016/j.neuroimage.2009.10.003
10.3389/fnins.2019.00657
10.3389/fnagi.2016.00077
10.1212/WNL.49.4.1096
10.1016/j.neuroimage.2006.02.024
10.1073/pnas.0308627101
10.3389/fneur.2019.01097
10.1371/journal.pone.0173372
10.1109/72.143376
10.1101/cshperspect.a006189
10.1007/s10072-008-0970-x
10.2214/ajr.149.2.351
10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
10.1159/000117297
10.1016/j.neuroimage.2013.09.015
10.1007/s10072-006-0545-7
10.1016/j.neuroimage.2011.01.008
10.3233/JAD-131829
10.1093/brain/aww083
10.1007/s10072-016-2764-x
10.1038/nrneurol.2011.2
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott.
Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott.
– notice: Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fninf.2020.00025
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_7c2c408fb8e54e63b9dd9708374a82de
10.3389/fninf.2020.00025
PMC7300291
10_3389_fninf_2020_00025
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c467t-d29b64a02e76c26ae31cb91f98028ac58ca360b7b22f735fc3553d6540797f243
IEDL.DBID M48
ISSN 1662-5196
IngestDate Tue Oct 14 18:23:39 EDT 2025
Sun Oct 26 04:12:26 EDT 2025
Tue Sep 30 16:30:45 EDT 2025
Thu Oct 02 11:09:02 EDT 2025
Fri Jul 25 11:59:45 EDT 2025
Wed Oct 01 01:58:05 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-d29b64a02e76c26ae31cb91f98028ac58ca360b7b22f735fc3553d6540797f243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors share last authorship
Edited by: Ludovico Minati, Tokyo Institute of Technology, Japan
Reviewed by: Frithjof Kruggel, University of California, Irvine, United States; Maja Puchades, University of Oslo, Norway
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2020.00025
PMID 32595465
PQID 2411929860
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_7c2c408fb8e54e63b9dd9708374a82de
unpaywall_primary_10_3389_fninf_2020_00025
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7300291
proquest_miscellaneous_2418732611
proquest_journals_2411929860
crossref_citationtrail_10_3389_fninf_2020_00025
crossref_primary_10_3389_fninf_2020_00025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-11
PublicationDateYYYYMMDD 2020-06-11
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-11
  day: 11
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Agosta (B3) 2017; 38
Zhang (B53) 2011; 55
Liu (B29) 2014; 35
Pellegrini (B37) 2018; 10
Geva (B18) 1992; 3
Filippi (B16) 2019; 13
Carlesimo (B9) 1996; 36
Goodfellow (B19) 2016
Smith (B46) 2006; 31
Dyrba (B14) 2015; 36
Tzourio-Mazoyer (B48) 2002; 15
McKhann (B32) 2011; 7
Teipel (B47) 2014; 41
Vinters (B51) 2018; 44
Lei (B27) 2016; 8
Cortes (B11) 1995; 20
Fazekas (B15) 1987; 149
Hanley (B23) 1982; 143
Zheng (B54) 2019; 10
Palesi (B36) 2018; 12
van Dijk (B49) 2008; 39
Zadeh (B52) 1978; 1
Folstein (B17) 1975; 12
Rumelhart (B43) 1987
Acosta (B1) 1995; 45
Shirer (B45) 2012; 22
Dallora (B12) 2017; 12
Rubinov (B41) 2010; 52
van Dyck (B50) 2018; 83
Arslan (B4) 2018; 170
Rumelhart (B42) 1986; 323
Dillen (B13) 2017; 59
Hachinski (B22) 1975; 32
Jahn (B25) 2013; 15
Aggleton (B2) 2016; 139
Haykin (B24) 1998
Micieli (B33) 2006; 27
Liu (B28) 2014; 84
Bishop (B7) 2006
Buckley (B8) 2017; 89
Groves (B21) 2000; 12
Liu (B30) 2018; 194
Serrano-Pozo (B44) 2011; 1
Castellazzi (B10) 2014; 8
Long (B31) 2017; 12
Greicius (B20) 2004; 101
Rousseeuw (B40) 2011; 1
Moroney (B34) 1997; 49
Kononenko (B26) 1997; 7
Bianchi (B6) 2008; 29
Baskys (B5) 2007; 2
Newcombe (B35) 1998; 17
Reitz (B39) 2011; 7
Qureshi (B38) 2019; 11
References_xml – volume: 8
  start-page: 223
  year: 2014
  ident: B10
  article-title: A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00223
– volume: 35
  start-page: 1305
  year: 2014
  ident: B29
  article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22254
– volume: 323
  start-page: 533
  year: 1986
  ident: B42
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 83
  start-page: 311
  year: 2018
  ident: B50
  article-title: Anti-amyloid-β monoclonal antibodies for Alzheimer's disease: pitfalls and promise
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2017.08.010
– volume: 44
  start-page: 247
  year: 2018
  ident: B51
  article-title: Review: vascular dementia: clinicopathologic and genetic considerations
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/nan.12472
– volume: 1
  start-page: 3
  year: 1978
  ident: B52
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(78)90029-5
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1998
  ident: B24
– volume: 12
  start-page: 274
  year: 2018
  ident: B36
  article-title: Specific patterns of white matter alterations help distinguishing Alzheimer's and vascular dementia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00274
– volume: 36
  start-page: 2118
  year: 2015
  ident: B14
  article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22759
– volume-title: Deep Learning
  year: 2016
  ident: B19
– volume: 32
  start-page: 632
  year: 1975
  ident: B22
  article-title: Cerebral blood flow in dementia
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1975.00490510088009
– volume: 11
  start-page: 8
  year: 2019
  ident: B38
  article-title: Evaluation of functional decline in Alzheimer's dementia using 3D deep learning and group ICA for rs-fMRI measurements
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00008
– volume: 12
  start-page: 189
  year: 1975
  ident: B17
  article-title: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 39
  start-page: 2712
  year: 2008
  ident: B49
  article-title: Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.513176
– volume: 7
  start-page: 39
  year: 1997
  ident: B26
  article-title: Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF
  publication-title: Appl. Intell.
  doi: 10.1023/a:1008280620621
– volume: 1
  start-page: 73
  year: 2011
  ident: B40
  article-title: Robust statistics for outlier detection
  publication-title: WIREs Data Min. Knowl. Discov.
  doi: 10.1002/widm.2
– volume: 20
  start-page: 273
  year: 1995
  ident: B11
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 170
  start-page: 5
  year: 2018
  ident: B4
  article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.014
– volume: 10
  start-page: 519
  year: 2018
  ident: B37
  article-title: Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.dadm.2018.07.004
– volume: 89
  start-page: 29
  year: 2017
  ident: B8
  article-title: Functional network integrity presages cognitive decline in preclinical Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004059
– volume: 7
  start-page: 263
  year: 2011
  ident: B32
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.005
– volume: 22
  start-page: 158
  year: 2012
  ident: B45
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 15
  start-page: 445
  year: 2013
  ident: B25
  article-title: Memory loss in Alzheimer's disease
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2013.15.4/hjahn
– volume: 194
  start-page: 56
  year: 2018
  ident: B30
  article-title: Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2018.01.001
– volume: 12
  start-page: 305
  year: 2000
  ident: B21
  article-title: Vascular dementia and Alzheimer's disease: is there a difference? A comparison of symptoms by disease duration
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.12.3.305
– volume: 45
  start-page: 37
  year: 1995
  ident: B1
  article-title: Radial basis function and related models: an overview
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(95)00041-B
– volume: 59
  start-page: 169
  year: 2017
  ident: B13
  article-title: Functional disintegration of the default mode network in prodromal Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-161120
– volume: 143
  start-page: 29
  year: 1982
  ident: B23
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 15
  start-page: 273
  year: 2002
  ident: B48
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 12
  start-page: e0179804
  year: 2017
  ident: B12
  article-title: Machine learning and microsimulation techniques on the prognosis of dementia: a systematic literature review
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179804
– volume: 52
  start-page: 1059
  year: 2010
  ident: B41
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 13
  start-page: 657
  year: 2019
  ident: B16
  article-title: Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00657
– volume: 8
  start-page: 77
  year: 2016
  ident: B27
  article-title: Discriminative learning for Alzheimer's disease diagnosis via canonical correlation analysis and multimodal fusion
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00077
– volume: 49
  start-page: 1096
  year: 1997
  ident: B34
  article-title: Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias
  publication-title: Neurology
  doi: 10.1212/WNL.49.4.1096
– volume: 31
  start-page: 1487
  year: 2006
  ident: B46
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 101
  start-page: 4637
  year: 2004
  ident: B20
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0308627101
– volume: 10
  start-page: 1097
  year: 2019
  ident: B54
  article-title: Machine learning-based framework for differential diagnosis between vascular dementia and Alzheimer's disease using structural MRI features
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.01097
– volume: 12
  start-page: e0173372
  year: 2017
  ident: B31
  article-title: Prediction and classification of Alzheimer disease based on quantification of MRI deformation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0173372
– volume: 3
  start-page: 621
  year: 1992
  ident: B18
  article-title: A constructive method for multivariate function approximation by multilayer perceptrons
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.143376
– volume: 1
  start-page: a006189
  year: 2011
  ident: B44
  article-title: Neuropathological alterations in Alzheimer disease
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a006189
– volume: 29
  start-page: 209
  year: 2008
  ident: B6
  article-title: Twenty years after Spinnler and Tognoni: new instruments in the Italian neuropsychologist's toolbox
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-008-0970-x
– volume: 149
  start-page: 351
  year: 1987
  ident: B15
  article-title: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.149.2.351
– volume: 17
  start-page: 873
  year: 1998
  ident: B35
  article-title: Interval estimation for the difference between independent proportions: comparison of eleven methods
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
– volume: 36
  start-page: 378
  year: 1996
  ident: B9
  article-title: The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery
  publication-title: Eur. Neurol.
  doi: 10.1159/000117297
– volume: 84
  start-page: 466
  year: 2014
  ident: B28
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.015
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: B7
– volume: 27
  start-page: S37
  year: 2006
  ident: B33
  article-title: Vascular dementia
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-006-0545-7
– volume: 55
  start-page: 856
  year: 2011
  ident: B53
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 41
  start-page: 69
  year: 2014
  ident: B47
  article-title: Fractional anisotropy changes in Alzheimer's disease depend on the underlying fiber tract architecture: a multiparametric DTI study using joint independent component analysis
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-131829
– volume: 139
  start-page: 1877
  year: 2016
  ident: B2
  article-title: Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit
  publication-title: Brain
  doi: 10.1093/brain/aww083
– volume: 38
  start-page: 41
  year: 2017
  ident: B3
  article-title: Advanced magnetic resonance imaging of neurodegenerative diseases
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-016-2764-x
– volume: 2
  start-page: 327
  year: 2007
  ident: B5
  article-title: Vascular dementia: pharmacological treatment approaches and perspectives
  publication-title: Clin. Interv. Aging
– volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations
  year: 1987
  ident: B43
  article-title: Learning internal representations by error propagation
– volume: 7
  start-page: 137
  year: 2011
  ident: B39
  article-title: Epidemiology of Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2011.2
SSID ssj0062657
Score 2.523355
Snippet Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological...
Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 25
SubjectTerms Age
Algorithms
Alzheimer disease
Alzheimer's disease
Biomarkers
Classification
Cognitive ability
Dementia
Dementia disorders
Differential diagnosis
Disease
DTI
Functional magnetic resonance imaging
Learning algorithms
Machine learning
Magnetic resonance imaging
Memory
Neural networks
Neurodegenerative diseases
Neuroscience
Registration
resting state fMRI
Sexually transmitted diseases
STD
Studies
Vascular dementia
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQEGEFjRICAmkaBPH8eMYKKuCtByAot4sv0JXSrNVuyu0_fWMnexqlwO9cMjB8UO2Z-x8Y0--IeRNWYvCWs7z0tQeDRTmcmtVlXslbBUMxyf-nDz7yk_P2Jfz-nwn1Ff0CRvogYeJmwhHHStka2WoWeCVVR7bQeAgmJHUh7j7FlJtjKlhD0aUXovhUhJNMDVpexQXGoM0-nEVMSz2zkcocfXvAcy_3SPvr_ors_5tum7n2zN9RB6OoBGaobOPyb3QPyGHTY8G8-Ua3kJy40zn44fktoFZcpAMMHKn_oJmJA4HRKiAiA9OxrAouLw7TCRvu_kNLFpoutuLML8M12B6Dz9HP1U4SaeIcwPT4MGuYfbtM3xPIXQwHWHkCs32p-Rs-unHx9N8DLCQO9wfl7mnynJmChoEd5SbUJXOqrJVElGHcbV0puKFFZbSVlR16xCcVJ5Hzj4lWsqqZ-SgX_ThOQGrXNG2pnK29MwKbrFl7o202EBgkmVksplx7Ub28RgEo9NohUQZ6SQjHWWkk4wy8m5b42pg3vhH2Q9RiNtykTM7vUBN0qMm6bs0KSPHGxXQ40K-0QhwEAMryYuMvN5m4xKM9yqmD4tVKiMFwuCyzIjYU529Du3n9POLROYd4wVQhTXfb5XszuG--B_DPSIPYovR7a0sj8nB8noVXiLAWtpXaS39AdfMJc8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLZGd4ALGgxEYCAjISSQoiaOY8cHhDK2aiC1QoOh3SL_ylYpS0rXaur-ep5dp6wcxiGHJE6U5L1nf89--T6E3qU5T5RiLE5lbiBBoTpWSmSxEVxlVjLY3M_J4wk7OaPfzvPzHTTp_4VxZZV9n-g7atNpN0c-hJEGwIgoWPJ59jt2qlFudbWX0JBBWsF88hRjD9AuccxYA7R7eDz5ftr3zYDec75erITUTAzrFswISSJx9V2Jk8u-Mzh5Dv8t4Plv2eTDZTuTqxvZNHfGpNEeehzAJC7X1n-Cdmz7FO2XLSTSVyv8HvvyTj9vvo9uSzz2hZMWB07VC1wGQnEMyBUDEsRHQS4Fwr6BHV-FN73GXY3L5vbSTq_sHMvW4F-hfhUf-dnFqcQja7Ba4fHpV_zDS-vAvoOXS0jnn6Gz0fHPLydxEF6INfSbi9gQoRiVCbGcacKkzVKtRFqLAtCI1HmhZcYSxRUhNc_yWgNoyQxzXH6C14Rmz9Gg7Vr7AmEldFLXMtMqNVRxpuDOzMhCwQ0sLWiEhv0Xr3RgJXfiGE0F2YmzUeVtVDkbVd5GEfqwuWK2ZuS4p-2hM-KmnePS9ge6-UUVQrPimmiaFLUqbE4ty5Qw4KkATTmVBTE2Qge9C1QhwK-rv-4Yobeb0xCabr1FtrZb-jYFB3icphHiW66z9UDbZ9rppSf5djoCRMCVHzdO9t_XfXn_k75Cj1xbV-iWpgdosJgv7WuAVAv1JsTJHwapI5Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO8CFDQZa2JiMhJBAypY4jh0fw7ZqIHVCQNE4Rf4Kq8jSaW2E2r-eZ9erlgnxccjBsR3Fz8_279nPv4fQqzTniVKMxanMDRgoVMdKiSw2gqvMSgaPu5w8OmOnY_rhPD8P-x3uLsyt83swnsRh3YKgwYwjzgML1uf7aIPlgLoHaGN89rH85uwpxsCeAk1anUL-tlpv1fHk_D1Eedcf8kHXXsnFT9k0txab4eaK-WjmOQqdj8mPg26uDvTyDoPjv7RjCz0KiBOXKxV5jO7Z9gnaLluwti8X-DX2PqB-c30bLUs88t6VFgfi1e-4DKzjGOAtBriIj0NMFZgbGkh4V73JDE9rXDbLCzu5tNdYtgZ_DU6u-NhvQU4kHlqD1QKPPr3Hn338HUg7DNqBzf8UjYcnX45O4xCdIdYwuc5jQ4RiVCbEcqYJkzZLtRJpLQqALFLnhZYZSxRXhNQ8y2sNyCYzzBH-CV4Tmj1Dg3ba2h2EldBJXctMq9RQxZmCLzMjCwUfsLSgETq86b1KB-pyF0GjqcCEceKtvHgrJ97KizdCb9Y1rla0HX8o-84pxLqcI9z2L6D_qjB-K66JpklRq8Lm1LJMCQPqDPiVU1kQYyO0d6NOVZgFZhWgIwDQomBJhF6us2H8ukMZ2dpp58sUHDB0mkaI99Sw90P9nHZy4ZnAXbABIqDm27XC_rW5z_-n8C566BLONy5N99Bgft3ZF4DC5mo_DMBfqH8vTg
  priority: 102
  providerName: Unpaywall
Title A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features
URI https://www.proquest.com/docview/2411929860
https://www.proquest.com/docview/2418732611
https://pubmed.ncbi.nlm.nih.gov/PMC7300291
https://doi.org/10.3389/fninf.2020.00025
https://doaj.org/article/7c2c408fb8e54e63b9dd9708374a82de
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0Be2LWKsYrccKIijEJpvNbvZBJP04q3BHqZ6cT2G_0h6kuXq9Q69_vbN7uWikKPiQQLIfSXZmMr_ZnZ1B6EWc8kgpxsJYpgYMFKpDpUQSGsFVYiWDw21OHgzZ8Yh-HKfjX9ujmwG8utG0c_mkRrPqzY9vy3cg8G-dxQn6dq-soRhMPeK8tECH30aboKeES-QwoO2aAiD3lK8WKm9stYXuJGALuOTgHR3lQ_l38Oef3pN3F_WlXH6XVfWbaurfR_caTInzFRNso1u2foB28hrs6Yslfom9l6efPt9B1zkeeP9Ji5vQqmc4b-KKYwCwGAAhPmyypoD0V3DhnfEmV3ha4ry6PreTCzvDsjb4S-PGig_9JONE4r41WC3x4PQD_uQz7MC1Q5kLsOofolH_6PPBcdjkXwg1_D7noSFCMSojYjnThEmbxFqJuBQZgBKp00zLhEWKK0JKnqSlBuySGOZC-gleEpo8Qhv1tLaPEVZCR2UpE61iQxVnCnpmRmYKOrA0owHaW494oZvg5C5HRlWAkeLIVXhyFY5chSdXgF61LS5XgTn-UnffEbGt50Jq-xvT2VnRSGjBNdE0ykqV2ZRalihhgGEBoXIqM2JsgHbXLFCs2bQA_AMQWWQsCtDzthgk1C27yNpOF75OxgElx3GAeId1Oi_ULakn5z7Wt0snQAS0fN0y2T8_98l_P-Yp2nLdOFe4ON5FG_PZwj4D0DVXPbS5fzQ8Oe35SQs4vx_HPS9fUDIanuRffwIKujMb
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygXBBREoICRAAmkVXa9Xnt9qFBKGiW0iVBpUW9bv7aNlG5CHqrSH8dvY-w4oeFQTj3ksFnb2t0Zz3xjj-dD6H2S8VgpxqJEZgYCFKojpUQaGcFVaiWDnzuc3O2x9in9dpadbaDfy7MwLq1yaRO9oTZD7dbI6-BpAIyInMVfRr8ixxrldleXFBoyUCuYPV9iLBzsOLTzawjhJnudJsj7AyGtg5Ov7SiwDEQajMQ0MkQoRmVMLGeaMGnTRCuRlCIH1yt1lmuZslhxRUjJ06zU4KFTw1zhOsFLQlMY9wHaoikVEPxt7R_0vh8vfQFECxlfbI5CKCjqZQVqA0EpcflksaPnvuUMPWfAGtD9N01ze1aN5PxaDga3fGDrMXoUwCtuLLTtCdqw1VO006ggcL-a44_Yp5P6dfoddNPAXZ-oaXGo4XqBG6GAOQakjAF54magZwEzM4ALn_XXn-BhiRuDm0vbv7JjLCuDf4Z8Wdz0q5l9iVvWYDXH3eMO_uGpfODawdnZ2E6eodN7EcFztFkNK_sCYSV0XJYy1SoxVHGmYGRmZK5gAEtzWkP15RcvdKiC7sg4BgVEQ05GhZdR4WRUeBnV0KdVj9GiAsgdbfedEFftXO1u_8dwfFEEU1BwTTSN81LlNqOWpUoYmBkAhTmVOTG2hnaXKlAEgzIp_qp_Db1b3QZT4PZ3ZGWHM98m5wDHk6SG-JrqrD3Q-p2qf-mLijveAiKg5-eVkv33dV_e_aRv0Xb7pHtUHHV6h6_QQ9fPJdklyS7anI5n9jXAual6E-YMRuf3PU3_AO_VXz4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJgEXBAxEYYCRAAmkqImT2PFhQh1dtTJaTYOh3YK_slXKktIPTd2fyF_Fs-uUlcM47ZBDEtty8r7t5_dD6G2UslBKSoNIpBoClEQFUvI40JzJ2AgKlz2cPBjSg5Pky2l6uoF-N2dhbFploxOdota1smvkbbA04IzwjIbtwqdFHHV7n8a_AosgZXdaGzgN4WEW9K4rN-YPeRyaxSWEc9Pdfhdo_46Q3v73zweBRxwIFCiMWaAJlzQRITGMKkKFiSMleVTwDMywUGmmRExDySQhBYvTQoG1jjW1Rew4K0gSw7h30Jbd_AIlsbW3Pzw6buwCRA4pW26UQljI20UFLAQBKrG5ZaGF6r5mGB1-wJrT-2_K5r15NRaLS1GW1-xh7yF64B1Z3Fly3iO0YarHaLtTQRB_scDvsUstdWv22-iqgwcuadNgX8_1DHd8MXMMXjMGLxR3PVQLqJwSblwG4GiK6wJ3yqtzM7owEywqjX_43FncdSubI4F7RmO5wIPjPv7mYH3g3rq284mZPkEnt0KCp2izqivzDGHJVVgUIlYy0olkVMLIVItMwgAmyZIWajd_PFe-IroF5ihziIwsjXJHo9zSKHc0aqEPqx7jZTWQG9ruWSKu2tk63u5BPTnLvVrImSIqCbNCZiZNDI0l1yAl4BazRGREmxbaaVgg98plmv8VhRZ6s3oNasHu9YjK1HPXJmPgmkdRC7E11lmb0PqbanTuCoxbDAPCoefHFZP993Of3zzT1-guiGv-tT88fIHu227LA507aHM2mZuX4NnN5CsvMhj9vG0p_QMiXWNo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO8CFDQZa2JiMhJBAypY4jh0fw7ZqIHVCQNE4Rf4Kq8jSaW2E2r-eZ9erlgnxccjBsR3Fz8_279nPv4fQqzTniVKMxanMDRgoVMdKiSw2gqvMSgaPu5w8OmOnY_rhPD8P-x3uLsyt83swnsRh3YKgwYwjzgML1uf7aIPlgLoHaGN89rH85uwpxsCeAk1anUL-tlpv1fHk_D1Eedcf8kHXXsnFT9k0txab4eaK-WjmOQqdj8mPg26uDvTyDoPjv7RjCz0KiBOXKxV5jO7Z9gnaLluwti8X-DX2PqB-c30bLUs88t6VFgfi1e-4DKzjGOAtBriIj0NMFZgbGkh4V73JDE9rXDbLCzu5tNdYtgZ_DU6u-NhvQU4kHlqD1QKPPr3Hn338HUg7DNqBzf8UjYcnX45O4xCdIdYwuc5jQ4RiVCbEcqYJkzZLtRJpLQqALFLnhZYZSxRXhNQ8y2sNyCYzzBH-CV4Tmj1Dg3ba2h2EldBJXctMq9RQxZmCLzMjCwUfsLSgETq86b1KB-pyF0GjqcCEceKtvHgrJ97KizdCb9Y1rla0HX8o-84pxLqcI9z2L6D_qjB-K66JpklRq8Lm1LJMCQPqDPiVU1kQYyO0d6NOVZgFZhWgIwDQomBJhF6us2H8ukMZ2dpp58sUHDB0mkaI99Sw90P9nHZy4ZnAXbABIqDm27XC_rW5z_-n8C566BLONy5N99Bgft3ZF4DC5mo_DMBfqH8vTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Approach+for+the+Differential+Diagnosis+of+Alzheimer+and+Vascular+Dementia+Fed+by+MRI+Selected+Features&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Castellazzi%2C+Gloria&rft.au=Cuzzoni%2C+Maria+Giovanna&rft.au=Cotta+Ramusino%2C+Matteo&rft.au=Martinelli%2C+Daniele&rft.date=2020-06-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=14&rft_id=info:doi/10.3389%2Ffninf.2020.00025&rft_id=info%3Apmid%2F32595465&rft.externalDocID=PMC7300291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon