A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features
Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overc...
Saved in:
| Published in | Frontiers in neuroinformatics Vol. 14; p. 25 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Lausanne
Frontiers Research Foundation
11.06.2020
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5196 1662-5196 |
| DOI | 10.3389/fninf.2020.00025 |
Cover
| Abstract | Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study we investigated, first, whether different kind of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD; secondly, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial Neural Network (ANN), support vector machine (SVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and Diffusion Tensor Imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD-AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a three years clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature dataset (e.g. DTI + rs-fMRI metrics) rather than a unimodal feature dataset. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach have a high discriminant power to classify AD and VD profiles. Moreover, the same approach showed also potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians’ diagnostic evaluations. |
|---|---|
| AbstractList | Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a "mixed VD-AD dementia" (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations.Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a "mixed VD-AD dementia" (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations. Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD–AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations. Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study we investigated, first, whether different kind of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD; secondly, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial Neural Network (ANN), support vector machine (SVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and Diffusion Tensor Imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD-AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD-AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a three years clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature dataset (e.g. DTI + rs-fMRI metrics) rather than a unimodal feature dataset. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach have a high discriminant power to classify AD and VD profiles. Moreover, the same approach showed also potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians’ diagnostic evaluations. |
| Author | Vitali, Paolo Cotta Ramusino, Matteo Magenes, Giovanni Palesi, Fulvia Cuzzoni, Maria Giovanna Costa, Alfredo Ricciardi, Antonio Anzalone, Nicoletta Martinelli, Daniele Sinforiani, Elena Bernini, Sara D'Angelo, Egidio Castellazzi, Gloria Gandini Wheeler-Kingshott, Claudia A. M. Micieli, Giuseppe Denaro, Federica |
| AuthorAffiliation | 1 NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology , London , United Kingdom 2 Department of Electrical, Computer and Biomedical Engineering, University of Pavia , Pavia , Italy 5 Laboratory of Neuropsychology and Unit of Behavioral Neurology, IRCCS Mondino Foundation , Pavia , Italy 12 Brain Connectivity Center, IRCCS Mondino Foundation , Pavia , Italy 9 Radiology Unit, IRCCS Policlinico San Donato , Milan , Italy 3 Brain MRI 3T Research Center, IRCCS Mondino Foundation , Pavia , Italy 7 Headache Center, IRCCS Mondino Foundation , Pavia , Italy 6 Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy 8 Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London , London , United Kingdom 4 Stroke Unit, IRCCS Mondino Foundation , Pavia , Italy 10 Scientific Institute H.S. Raffaele Vita e Salute University , Milan , Ital |
| AuthorAffiliation_xml | – name: 4 Stroke Unit, IRCCS Mondino Foundation , Pavia , Italy – name: 3 Brain MRI 3T Research Center, IRCCS Mondino Foundation , Pavia , Italy – name: 10 Scientific Institute H.S. Raffaele Vita e Salute University , Milan , Italy – name: 6 Department of Brain and Behavioral Sciences, University of Pavia , Pavia , Italy – name: 5 Laboratory of Neuropsychology and Unit of Behavioral Neurology, IRCCS Mondino Foundation , Pavia , Italy – name: 9 Radiology Unit, IRCCS Policlinico San Donato , Milan , Italy – name: 1 NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology , London , United Kingdom – name: 8 Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London , London , United Kingdom – name: 7 Headache Center, IRCCS Mondino Foundation , Pavia , Italy – name: 11 Department of Emergency Neurology, IRCCS Mondino Foundation , Pavia , Italy – name: 12 Brain Connectivity Center, IRCCS Mondino Foundation , Pavia , Italy – name: 2 Department of Electrical, Computer and Biomedical Engineering, University of Pavia , Pavia , Italy |
| Author_xml | – sequence: 1 givenname: Gloria surname: Castellazzi fullname: Castellazzi, Gloria – sequence: 2 givenname: Maria Giovanna surname: Cuzzoni fullname: Cuzzoni, Maria Giovanna – sequence: 3 givenname: Matteo surname: Cotta Ramusino fullname: Cotta Ramusino, Matteo – sequence: 4 givenname: Daniele surname: Martinelli fullname: Martinelli, Daniele – sequence: 5 givenname: Federica surname: Denaro fullname: Denaro, Federica – sequence: 6 givenname: Antonio surname: Ricciardi fullname: Ricciardi, Antonio – sequence: 7 givenname: Paolo surname: Vitali fullname: Vitali, Paolo – sequence: 8 givenname: Nicoletta surname: Anzalone fullname: Anzalone, Nicoletta – sequence: 9 givenname: Sara surname: Bernini fullname: Bernini, Sara – sequence: 10 givenname: Fulvia surname: Palesi fullname: Palesi, Fulvia – sequence: 11 givenname: Elena surname: Sinforiani fullname: Sinforiani, Elena – sequence: 12 givenname: Alfredo surname: Costa fullname: Costa, Alfredo – sequence: 13 givenname: Giuseppe surname: Micieli fullname: Micieli, Giuseppe – sequence: 14 givenname: Egidio surname: D'Angelo fullname: D'Angelo, Egidio – sequence: 15 givenname: Giovanni surname: Magenes fullname: Magenes, Giovanni – sequence: 16 givenname: Claudia A. M. surname: Gandini Wheeler-Kingshott fullname: Gandini Wheeler-Kingshott, Claudia A. M. |
| BookMark | eNqFkc2PEyEYxidmjfuhd48kXry0MjDAcDFpdq026cbErythmJeWhkKFmTXdv17aboy7Bz0BL8_zg_d9LquzEANU1esaTylt5TsbXLBTggmeYowJe1Zd1JyTCaslP_trf15d5rzBmBPOxIvqnBImWcPZRXU_Q7farF0AtASdCm-FZrtdiqWIbExoWAO6cdZCgjA47ctBr0LMLqNo0czfr8FtISEdevRDZzN6ndANbI9qNIcedXt0-2WBvoIHM5TzHPQwJsgvq-dW-wyvHtar6vv8w7frT5Pl54-L69lyYhouhklPZMcbjQkIbgjXQGvTydrKFpNWG9YaTTnuREeIFZRZQxmjPWcNFlJY0tCranHi9lFv1C65rU57FbVTx0JMK6XT4IwHJQwxDW5t1wJrgNNO9r0UuKWi0S3pobDqE2sMO73_pb3_A6yxOmSijpmoQybqmEnxvD95dmO3hd6UySTtH33k8U1wa7WKd0rQ4pd1Abx9AKT4c4Q8qK3LBrzXAeKYFWnqVlDC64P0zRPpJo4plPEeVLUksuW4qPhJZVLMOYFVxg16cPHwvvP_agU_Mf63-9_iWNKm |
| CitedBy_id | crossref_primary_10_3389_fmed_2024_1412592 crossref_primary_10_1186_s13195_023_01250_5 crossref_primary_10_1177_17562864221138154 crossref_primary_10_3390_ai4030030 crossref_primary_10_1016_j_jbi_2022_104030 crossref_primary_10_3390_app13063453 crossref_primary_10_3280_RSF2024_003008 crossref_primary_10_1016_j_ejmp_2021_04_010 crossref_primary_10_3389_fncel_2022_958437 crossref_primary_10_1002_alz_14398 crossref_primary_10_1002_mp_15936 crossref_primary_10_1162_netn_a_00285 crossref_primary_10_1097_WCO_0000000000001198 crossref_primary_10_1016_j_compbiomed_2023_107441 crossref_primary_10_1016_j_rxeng_2024_03_013 crossref_primary_10_3389_fnagi_2022_868342 crossref_primary_10_3390_cells11081367 crossref_primary_10_1155_2021_9523039 crossref_primary_10_3389_fgene_2021_641100 crossref_primary_10_1016_j_imu_2021_100513 crossref_primary_10_1038_s41591_024_03118_z crossref_primary_10_1140_epjp_s13360_024_05367_w crossref_primary_10_1007_s11042_023_16026_0 crossref_primary_10_3390_biomedicines10020315 crossref_primary_10_1016_j_bspc_2024_106101 crossref_primary_10_1007_s10115_024_02106_6 crossref_primary_10_1007_s10278_022_00709_5 crossref_primary_10_1016_j_compbiomed_2023_107777 crossref_primary_10_1007_s40745_024_00550_3 crossref_primary_10_1007_s10479_021_04006_2 crossref_primary_10_1007_s11831_023_10003_4 crossref_primary_10_3389_fnagi_2024_1488050 crossref_primary_10_1007_s11682_022_00631_y crossref_primary_10_1186_s13195_024_01540_6 crossref_primary_10_1038_s41746_024_01123_7 crossref_primary_10_1016_j_iswa_2024_200388 crossref_primary_10_3390_a16080377 crossref_primary_10_1016_j_mjafi_2021_06_003 crossref_primary_10_1016_j_procs_2023_01_414 crossref_primary_10_3390_toxins15060364 crossref_primary_10_37394_232029_2025_4_3 crossref_primary_10_3389_fnagi_2023_1094233 crossref_primary_10_3390_s22093102 crossref_primary_10_12720_jait_15_1_1_9 crossref_primary_10_1038_s41598_024_51846_6 crossref_primary_10_1155_2022_1519451 crossref_primary_10_12688_openreseurope_16244_1 crossref_primary_10_26599_BSA_2021_9050005 crossref_primary_10_1007_s11831_023_09957_2 crossref_primary_10_3390_cells13231965 crossref_primary_10_1051_matecconf_202439201132 crossref_primary_10_1007_s12553_024_00823_0 crossref_primary_10_1155_2022_2535954 crossref_primary_10_1038_s41467_022_31037_5 crossref_primary_10_1097_YCO_0000000000000920 crossref_primary_10_3389_fnagi_2022_999787 crossref_primary_10_3389_fpubh_2020_584430 crossref_primary_10_1186_s13195_023_01195_9 crossref_primary_10_1038_s41598_023_49461_y crossref_primary_10_1093_cercor_bhae341 crossref_primary_10_1007_s00521_022_07099_3 crossref_primary_10_1111_jnp_12409 crossref_primary_10_1109_TVCG_2021_3137174 crossref_primary_10_1016_j_rx_2024_03_006 crossref_primary_10_1038_s41598_024_75011_1 crossref_primary_10_1186_s40001_024_02172_0 crossref_primary_10_3389_fnagi_2023_1096808 crossref_primary_10_1159_000518102 crossref_primary_10_3390_s22082911 crossref_primary_10_3390_pr10102088 crossref_primary_10_7717_peerj_cs_2538 crossref_primary_10_1088_1742_6596_2571_1_012022 crossref_primary_10_1002_alz_13412 crossref_primary_10_1002_hbm_25679 crossref_primary_10_1007_s11042_022_12754_x crossref_primary_10_3233_JAD_210573 |
| Cites_doi | 10.3389/fnins.2014.00223 10.1002/hbm.22254 10.1038/323533a0 10.1016/j.biopsych.2017.08.010 10.1111/nan.12472 10.1016/0165-0114(78)90029-5 10.3389/fnins.2018.00274 10.1002/hbm.22759 10.1001/archneur.1975.00490510088009 10.3389/fnagi.2019.00008 10.1016/0022-3956(75)90026-6 10.1161/STROKEAHA.107.513176 10.1023/a:1008280620621 10.1002/widm.2 10.1007/BF00994018 10.1016/j.neuroimage.2017.04.014 10.1016/j.dadm.2018.07.004 10.1212/WNL.0000000000004059 10.1016/j.jalz.2011.03.005 10.1093/cercor/bhr099 10.31887/DCNS.2013.15.4/hjahn 10.1016/j.trsl.2018.01.001 10.1176/jnp.12.3.305 10.1016/0165-1684(95)00041-B 10.3233/JAD-161120 10.1148/radiology.143.1.7063747 10.1006/nimg.2001.0978 10.1371/journal.pone.0179804 10.1016/j.neuroimage.2009.10.003 10.3389/fnins.2019.00657 10.3389/fnagi.2016.00077 10.1212/WNL.49.4.1096 10.1016/j.neuroimage.2006.02.024 10.1073/pnas.0308627101 10.3389/fneur.2019.01097 10.1371/journal.pone.0173372 10.1109/72.143376 10.1101/cshperspect.a006189 10.1007/s10072-008-0970-x 10.2214/ajr.149.2.351 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I 10.1159/000117297 10.1016/j.neuroimage.2013.09.015 10.1007/s10072-006-0545-7 10.1016/j.neuroimage.2011.01.008 10.3233/JAD-131829 10.1093/brain/aww083 10.1007/s10072-016-2764-x 10.1038/nrneurol.2011.2 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. – notice: Copyright © 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott. 2020 Castellazzi, Cuzzoni, Cotta Ramusino, Martinelli, Denaro, Ricciardi, Vitali, Anzalone, Bernini, Palesi, Sinforiani, Costa, Micieli, D'Angelo, Magenes and Gandini Wheeler-Kingshott |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fninf.2020.00025 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_7c2c408fb8e54e63b9dd9708374a82de 10.3389/fninf.2020.00025 PMC7300291 10_3389_fninf_2020_00025 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 3V. 7XB 8FK ACXDI PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c467t-d29b64a02e76c26ae31cb91f98028ac58ca360b7b22f735fc3553d6540797f243 |
| IEDL.DBID | M48 |
| ISSN | 1662-5196 |
| IngestDate | Tue Oct 14 18:23:39 EDT 2025 Sun Oct 26 04:12:26 EDT 2025 Tue Sep 30 16:30:45 EDT 2025 Thu Oct 02 11:09:02 EDT 2025 Fri Jul 25 11:59:45 EDT 2025 Wed Oct 01 01:58:05 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c467t-d29b64a02e76c26ae31cb91f98028ac58ca360b7b22f735fc3553d6540797f243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors share last authorship Edited by: Ludovico Minati, Tokyo Institute of Technology, Japan Reviewed by: Frithjof Kruggel, University of California, Irvine, United States; Maja Puchades, University of Oslo, Norway |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2020.00025 |
| PMID | 32595465 |
| PQID | 2411929860 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c2c408fb8e54e63b9dd9708374a82de unpaywall_primary_10_3389_fninf_2020_00025 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7300291 proquest_miscellaneous_2418732611 proquest_journals_2411929860 crossref_citationtrail_10_3389_fninf_2020_00025 crossref_primary_10_3389_fninf_2020_00025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-11 |
| PublicationDateYYYYMMDD | 2020-06-11 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationYear | 2020 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Agosta (B3) 2017; 38 Zhang (B53) 2011; 55 Liu (B29) 2014; 35 Pellegrini (B37) 2018; 10 Geva (B18) 1992; 3 Filippi (B16) 2019; 13 Carlesimo (B9) 1996; 36 Goodfellow (B19) 2016 Smith (B46) 2006; 31 Dyrba (B14) 2015; 36 Tzourio-Mazoyer (B48) 2002; 15 McKhann (B32) 2011; 7 Teipel (B47) 2014; 41 Vinters (B51) 2018; 44 Lei (B27) 2016; 8 Cortes (B11) 1995; 20 Fazekas (B15) 1987; 149 Hanley (B23) 1982; 143 Zheng (B54) 2019; 10 Palesi (B36) 2018; 12 van Dijk (B49) 2008; 39 Zadeh (B52) 1978; 1 Folstein (B17) 1975; 12 Rumelhart (B43) 1987 Acosta (B1) 1995; 45 Shirer (B45) 2012; 22 Dallora (B12) 2017; 12 Rubinov (B41) 2010; 52 van Dyck (B50) 2018; 83 Arslan (B4) 2018; 170 Rumelhart (B42) 1986; 323 Dillen (B13) 2017; 59 Hachinski (B22) 1975; 32 Jahn (B25) 2013; 15 Aggleton (B2) 2016; 139 Haykin (B24) 1998 Micieli (B33) 2006; 27 Liu (B28) 2014; 84 Bishop (B7) 2006 Buckley (B8) 2017; 89 Groves (B21) 2000; 12 Liu (B30) 2018; 194 Serrano-Pozo (B44) 2011; 1 Castellazzi (B10) 2014; 8 Long (B31) 2017; 12 Greicius (B20) 2004; 101 Rousseeuw (B40) 2011; 1 Moroney (B34) 1997; 49 Kononenko (B26) 1997; 7 Bianchi (B6) 2008; 29 Baskys (B5) 2007; 2 Newcombe (B35) 1998; 17 Reitz (B39) 2011; 7 Qureshi (B38) 2019; 11 |
| References_xml | – volume: 8 start-page: 223 year: 2014 ident: B10 article-title: A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00223 – volume: 35 start-page: 1305 year: 2014 ident: B29 article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22254 – volume: 323 start-page: 533 year: 1986 ident: B42 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 83 start-page: 311 year: 2018 ident: B50 article-title: Anti-amyloid-β monoclonal antibodies for Alzheimer's disease: pitfalls and promise publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.08.010 – volume: 44 start-page: 247 year: 2018 ident: B51 article-title: Review: vascular dementia: clinicopathologic and genetic considerations publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/nan.12472 – volume: 1 start-page: 3 year: 1978 ident: B52 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(78)90029-5 – volume-title: Neural Networks: A Comprehensive Foundation year: 1998 ident: B24 – volume: 12 start-page: 274 year: 2018 ident: B36 article-title: Specific patterns of white matter alterations help distinguishing Alzheimer's and vascular dementia publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00274 – volume: 36 start-page: 2118 year: 2015 ident: B14 article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22759 – volume-title: Deep Learning year: 2016 ident: B19 – volume: 32 start-page: 632 year: 1975 ident: B22 article-title: Cerebral blood flow in dementia publication-title: Arch. Neurol. doi: 10.1001/archneur.1975.00490510088009 – volume: 11 start-page: 8 year: 2019 ident: B38 article-title: Evaluation of functional decline in Alzheimer's dementia using 3D deep learning and group ICA for rs-fMRI measurements publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00008 – volume: 12 start-page: 189 year: 1975 ident: B17 article-title: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 39 start-page: 2712 year: 2008 ident: B49 article-title: Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study publication-title: Stroke doi: 10.1161/STROKEAHA.107.513176 – volume: 7 start-page: 39 year: 1997 ident: B26 article-title: Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF publication-title: Appl. Intell. doi: 10.1023/a:1008280620621 – volume: 1 start-page: 73 year: 2011 ident: B40 article-title: Robust statistics for outlier detection publication-title: WIREs Data Min. Knowl. Discov. doi: 10.1002/widm.2 – volume: 20 start-page: 273 year: 1995 ident: B11 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 170 start-page: 5 year: 2018 ident: B4 article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.014 – volume: 10 start-page: 519 year: 2018 ident: B37 article-title: Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review publication-title: Alzheimers Dement. doi: 10.1016/j.dadm.2018.07.004 – volume: 89 start-page: 29 year: 2017 ident: B8 article-title: Functional network integrity presages cognitive decline in preclinical Alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0000000000004059 – volume: 7 start-page: 263 year: 2011 ident: B32 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 22 start-page: 158 year: 2012 ident: B45 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr099 – volume: 15 start-page: 445 year: 2013 ident: B25 article-title: Memory loss in Alzheimer's disease publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2013.15.4/hjahn – volume: 194 start-page: 56 year: 2018 ident: B30 article-title: Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease publication-title: Transl. Res. doi: 10.1016/j.trsl.2018.01.001 – volume: 12 start-page: 305 year: 2000 ident: B21 article-title: Vascular dementia and Alzheimer's disease: is there a difference? A comparison of symptoms by disease duration publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.12.3.305 – volume: 45 start-page: 37 year: 1995 ident: B1 article-title: Radial basis function and related models: an overview publication-title: Signal Process. doi: 10.1016/0165-1684(95)00041-B – volume: 59 start-page: 169 year: 2017 ident: B13 article-title: Functional disintegration of the default mode network in prodromal Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-161120 – volume: 143 start-page: 29 year: 1982 ident: B23 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 15 start-page: 273 year: 2002 ident: B48 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 12 start-page: e0179804 year: 2017 ident: B12 article-title: Machine learning and microsimulation techniques on the prognosis of dementia: a systematic literature review publication-title: PLoS ONE doi: 10.1371/journal.pone.0179804 – volume: 52 start-page: 1059 year: 2010 ident: B41 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 13 start-page: 657 year: 2019 ident: B16 article-title: Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00657 – volume: 8 start-page: 77 year: 2016 ident: B27 article-title: Discriminative learning for Alzheimer's disease diagnosis via canonical correlation analysis and multimodal fusion publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2016.00077 – volume: 49 start-page: 1096 year: 1997 ident: B34 article-title: Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias publication-title: Neurology doi: 10.1212/WNL.49.4.1096 – volume: 31 start-page: 1487 year: 2006 ident: B46 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 101 start-page: 4637 year: 2004 ident: B20 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0308627101 – volume: 10 start-page: 1097 year: 2019 ident: B54 article-title: Machine learning-based framework for differential diagnosis between vascular dementia and Alzheimer's disease using structural MRI features publication-title: Front. Neurol. doi: 10.3389/fneur.2019.01097 – volume: 12 start-page: e0173372 year: 2017 ident: B31 article-title: Prediction and classification of Alzheimer disease based on quantification of MRI deformation publication-title: PLoS ONE doi: 10.1371/journal.pone.0173372 – volume: 3 start-page: 621 year: 1992 ident: B18 article-title: A constructive method for multivariate function approximation by multilayer perceptrons publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.143376 – volume: 1 start-page: a006189 year: 2011 ident: B44 article-title: Neuropathological alterations in Alzheimer disease publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a006189 – volume: 29 start-page: 209 year: 2008 ident: B6 article-title: Twenty years after Spinnler and Tognoni: new instruments in the Italian neuropsychologist's toolbox publication-title: Neurol. Sci. doi: 10.1007/s10072-008-0970-x – volume: 149 start-page: 351 year: 1987 ident: B15 article-title: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.149.2.351 – volume: 17 start-page: 873 year: 1998 ident: B35 article-title: Interval estimation for the difference between independent proportions: comparison of eleven methods publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I – volume: 36 start-page: 378 year: 1996 ident: B9 article-title: The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery publication-title: Eur. Neurol. doi: 10.1159/000117297 – volume: 84 start-page: 466 year: 2014 ident: B28 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.015 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: B7 – volume: 27 start-page: S37 year: 2006 ident: B33 article-title: Vascular dementia publication-title: Neurol. Sci. doi: 10.1007/s10072-006-0545-7 – volume: 55 start-page: 856 year: 2011 ident: B53 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 41 start-page: 69 year: 2014 ident: B47 article-title: Fractional anisotropy changes in Alzheimer's disease depend on the underlying fiber tract architecture: a multiparametric DTI study using joint independent component analysis publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-131829 – volume: 139 start-page: 1877 year: 2016 ident: B2 article-title: Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit publication-title: Brain doi: 10.1093/brain/aww083 – volume: 38 start-page: 41 year: 2017 ident: B3 article-title: Advanced magnetic resonance imaging of neurodegenerative diseases publication-title: Neurol. Sci. doi: 10.1007/s10072-016-2764-x – volume: 2 start-page: 327 year: 2007 ident: B5 article-title: Vascular dementia: pharmacological treatment approaches and perspectives publication-title: Clin. Interv. Aging – volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations year: 1987 ident: B43 article-title: Learning internal representations by error propagation – volume: 7 start-page: 137 year: 2011 ident: B39 article-title: Epidemiology of Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2011.2 |
| SSID | ssj0062657 |
| Score | 2.523355 |
| Snippet | Among dementia-like diseases, Alzheimer disease (AD) and Vascular Dementia (VD) are two of the most frequent. AD and VD may share multiple neurological... Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 25 |
| SubjectTerms | Age Algorithms Alzheimer disease Alzheimer's disease Biomarkers Classification Cognitive ability Dementia Dementia disorders Differential diagnosis Disease DTI Functional magnetic resonance imaging Learning algorithms Machine learning Magnetic resonance imaging Memory Neural networks Neurodegenerative diseases Neuroscience Registration resting state fMRI Sexually transmitted diseases STD Studies Vascular dementia |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQEGEFjRICAmkaBPH8eMYKKuCtByAot4sv0JXSrNVuyu0_fWMnexqlwO9cMjB8UO2Z-x8Y0--IeRNWYvCWs7z0tQeDRTmcmtVlXslbBUMxyf-nDz7yk_P2Jfz-nwn1Ff0CRvogYeJmwhHHStka2WoWeCVVR7bQeAgmJHUh7j7FlJtjKlhD0aUXovhUhJNMDVpexQXGoM0-nEVMSz2zkcocfXvAcy_3SPvr_ors_5tum7n2zN9RB6OoBGaobOPyb3QPyGHTY8G8-Ua3kJy40zn44fktoFZcpAMMHKn_oJmJA4HRKiAiA9OxrAouLw7TCRvu_kNLFpoutuLML8M12B6Dz9HP1U4SaeIcwPT4MGuYfbtM3xPIXQwHWHkCs32p-Rs-unHx9N8DLCQO9wfl7mnynJmChoEd5SbUJXOqrJVElGHcbV0puKFFZbSVlR16xCcVJ5Hzj4lWsqqZ-SgX_ThOQGrXNG2pnK29MwKbrFl7o202EBgkmVksplx7Ub28RgEo9NohUQZ6SQjHWWkk4wy8m5b42pg3vhH2Q9RiNtykTM7vUBN0qMm6bs0KSPHGxXQ40K-0QhwEAMryYuMvN5m4xKM9yqmD4tVKiMFwuCyzIjYU529Du3n9POLROYd4wVQhTXfb5XszuG--B_DPSIPYovR7a0sj8nB8noVXiLAWtpXaS39AdfMJc8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLZGd4ALGgxEYCAjISSQoiaOY8cHhDK2aiC1QoOh3SL_ylYpS0rXaur-ep5dp6wcxiGHJE6U5L1nf89--T6E3qU5T5RiLE5lbiBBoTpWSmSxEVxlVjLY3M_J4wk7OaPfzvPzHTTp_4VxZZV9n-g7atNpN0c-hJEGwIgoWPJ59jt2qlFudbWX0JBBWsF88hRjD9AuccxYA7R7eDz5ftr3zYDec75erITUTAzrFswISSJx9V2Jk8u-Mzh5Dv8t4Plv2eTDZTuTqxvZNHfGpNEeehzAJC7X1n-Cdmz7FO2XLSTSVyv8HvvyTj9vvo9uSzz2hZMWB07VC1wGQnEMyBUDEsRHQS4Fwr6BHV-FN73GXY3L5vbSTq_sHMvW4F-hfhUf-dnFqcQja7Ba4fHpV_zDS-vAvoOXS0jnn6Gz0fHPLydxEF6INfSbi9gQoRiVCbGcacKkzVKtRFqLAtCI1HmhZcYSxRUhNc_yWgNoyQxzXH6C14Rmz9Gg7Vr7AmEldFLXMtMqNVRxpuDOzMhCwQ0sLWiEhv0Xr3RgJXfiGE0F2YmzUeVtVDkbVd5GEfqwuWK2ZuS4p-2hM-KmnePS9ge6-UUVQrPimmiaFLUqbE4ty5Qw4KkATTmVBTE2Qge9C1QhwK-rv-4Yobeb0xCabr1FtrZb-jYFB3icphHiW66z9UDbZ9rppSf5djoCRMCVHzdO9t_XfXn_k75Cj1xbV-iWpgdosJgv7WuAVAv1JsTJHwapI5Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO8CFDQZa2JiMhJBAypY4jh0fw7ZqIHVCQNE4Rf4Kq8jSaW2E2r-eZ9erlgnxccjBsR3Fz8_279nPv4fQqzTniVKMxanMDRgoVMdKiSw2gqvMSgaPu5w8OmOnY_rhPD8P-x3uLsyt83swnsRh3YKgwYwjzgML1uf7aIPlgLoHaGN89rH85uwpxsCeAk1anUL-tlpv1fHk_D1Eedcf8kHXXsnFT9k0txab4eaK-WjmOQqdj8mPg26uDvTyDoPjv7RjCz0KiBOXKxV5jO7Z9gnaLluwti8X-DX2PqB-c30bLUs88t6VFgfi1e-4DKzjGOAtBriIj0NMFZgbGkh4V73JDE9rXDbLCzu5tNdYtgZ_DU6u-NhvQU4kHlqD1QKPPr3Hn338HUg7DNqBzf8UjYcnX45O4xCdIdYwuc5jQ4RiVCbEcqYJkzZLtRJpLQqALFLnhZYZSxRXhNQ8y2sNyCYzzBH-CV4Tmj1Dg3ba2h2EldBJXctMq9RQxZmCLzMjCwUfsLSgETq86b1KB-pyF0GjqcCEceKtvHgrJ97KizdCb9Y1rla0HX8o-84pxLqcI9z2L6D_qjB-K66JpklRq8Lm1LJMCQPqDPiVU1kQYyO0d6NOVZgFZhWgIwDQomBJhF6us2H8ukMZ2dpp58sUHDB0mkaI99Sw90P9nHZy4ZnAXbABIqDm27XC_rW5z_-n8C566BLONy5N99Bgft3ZF4DC5mo_DMBfqH8vTg priority: 102 providerName: Unpaywall |
| Title | A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features |
| URI | https://www.proquest.com/docview/2411929860 https://www.proquest.com/docview/2418732611 https://pubmed.ncbi.nlm.nih.gov/PMC7300291 https://doi.org/10.3389/fninf.2020.00025 https://doaj.org/article/7c2c408fb8e54e63b9dd9708374a82de |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5196 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5196 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-0Be2LWKsYrccKIijEJpvNbvZBJP04q3BHqZ6cT2G_0h6kuXq9Q69_vbN7uWikKPiQQLIfSXZmMr_ZnZ1B6EWc8kgpxsJYpgYMFKpDpUQSGsFVYiWDw21OHgzZ8Yh-HKfjX9ujmwG8utG0c_mkRrPqzY9vy3cg8G-dxQn6dq-soRhMPeK8tECH30aboKeES-QwoO2aAiD3lK8WKm9stYXuJGALuOTgHR3lQ_l38Oef3pN3F_WlXH6XVfWbaurfR_caTInzFRNso1u2foB28hrs6Yslfom9l6efPt9B1zkeeP9Ji5vQqmc4b-KKYwCwGAAhPmyypoD0V3DhnfEmV3ha4ry6PreTCzvDsjb4S-PGig_9JONE4r41WC3x4PQD_uQz7MC1Q5kLsOofolH_6PPBcdjkXwg1_D7noSFCMSojYjnThEmbxFqJuBQZgBKp00zLhEWKK0JKnqSlBuySGOZC-gleEpo8Qhv1tLaPEVZCR2UpE61iQxVnCnpmRmYKOrA0owHaW494oZvg5C5HRlWAkeLIVXhyFY5chSdXgF61LS5XgTn-UnffEbGt50Jq-xvT2VnRSGjBNdE0ykqV2ZRalihhgGEBoXIqM2JsgHbXLFCs2bQA_AMQWWQsCtDzthgk1C27yNpOF75OxgElx3GAeId1Oi_ULakn5z7Wt0snQAS0fN0y2T8_98l_P-Yp2nLdOFe4ON5FG_PZwj4D0DVXPbS5fzQ8Oe35SQs4vx_HPS9fUDIanuRffwIKujMb |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygXBBREoICRAAmkVXa9Xnt9qFBKGiW0iVBpUW9bv7aNlG5CHqrSH8dvY-w4oeFQTj3ksFnb2t0Zz3xjj-dD6H2S8VgpxqJEZgYCFKojpUQaGcFVaiWDnzuc3O2x9in9dpadbaDfy7MwLq1yaRO9oTZD7dbI6-BpAIyInMVfRr8ixxrldleXFBoyUCuYPV9iLBzsOLTzawjhJnudJsj7AyGtg5Ov7SiwDEQajMQ0MkQoRmVMLGeaMGnTRCuRlCIH1yt1lmuZslhxRUjJ06zU4KFTw1zhOsFLQlMY9wHaoikVEPxt7R_0vh8vfQFECxlfbI5CKCjqZQVqA0EpcflksaPnvuUMPWfAGtD9N01ze1aN5PxaDga3fGDrMXoUwCtuLLTtCdqw1VO006ggcL-a44_Yp5P6dfoddNPAXZ-oaXGo4XqBG6GAOQakjAF54magZwEzM4ALn_XXn-BhiRuDm0vbv7JjLCuDf4Z8Wdz0q5l9iVvWYDXH3eMO_uGpfODawdnZ2E6eodN7EcFztFkNK_sCYSV0XJYy1SoxVHGmYGRmZK5gAEtzWkP15RcvdKiC7sg4BgVEQ05GhZdR4WRUeBnV0KdVj9GiAsgdbfedEFftXO1u_8dwfFEEU1BwTTSN81LlNqOWpUoYmBkAhTmVOTG2hnaXKlAEgzIp_qp_Db1b3QZT4PZ3ZGWHM98m5wDHk6SG-JrqrD3Q-p2qf-mLijveAiKg5-eVkv33dV_e_aRv0Xb7pHtUHHV6h6_QQ9fPJdklyS7anI5n9jXAual6E-YMRuf3PU3_AO_VXz4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJgEXBAxEYYCRAAmkqImT2PFhQh1dtTJaTYOh3YK_slXKktIPTd2fyF_Fs-uUlcM47ZBDEtty8r7t5_dD6G2UslBKSoNIpBoClEQFUvI40JzJ2AgKlz2cPBjSg5Pky2l6uoF-N2dhbFploxOdota1smvkbbA04IzwjIbtwqdFHHV7n8a_AosgZXdaGzgN4WEW9K4rN-YPeRyaxSWEc9Pdfhdo_46Q3v73zweBRxwIFCiMWaAJlzQRITGMKkKFiSMleVTwDMywUGmmRExDySQhBYvTQoG1jjW1Rew4K0gSw7h30Jbd_AIlsbW3Pzw6buwCRA4pW26UQljI20UFLAQBKrG5ZaGF6r5mGB1-wJrT-2_K5r15NRaLS1GW1-xh7yF64B1Z3Fly3iO0YarHaLtTQRB_scDvsUstdWv22-iqgwcuadNgX8_1DHd8MXMMXjMGLxR3PVQLqJwSblwG4GiK6wJ3yqtzM7owEywqjX_43FncdSubI4F7RmO5wIPjPv7mYH3g3rq284mZPkEnt0KCp2izqivzDGHJVVgUIlYy0olkVMLIVItMwgAmyZIWajd_PFe-IroF5ihziIwsjXJHo9zSKHc0aqEPqx7jZTWQG9ruWSKu2tk63u5BPTnLvVrImSIqCbNCZiZNDI0l1yAl4BazRGREmxbaaVgg98plmv8VhRZ6s3oNasHu9YjK1HPXJmPgmkdRC7E11lmb0PqbanTuCoxbDAPCoefHFZP993Of3zzT1-guiGv-tT88fIHu227LA507aHM2mZuX4NnN5CsvMhj9vG0p_QMiXWNo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO8CFDQZa2JiMhJBAypY4jh0fw7ZqIHVCQNE4Rf4Kq8jSaW2E2r-eZ9erlgnxccjBsR3Fz8_279nPv4fQqzTniVKMxanMDRgoVMdKiSw2gqvMSgaPu5w8OmOnY_rhPD8P-x3uLsyt83swnsRh3YKgwYwjzgML1uf7aIPlgLoHaGN89rH85uwpxsCeAk1anUL-tlpv1fHk_D1Eedcf8kHXXsnFT9k0txab4eaK-WjmOQqdj8mPg26uDvTyDoPjv7RjCz0KiBOXKxV5jO7Z9gnaLluwti8X-DX2PqB-c30bLUs88t6VFgfi1e-4DKzjGOAtBriIj0NMFZgbGkh4V73JDE9rXDbLCzu5tNdYtgZ_DU6u-NhvQU4kHlqD1QKPPr3Hn338HUg7DNqBzf8UjYcnX45O4xCdIdYwuc5jQ4RiVCbEcqYJkzZLtRJpLQqALFLnhZYZSxRXhNQ8y2sNyCYzzBH-CV4Tmj1Dg3ba2h2EldBJXctMq9RQxZmCLzMjCwUfsLSgETq86b1KB-pyF0GjqcCEceKtvHgrJ97KizdCb9Y1rla0HX8o-84pxLqcI9z2L6D_qjB-K66JpklRq8Lm1LJMCQPqDPiVU1kQYyO0d6NOVZgFZhWgIwDQomBJhF6us2H8ukMZ2dpp58sUHDB0mkaI99Sw90P9nHZy4ZnAXbABIqDm27XC_rW5z_-n8C566BLONy5N99Bgft3ZF4DC5mo_DMBfqH8vTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Approach+for+the+Differential+Diagnosis+of+Alzheimer+and+Vascular+Dementia+Fed+by+MRI+Selected+Features&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Castellazzi%2C+Gloria&rft.au=Cuzzoni%2C+Maria+Giovanna&rft.au=Cotta+Ramusino%2C+Matteo&rft.au=Martinelli%2C+Daniele&rft.date=2020-06-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=14&rft_id=info:doi/10.3389%2Ffninf.2020.00025&rft_id=info%3Apmid%2F32595465&rft.externalDocID=PMC7300291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |