Model-independent method for fMRI analysis

This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating ch...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 23; no. 3; pp. 285 - 296
Main Authors Soltanian-Zadeh, H., Peck, D.J., Hearshen, D.O., Lajiness-O'Neill, R.R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2003.823064

Cover

Abstract This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.
AbstractList [...] it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.
This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.
This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.
Author Soltanian-Zadeh, H.
Hearshen, D.O.
Peck, D.J.
Lajiness-O'Neill, R.R.
Author_xml – sequence: 1
  givenname: H.
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, H.
  organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA
– sequence: 2
  givenname: D.J.
  surname: Peck
  fullname: Peck, D.J.
  organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA
– sequence: 3
  givenname: D.O.
  surname: Hearshen
  fullname: Hearshen, D.O.
  organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA
– sequence: 4
  givenname: R.R.
  surname: Lajiness-O'Neill
  fullname: Lajiness-O'Neill, R.R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15027521$$D View this record in MEDLINE/PubMed
BookMark eNqFkslLw0AYxQep2EXPHgQpHlSEtLNklhyluBRaBKngbZgmXzAlzdRMcuh_78RWhYLtZeYwv_e-ZV4XtQpbAELnBA8IwdFwNh0PKMZsoCjDIjxCHcK5CigP31uog6lUAcaCtlHXuQXGJOQ4OkFtwv0Tp6SD7qY2gTzIigRW4I-i6i-h-rBJP7VlP52-jvumMPnaZe4UHacmd3C2vXvo7fFhNnoOJi9P49H9JIhDIasgiqmAmIKvpEQSGYkZZykoAoKKMOJKEUFMSGWYQGRgzuZgeMyEiEXCFJGsh242vqvSftbgKr3MXAx5bgqwtdNKMUwZJdiT13tJSSTHhIqDIFVMCUkOg749v0TWlL7dD3o7j1LezHO1gy5sXfqlfo8SeT_ZFL7cQvV8CYleldnSlGv981Me4BsgLq1zJaQ6zipTZbaoSpPlmmDdJEL7ROgmEXqTCK8b7uh-rf9VXGwUGQD80VRESobsCwTkuwc
CODEN ITMID4
CitedBy_id crossref_primary_10_4236_ojrad_2012_22008
crossref_primary_10_1109_TITB_2010_2055574
crossref_primary_10_3389_fnins_2014_00239
crossref_primary_10_7717_peerj_5416
crossref_primary_10_1007_s11517_009_0504_6
crossref_primary_10_1016_j_mri_2005_07_008
Cites_doi 10.1001/archneur.1995.00540300067015
10.1109/42.746636
10.1006/nimg.1998.0369
10.1006/nimg.2001.0986
10.1016/0730-725X(94)91232-L
10.1016/S0730-725X(99)00102-2
10.1002/mrm.1910390109
10.1002/mrm.1910390322
10.1093/brain/122.11.2033
10.1109/42.938239
10.1002/mrm.1910330213
10.1002/mrm.1910390602
10.1006/nimg.2001.0921
10.1002/(sici)1522-2594(199912)42:6<1117::aid-mrm16>3.3.co;2-a
10.1002/nbm.737
10.1177/028418519303400121
10.1002/hbm.1031
10.1002/hbm.460010207
10.1109/ICIP.1998.723595
10.1002/jmri.1880050112
10.1016/0730-725X(94)91227-N
10.1109/42.158934
10.1016/s0925-4927(98)00040-7
10.1109/42.759109
10.1007/s10278-001-0023-y
10.1002/(sici)1522-2594(199905)41:5<939::aid-mrm13>3.0.co;2-q
10.1109/42.768841
10.1016/S0730-725X(99)00028-4
10.1109/42.819322
10.1109/42.108599
10.1006/nimg.1999.0402
10.1109/42.925293
10.1002/mrm.1910360212
10.1002/hbm.1048
10.1097/00004728-199903000-00016
10.1523/JNEUROSCI.17-01-00353.1997
10.1002/hbm.1024
10.1002/mrm.1910390120
10.1016/0730-725X(95)02037-T
10.1007/978-3-642-58716-0_14
10.1097/00041327-199906000-00012
10.1093/brain/119.4.1239
10.1002/mrm.1910370427
10.1002/mrm.1910350219
10.1002/1097-0193(200008)10:4<160::AID-HBM20>3.0.CO;2-U
10.1109/42.700727
10.1006/nimg.1999.0518
10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-#
10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P
10.1006/nimg.1999.0429
10.56021/9781421407944
10.1002/mrm.1910300204
10.1109/iembs.1998.745515
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2003.823064
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Engineering Research Database

Technology Research Database
MEDLINE - Academic
MEDLINE
Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 296
ExternalDocumentID 2427421061
15027521
10_1109_TMI_2003_823064
1269874
Genre orig-research
Validation Studies
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Clinical Trial
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c467t-9c26ec2e50986d9a70353fe81e62649588161a4274de9aeb3bea5c366c6d38173
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Sun Sep 28 06:56:50 EDT 2025
Sun Sep 28 08:32:12 EDT 2025
Sat Sep 27 18:49:14 EDT 2025
Sat Sep 27 18:05:36 EDT 2025
Mon Sep 29 06:07:57 EDT 2025
Mon Jun 30 06:39:29 EDT 2025
Wed Feb 19 01:36:39 EST 2025
Wed Oct 01 06:39:23 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Aug 26 16:39:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-9c26ec2e50986d9a70353fe81e62649588161a4274de9aeb3bea5c366c6d38173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
PMID 15027521
PQID 883901476
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_883023210
proquest_miscellaneous_1671301257
crossref_citationtrail_10_1109_TMI_2003_823064
crossref_primary_10_1109_TMI_2003_823064
pubmed_primary_15027521
proquest_miscellaneous_17301430
proquest_journals_883901476
proquest_miscellaneous_71750126
ieee_primary_1269874
proquest_miscellaneous_28386716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-03-01
PublicationDateYYYYMMDD 2004-03-01
PublicationDate_xml – month: 03
  year: 2004
  text: 2004-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref17
ref16
ref19
DeYoe (ref54)
ref18
Villringer (ref3) 1995; 7
Henriksen (ref12) 1993; 34
ref51
Soltanian-Zadeh (ref46) 1992
ref45
ref47
ref42
Lee (ref60) 1998; 19
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Luenberger (ref48) 1969
ref6
ref5
Press (ref50) 1992
ref40
ref35
ref34
ref37
Lai (ref10)
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref55
  doi: 10.1001/archneur.1995.00540300067015
– ident: ref24
  doi: 10.1109/42.746636
– ident: ref7
  doi: 10.1006/nimg.1998.0369
– ident: ref42
  doi: 10.1006/nimg.2001.0986
– ident: ref13
  doi: 10.1016/0730-725X(94)91232-L
– ident: ref35
  doi: 10.1016/S0730-725X(99)00102-2
– ident: ref9
  doi: 10.1002/mrm.1910390109
– ident: ref20
  doi: 10.1002/mrm.1910390322
– volume-title: Multi-dimensional signal processing of magnetic resonance scene sequences
  year: 1992
  ident: ref46
– ident: ref58
  doi: 10.1093/brain/122.11.2033
– ident: ref23
  doi: 10.1109/42.938239
– ident: ref59
  doi: 10.1002/mrm.1910330213
– volume: 19
  start-page: 1297
  issue: 7
  year: 1998
  ident: ref60
  article-title: Real-time reconstruction and high-speed processing in functional MR imaging
  publication-title: Amer. J. Neuroradiol.
– ident: ref6
  doi: 10.1002/mrm.1910390602
– ident: ref38
  doi: 10.1006/nimg.2001.0921
– ident: ref44
  doi: 10.1002/(sici)1522-2594(199912)42:6<1117::aid-mrm16>3.3.co;2-a
– ident: ref34
  doi: 10.1002/nbm.737
– volume: 34
  start-page: 101
  year: 1993
  ident: ref12
  publication-title: Acta Radiologica
  doi: 10.1177/028418519303400121
– volume: 7
  start-page: 240
  year: 1995
  ident: ref3
  article-title: Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging
  publication-title: Cerebrovasc. Brain Metabol. Rev.
– ident: ref30
  doi: 10.1002/hbm.1031
– ident: ref17
  doi: 10.1002/hbm.460010207
– ident: ref22
  doi: 10.1109/ICIP.1998.723595
– ident: ref51
  doi: 10.1002/jmri.1880050112
– volume-title: Optimization by Vector Space Methods
  year: 1969
  ident: ref48
– ident: ref18
  doi: 10.1016/0730-725X(94)91227-N
– ident: ref47
  doi: 10.1109/42.158934
– ident: ref1
  doi: 10.1016/s0925-4927(98)00040-7
– start-page: 1824
  volume-title: Proc. Soc. Magn. Reson. Med.
  ident: ref54
  article-title: Time course of event-related MR signal enhancement in visual and motor cortex
– start-page: 1671
  volume-title: Proc. Int. Soc. Magnetic Resonance Medicine Meeting
  ident: ref10
  article-title: Detection of BOLD fMRI signals using complex data
– ident: ref26
  doi: 10.1109/42.759109
– ident: ref29
  doi: 10.1007/s10278-001-0023-y
– ident: ref43
  doi: 10.1002/(sici)1522-2594(199905)41:5<939::aid-mrm13>3.0.co;2-q
– ident: ref11
  doi: 10.1109/42.768841
– ident: ref36
  doi: 10.1016/S0730-725X(99)00028-4
– ident: ref33
  doi: 10.1109/42.819322
– ident: ref53
  doi: 10.1109/42.108599
– ident: ref45
  doi: 10.1006/nimg.1999.0402
– ident: ref28
  doi: 10.1109/42.925293
– ident: ref5
  doi: 10.1002/mrm.1910360212
– ident: ref37
  doi: 10.1002/hbm.1048
– ident: ref41
  doi: 10.1097/00004728-199903000-00016
– volume-title: Numerical Recipes in C
  year: 1992
  ident: ref50
– ident: ref57
  doi: 10.1523/JNEUROSCI.17-01-00353.1997
– ident: ref39
  doi: 10.1002/hbm.1024
– ident: ref25
  doi: 10.1002/mrm.1910390120
– ident: ref2
  doi: 10.1016/0730-725X(95)02037-T
– ident: ref52
  doi: 10.1007/978-3-642-58716-0_14
– ident: ref8
  doi: 10.1097/00041327-199906000-00012
– ident: ref56
  doi: 10.1093/brain/119.4.1239
– ident: ref4
  doi: 10.1002/mrm.1910370427
– ident: ref19
  doi: 10.1002/mrm.1910350219
– ident: ref31
  doi: 10.1002/1097-0193(200008)10:4<160::AID-HBM20>3.0.CO;2-U
– ident: ref21
  doi: 10.1109/42.700727
– ident: ref40
  doi: 10.1006/nimg.1999.0518
– ident: ref15
  doi: 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-#
– ident: ref16
  doi: 10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P
– ident: ref32
  doi: 10.1006/nimg.1999.0429
– ident: ref49
  doi: 10.56021/9781421407944
– ident: ref14
  doi: 10.1002/mrm.1910300204
– ident: ref27
  doi: 10.1109/iembs.1998.745515
SSID ssj0014509
Score 1.8057932
Snippet This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps...
[...] it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 285
SubjectTerms Activated
Adult
Algorithms
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Character generation
Cognition - physiology
Computer Simulation
Evoked Potentials - physiology
Humans
Image analysis
Image Enhancement - methods
Image generation
Image Interpretation, Computer-Assisted - methods
Image segmentation
Magnetic analysis
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Mathematical models
Methods
Middle Aged
Models, Neurological
Neurons - cytology
Neurons - physiology
Pixel
Pixels
Reproducibility of Results
Sensitivity and Specificity
Signal generators
Signal to noise ratio
Signatures
Stochastic Processes
Studies
Time series
Vectors
Vectors (mathematics)
Title Model-independent method for fMRI analysis
URI https://ieeexplore.ieee.org/document/1269874
https://www.ncbi.nlm.nih.gov/pubmed/15027521
https://www.proquest.com/docview/883901476
https://www.proquest.com/docview/1671301257
https://www.proquest.com/docview/17301430
https://www.proquest.com/docview/28386716
https://www.proquest.com/docview/71750126
https://www.proquest.com/docview/883023210
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS91AFL2oC2kX1o-2plaN0IWUJiaTzNdSRFEhXRQFd2EymUCpvFc0b-Ov770zedFKA909yA1585U5J_fOOQBfbM5kJ02X6EJlCeJbnhjEDQnurZlttGSN9zqsvovL2_L6jt-twLfxLIxzzhefuZR--lx-O7cL-lR2kjOBFLlchVUpdTirNWYMSh7KORgpxmaCDTI-eaZPbqorL_yZKo-3vRMPZetY_tdm5N1VpoGm33Au3kG1_KuhzuRXuuib1D69UnH837ZswsaAPOPTMFW2YMXNtuHtCz3CbVivhkz7Dnwlk7T75OfoktvHwWw6RpQbd9WPq9gMeibv4fbi_ObsMhl8FRKLr8U-0ZYJZ5nDHlOi1QYXPS86p3KH7AYJk1IIA02JfLV12iDbbpzhthDCipYE_YoPsDabz9wuxJYZxB9KNrwjYmmbrJWSuzazyKuEbiJIlx1c20F0nLwv7mtPPjJd4-CQFWZRh8GJ4Hi84XfQ25gO3aFufQ4LPRrB3nIE62E9PtZK0bedUooIjsaruJAoO2Jmbr54rHOBfB23ay4jOJyKofdhWWTTEYjWSDFQTEcgf-b4GIyIJyIUabLR2aoIPoYZ-NzGYeJ--nfb9-BNqCyiGrnPsNY_LNw-gqa-OfCr5Q9rDA0S
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9RAFL1BTBQeUEGwoFITH4yxpZ12PvpIiGRXKA9mSXhrptNpYiS7Rrov_HrvnemWj9DEt016m-58dc7pvXMOwGeTMtlK3UZFppII8S2PNOKGCPfWxNSFZLXzOiwvxOQy_3HFr9bg23AWxlrris9sTD9dLr9ZmCV9KjtKmUCKnD-D5xxZhfSntYacQc59QQcjzdhEsF7IJ02Ko1k5ddKfsXKI23nxUL6OpQ-2I-evMg413ZZz-grK1Z_1lSa_42VXx-b2kY7j_7bmNWz12DM89pPlDazZ-TZs3lMk3IYXZZ9r34GvZJN2Hf0afHK70NtNh4hzw7b8OQ11r2jyFi5Pv89OJlHvrBAZfDF2UWGYsIZZ7DElmkLjsudZa1Vqkd8gZVIKgaDOkbE2ttDIt2urucmEMKIhSb9sF9bni7l9B6FhGhGIkjVviVqaOmmk5LZJDDIrUdQBxKsOrkwvO07uF9eVox9JUeHgkBlmVvnBCeDLcMMfr7gxHrpD3XoX5ns0gIPVCFb9iryplKKvO7kUAXwaruJSovyIntvF8qZKBTJ23LC5DOBwLIbeiHmWjEcgXiPNQDEegQya42MwIhyJUKTKRqerAtjzM_Cujf3E3X-67YfwcjIrz6vz6cXZAWz4OiOqmHsP693fpf2AEKqrP7qV8w-wLBBj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-independent+method+for+fMRI+analysis&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Soltanian-Zadeh%2C+H&rft.au=Peck%2C+D.J&rft.au=Hearshen%2C+D.O&rft.au=Lajiness-O%27Neill%2C+R.R&rft.date=2004-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=23&rft.issue=3&rft.spage=285&rft_id=info:doi/10.1109%2FTMI.2003.823064&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2427421061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon