Model-independent method for fMRI analysis
This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating ch...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 23; no. 3; pp. 285 - 296 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X |
DOI | 10.1109/TMI.2003.823064 |
Cover
Abstract | This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods. |
---|---|
AbstractList | [...] it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods. This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods. This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods.This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps of the work accomplished are as follows. 1) It is shown that the detection performance evaluated by the area under the receiver operating characteristic curve is directly related to the signal-to-noise ratio (SNR) of the composite image generated in the detection process. 2) Detection and segmentation of activated areas are formulated in a vector space framework. In this formulation, a linear transformation (image combination method) is shown to be desirable to maximize the SNR of the activated areas subject to the constraint of removing inactive areas. 3) An analytical solution for the problem is found. 4) Image pixel vectors and expected time series pattern (signature) for inactive pixels are used to calculate weighting vector and identify activated regions. 5) Signatures of the activated regions are used to segment different activities. 6) Segmented images by the proposed method are compared with those generated by the conventional methods (correlation, t-statistic, and z statistic). Detection performance and SNRs of the images are compared. The proposed approach outperforms the conventional methods of fMRI analysis. In addition, it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is done analytically, numerical implementation and execution of the method are much faster than the conventional methods. |
Author | Soltanian-Zadeh, H. Hearshen, D.O. Peck, D.J. Lajiness-O'Neill, R.R. |
Author_xml | – sequence: 1 givenname: H. surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, H. organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA – sequence: 2 givenname: D.J. surname: Peck fullname: Peck, D.J. organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA – sequence: 3 givenname: D.O. surname: Hearshen fullname: Hearshen, D.O. organization: Dept. of Radiol., Henry Ford Health Syst., Detroit, MI, USA – sequence: 4 givenname: R.R. surname: Lajiness-O'Neill fullname: Lajiness-O'Neill, R.R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15027521$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkslLw0AYxQep2EXPHgQpHlSEtLNklhyluBRaBKngbZgmXzAlzdRMcuh_78RWhYLtZeYwv_e-ZV4XtQpbAELnBA8IwdFwNh0PKMZsoCjDIjxCHcK5CigP31uog6lUAcaCtlHXuQXGJOQ4OkFtwv0Tp6SD7qY2gTzIigRW4I-i6i-h-rBJP7VlP52-jvumMPnaZe4UHacmd3C2vXvo7fFhNnoOJi9P49H9JIhDIasgiqmAmIKvpEQSGYkZZykoAoKKMOJKEUFMSGWYQGRgzuZgeMyEiEXCFJGsh242vqvSftbgKr3MXAx5bgqwtdNKMUwZJdiT13tJSSTHhIqDIFVMCUkOg749v0TWlL7dD3o7j1LezHO1gy5sXfqlfo8SeT_ZFL7cQvV8CYleldnSlGv981Me4BsgLq1zJaQ6zipTZbaoSpPlmmDdJEL7ROgmEXqTCK8b7uh-rf9VXGwUGQD80VRESobsCwTkuwc |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_4236_ojrad_2012_22008 crossref_primary_10_1109_TITB_2010_2055574 crossref_primary_10_3389_fnins_2014_00239 crossref_primary_10_7717_peerj_5416 crossref_primary_10_1007_s11517_009_0504_6 crossref_primary_10_1016_j_mri_2005_07_008 |
Cites_doi | 10.1001/archneur.1995.00540300067015 10.1109/42.746636 10.1006/nimg.1998.0369 10.1006/nimg.2001.0986 10.1016/0730-725X(94)91232-L 10.1016/S0730-725X(99)00102-2 10.1002/mrm.1910390109 10.1002/mrm.1910390322 10.1093/brain/122.11.2033 10.1109/42.938239 10.1002/mrm.1910330213 10.1002/mrm.1910390602 10.1006/nimg.2001.0921 10.1002/(sici)1522-2594(199912)42:6<1117::aid-mrm16>3.3.co;2-a 10.1002/nbm.737 10.1177/028418519303400121 10.1002/hbm.1031 10.1002/hbm.460010207 10.1109/ICIP.1998.723595 10.1002/jmri.1880050112 10.1016/0730-725X(94)91227-N 10.1109/42.158934 10.1016/s0925-4927(98)00040-7 10.1109/42.759109 10.1007/s10278-001-0023-y 10.1002/(sici)1522-2594(199905)41:5<939::aid-mrm13>3.0.co;2-q 10.1109/42.768841 10.1016/S0730-725X(99)00028-4 10.1109/42.819322 10.1109/42.108599 10.1006/nimg.1999.0402 10.1109/42.925293 10.1002/mrm.1910360212 10.1002/hbm.1048 10.1097/00004728-199903000-00016 10.1523/JNEUROSCI.17-01-00353.1997 10.1002/hbm.1024 10.1002/mrm.1910390120 10.1016/0730-725X(95)02037-T 10.1007/978-3-642-58716-0_14 10.1097/00041327-199906000-00012 10.1093/brain/119.4.1239 10.1002/mrm.1910370427 10.1002/mrm.1910350219 10.1002/1097-0193(200008)10:4<160::AID-HBM20>3.0.CO;2-U 10.1109/42.700727 10.1006/nimg.1999.0518 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-# 10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P 10.1006/nimg.1999.0429 10.56021/9781421407944 10.1002/mrm.1910300204 10.1109/iembs.1998.745515 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TMI.2003.823064 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Engineering Research Database Technology Research Database MEDLINE - Academic MEDLINE Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 296 |
ExternalDocumentID | 2427421061 15027521 10_1109_TMI_2003_823064 1269874 |
Genre | orig-research Validation Studies Research Support, U.S. Gov't, Non-P.H.S Comparative Study Clinical Trial Journal Article |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c467t-9c26ec2e50986d9a70353fe81e62649588161a4274de9aeb3bea5c366c6d38173 |
IEDL.DBID | RIE |
ISSN | 0278-0062 |
IngestDate | Sun Sep 28 06:56:50 EDT 2025 Sun Sep 28 08:32:12 EDT 2025 Sat Sep 27 18:49:14 EDT 2025 Sat Sep 27 18:05:36 EDT 2025 Mon Sep 29 06:07:57 EDT 2025 Mon Jun 30 06:39:29 EDT 2025 Wed Feb 19 01:36:39 EST 2025 Wed Oct 01 06:39:23 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Aug 26 16:39:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-9c26ec2e50986d9a70353fe81e62649588161a4274de9aeb3bea5c366c6d38173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3 |
PMID | 15027521 |
PQID | 883901476 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_883023210 proquest_miscellaneous_1671301257 crossref_citationtrail_10_1109_TMI_2003_823064 crossref_primary_10_1109_TMI_2003_823064 pubmed_primary_15027521 proquest_miscellaneous_17301430 proquest_journals_883901476 proquest_miscellaneous_71750126 ieee_primary_1269874 proquest_miscellaneous_28386716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-03-01 |
PublicationDateYYYYMMDD | 2004-03-01 |
PublicationDate_xml | – month: 03 year: 2004 text: 2004-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2004 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref17 ref16 ref19 DeYoe (ref54) ref18 Villringer (ref3) 1995; 7 Henriksen (ref12) 1993; 34 ref51 Soltanian-Zadeh (ref46) 1992 ref45 ref47 ref42 Lee (ref60) 1998; 19 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 Luenberger (ref48) 1969 ref6 ref5 Press (ref50) 1992 ref40 ref35 ref34 ref37 Lai (ref10) ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref55 doi: 10.1001/archneur.1995.00540300067015 – ident: ref24 doi: 10.1109/42.746636 – ident: ref7 doi: 10.1006/nimg.1998.0369 – ident: ref42 doi: 10.1006/nimg.2001.0986 – ident: ref13 doi: 10.1016/0730-725X(94)91232-L – ident: ref35 doi: 10.1016/S0730-725X(99)00102-2 – ident: ref9 doi: 10.1002/mrm.1910390109 – ident: ref20 doi: 10.1002/mrm.1910390322 – volume-title: Multi-dimensional signal processing of magnetic resonance scene sequences year: 1992 ident: ref46 – ident: ref58 doi: 10.1093/brain/122.11.2033 – ident: ref23 doi: 10.1109/42.938239 – ident: ref59 doi: 10.1002/mrm.1910330213 – volume: 19 start-page: 1297 issue: 7 year: 1998 ident: ref60 article-title: Real-time reconstruction and high-speed processing in functional MR imaging publication-title: Amer. J. Neuroradiol. – ident: ref6 doi: 10.1002/mrm.1910390602 – ident: ref38 doi: 10.1006/nimg.2001.0921 – ident: ref44 doi: 10.1002/(sici)1522-2594(199912)42:6<1117::aid-mrm16>3.3.co;2-a – ident: ref34 doi: 10.1002/nbm.737 – volume: 34 start-page: 101 year: 1993 ident: ref12 publication-title: Acta Radiologica doi: 10.1177/028418519303400121 – volume: 7 start-page: 240 year: 1995 ident: ref3 article-title: Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging publication-title: Cerebrovasc. Brain Metabol. Rev. – ident: ref30 doi: 10.1002/hbm.1031 – ident: ref17 doi: 10.1002/hbm.460010207 – ident: ref22 doi: 10.1109/ICIP.1998.723595 – ident: ref51 doi: 10.1002/jmri.1880050112 – volume-title: Optimization by Vector Space Methods year: 1969 ident: ref48 – ident: ref18 doi: 10.1016/0730-725X(94)91227-N – ident: ref47 doi: 10.1109/42.158934 – ident: ref1 doi: 10.1016/s0925-4927(98)00040-7 – start-page: 1824 volume-title: Proc. Soc. Magn. Reson. Med. ident: ref54 article-title: Time course of event-related MR signal enhancement in visual and motor cortex – start-page: 1671 volume-title: Proc. Int. Soc. Magnetic Resonance Medicine Meeting ident: ref10 article-title: Detection of BOLD fMRI signals using complex data – ident: ref26 doi: 10.1109/42.759109 – ident: ref29 doi: 10.1007/s10278-001-0023-y – ident: ref43 doi: 10.1002/(sici)1522-2594(199905)41:5<939::aid-mrm13>3.0.co;2-q – ident: ref11 doi: 10.1109/42.768841 – ident: ref36 doi: 10.1016/S0730-725X(99)00028-4 – ident: ref33 doi: 10.1109/42.819322 – ident: ref53 doi: 10.1109/42.108599 – ident: ref45 doi: 10.1006/nimg.1999.0402 – ident: ref28 doi: 10.1109/42.925293 – ident: ref5 doi: 10.1002/mrm.1910360212 – ident: ref37 doi: 10.1002/hbm.1048 – ident: ref41 doi: 10.1097/00004728-199903000-00016 – volume-title: Numerical Recipes in C year: 1992 ident: ref50 – ident: ref57 doi: 10.1523/JNEUROSCI.17-01-00353.1997 – ident: ref39 doi: 10.1002/hbm.1024 – ident: ref25 doi: 10.1002/mrm.1910390120 – ident: ref2 doi: 10.1016/0730-725X(95)02037-T – ident: ref52 doi: 10.1007/978-3-642-58716-0_14 – ident: ref8 doi: 10.1097/00041327-199906000-00012 – ident: ref56 doi: 10.1093/brain/119.4.1239 – ident: ref4 doi: 10.1002/mrm.1910370427 – ident: ref19 doi: 10.1002/mrm.1910350219 – ident: ref31 doi: 10.1002/1097-0193(200008)10:4<160::AID-HBM20>3.0.CO;2-U – ident: ref21 doi: 10.1109/42.700727 – ident: ref40 doi: 10.1006/nimg.1999.0518 – ident: ref15 doi: 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO;2-# – ident: ref16 doi: 10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P – ident: ref32 doi: 10.1006/nimg.1999.0429 – ident: ref49 doi: 10.56021/9781421407944 – ident: ref14 doi: 10.1002/mrm.1910300204 – ident: ref27 doi: 10.1109/iembs.1998.745515 |
SSID | ssj0014509 |
Score | 1.8057932 |
Snippet | This paper presents a fast method for delineation of activated areas of the brain from functional magnetic resonance imaging (fMRI) time series data. The steps... [...] it is model-independent and does not require a priori knowledge of the fMRI response to the paradigm. Since the method is linear and most of the work is... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 285 |
SubjectTerms | Activated Adult Algorithms Brain - anatomy & histology Brain - physiology Brain Mapping - methods Character generation Cognition - physiology Computer Simulation Evoked Potentials - physiology Humans Image analysis Image Enhancement - methods Image generation Image Interpretation, Computer-Assisted - methods Image segmentation Magnetic analysis Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Mathematical models Methods Middle Aged Models, Neurological Neurons - cytology Neurons - physiology Pixel Pixels Reproducibility of Results Sensitivity and Specificity Signal generators Signal to noise ratio Signatures Stochastic Processes Studies Time series Vectors Vectors (mathematics) |
Title | Model-independent method for fMRI analysis |
URI | https://ieeexplore.ieee.org/document/1269874 https://www.ncbi.nlm.nih.gov/pubmed/15027521 https://www.proquest.com/docview/883901476 https://www.proquest.com/docview/1671301257 https://www.proquest.com/docview/17301430 https://www.proquest.com/docview/28386716 https://www.proquest.com/docview/71750126 https://www.proquest.com/docview/883023210 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS91AFL2oC2kX1o-2plaN0IWUJiaTzNdSRFEhXRQFd2EymUCpvFc0b-Ov770zedFKA909yA1585U5J_fOOQBfbM5kJ02X6EJlCeJbnhjEDQnurZlttGSN9zqsvovL2_L6jt-twLfxLIxzzhefuZR--lx-O7cL-lR2kjOBFLlchVUpdTirNWYMSh7KORgpxmaCDTI-eaZPbqorL_yZKo-3vRMPZetY_tdm5N1VpoGm33Au3kG1_KuhzuRXuuib1D69UnH837ZswsaAPOPTMFW2YMXNtuHtCz3CbVivhkz7Dnwlk7T75OfoktvHwWw6RpQbd9WPq9gMeibv4fbi_ObsMhl8FRKLr8U-0ZYJZ5nDHlOi1QYXPS86p3KH7AYJk1IIA02JfLV12iDbbpzhthDCipYE_YoPsDabz9wuxJYZxB9KNrwjYmmbrJWSuzazyKuEbiJIlx1c20F0nLwv7mtPPjJd4-CQFWZRh8GJ4Hi84XfQ25gO3aFufQ4LPRrB3nIE62E9PtZK0bedUooIjsaruJAoO2Jmbr54rHOBfB23ay4jOJyKofdhWWTTEYjWSDFQTEcgf-b4GIyIJyIUabLR2aoIPoYZ-NzGYeJ--nfb9-BNqCyiGrnPsNY_LNw-gqa-OfCr5Q9rDA0S |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9RAFL1BTBQeUEGwoFITH4yxpZ12PvpIiGRXKA9mSXhrptNpYiS7Rrov_HrvnemWj9DEt016m-58dc7pvXMOwGeTMtlK3UZFppII8S2PNOKGCPfWxNSFZLXzOiwvxOQy_3HFr9bg23AWxlrris9sTD9dLr9ZmCV9KjtKmUCKnD-D5xxZhfSntYacQc59QQcjzdhEsF7IJ02Ko1k5ddKfsXKI23nxUL6OpQ-2I-evMg413ZZz-grK1Z_1lSa_42VXx-b2kY7j_7bmNWz12DM89pPlDazZ-TZs3lMk3IYXZZ9r34GvZJN2Hf0afHK70NtNh4hzw7b8OQ11r2jyFi5Pv89OJlHvrBAZfDF2UWGYsIZZ7DElmkLjsudZa1Vqkd8gZVIKgaDOkbE2ttDIt2urucmEMKIhSb9sF9bni7l9B6FhGhGIkjVviVqaOmmk5LZJDDIrUdQBxKsOrkwvO07uF9eVox9JUeHgkBlmVvnBCeDLcMMfr7gxHrpD3XoX5ns0gIPVCFb9iryplKKvO7kUAXwaruJSovyIntvF8qZKBTJ23LC5DOBwLIbeiHmWjEcgXiPNQDEegQya42MwIhyJUKTKRqerAtjzM_Cujf3E3X-67YfwcjIrz6vz6cXZAWz4OiOqmHsP693fpf2AEKqrP7qV8w-wLBBj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-independent+method+for+fMRI+analysis&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Soltanian-Zadeh%2C+H&rft.au=Peck%2C+D.J&rft.au=Hearshen%2C+D.O&rft.au=Lajiness-O%27Neill%2C+R.R&rft.date=2004-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=23&rft.issue=3&rft.spage=285&rft_id=info:doi/10.1109%2FTMI.2003.823064&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2427421061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |