Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach

Objective . Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 68; no. 24; pp. 245024 - 245043
Main Authors Gao, Mingjie, Fessler, Jeffrey A, Chan, Heang-Ping
Format Journal Article
LanguageEnglish
Published England IOP Publishing 13.12.2023
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ad0eb4

Cover

Abstract Objective . Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity. Approach . We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs. Main results . We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs. Significance . The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
AbstractList Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity. Approach. We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs. Main results. We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs. Significance. The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity.Approach. We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs.Main results. We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs.Significance. The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity.Approach. We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs.Main results. We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs.Significance. The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
Objective . Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity. Approach . We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs. Main results . We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs. Significance . The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity. . We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs. . We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs. . The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
Author Gao, Mingjie
Fessler, Jeffrey A
Chan, Heang-Ping
Author_xml – sequence: 1
  givenname: Mingjie
  orcidid: 0000-0002-9129-0060
  surname: Gao
  fullname: Gao, Mingjie
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 2
  givenname: Jeffrey A
  surname: Fessler
  fullname: Fessler, Jeffrey A
  organization: University of Michigan Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109, United States of America
– sequence: 3
  givenname: Heang-Ping
  surname: Chan
  fullname: Chan, Heang-Ping
  organization: University of Michigan Department of Radiology, Ann Arbor, MI 48109, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37988758$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR3RbunJCPPRBqJ7HjnBBa8SWVcoGz5Y_JrksSB9tptZz60-tVlvIhVCFZGmn83puZ907Q0ehHQOg5Ja8oEeKcVpwWnHFyriwBXT9Cq_vWEVoRUtGipYwdo5MYrwihVJT1E3RcNa0QDRMrdPvJW-gLrSJYbAEmvL68LAJs5l4F9yM3Axg_xhRmk5wfcecDtm7jkuqxDqBiwskPPu7GtIXoIr5xaYsVTip-O8hmRewGtQGsYoQYBxgTVtMUvDLbp-hxp_oIzw71FH199_bL-kNx8fn9x_Wbi8LUvEkFb3ndasVFSUAQ0TaaCdJAy7m1HTOamk4LzTvGua47VkOtG0urltXUVLbqqlNEF915nNTuRvW9nELeKuwkJXLvptxbJ_fWycXNzHm9cKZZD2BN3juoXzyvnPzzZ3RbufHXWa6hLWN7hbODQvDfZ4hJDi4a6Hs1gp-jLEVbck4EKzP0xe_D7qf8zCoD-AIwwccYoJMmp7APJc92_UNnkL-I_3H5y4Xi_CSv_BzGnM1D8LN_wKdBSy5kWefHSC6T7ao7ItzXBg
CODEN PHMBA7
CitedBy_id crossref_primary_10_1007_s11042_024_20292_x
crossref_primary_10_1088_1361_6560_ad40f8
Cites_doi 10.1109/ISBI.2019.8759408
10.1148/radiol.2019180760
10.1109/CVPR.2017.632
10.1109/TMI.2017.2785879
10.1109/GlobalSIP.2013.6737048
10.1148/rg.2021200101
10.1109/CVPR.2016.90
10.1109/TMI.2017.2708987
10.1109/42.952727
10.1118/1.4903283
10.1109/TMI.2017.2732824
10.1088/0031-9155/58/3/569
10.1118/1.3560428
10.1109/MSP.2020.3016905
10.1118/1.4928603
10.1109/ISBI45749.2020.9098661
10.1016/j.media.2021.102061
10.1073/pnas.90.21.9758
10.1001/jamanetworkopen.2018.5474
10.1088/1361-6560/ab8f72
10.1137/16M1102884
10.1109/TMI.2018.2865202
10.1109/83.465107
10.1109/TCI.2018.2880326
10.1109/TMI.2010.2089694
10.1002/mp.16439
10.1109/TMI.2021.3066896
10.1038/s42256-019-0057-9
10.1117/12.2042897
10.1117/12.2513062
10.1088/0031-9155/40/5/010
10.1038/s42256-020-00273-z
10.1118/1.4967268
10.1117/12.2549361
10.1118/1.2237543
10.1109/TIP.2003.815295
10.1109/CVPR52688.2022.01167
10.1097/RCT.0000000000001469
10.1109/MSP.2019.2949470
10.1016/j.ejmp.2018.12.033
10.1016/j.crad.2015.11.008
10.1016/j.ejmp.2019.06.004
10.1117/12.2655419
10.1118/1.3570580
10.1117/1.JMI.7.4.042802
10.1109/TMI.2018.2865356
10.1002/mp.13342
10.1016/j.cpc.2020.107779
10.1002/mp.13801
10.1118/1.3232211
10.1117/1.JMI.3.3.035506
10.3390/diagnostics12020495
10.1117/1.JMI.8.6.065501
10.1002/mp.14779
10.1109/ICASSP.2018.8461408
10.1088/1361-6560/aa8803
10.1137/17M1122451
10.1088/0031-9155/58/12/R63
10.1109/TMI.2021.3115547
10.1093/jicru/os28.1.Report54
10.1148/radiol.14132722
10.1109/TMI.2018.2870343
ContentType Journal Article
Copyright 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2023
Copyright_xml – notice: 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
– notice: 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2023
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1361-6560/ad0eb4
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10.1088/1361-6560/ad0eb4
PMC10719554
37988758
10_1088_1361_6560_ad0eb4
pmbad0eb4
Genre Journal Article
GrantInformation_xml – fundername: National Cancer Institute
  grantid: R01 CA214981
  funderid: https://doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: R01 CA214981
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
M45
NPM
7X8
5PM
.GJ
.HR
02O
1WK
29O
3O-
53G
5ZI
9BW
AAGCF
AALHV
ABUFD
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
H~9
J5H
JCGBZ
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
X7L
ZGI
ZMT
ZXP
ZY4
ID FETCH-LOGICAL-c467t-69649ba6820e80897b5807e966ddf5cb1cfb8b6f566b4f54e4b7d139541c3d3f3
IEDL.DBID UNPAY
ISSN 0031-9155
1361-6560
IngestDate Sun Oct 26 05:13:59 EDT 2025
Tue Sep 30 17:10:41 EDT 2025
Thu Oct 02 05:32:30 EDT 2025
Thu Apr 03 07:06:17 EDT 2025
Wed Oct 01 00:30:44 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Sun Aug 18 15:00:26 EDT 2024
Tue Aug 20 22:17:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords digital breast tomosynthesis
model observer
deep convolutional neural network
microcalcification
image reconstruction
task-based image quality assessment
image denoising
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-69649ba6820e80897b5807e966ddf5cb1cfb8b6f566b4f54e4b7d139541c3d3f3
Notes PMB-115315.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9129-0060
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ad0eb4
PMID 37988758
PQID 2892660852
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10719554
crossref_citationtrail_10_1088_1361_6560_ad0eb4
crossref_primary_10_1088_1361_6560_ad0eb4
pubmed_primary_37988758
unpaywall_primary_10_1088_1361_6560_ad0eb4
proquest_miscellaneous_2892660852
iop_journals_10_1088_1361_6560_ad0eb4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231213
PublicationDateYYYYMMDD 2023-12-13
PublicationDate_xml – month: 12
  year: 2023
  text: 20231213
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Badano (pmbad0eb4bib5) 2018; 1
Yang (pmbad0eb4bib59) 2018; 37
Lange (pmbad0eb4bib31) 1995; 4
Venkatakrishnan (pmbad0eb4bib52) 2013; vol 2013
Xu (pmbad0eb4bib58) 2015; 42
Su (pmbad0eb4bib49) 2021; 48
Isola (pmbad0eb4bib28) 2017; vol 2017
Lu (pmbad0eb4bib34) 2015; 42
Lu (pmbad0eb4bib35) 2017; 62
Huber (pmbad0eb4bib26) 2023; 47
ICRU (pmbad0eb4bib27) 1996
Zheng (pmbad0eb4bib67) 2019; 46
Yang (pmbad0eb4bib60) 2016; 2016
Ahmad (pmbad0eb4bib2) 2020; 37
Monga (pmbad0eb4bib37) 2021; 38
Wolterink (pmbad0eb4bib55) 2017; 36
Chan (pmbad0eb4bib9) 2014; 273
Ye (pmbad0eb4bib61) 2018; vol 2018
Wang (pmbad0eb4bib54) 2020; 2
Kupinski (pmbad0eb4bib30) 2001; 20
Shan (pmbad0eb4bib45) 2019; 1
Barrett (pmbad0eb4bib7) 1993; 90
Aggarwal (pmbad0eb4bib1) 2019; 38
Zhang (pmbad0eb4bib65) 2006; 33
Romano (pmbad0eb4bib41) 2017; 10
Badal (pmbad0eb4bib3) 2019; 2019
Solomon (pmbad0eb4bib48) 2016; 3
Gao (pmbad0eb4bib15) 2021a; 40
He (pmbad0eb4bib24) 2016; vol 2016
Lu (pmbad0eb4bib33) 2013; 58
Chong (pmbad0eb4bib12) 2019; 292
Wang (pmbad0eb4bib53) 2021; 40
Chan (pmbad0eb4bib11) 1995; 40
Gulrajani (pmbad0eb4bib21) 2017; 2017
Wu (pmbad0eb4bib56) 2020
Zheng (pmbad0eb4bib66) 2018; 37
Petrov (pmbad0eb4bib39) 2019; 58
Sahu (pmbad0eb4bib43) 2019; vol 2019
Liu (pmbad0eb4bib32) 2022; vol 2022
Yosinski (pmbad0eb4bib62) 2014; 2014
Zeng (pmbad0eb4bib63) 2020; 7
Simonyan (pmbad0eb4bib47) 2015; vol 2015
Balta (pmbad0eb4bib6) 2019; 46
Teuwen (pmbad0eb4bib51) 2021; 71
Gao (pmbad0eb4bib17) 2020; 2020
Reehorst (pmbad0eb4bib40) 2019; 5
Buzzard (pmbad0eb4bib8) 2018; 11
Das (pmbad0eb4bib13) 2011; 30
Sidky (pmbad0eb4bib46) 2009; 36
Haneda (pmbad0eb4bib22) 2014; 2014
Badal (pmbad0eb4bib4) 2021; 261
Chan (pmbad0eb4bib10) 2023; 50
Samala (pmbad0eb4bib44) 2019; 38
Gilbert (pmbad0eb4bib19) 2016; 71
Nuyts (pmbad0eb4bib38) 2013; 58
Zhang (pmbad0eb4bib64) 2021; 8
Gao (pmbad0eb4bib18) 2021b; 41
Xie (pmbad0eb4bib57) 2020; 65
Hu (pmbad0eb4bib25) 2011; 38
Gang (pmbad0eb4bib14) 2011; 38
Gao (pmbad0eb4bib16) 2023; 2023
Jiang (pmbad0eb4bib29) 2003; 12
Ryu (pmbad0eb4bib42) 2019; vol 2019
Michielsen (pmbad0eb4bib36) 2016; 43
Gomi (pmbad0eb4bib20) 2022; 12
He (pmbad0eb4bib23) 2019; 38
Sundell (pmbad0eb4bib50) 2019; 63
References_xml – volume: vol 2019
  start-page: 1647
  year: 2019
  ident: pmbad0eb4bib43
  article-title: Using virtual digital breast tomosynthesis for de-noising of low-dose projection images
  doi: 10.1109/ISBI.2019.8759408
– volume: 292
  start-page: 1
  year: 2019
  ident: pmbad0eb4bib12
  article-title: Digital breast tomosynthesis: concepts and clinical practice
  publication-title: Radiology
  doi: 10.1148/radiol.2019180760
– volume: vol 2017
  start-page: 5967
  year: 2017
  ident: pmbad0eb4bib28
  article-title: Image-to-image translation with conditional adversarial networks
  doi: 10.1109/CVPR.2017.632
– volume: 37
  start-page: 1310
  year: 2018
  ident: pmbad0eb4bib59
  article-title: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2785879
– volume: vol 2013
  start-page: 945
  year: 2013
  ident: pmbad0eb4bib52
  article-title: Plug-and-play priors for model based reconstruction
  doi: 10.1109/GlobalSIP.2013.6737048
– volume: 41
  start-page: 321
  year: 2021b
  ident: pmbad0eb4bib18
  article-title: Digital breast tomosynthesis: update on technology, evidence, and clinical practice
  publication-title: RadioGraphics
  doi: 10.1148/rg.2021200101
– volume: vol 2016
  start-page: 770
  year: 2016
  ident: pmbad0eb4bib24
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
– volume: 36
  start-page: 2536
  year: 2017
  ident: pmbad0eb4bib55
  article-title: Generative adversarial networks for noise reduction in low-dose CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2708987
– volume: 20
  start-page: 886
  year: 2001
  ident: pmbad0eb4bib30
  article-title: Ideal observer approximation using Bayesian classification neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.952727
– volume: 42
  start-page: 182
  year: 2015
  ident: pmbad0eb4bib34
  article-title: Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis
  publication-title: Med. Phys.
  doi: 10.1118/1.4903283
– volume: 37
  start-page: 116
  year: 2018
  ident: pmbad0eb4bib66
  article-title: Detector blur and correlated noise modeling for digital breast tomosynthesis reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2732824
– volume: 58
  start-page: 569
  year: 2013
  ident: pmbad0eb4bib33
  article-title: A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/3/569
– volume: 38
  start-page: 1754
  year: 2011
  ident: pmbad0eb4bib14
  article-title: Analysis of Fourier-domain task-based detectability index in tomosynthesis and cone-beam CT in relation to human observer performance
  publication-title: Med. Phys.
  doi: 10.1118/1.3560428
– volume: 38
  start-page: 18
  year: 2021
  ident: pmbad0eb4bib37
  article-title: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2020.3016905
– volume: 42
  start-page: 5377
  year: 2015
  ident: pmbad0eb4bib58
  article-title: Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
  publication-title: Med. Phys.
  doi: 10.1118/1.4928603
– start-page: 656
  year: 2020
  ident: pmbad0eb4bib56
  article-title: Digital breast tomosynthesis reconstruction with deep neural network for improved contrast and in-depth resolution
  doi: 10.1109/ISBI45749.2020.9098661
– volume: vol 2015
  year: 2015
  ident: pmbad0eb4bib47
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 71
  year: 2021
  ident: pmbad0eb4bib51
  article-title: Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102061
– volume: 90
  start-page: 9758
  year: 1993
  ident: pmbad0eb4bib7
  article-title: Model observers for assessment of image quality
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.90.21.9758
– volume: 1
  year: 2018
  ident: pmbad0eb4bib5
  article-title: Evaluation of digital breast tomosynthesis as replacement of full-field digital mammography using an in silico imaging trial
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2018.5474
– volume: 65
  year: 2020
  ident: pmbad0eb4bib57
  article-title: Generative adversarial network based regularized image reconstruction for PET
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab8f72
– volume: 2014
  start-page: 3320
  year: 2014
  ident: pmbad0eb4bib62
  article-title: How transferable are features in deep neural networks?
– volume: 10
  start-page: 1804
  year: 2017
  ident: pmbad0eb4bib41
  article-title: The little engine that could: regularization by denoising (RED)
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1102884
– volume: 38
  start-page: 371
  year: 2019
  ident: pmbad0eb4bib23
  article-title: Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2865202
– volume: 4
  start-page: 1430
  year: 1995
  ident: pmbad0eb4bib31
  article-title: Globally convergent algorithms for maximum a posteriori transmission tomography
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.465107
– volume: 5
  start-page: 52
  year: 2019
  ident: pmbad0eb4bib40
  article-title: Regularization by denoising: clarifications and new interpretations
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2018.2880326
– volume: 30
  start-page: 904
  year: 2011
  ident: pmbad0eb4bib13
  article-title: Penalized maximum likelihood reconstruction for improved microcalcification detection in breast tomosynthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2089694
– volume: 50
  start-page: 6177
  year: 2023
  ident: pmbad0eb4bib10
  article-title: Deep learning denoising of digital breast tomosynthesis: observer performance study of the effect on detection of microcalcifications in breast phantom images
  publication-title: Med. Phys.
  doi: 10.1002/mp.16439
– volume: 40
  start-page: 1805
  year: 2021a
  ident: pmbad0eb4bib15
  article-title: Deep convolutional neural network with adversarial training for denoising digital breast tomosynthesis images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3066896
– volume: 2016
  start-page: 10
  year: 2016
  ident: pmbad0eb4bib60
  article-title: Deep ADMM-Net for compressive sensing MRI
– volume: 1
  start-page: 269
  year: 2019
  ident: pmbad0eb4bib45
  article-title: Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0057-9
– volume: 2014
  year: 2014
  ident: pmbad0eb4bib22
  article-title: Toward a dose reduction strategy using model-based reconstruction with limited-angle tomosynthesis
  publication-title: Proc. SPIE
  doi: 10.1117/12.2042897
– volume: 2019
  year: 2019
  ident: pmbad0eb4bib3
  article-title: Virtual clinical trial for task-based evaluation of a deep learning synthetic mammography algorithm
  publication-title: Proc. SPIE
  doi: 10.1117/12.2513062
– volume: 40
  start-page: 857
  year: 1995
  ident: pmbad0eb4bib11
  article-title: Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/40/5/010
– volume: 2
  start-page: 737
  year: 2020
  ident: pmbad0eb4bib54
  article-title: Deep learning for tomographic image reconstruction
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-00273-z
– volume: 43
  start-page: 6577
  year: 2016
  ident: pmbad0eb4bib36
  article-title: Design of a model observer to evaluate calcification detectability in breast tomosynthesis and application to smoothing prior optimization
  publication-title: Med. Phys.
  doi: 10.1118/1.4967268
– volume: 2020
  year: 2020
  ident: pmbad0eb4bib17
  article-title: Deep convolutional neural network denoising for digital breast tomosynthesis reconstruction
  publication-title: Proc. SPIE
  doi: 10.1117/12.2549361
– volume: 33
  start-page: 3781
  year: 2006
  ident: pmbad0eb4bib65
  article-title: A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis
  publication-title: Med. Phys.
  doi: 10.1118/1.2237543
– volume: 12
  start-page: 957
  year: 2003
  ident: pmbad0eb4bib29
  article-title: Convergence of the simultaneous algebraic reconstruction technique (SART)
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.815295
– volume: vol 2022
  start-page: 11966
  year: 2022
  ident: pmbad0eb4bib32
  article-title: A convnet for the 2020s
  doi: 10.1109/CVPR52688.2022.01167
– volume: 47
  start-page: 603
  year: 2023
  ident: pmbad0eb4bib26
  article-title: Deep learning-based image noise quantification framework for computed tomography
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/RCT.0000000000001469
– volume: 37
  start-page: 105
  year: 2020
  ident: pmbad0eb4bib2
  article-title: Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2019.2949470
– volume: 58
  start-page: 8
  year: 2019
  ident: pmbad0eb4bib39
  article-title: Systematic approach to a channelized Hotelling model observer implementation for a physical phantom containing mass-like lesions: application to digital breast tomosynthesis
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2018.12.033
– volume: 71
  start-page: 141
  year: 2016
  ident: pmbad0eb4bib19
  article-title: Digital breast tomosynthesis (DBT): a review of the evidence for use as a screening tool
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2015.11.008
– volume: 63
  start-page: 122
  year: 2019
  ident: pmbad0eb4bib50
  article-title: A phantom study comparing technical image quality of five breast tomosynthesis systems
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2019.06.004
– volume: 2023
  year: 2023
  ident: pmbad0eb4bib16
  article-title: Deep CNN task-based image quality assessment: application to digital breast tomosynthesis reconstruction and denoising
  publication-title: Proc. SPIE
  doi: 10.1117/12.2655419
– volume: 38
  start-page: 2455
  year: 2011
  ident: pmbad0eb4bib25
  article-title: The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis
  publication-title: Med. Phys.
  doi: 10.1118/1.3570580
– volume: 7
  year: 2020
  ident: pmbad0eb4bib63
  article-title: Computational reader design and statistical performance evaluation of an in silico imaging clinical trial comparing digital breast tomosynthesis with full-field digital mammography
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.7.4.042802
– volume: 38
  start-page: 394
  year: 2019
  ident: pmbad0eb4bib1
  article-title: MoDL: model-based deep learning architecture for inverse problems
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2865356
– volume: 2017
  start-page: 5769
  year: 2017
  ident: pmbad0eb4bib21
  article-title: Improved training of Wasserstein GANs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 46
  start-page: 714
  year: 2019
  ident: pmbad0eb4bib6
  article-title: Can a channelized Hotelling observer assess image quality in acquired mammographic images of an anthropomorphic breast phantom including image processing?
  publication-title: Med. Phys.
  doi: 10.1002/mp.13342
– volume: 261
  year: 2021
  ident: pmbad0eb4bib4
  article-title: Mammography and breast tomosynthesis simulator for virtual clinical trials
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107779
– volume: 46
  start-page: 5572
  year: 2019
  ident: pmbad0eb4bib67
  article-title: Effect of source blur on digital breast tomosynthesis reconstruction
  publication-title: Med. Phys.
  doi: 10.1002/mp.13801
– volume: 36
  start-page: 4920
  year: 2009
  ident: pmbad0eb4bib46
  article-title: Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms
  publication-title: Med. Phys.
  doi: 10.1118/1.3232211
– volume: 3
  year: 2016
  ident: pmbad0eb4bib48
  article-title: Correlation between human detection accuracy and observer model-based image quality metrics in computed tomography
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.3.035506
– volume: 12
  year: 2022
  ident: pmbad0eb4bib20
  article-title: Evaluation of a generative adversarial network to improve image quality and reduce radiation-dose during digital breast tomosynthesis
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020495
– volume: 8
  year: 2021
  ident: pmbad0eb4bib64
  article-title: Impact of deep learning-based image super-resolution on binary signal detection
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.8.6.065501
– volume: vol 2019
  year: 2019
  ident: pmbad0eb4bib42
  article-title: Plug-and-play methods provably converge with properly trained denoisers
– volume: 48
  start-page: 2289
  year: 2021
  ident: pmbad0eb4bib49
  article-title: DIR-DBTnet: deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging
  publication-title: Med. Phys.
  doi: 10.1002/mp.14779
– volume: vol 2018
  start-page: 6668
  year: 2018
  ident: pmbad0eb4bib61
  article-title: Deep residual learning for model-based iterative CT reconstruction using plug-and-play framework
  doi: 10.1109/ICASSP.2018.8461408
– volume: 62
  start-page: 7765
  year: 2017
  ident: pmbad0eb4bib35
  article-title: Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa8803
– volume: 11
  start-page: 2001
  year: 2018
  ident: pmbad0eb4bib8
  article-title: Plug-and-play unplugged: optimization-free reconstruction using consensus equilibrium
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/17M1122451
– volume: 58
  start-page: R63–R96
  year: 2013
  ident: pmbad0eb4bib38
  article-title: Modelling the physics in the iterative reconstruction for transmission computed tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/12/R63
– volume: 40
  start-page: 2956
  year: 2021
  ident: pmbad0eb4bib53
  article-title: Deep tomographic image reconstruction: yesterday, today, and tomorrow—editorial for the 2nd special issue ‘machine learning for image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3115547
– year: 1996
  ident: pmbad0eb4bib27
  doi: 10.1093/jicru/os28.1.Report54
– volume: 273
  start-page: 675
  year: 2014
  ident: pmbad0eb4bib9
  article-title: Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views
  publication-title: Radiology
  doi: 10.1148/radiol.14132722
– volume: 38
  start-page: 686
  year: 2019
  ident: pmbad0eb4bib44
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2870343
SSID ssj0011824
Score 2.4593163
Snippet Objective . Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because...
. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it...
Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 245024
SubjectTerms deep convolutional neural network
digital breast tomosynthesis
image denoising
image reconstruction
microcalcification
model observer
task-based image quality assessment
SummonAdditionalLinks – databaseName: Institute of Physics (IOP) - journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RTwuPAq04SUjwQGk7CaxnTjihCqqCqkLByr1gGTFj5Sou0nUZIW2J3464yQbsVAVhJRDlIyT2B7b32TG3wC80oFONI-cz9CggcIM91MWat_S3KFxxnvi-eNZfHTCPp7y0y14N-6Fqeph6p_gaU8U3DfhEBAnpiGNQ99xxkwzE1jFtuEGFQiM3e69T59HFwICZzb4Ja8qtbEObeO7roKYf0ZK3l6Wdbb6ns3nvyxDh_fg67oCffTJ-WTZqom-_I3b8T9reB_uDvCUvO9FH8CWLXfhZp-wcrULt44HVzxe7GJHdfMQfrh8anPfrYeGGGtrcjCb-RddkvuL4hIvdlb3yFRLECcTU5y5dCVEuaD4lrTVompWJaLRpmiI-zlMMtJmzfnwWHwiKRY495FspBIlaz70R3By-OHLwZE_JHbwNc7LrR-nMUtVFiP6sCIQaaK4CBKLlpcxOdcq1LkSKs4RaiqWc2aZSgxCVY5aRA3N6WPYKavS7gOxeZrYROuIxZRxYdMsiW2U24grEyTGeDBdd7PUA-u5S74xl533XQjpGlu6xpZ9Y3vwZixR94wf18i-xj6Uw7BvrpF7uSFXL5SMhYwYHhxRkqxNjjJr_ZM4xJ3fJitttWwk2sQIoxAbRx7s9fo4fhl1fHNo83kgNjR1FHD04Zt3yuJbRyOOhn-YIpr04O2o1H-t8ZN_rPFTuBMhHHSBPyF9BjuoYvY5wrdWveiG6U99mkBQ
  priority: 102
  providerName: IOP Publishing
Title Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach
URI https://iopscience.iop.org/article/10.1088/1361-6560/ad0eb4
https://www.ncbi.nlm.nih.gov/pubmed/37988758
https://www.proquest.com/docview/2892660852
https://pubmed.ncbi.nlm.nih.gov/PMC10719554
https://doi.org/10.1088/1361-6560/ad0eb4
UnpaywallVersion publishedVersion
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) - journals
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6xW_G48Civ8KiMBAeQ0uZhO8mxqqgKUrc9sKKcrPgRiLqbRE1WaHvipzNOshGBqoAU5eBMrNgZ2994xt8AvFaeihQLrM9Qo4FCNXMT6ivXhJlF45R1xPPHM340px_P2Fm_32HPwoz892ic-SH3XUsQs5dqz0g6gS3OEHVPYWs-O93_0rEu-q6lOe-OWHXivUfyqipGK9AkL6urwOWfMZK3V0WVrr-ni8UvC9DhvY4NqW55C23cyfnuqpG76vI3Vsd_adt9uNujULLfqc0DuGGKbbjZ5aVcb8Ot497jjoVtiKiqH8IPmzZt4dplTxNtTEUOZjP3os1lf5FfYmFrXA-EtAThMNH5V5uVhEgb-96QplyW9bpA0FnnNbF7wCQlTVqf99VijSRf4hRH0oExlGxozx_B_PD9p4Mjt8_f4CqcfhuXJ5wmMuUIMkzsxUkkWexFBg0srTOmpK8yGUueIaKUNGPUUBlpRKQMlSXUYRY-hmlRFuYpEJMlkYmUCigPKYtNkkbcBJkJmNRepLUDe5t_KlRPbm5zbCxE62SPY2E7W9jOFl1nO_B2eKPqiD2ukX2DaiL60V1fI_dqJFctpeCxCCheDMGQqHSGMhtlEziSrXsmLUy5qgWavoiWEAIHDjzplG_4stDSyqFp50A8UstBwLKEj58U-beWLRztez9B0OjAu0GD_9riZ_8j_BzuBAj9bJCPH76AKeqZeYlQrZE7MPlwcor3k_DzTj9ifwLPNze2
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgoXHuUVnkaCA0jZ3SR24hxRYVUeXXqgUm8mfgSi7iZRkxXanvjpjBNvxEJVkJByiJJxEttj-5vM-BuA52qiEsVC6zPUaKBQzfyUBso3UW7ROGU98fzBLN4_ou-P2bHLc9rthalqN_WP8LQnCu6b0AXE8XEQxYFvOWPGmZ4YSce1zrfgcsdTYnfwfToc3AgInqnzTZ5XcmMt2sL3nQcz_4yWvLos62z1PZvPf1mKpjfgy7oSfQTKyWjZypE6-43f8T9qeROuO5hKXvfit-CSKXfhSp-4crULOwfOJY8XuxhS1dyGHzav2ty366Im2pia7M1m_mmX7P60OMOLnfU9MNYSxMtEF19t2hIibXB8S9pqUTWrElFpUzTE_iQmGWmz5sQ9Fp9IigXOgSQbKEXJmhf9DhxN337e2_ddggdf4fzc-nEa01RmMaIQwyc8TSTjk8SgBaZ1zpQMVC65jHOEnJLmjBoqE42QlaE2RTrKo7uwXValuQ_E5GliEqVCGkeUcZNmSWzC3IRM6kmitQfjdVcL5djPbRKOuei88JwL2-DCNrjoG9yDl0OJumf-uED2BfajcMO_uUDu2YZcvZAi5iKkeDBESwI7GWXWOihwqFv_TVaaatkItI0RTiFGDj241-vk8GWR5Z1D288DvqGtg4ClEd-8UxbfOjrxAFFmiqjSg1eDYv-1xg_-scZPYefwzVR8fDf78BCuhYgQbSxQED2CbdQ28xgRXSufdKP2J65gRbE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5wwEB41G_Vx6SN90ZdcqT20EgkP28AxihpFlbLqoSulJws_aFF2AQVW1ebUn94xZlFpo7SVOJnBAvMZf8OMvwF4owKVKBbZmKFGB4Vq5mc0VL6JC8vGKXPC86dzfrKgH8_Y2fC_w-6FmcTv0TkLYx76ViDmINeBkXQHdjlD1j2D3cX80-EXp7oY-lbm3G2xcuZDRPKqLiYr0E5ZN1eRyz9zJG-vqybffM-Xy18WoON7Tg2p7XULbd7J-f66k_vq8jdVx395tvtwd2Ch5NDB5gHcMNUe3HR1KTd7cOt0iLhjY58iqtqH8MOWTVv6dtnTRBvTkKP53L_oa9lflJfY2DvXoyAtQTpMdPnVViUh0ua-d6SrV3W7qZB0tmVL7D9gkpMub8-HbrFHUq7wE0fyUTGUbGXPH8Hi-MPnoxN_qN_gK_z8dj7POM1kzpFkmDRIs0SyNEgMOlhaF0zJUBUylbxARilpwaihMtHISBmCJdZxET-GWVVX5ikQU2SJSZSKKI8pS02WJ9xEhYmY1EGitQcH23cq1CBubmtsLEUfZE9TYQdb2MEWbrA9eDde0Thhj2ts3yJMxDC722vsXk_smpUUPBURxYMhGRKNLtBmCzaBM9mGZ_LK1OtWoOuLbAkpcOTBEwe-8c5iKyuHrp0H6QSWo4FVCZ-eqcpvvVo4-vdhhqTRg_cjgv_6xM_-x_g53ImQ-tkknzB-ATPEmXmJVK2Tr4ZZ-hNDtDWz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+deep+CNN-regularized+reconstruction+for+digital+breast+tomosynthesis+with+a+task-based+CNN+image+assessment+approach&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Gao%2C+Mingjie&rft.au=Fessler%2C+Jeffrey+A&rft.au=Chan%2C+Heang-Ping&rft.date=2023-12-13&rft.pub=IOP+Publishing&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=68&rft.issue=24&rft_id=info:doi/10.1088%2F1361-6560%2Fad0eb4&rft_id=info%3Apmid%2F37988758&rft.externalDocID=PMC10719554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon