Integrated Signaling in Flower Senescence An Overview

Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant therefore it provides excellent m...

Full description

Saved in:
Bibliographic Details
Published inPlant signaling & behavior Vol. 2; no. 6; pp. 437 - 445
Main Authors Tripathi, Siddharth Kaushal, Tuteja, Narendra
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.11.2007
Landes Bioscience
Subjects
Online AccessGet full text
ISSN1559-2316
1559-2324
1559-2324
DOI10.4161/psb.2.6.4991

Cover

Abstract Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant therefore it provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the up-regulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins, and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the followings: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence, and finally the senescence associated genes (SAGs) have also been described.
AbstractList Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant therefore it provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the up-regulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins, and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the followings: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence, and finally the senescence associated genes (SAGs) have also been described.
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.
Author Tuteja, Narendra
Tripathi, Siddharth Kaushal
AuthorAffiliation Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
AuthorAffiliation_xml – name: Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
Author_xml – sequence: 1
  givenname: Siddharth Kaushal
  surname: Tripathi
  fullname: Tripathi, Siddharth Kaushal
– sequence: 2
  givenname: Narendra
  surname: Tuteja
  fullname: Tuteja, Narendra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19517004$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rVDEUxYNUbDu6cy2z04Iz5vu9bApSWlsodFFdhyTvvjGSScYkY-l_bx7TDlZKs8mF-zv3nuQco4OYIiD0nuAlJ5J82RS7pEu55EqRV-iICKEWlFF-sK-JPETHpfzCmLMO4zfokChBWsWP0MlVrLDKpsIwv_WraIKPq7mP84uQ7iDPbyFCcRAdvEWvRxMKvHu4Z-jHxfn3s8vF9c23q7Ov1wvHZVcXQjHpjFFtkwUrmGLAsbEdsz0o0Y-il4rQgfRARik7aQkhY0fsgN3ohMFshk53czdbu4ah7a7ZBL3Jfm3yvU7G66ed6H_qVfqjqWSctTNDHx8G5PR7C6XqtW9PCMFESNuiO8YoZZiIRn56kaScKU5Jz2RDP_zram_n8ScbQHeAy6mUDKN2vprq02TSB02wnuLSLS5NtdRTXE30-T_Rfu7zON7hzeAAxfpUnJ-y2csm3OTqXYBHSbeT-DimvDZ3KYdBV3MfUh6zic4XzZ5d9hfxYbsG
CitedBy_id crossref_primary_10_1007_s40502_018_0398_0
crossref_primary_10_1038_s41598_021_03028_x
crossref_primary_10_1093_jxb_ery009
crossref_primary_10_1007_s00344_024_11603_5
crossref_primary_10_1093_jxb_err293
crossref_primary_10_3389_fpls_2021_634393
crossref_primary_10_1093_pcp_pcaa145
crossref_primary_10_3389_fpls_2021_701633
crossref_primary_10_1080_14620316_2018_1432297
crossref_primary_10_1016_j_scienta_2023_112362
crossref_primary_10_3389_fpls_2022_872442
crossref_primary_10_1016_j_arr_2022_101601
crossref_primary_10_1016_j_postharvbio_2022_112130
crossref_primary_10_1038_s41598_020_61200_1
crossref_primary_10_1071_PC16025
crossref_primary_10_1111_aab_12496
crossref_primary_10_4161_psb_3_8_6186
crossref_primary_10_1371_journal_pone_0166350
crossref_primary_10_4161_psb_6_8_16254
crossref_primary_10_1016_j_scienta_2021_110491
crossref_primary_10_1007_s13580_015_1068_z
crossref_primary_10_3389_fpls_2021_753847
crossref_primary_10_1111_plb_12672
crossref_primary_10_1007_s00344_010_9181_9
crossref_primary_10_1007_s11103_021_01171_7
crossref_primary_10_1007_s12229_011_9063_2
crossref_primary_10_1007_s40502_014_0104_9
crossref_primary_10_3390_f15091619
crossref_primary_10_1038_hortres_2015_59
crossref_primary_10_1016_j_plantsci_2018_04_023
crossref_primary_10_1007_s00425_021_03808_9
crossref_primary_10_1007_s11103_024_01449_6
crossref_primary_10_1016_j_envexpbot_2023_105298
crossref_primary_10_1111_jipb_12116
crossref_primary_10_1111_pbi_14132
crossref_primary_10_1111_tpj_12494
crossref_primary_10_1007_s11703_011_1064_8
crossref_primary_10_1016_j_scienta_2013_03_005
crossref_primary_10_1186_s12870_021_03283_0
crossref_primary_10_3390_plants12030532
crossref_primary_10_1007_s40502_016_0267_7
crossref_primary_10_1186_1471_2229_10_36
crossref_primary_10_1080_14620316_2020_1727782
crossref_primary_10_1007_s11103_020_01058_z
crossref_primary_10_1111_j_1365_2672_2012_05409_x
crossref_primary_10_17660_ActaHortic_2019_1262_29
crossref_primary_10_1111_tpj_14919
crossref_primary_10_1016_j_scienta_2021_110444
crossref_primary_10_1186_1471_2229_11_150
crossref_primary_10_15740_HAS_AU_12_TECHSEAR_1_2017_218_223
crossref_primary_10_3390_horticulturae8010027
crossref_primary_10_1016_j_plaphy_2025_109707
crossref_primary_10_17660_ActaHortic_2016_1131_5
crossref_primary_10_1007_s11738_011_0734_8
crossref_primary_10_1111_ppl_14385
crossref_primary_10_1016_j_postharvbio_2016_04_008
crossref_primary_10_1038_s41598_020_72994_5
crossref_primary_10_1016_j_forsciint_2015_03_021
crossref_primary_10_1590_2447_536x_v26i1_2108
crossref_primary_10_1016_j_scienta_2022_111783
crossref_primary_10_1080_14620316_2016_1234920
crossref_primary_10_1093_plphys_kiac351
crossref_primary_10_56093_ijas_v91i1_110953
crossref_primary_10_1016_j_plantsci_2011_12_015
crossref_primary_10_1016_j_postharvbio_2019_02_011
crossref_primary_10_1016_j_pld_2019_10_002
crossref_primary_10_1016_j_indcrop_2024_120335
crossref_primary_10_3390_antiox2030132
crossref_primary_10_1016_j_scienta_2023_112650
crossref_primary_10_1080_14620316_2015_1133606
crossref_primary_10_1007_s00344_013_9375_z
crossref_primary_10_1007_s00425_013_1984_z
crossref_primary_10_1038_s41438_019_0221_8
crossref_primary_10_1371_journal_pone_0088320
crossref_primary_10_1016_j_postharvbio_2018_04_014
crossref_primary_10_1016_j_biotechadv_2013_02_003
crossref_primary_10_1080_00087114_2002_589779
crossref_primary_10_1016_j_postharvbio_2024_113299
crossref_primary_10_1002_smtd_201900267
crossref_primary_10_1016_j_plantsci_2012_02_012
crossref_primary_10_1093_pcp_pcy162
crossref_primary_10_3389_fpls_2016_01299
crossref_primary_10_1007_s00344_023_11122_9
crossref_primary_10_17660_ActaHortic_2019_1263_61
crossref_primary_10_1007_s00442_015_3247_0
crossref_primary_10_1007_s11356_017_9948_7
crossref_primary_10_1007_s12298_018_0554_z
crossref_primary_10_1186_1471_2164_14_37
crossref_primary_10_3390_plants13192800
Cites_doi 10.1023/B:PLAN.0000023670.61059.1d
10.1016/S0925-5214(98)00037-4
10.1002/9781118060841.ch2
10.1093/jexbot/53.368.407
10.1034/j.1399-3054.1997.1000323.x
10.1105/tpc.12.2.183
10.1007/s00425-006-0307-z
10.1093/genetics/162.4.1687
10.1093/jxb/erg133
10.1023/A:1006198431596
10.1111/j.1399-3054.1995.tb05131.x
10.1105/tpc.014365
10.1046/j.0028-646x.2001.00194.x
10.1016/S0168-9452(00)00373-3
10.1093/jxb/erh264
10.1007/BF00039505
10.1017/CBO9780511752339.013
10.1016/S0176-1617(97)80038-7
10.1104/pp.116.1.419
10.1111/j.0031-9317.2004.0311.x
10.1104/pp.108.4.1405
10.1046/j.1469-8137.2003.00853.x
10.1139/b97-096
10.1016/S0163-7827(98)00006-X
10.1111/j.1399-3054.1994.tb00419.x
10.1071/EA04127
10.1104/pp.125.2.718
10.1104/pp.112.2.503
10.1023/A:1005952005739
10.1104/pp.50.3.341
10.1073/pnas.140213697
10.1104/pp.000919
10.1034/j.1399-3054.1998.1040323.x
10.1042/bst0240434
10.1111/j.1399-3054.1993.tb05495.x
10.1146/annurev.arplant.48.1.547
10.1016/S0168-9452(97)00197-0
10.1080/14620316.2000.11511193
10.1093/jexbot/52.355.377
10.1093/jxb/erl100
10.1111/j.1469-8137.2004.01226.x
10.1104/pp.115.1.51
10.1104/pp.122.4.1323
10.21273/HORTSCI.30.5.970
10.1105/tpc.018929
10.1071/PP01174
10.1093/jxb/48.5.1027
10.1093/jexbot/53.371.1223
10.1093/jxb/eri124
10.1186/1471-2229-6-8
10.1105/tpc.13.8.1803
10.1023/A:1006146230602
10.1093/jxb/eri266
10.1007/BF00024432
10.1016/j.plaphy.2004.07.006
10.1007/BF00029534
10.1007/s002990000251
10.1093/jxb/48.4.821
10.1016/0304-4238(95)00840-3
10.1105/tpc.9.7.1169
10.1016/0168-9452(94)04020-H
10.1023/A:1005993024161
10.1146/annurev.pp.42.060191.003051
10.1016/S0168-9452(98)00034-X
10.1038/nature02540
10.1093/jxb/erm058
10.1038/371788a0
10.1111/j.1467-7652.2004.00059.x
10.1023/A:1005894703444
10.1016/j.phytochem.2007.02.027
10.1104/pp.123.4.1325
10.1111/j.1365-313X.2007.03105.x
10.1017/CBO9780511752339.016
10.1007/BF00019463
10.1016/j.tplants.2005.01.006
10.1023/A:1009617804359
10.1017/CBO9780511752339.017
10.1104/pp.103.1.31
10.1007/s00425-003-0976-9
10.1093/jxb/39.11.1605
10.1007/BF00020403
10.1093/jexbot/53.368.399
10.1038/sj.cdd.4400954
10.1104/pp.99.1.38
10.1007/BF00024427
10.1104/pp.119.4.1341
10.1007/BF01279588
10.21273/JASHS.115.3.455
10.1007/BF00020397
10.1016/S0044-328X(80)80108-5
10.1104/pp.87.2.498
10.1016/S0168-9452(02)00068-7
10.1105/tpc.6.9.1227
10.1104/pp.107.101741
10.1083/jcb.200604011
10.1111/j.1399-3054.1994.tb02523.x
10.1023/A:1026540524990
10.1093/jexbot/53.367.233
10.1104/pp.103.033084
10.1093/oxfordjournals.aob.a088341
10.1073/pnas.90.11.5118
10.1111/j.1399-3054.1994.tb00388.x
10.1104/pp.103.023945
10.1016/S0176-1617(11)81686-X
10.1007/BF01283002
10.1093/jxb/32.4.759
10.1111/j.1469-8137.2007.02118.x
10.1105/tpc.002170
10.1016/S0925-5214(97)00040-9
10.1093/aob/mcj051
10.1023/A:1026556928624
10.1093/pcp/pce144
10.1038/nbt0597-444
10.1007/s00299-006-0285-4
10.1104/pp.103.028027
ContentType Journal Article
Copyright Copyright © 2007 Landes Bioscience 2007
Copyright_xml – notice: Copyright © 2007 Landes Bioscience 2007
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
5PM
DOI 10.4161/psb.2.6.4991
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Biology
EISSN 1559-2324
EndPage 445
ExternalDocumentID PMC2634333
19517004
10_4161_psb_2_6_4991
10904991
Genre Review Article
Journal Article
GroupedDBID ---
0YH
29O
2WC
30N
53G
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADBBV
ADCVX
AEISY
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
F5P
GTTXZ
H13
HYE
KYCEM
M4Z
O9-
OK1
P2P
RPM
SNACF
TDBHL
TEI
TFL
TFT
TFW
TR2
TTHFI
~KM
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
KM
RNANH
ROSJB
RTWRZ
TQWBC
V1K
ZGOLN
4.4
AAYXX
AIYEW
CITATION
EJD
EMOBN
GROUPED_DOAJ
LJTGL
SV3
TUS
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c467t-5936caa9370beb5393e40ab73b8e958f586912d18e1f6676b111f71bd0cfc5a03
ISSN 1559-2316
1559-2324
IngestDate Thu Aug 21 18:03:53 EDT 2025
Thu Jul 10 23:16:24 EDT 2025
Mon May 05 20:40:45 EDT 2025
Thu Apr 03 07:10:25 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 02:20:52 EDT 2025
Fri Jan 15 03:35:48 EST 2021
Wed Dec 25 09:05:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords senescence
flowers
environmental factors
pollination
plant hormones
programmed cell death
ethylene
petals
senescence-associated genes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-5936caa9370beb5393e40ab73b8e958f586912d18e1f6676b111f71bd0cfc5a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19517004
PQID 2439421836
PQPubID 24069
PageCount 9
ParticipantIDs pubmed_primary_19517004
landesbioscience_primary_psb_article_4991
crossref_primary_10_4161_psb_2_6_4991
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2634333
crossref_citationtrail_10_4161_psb_2_6_4991
proquest_miscellaneous_733223015
proquest_miscellaneous_2439421836
informaworld_taylorfrancis_310_4161_psb_2_6_4991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-Nov
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-Nov
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant signaling & behavior
PublicationTitleAlternate Plant Signal Behav
PublicationYear 2007
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References Woltering EJ (R63) 1994
Woltering EJ (R74) 1997; 48
van Doorn WG (R64) 1997; 48
Singh A (R66) 1992; 99
Verlinden S (R76) 1998; 4
Stead AD (R28) 1994
Peary JS (R40) 1990; 115
R21
R20
R22
Xinjia Xu (R123) 2007; 58
Hong Yuwen (R34) 2000; 97
R1
R3
R5
R7
R8
Whitehead CS (R69) 1994
Phillips HL (R30) 1980; 102
Shutian Li (R114) 2007; 145
Borochov A (R89) 1989; 11
Stephenson P (R47) 1998; 104
Garello G (R73) 1995; 16
R37
R39
Porat R (R102) 1994; 90
Waki K (R84) 2001; 355
Kuroda S (R82) 2004; 42
Tang X (R77) 1994; 6
R106
Smith MT (R27) 1992; 69
Beers EP (R46) 2000; 44
R104
Maxson JM (R109) 1996; 31
Meyer RC (R108) 1991; 17
Cercos M (R25) 1999; 119
Leverentz Michael K (R35) 2002; 130
R41
Thompson JE (R29) 1997; 75
Hoeberichts FA (R107) 2007
del Rio LA (R43) 1996; 24
Van Staden J (R95) 1980; 99
R44
R49
R110
Rogers Hilary J (R2) 2006; 97
Nadeau JA (R79) 1993; 103
Tang X (R78) 1996; 112
van Doorn WG (R105) 2004; 134
Huang FY (R101) 1997; 115
Tetsuya Yamada (R120) 2007; 26
R50
Marianne Hopkins (R124) 2007; 175
R57
R59
Azeez A (R52) 2007; 68
Beja-Tal S (R45) 1994; 143
Müller R (R81) 2000; 75
Borochov A (R99) 1994; 90
Lee M (R103) 1997; 151
R61
R60
R62
Paliyath G (R31) 1992; 30
R67
Panavas T (R90) 1998; 133
O'Neill SD (R4) 1997; 48
Hunter DA (R92) 2004; 121
Wagstaff C (R48) 2002; 53
Pak C (R112) 2005; 165
Satterfield TF (R121) 2002; 162
Sugawara H (R54) 2002; 53
R118
Bartoli CG (R42) 1995; 104
R116
Christensen CA (R15) 2002; 14
R115
Page T (R26) 2001; 125
Jones ML (R53) 1995; 28
Panavas T (R55) 1999; 40
Savin KW (R86) 1995; 30
Porat R (R38) 1995; 93
Whitehead CS (R70) 1993; 88
R75
Sylvestre I (R33) 1989; 27
R122
Rieu I (R13) 2003; 217
Woltering EJ (R68) 1997; 48
Jones ML (R23) 2005; 56
Woodson WR (R6) 1988; 87
Hunter Donald Alexander (R71) 2004; 121
Courtney SE (R111) 1994; 91
Wagstaff C (R14) 2003; 160
R80
Valpuesta V (R24) 1995; 28
Larsen PB (R65) 1995; 108
R83
R85
R87
Saks Y (R97) 1992; 11
Thomas H (R11) 2003; 54
R88
Mayak S (R94) 1972; 50
Panavas T (R32) 1998; 133
Breeze E (R9) 2004; 2
Xu Y (R56) 2000; 122
Beja-Tal S (R72) 1995; 64
Taylor CB (R58) 1993; 90
Fukuchi-Mizutani M (R36) 2000; 160
Guerrero C (R51) 1998; 36
R93
R96
R10
R98
R12
R16
Ronen M (R91) 1981; 32
R18
R17
Yan Xu (R113) 2006; 6
Breeze E (R119) 2004; 2
R19
Fernandez DE (R117) 2000; 12
Borochov A (R100) 1997; 100
References_xml – ident: R10
  doi: 10.1023/B:PLAN.0000023670.61059.1d
– volume: 4
  start-page: 185
  year: 1998
  ident: R76
  publication-title: Postharvest Biol Techn
  doi: 10.1016/S0925-5214(98)00037-4
– volume: 11
  start-page: 15
  year: 1989
  ident: R89
  publication-title: Hort Rev
  doi: 10.1002/9781118060841.ch2
– volume: 53
  start-page: 407
  year: 2002
  ident: R54
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.368.407
– volume: 100
  start-page: 606
  year: 1997
  ident: R100
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.1997.1000323.x
– volume: 12
  start-page: 183
  year: 2000
  ident: R117
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.2.183
– ident: R57
  doi: 10.1007/s00425-006-0307-z
– volume: 162
  start-page: 1687
  year: 2002
  ident: R121
  publication-title: Genetics
  doi: 10.1093/genetics/162.4.1687
– volume: 54
  start-page: 1127
  year: 2003
  ident: R11
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erg133
– ident: R18
  doi: 10.1023/A:1006198431596
– volume: 93
  start-page: 778
  issue: 4
  year: 1995
  ident: R38
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1995.tb05131.x
– ident: R116
  doi: 10.1105/tpc.014365
– ident: R61
  doi: 10.1046/j.0028-646x.2001.00194.x
– volume: 160
  start-page: 129
  year: 2000
  ident: R36
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(00)00373-3
– ident: R1
  doi: 10.1093/jxb/erh264
– volume: 17
  start-page: 277
  year: 1991
  ident: R108
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00039505
– start-page: 215
  volume-title: Molecular and Cellular Aspects of Plant Reproduction
  year: 1994
  ident: R28
  doi: 10.1017/CBO9780511752339.013
– volume: 151
  start-page: 68
  year: 1997
  ident: R103
  publication-title: J Plant Physiol
  doi: 10.1016/S0176-1617(97)80038-7
– ident: R67
  doi: 10.1104/pp.116.1.419
– volume: 121
  start-page: 313
  year: 2004
  ident: R92
  publication-title: Physiol Plant
  doi: 10.1111/j.0031-9317.2004.0311.x
– volume: 108
  start-page: 1405
  year: 1995
  ident: R65
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.4.1405
– volume: 160
  start-page: 49
  year: 2003
  ident: R14
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00853.x
– volume: 30
  start-page: 789
  year: 1992
  ident: R31
  publication-title: Plant Physiol Biochem
– volume: 75
  start-page: 867
  year: 1997
  ident: R29
  publication-title: Can J Bot
  doi: 10.1139/b97-096
– ident: R37
  doi: 10.1016/S0163-7827(98)00006-X
– volume: 91
  start-page: 196
  year: 1994
  ident: R111
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1994.tb00419.x
– year: 2007
  ident: R107
  publication-title: J Exp Bot
– ident: R98
  doi: 10.1071/EA04127
– volume: 125
  start-page: 718
  year: 2001
  ident: R26
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.2.718
– volume: 112
  start-page: 503
  year: 1996
  ident: R78
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.2.503
– volume: 36
  start-page: 656
  year: 1998
  ident: R51
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005952005739
– volume: 50
  start-page: 341
  year: 1972
  ident: R94
  publication-title: Plant Physiol
  doi: 10.1104/pp.50.3.341
– volume: 97
  start-page: 8717
  year: 2000
  ident: R34
  publication-title: PNAS
  doi: 10.1073/pnas.140213697
– volume: 130
  start-page: 273
  year: 2002
  ident: R35
  publication-title: Plant Physiol
  doi: 10.1104/pp.000919
– volume: 104
  start-page: 463
  year: 1998
  ident: R47
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.1998.1040323.x
– volume: 24
  start-page: 434
  year: 1996
  ident: R43
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0240434
– volume: 88
  start-page: 243
  year: 1993
  ident: R70
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1993.tb05495.x
– volume: 48
  start-page: 547
  year: 1997
  ident: R4
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.48.1.547
– ident: R44
  doi: 10.1016/S0168-9452(97)00197-0
– volume: 75
  start-page: 12
  year: 2000
  ident: R81
  publication-title: J Hortic Sci Biotechnol
  doi: 10.1080/14620316.2000.11511193
– volume: 355
  start-page: 377
  year: 2001
  ident: R84
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/52.355.377
– ident: R60
  doi: 10.1093/jxb/erl100
– volume: 165
  start-page: 473
  year: 2005
  ident: R112
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01226.x
– volume: 115
  start-page: 51
  year: 1997
  ident: R101
  publication-title: Plant Physiol
  doi: 10.1104/pp.115.1.51
– volume: 122
  start-page: 1323
  year: 2000
  ident: R56
  publication-title: Plant Physiol
  doi: 10.1104/pp.122.4.1323
– volume: 30
  start-page: 970
  year: 1995
  ident: R86
  publication-title: Hort Science
  doi: 10.21273/HORTSCI.30.5.970
– ident: R93
  doi: 10.1105/tpc.018929
– ident: R49
  doi: 10.1071/PP01174
– volume: 48
  start-page: 1027
  year: 1997
  ident: R74
  publication-title: J Exp Bot
  doi: 10.1093/jxb/48.5.1027
– ident: R83
  doi: 10.1093/jexbot/53.371.1223
– ident: R12
  doi: 10.1093/jxb/eri124
– volume: 6
  start-page: 8
  year: 2006
  ident: R113
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-6-8
– ident: R19
  doi: 10.1105/tpc.13.8.1803
– volume: 40
  start-page: 237
  year: 1999
  ident: R55
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006146230602
– volume: 56
  start-page: 2733
  year: 2005
  ident: R23
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eri266
– volume: 11
  start-page: 45
  year: 1992
  ident: R97
  publication-title: Plant Growth Regul
  doi: 10.1007/BF00024432
– volume: 42
  start-page: 745
  year: 2004
  ident: R82
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2004.07.006
– volume: 16
  start-page: 135
  year: 1995
  ident: R73
  publication-title: Plant Growth Regul
  doi: 10.1007/BF00029534
– ident: R85
  doi: 10.1007/s002990000251
– volume: 48
  start-page: 821
  year: 1997
  ident: R64
  publication-title: J Exp Bot
  doi: 10.1093/jxb/48.4.821
– volume: 64
  start-page: 167
  year: 1995
  ident: R72
  publication-title: Scient Hort
  doi: 10.1016/0304-4238(95)00840-3
– ident: R7
  doi: 10.1105/tpc.9.7.1169
– volume: 104
  start-page: 161
  year: 1995
  ident: R42
  publication-title: Plant Sci
  doi: 10.1016/0168-9452(94)04020-H
– ident: R59
  doi: 10.1023/A:1005993024161
– ident: R75
  doi: 10.1146/annurev.pp.42.060191.003051
– volume: 133
  start-page: 125
  year: 1998
  ident: R90
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(98)00034-X
– ident: R20
  doi: 10.1038/nature02540
– volume: 58
  start-page: 2193
  year: 2007
  ident: R123
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm058
– ident: R3
  doi: 10.1038/371788a0
– volume: 2
  start-page: 155
  year: 2004
  ident: R9
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2004.00059.x
– ident: R5
  doi: 10.1023/A:1005894703444
– volume: 68
  start-page: 1352
  year: 2007
  ident: R52
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.02.027
– ident: R110
  doi: 10.1104/pp.123.4.1325
– ident: R118
  doi: 10.1111/j.1365-313X.2007.03105.x
– start-page: 269
  volume-title: Molecular and Cellular Aspects of Plant Reproduction
  year: 1994
  ident: R69
  doi: 10.1017/CBO9780511752339.016
– volume: 31
  start-page: 751
  year: 1996
  ident: R109
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00019463
– ident: R16
  doi: 10.1016/j.tplants.2005.01.006
– ident: R87
  doi: 10.1023/A:1009617804359
– start-page: 285
  volume-title: Molecular and Cellular Aspects of Plant Reproduction
  year: 1994
  ident: R63
  doi: 10.1017/CBO9780511752339.017
– volume: 103
  start-page: 31
  year: 1993
  ident: R79
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.1.31
– volume: 217
  start-page: 131
  year: 2003
  ident: R13
  publication-title: Planta
  doi: 10.1007/s00425-003-0976-9
– volume: 121
  start-page: 313
  year: 2004
  ident: R71
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.0031-9317.2004.0311.x
– ident: R8
  doi: 10.1093/jxb/39.11.1605
– volume: 28
  start-page: 575
  year: 1995
  ident: R24
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00020403
– ident: R80
  doi: 10.1093/jexbot/53.368.399
– ident: R104
  doi: 10.1038/sj.cdd.4400954
– volume: 99
  start-page: 38
  year: 1992
  ident: R66
  publication-title: Plant Physiol
  doi: 10.1104/pp.99.1.38
– ident: R62
  doi: 10.1007/BF00024427
– volume: 119
  start-page: 1341
  year: 1999
  ident: R25
  publication-title: Plant Physiol
  doi: 10.1104/pp.119.4.1341
– volume: 102
  start-page: 199
  year: 1980
  ident: R30
  publication-title: Protoplasma
  doi: 10.1007/BF01279588
– volume: 115
  start-page: 455
  year: 1990
  ident: R40
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.115.3.455
– volume: 28
  start-page: 505
  year: 1995
  ident: R53
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00020397
– volume: 99
  start-page: 19
  year: 1980
  ident: R95
  publication-title: Z Pflanzenphysiol
  doi: 10.1016/S0044-328X(80)80108-5
– volume: 87
  start-page: 498
  year: 1988
  ident: R6
  publication-title: Plant Physiol
  doi: 10.1104/pp.87.2.498
– ident: R50
  doi: 10.1016/S0168-9452(02)00068-7
– volume: 6
  start-page: 1227
  year: 1994
  ident: R77
  publication-title: Plant Cell
  doi: 10.1105/tpc.6.9.1227
– volume: 145
  start-page: 236
  year: 2007
  ident: R114
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.101741
– ident: R122
  doi: 10.1083/jcb.200604011
– volume: 90
  start-page: 679
  year: 1994
  ident: R102
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1994.tb02523.x
– ident: R39
  doi: 10.1023/A:1026540524990
– volume: 53
  start-page: 233
  year: 2002
  ident: R48
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/53.367.233
– volume: 134
  start-page: 35
  year: 2004
  ident: R105
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.033084
– volume: 133
  start-page: 125
  year: 1998
  ident: R32
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(98)00034-X
– volume: 69
  start-page: 277
  year: 1992
  ident: R27
  publication-title: Ann Bot
  doi: 10.1093/oxfordjournals.aob.a088341
– volume: 27
  start-page: 407
  year: 1989
  ident: R33
  publication-title: Plant Physiol Biochem
– volume: 90
  start-page: 5118
  year: 1993
  ident: R58
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.90.11.5118
– volume: 90
  start-page: 279
  year: 1994
  ident: R99
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1994.tb00388.x
– ident: R96
  doi: 10.1104/pp.103.023945
– volume: 143
  start-page: 195
  year: 1994
  ident: R45
  publication-title: J Plant Physiol
  doi: 10.1016/S0176-1617(11)81686-X
– ident: R17
  doi: 10.1007/BF01283002
– volume: 32
  start-page: 759
  year: 1981
  ident: R91
  publication-title: J Exp Bot
  doi: 10.1093/jxb/32.4.759
– volume: 2
  start-page: 155
  year: 2004
  ident: R119
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2004.00059.x
– volume: 175
  start-page: 201
  year: 2007
  ident: R124
  publication-title: Senescence New Phytol
  doi: 10.1111/j.1469-8137.2007.02118.x
– volume: 14
  start-page: 2215
  year: 2002
  ident: R15
  publication-title: The Plant Cell
  doi: 10.1105/tpc.002170
– ident: R106
  doi: 10.1016/S0925-5214(97)00040-9
– volume: 48
  start-page: 1027
  year: 1997
  ident: R68
  publication-title: J Exp Bot
  doi: 10.1093/jxb/48.5.1027
– volume: 97
  start-page: 309
  year: 2006
  ident: R2
  publication-title: Ann Bot
  doi: 10.1093/aob/mcj051
– volume: 44
  start-page: 399
  year: 2000
  ident: R46
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1026556928624
– ident: R22
  doi: 10.1093/pcp/pce144
– ident: R88
  doi: 10.1038/nbt0597-444
– ident: R41
– ident: R21
  doi: 10.1083/jcb.200604011
– volume: 26
  start-page: 823
  year: 2007
  ident: R120
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-006-0285-4
– ident: R115
  doi: 10.1104/pp.103.028027
SSID ssj0043700
Score 2.184878
SecondaryResourceType review_article
Snippet Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 437
SubjectTerms abiotic stress
abscisic acid
Binding
Biology
Bioscience
Calcium
Cancer
Cell
cell membranes
corolla
Cycle
DNA
drought
ethylene
Landes
membrane permeability
nucleases
organelles
Organogenesis
pollination
proteinases
Proteins
Review
RNA
wilting
Subtitle An Overview
Title Integrated Signaling in Flower Senescence
URI https://www.tandfonline.com/doi/abs/10.4161/psb.2.6.4991
http://www.landesbioscience.com/journals/psb/article/4991/
https://www.ncbi.nlm.nih.gov/pubmed/19517004
https://www.proquest.com/docview/2439421836
https://www.proquest.com/docview/733223015
https://pubmed.ncbi.nlm.nih.gov/PMC2634333
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwgEOvB_lpSDBYbVKSeK8eoQVq4XVrjjsSnuLbMehQSVdNekBfj0ztuM4VVeCvUSVO6mbmfE8HM83hLwHnUAgqcgPyjyABCWN_TmVuS9jKcH65VxKLHA-PUuPL-Jvl8nlZHLinFradHwm_uysK7mJVGEM5IpVsv8hWfujMACfQb5wBQnD9Z9k_LXHeoCgsf6BIbUuUDlaYu8zsAONAmsSo-M-2KaoO2gtPcq-L9a3efy6Vq2K1d5oXZYLhm93TtimXTDnSEYnfzJtovFk7ZqNthAyU0tntxBwu7rF5pfG67r2MJn7EAIatGp3TJc-90Y0cnTFNYixhnQxvjXW0JHbZhuTLOw13PJZNEtnkISFLhkw_eqXEmEI8SDi8Q_Oyx4p_H56GKU0ppTeIrejDAIprOcJznq3DH9E1SPZJ9JVEDj1R3dihSKrZxmFKiMg23vkwVIxjVue7cpQtg_aOpHL-UNy36Qc3ietP4_IRDaPyZ3PK0gLfj8h-4MSeVaJvLrxtBJ5gxI9JRdHX84Pj33TP8MX4P46H5s1CsYgAA245AmFRRgHjGeU53Ke5FWSp_MwKsNchhUedebg96os5GUgKpGwgD4je82qkS-Il8ZgnkWSlcDGOKUBpxB3w_qPo7JkoRBTctCzqhAGXB57nCwLSDKRxwXwuIiKtEAeT8kHS32lQVWuoQtcrhed2sSqdMeZgu6-ZX9bMnYKpDNr1dC-60VWgFHFN2WskatNW0RYL47JQzol3jU0GQVfCO4xmZLnWsrDsxgFmpJsJH9LgJju42-aeqGw3Y0Ov7zxna_I3WGJvyZ73Xoj30Dc3PG3aj38BSv0xTw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hQGo5lL6gBtq6UntAlc3au147R0CNQktySZBQLyvveg1RkYOKc4Bfz4wfaZKGQ3v22NZoHvvN7uw3AJ_RJ4hIKvRYljAsUKTwOtwmnhXWYvZLtLV0wbk_kL0L8f0yupwb9UVtlVRD5zVRRJWrKbhpM5oinPD40e2d9kNf-ojWsfDZiBCFUzcfZ4M2CQseM1b3uf_1xsIKtMBPugXb1E5IJzMNk6RdBTyX-yfnFqTuNvxsVan7UH7501L75mGJ5fG_dH0JLxqY6h7XfvUK1mzxGjZPJvih-zdweNaSTGTucHxFWL64cseF272hoWvukBKoIcXewkX32-i05zUzFzyDKbP0aMCfSVMELUxbHXE0nGCpjrlObCdK8iiRnSDMgsQGObXHasyVeRzojJncRCnjO7BeTAr7DlwpMKRNFGdoDCE50xyxGvqMCLMsDYxx4GtrB2UaQnKai3GjsDAh3RXqrkIlFenuwJeZ9G1NxPGEHJs3qSqrjY-8nlKi-OpXDpfNPvsFyTUx3Mh-av1BYSDS6Upa2Mn0ToV0x5gAp3TAfUIm5pg_MaVGDuzWLvRHF4S6NGrAgXjBuWYCxAO--KQYX1d84KHkgnO-9--af4RnvVH_XJ2fDX7sw_Nq37q6Z3kA6-XvqX2PgKvUH6rQegQnNit5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hqBAc2JZHCW1pKsEBVUmd2HGyxz5YQVtWSBSJnqzYcWAFyq7Y7AF-fWfy2LILHNpzJolG8_Bne-YbgD30CSKSCj2WJQw3KFJ4XW4TzwprMfsl2lpqcD7py6Nz8f0iuliApO2FobJK2kPnNVFElaspuEdZTgFOcPzTaKz90Jc-gnXc9yxJxrvEms9Zv83BgseM1WXuj96YWYBm6ElXoUPVhHQx0xBJ2qdw53z55IP1qNeB360mdRnKtT8ptW_u50ge_0fVl7DWgFT3c-1Vr2DBFuvw4ssQv3O3AQfHLcVE5p4NLgnJF5fuoHB7NzRyzT2j9GlIr0047x3--nrkNRMXPIMJs_RovJ9JU4QsTFsdcTSbYKmOuU5sN0ryKJHdIMyCxAY5FcdqzJR5HOiMmdxEKeNbsFgMC7sNrhQY0CaKM7SFkJxpjkgNPUaEWZYGxjjwsTWDMg0dOU3FuFG4LSHdFequQiUV6e7A_lR6VNNwPCPHHlpUldWxR17PKFH86VcO5q0-_QXJNRHcyH5o3UFhGNLdSlrY4WSsQuowJrgpHXCfkYk5Zk9MqJEDr2sP-qsLAl0aNOBAPONbUwFiAZ99UgyuKjbwUHLBOd_5d83fw_Lpt576edz_8QZWqkPrqsnyLSyWtxP7DtFWqXerwPoDkR4qJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Signaling+in+Flower+Senescence&rft.jtitle=Plant+signaling+%26+behavior&rft.au=Tripathi%2C+Siddharth+Kaushal&rft.au=Tuteja%2C+Narendra&rft.date=2007-11-01&rft.pub=Landes+Bioscience&rft.issn=1559-2316&rft.eissn=1559-2324&rft.volume=2&rft.issue=6&rft.spage=437&rft.epage=445&rft_id=info:doi/10.4161%2Fpsb.2.6.4991&rft_id=info%3Apmid%2F19517004&rft.externalDocID=PMC2634333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-2316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-2316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-2316&client=summon