Autophagy Protects against Sindbis Virus Infection of the Central Nervous System

Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infect...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 7; no. 2; pp. 115 - 127
Main Authors Orvedahl, Anthony, MacPherson, Sarah, Sumpter, Rhea, Tallóczy, Zsolt, Zou, Zhongju, Levine, Beth
Format Journal Article
LanguageEnglish
Published United States 18.02.2010
Subjects
Online AccessGet full text
ISSN1931-3128
1934-6069
1934-6069
DOI10.1016/j.chom.2010.01.007

Cover

Abstract Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.
AbstractList Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.
Autophagy functions in antiviral immunity. However, it is not yet known whether endogenous autophagy genes protect against viral disease in vertebrates. Using three different approaches to inactivate the autophagy gene Atg5 in virally-infected neurons, we found that loss of Atg5 function increases mouse susceptibility to lethal Sindbis virus CNS infection. This phenotype is associated with delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but not with altered levels of CNS viral replication. In vitro , p62 interacts with Sindbis virus capsid protein and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a novel function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.
Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.
Author Tallóczy, Zsolt
Sumpter, Rhea
Orvedahl, Anthony
Zou, Zhongju
MacPherson, Sarah
Levine, Beth
AuthorAffiliation 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
4 Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032
3 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
AuthorAffiliation_xml – name: 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
– name: 3 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
– name: 4 Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032
– name: 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390
Author_xml – sequence: 1
  givenname: Anthony
  surname: Orvedahl
  fullname: Orvedahl, Anthony
– sequence: 2
  givenname: Sarah
  surname: MacPherson
  fullname: MacPherson, Sarah
– sequence: 3
  givenname: Rhea
  surname: Sumpter
  fullname: Sumpter, Rhea
– sequence: 4
  givenname: Zsolt
  surname: Tallóczy
  fullname: Tallóczy, Zsolt
– sequence: 5
  givenname: Zhongju
  surname: Zou
  fullname: Zou, Zhongju
– sequence: 6
  givenname: Beth
  surname: Levine
  fullname: Levine, Beth
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20159618$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9PIyEUxYnR-P8L-GB482m6XGYGZl5MTOOuJmZtUvWVMBRamhmoQE367Zdu1eg-7BOEe37nXu45QfvOO43QBZAREGA_liO18MOIkvxAYEQI30PH0JZVwQhr9__eoSiBNkfoJMYlIXVNOByio4zULYPmGE1u1smvFnK-wZPgk1YpYjmX1sWEp9bNOhvxiw3riO-dyVXrHfYGp4XGY-1SkD3-rcObz4LpJiY9nKEDI_uoz9_PU_T88_ZpfFc8PP66H988FKpiPBU1rypgHErOmVEdcNaRsiKVLGupW-hkJ2cNNZLPWGUYGOi4Mi1nSmeASlqeouud72rdDXqmdsOIVbCDDBvhpRXfK84uxNy_CdowQlmdDa7eDYJ_XeuYxGCj0n0vnc7fEbwsW9q0tM3Ky6-tPnt8bDEL6E6ggo8xaPMpASK2UYml2Ea1JYggIHJUGWr-gZRNcrvgPK7t_4f-AZRmm9w
CitedBy_id crossref_primary_10_1016_j_bbadis_2022_166484
crossref_primary_10_1016_j_it_2012_06_003
crossref_primary_10_1038_s41418_018_0185_5
crossref_primary_10_1002_rmv_1973
crossref_primary_10_1128_JVI_02174_14
crossref_primary_10_3390_cells1030248
crossref_primary_10_1517_14712598_2013_774365
crossref_primary_10_1080_15548627_2021_1897223
crossref_primary_10_1186_s12917_023_03575_7
crossref_primary_10_3390_ijms21103689
crossref_primary_10_3390_v9080224
crossref_primary_10_1016_j_it_2013_08_001
crossref_primary_10_1007_s10565_016_9374_5
crossref_primary_10_3389_fcimb_2020_00277
crossref_primary_10_1038_s41598_017_14882_z
crossref_primary_10_1371_journal_ppat_1002825
crossref_primary_10_1038_nri_2016_100
crossref_primary_10_3389_fviro_2022_959586
crossref_primary_10_1155_2012_736905
crossref_primary_10_3389_fimmu_2024_1460023
crossref_primary_10_1111_j_1600_065X_2010_00995_x
crossref_primary_10_1016_j_phrs_2012_10_003
crossref_primary_10_1038_embor_2013_51
crossref_primary_10_1080_15548627_2015_1017184
crossref_primary_10_4161_auto_7_12_17793
crossref_primary_10_1093_jxb_erab304
crossref_primary_10_1016_j_tim_2013_06_006
crossref_primary_10_3389_fcell_2022_1058861
crossref_primary_10_3389_fimmu_2024_1424385
crossref_primary_10_1016_j_immuni_2013_10_020
crossref_primary_10_1186_1477_5956_10_20
crossref_primary_10_1038_embor_2013_55
crossref_primary_10_1038_s41467_018_03658_2
crossref_primary_10_1016_j_semcancer_2020_02_015
crossref_primary_10_3389_fcimb_2022_858311
crossref_primary_10_1111_cmi_12165
crossref_primary_10_1111_cmi_13131
crossref_primary_10_1016_j_molcel_2014_03_009
crossref_primary_10_1016_j_tibs_2021_01_004
crossref_primary_10_3389_fcimb_2022_845368
crossref_primary_10_1007_s00281_010_0225_9
crossref_primary_10_1038_nrgastro_2013_66
crossref_primary_10_3390_v12010113
crossref_primary_10_1007_s12275_014_3479_4
crossref_primary_10_1016_j_micinf_2013_04_012
crossref_primary_10_3390_cells2010083
crossref_primary_10_3389_fcell_2018_00155
crossref_primary_10_3389_fmicb_2022_889693
crossref_primary_10_1080_15548627_2016_1254864
crossref_primary_10_1128_jvi_02278_24
crossref_primary_10_3390_vaccines5040045
crossref_primary_10_1080_15548627_2023_2277108
crossref_primary_10_1186_s13071_019_3506_8
crossref_primary_10_1016_j_virusres_2022_198830
crossref_primary_10_1186_s12985_015_0385_2
crossref_primary_10_3389_fphar_2022_832750
crossref_primary_10_3390_cells1030204
crossref_primary_10_1080_15548627_2021_1954773
crossref_primary_10_1016_j_chom_2014_01_014
crossref_primary_10_1038_nri_2016_136
crossref_primary_10_1128_JVI_00039_11
crossref_primary_10_3389_fmicb_2021_661446
crossref_primary_10_1016_j_semcdb_2010_04_004
crossref_primary_10_1016_j_semcdb_2010_04_003
crossref_primary_10_3390_v7122926
crossref_primary_10_1038_s41598_019_41029_z
crossref_primary_10_1016_j_chom_2012_03_002
crossref_primary_10_1016_j_it_2013_10_012
crossref_primary_10_1093_abbs_gms010
crossref_primary_10_1007_s00401_014_1361_4
crossref_primary_10_1099_jgv_0_002086
crossref_primary_10_1105_tpc_114_129999
crossref_primary_10_1128_jvi_00051_24
crossref_primary_10_1038_s41579_023_00995_y
crossref_primary_10_3390_v15040920
crossref_primary_10_1371_journal_pone_0033871
crossref_primary_10_1016_j_cellsig_2021_110204
crossref_primary_10_1038_jid_2010_423
crossref_primary_10_3389_fimmu_2022_1044721
crossref_primary_10_3389_fmicb_2020_01297
crossref_primary_10_1002_jcp_28243
crossref_primary_10_1007_s00705_022_05630_4
crossref_primary_10_3390_pathogens5020034
crossref_primary_10_1016_j_jep_2020_112611
crossref_primary_10_1038_s41418_022_00942_z
crossref_primary_10_1038_s44318_024_00187_1
crossref_primary_10_1097_MOG_0b013e32833ae2ed
crossref_primary_10_3390_ijms20020300
crossref_primary_10_1155_2014_825463
crossref_primary_10_1016_j_virs_2023_07_004
crossref_primary_10_1016_j_redox_2015_01_003
crossref_primary_10_1128_JVI_02908_15
crossref_primary_10_1371_journal_pntd_0007754
crossref_primary_10_1080_27694127_2025_2464986
crossref_primary_10_1084_jem_20110996
crossref_primary_10_1051_medsci_201127141
crossref_primary_10_1111_nph_16268
crossref_primary_10_1016_j_chom_2015_03_001
crossref_primary_10_1038_ncomms6779
crossref_primary_10_1086_710389
crossref_primary_10_1016_j_micpath_2017_11_034
crossref_primary_10_1038_onc_2013_181
crossref_primary_10_1111_cmi_12358
crossref_primary_10_1128_jvi_01470_23
crossref_primary_10_1016_j_semcdb_2019_07_013
crossref_primary_10_3390_cells13020123
crossref_primary_10_1080_17460441_2020_1773429
crossref_primary_10_1016_j_virusres_2018_12_013
crossref_primary_10_1186_s12870_020_02711_x
crossref_primary_10_1038_nrd3802
crossref_primary_10_1128_JVI_01200_16
crossref_primary_10_1111_jpi_12534
crossref_primary_10_3390_v15102108
crossref_primary_10_1038_s41577_020_0391_5
crossref_primary_10_1080_15548627_2022_2062888
crossref_primary_10_1038_s41586_020_03056_z
crossref_primary_10_1016_j_freeradbiomed_2018_12_008
crossref_primary_10_1016_j_devcel_2011_06_023
crossref_primary_10_1126_science_1233028
crossref_primary_10_1016_j_febslet_2015_07_047
crossref_primary_10_3390_v4123440
crossref_primary_10_1016_j_jhazmat_2020_124903
crossref_primary_10_1172_JCI168544
crossref_primary_10_2478_ii_2018_0001
crossref_primary_10_1038_ni_2350
crossref_primary_10_1002_iub_2582
crossref_primary_10_18632_oncotarget_12084
crossref_primary_10_4049_jimmunol_1102108
crossref_primary_10_1073_pnas_1915139116
crossref_primary_10_3389_fmicb_2022_889835
crossref_primary_10_1080_21505594_2019_1605803
crossref_primary_10_1016_j_jmb_2016_02_027
crossref_primary_10_1016_j_celrep_2024_115070
crossref_primary_10_1111_bph_15166
crossref_primary_10_1155_2012_219625
crossref_primary_10_2217_fvl_15_45
crossref_primary_10_3390_cells9040831
crossref_primary_10_1002_rmv_2447
crossref_primary_10_1080_15548627_2021_2021495
crossref_primary_10_3390_v16091440
crossref_primary_10_1016_j_virusres_2014_07_016
crossref_primary_10_1360_TB_2024_0341
crossref_primary_10_1021_acs_analchem_7b04352
crossref_primary_10_1186_s12929_023_00899_2
crossref_primary_10_1093_intimm_dxs101
crossref_primary_10_1016_j_jmb_2019_07_016
crossref_primary_10_1007_s00705_017_3652_2
crossref_primary_10_1146_annurev_immunol_042617_053253
crossref_primary_10_1038_nri3532
crossref_primary_10_1080_15548627_2019_1707487
crossref_primary_10_1016_j_bbrc_2013_01_111
crossref_primary_10_1371_journal_ppat_1006213
crossref_primary_10_1186_s13567_020_00783_z
crossref_primary_10_1371_journal_pone_0033454
crossref_primary_10_1128_jvi_00070_22
crossref_primary_10_1128_JVI_01757_18
crossref_primary_10_1016_j_pestbp_2019_03_016
crossref_primary_10_1038_icb_2014_88
crossref_primary_10_1371_journal_pone_0245694
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3389_fimmu_2022_931034
crossref_primary_10_1016_j_livres_2018_09_002
crossref_primary_10_1016_j_chom_2013_03_010
crossref_primary_10_1080_15548627_2025_2474576
crossref_primary_10_4049_jimmunol_1600286
crossref_primary_10_1016_j_jmb_2018_04_018
crossref_primary_10_1016_j_celrep_2016_11_005
crossref_primary_10_1038_nature09782
crossref_primary_10_1016_j_cois_2017_05_001
crossref_primary_10_1016_j_bbrep_2016_08_023
crossref_primary_10_1016_j_jmb_2013_10_006
crossref_primary_10_1189_jlb_2MR0416_201R
crossref_primary_10_1016_j_fsi_2024_109719
crossref_primary_10_3390_v3071166
crossref_primary_10_3390_ijms19123940
crossref_primary_10_1051_medsci_2022010
crossref_primary_10_1038_srep23326
crossref_primary_10_1080_15548627_2020_1831800
crossref_primary_10_1128_mbio_03528_21
crossref_primary_10_3390_v3071281
crossref_primary_10_1128_JVI_00270_12
crossref_primary_10_1016_j_nano_2014_03_019
crossref_primary_10_1016_j_dci_2020_103693
crossref_primary_10_1016_j_immuni_2012_03_025
crossref_primary_10_1146_annurev_cellbio_120219_035530
crossref_primary_10_1111_jfd_13227
crossref_primary_10_4049_jimmunol_1403249
crossref_primary_10_1016_j_coi_2011_10_006
crossref_primary_10_3390_ijms21051643
crossref_primary_10_18632_oncotarget_10970
crossref_primary_10_1242_jcs_204909
crossref_primary_10_1080_15548627_2016_1191857
crossref_primary_10_1128_JVI_03851_13
crossref_primary_10_3390_cells8070674
crossref_primary_10_1038_ni_3273
crossref_primary_10_3389_fmicb_2014_00250
crossref_primary_10_1016_j_biocel_2016_07_019
crossref_primary_10_1371_journal_pntd_0010751
crossref_primary_10_1038_s41467_022_32225_z
crossref_primary_10_1155_2012_146767
crossref_primary_10_1007_s00430_014_0340_7
crossref_primary_10_3390_v12010039
crossref_primary_10_1016_j_chom_2015_12_010
crossref_primary_10_3389_fmicb_2014_00388
crossref_primary_10_1002_hep_24324
crossref_primary_10_1128_JVI_06581_11
crossref_primary_10_1371_journal_ppat_1005449
crossref_primary_10_1007_s10875_016_0254_9
crossref_primary_10_1016_j_ijantimicag_2024_107308
crossref_primary_10_1038_s43587_021_00098_4
crossref_primary_10_1128_spectrum_01995_21
crossref_primary_10_1146_annurev_pathol_020712_163918
crossref_primary_10_1016_j_immuni_2012_03_003
crossref_primary_10_3389_fcell_2021_766142
crossref_primary_10_4161_auto_7_3_14487
crossref_primary_10_1186_s11658_021_00272_x
crossref_primary_10_1073_pnas_1610687114
crossref_primary_10_3389_fimmu_2023_1268104
crossref_primary_10_1016_j_antiviral_2022_105476
crossref_primary_10_1111_imm_12165
crossref_primary_10_1371_journal_ppat_1004580
crossref_primary_10_1038_s41467_017_00085_7
crossref_primary_10_1016_j_intimp_2013_11_001
crossref_primary_10_1007_s41745_016_0015_z
crossref_primary_10_1128_JVI_00846_12
crossref_primary_10_1016_j_coi_2015_06_011
crossref_primary_10_1186_s43556_022_00083_2
crossref_primary_10_3390_immuno2010012
crossref_primary_10_7554_eLife_23897
crossref_primary_10_2217_fmb_10_101
crossref_primary_10_1097_TP_0b013e31827fac48
crossref_primary_10_1128_JVI_01255_20
crossref_primary_10_1080_15548627_2017_1356978
crossref_primary_10_3390_v9120359
crossref_primary_10_1155_2018_8753894
crossref_primary_10_1038_s41467_021_25642_z
crossref_primary_10_3390_cancers13040614
crossref_primary_10_1038_s41423_021_00758_w
crossref_primary_10_1073_pnas_1210500109
crossref_primary_10_1016_j_virusres_2013_12_034
crossref_primary_10_1242_jcs_126128
crossref_primary_10_4161_auto_21332
crossref_primary_10_1007_s40475_015_0037_z
crossref_primary_10_1002_med_21571
crossref_primary_10_1042_EBC20170035
crossref_primary_10_1016_j_bbrc_2020_12_091
crossref_primary_10_1080_21505594_2024_2384563
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_1080_15548627_2024_2414424
crossref_primary_10_1371_journal_ppat_1004685
crossref_primary_10_1038_nature10546
crossref_primary_10_1051_medsci_2012288008
crossref_primary_10_1002_smll_201702841
crossref_primary_10_1038_ncomms10631
crossref_primary_10_3389_fcell_2021_738932
crossref_primary_10_1016_j_fsi_2022_07_041
crossref_primary_10_3390_insects12080728
crossref_primary_10_3390_v13122494
crossref_primary_10_1038_nature11866
crossref_primary_10_1126_sciimmunol_abc2691
crossref_primary_10_1073_pnas_1203952109
crossref_primary_10_1111_j_1600_065X_2012_01146_x
crossref_primary_10_1016_j_cellin_2022_100031
crossref_primary_10_1016_j_chom_2018_05_022
crossref_primary_10_1038_cddis_2016_489
crossref_primary_10_1016_j_celrep_2024_113792
crossref_primary_10_1038_s42003_020_01285_6
crossref_primary_10_4049_jimmunol_1500150
crossref_primary_10_1016_j_fsi_2025_110258
crossref_primary_10_1007_s00204_017_2118_3
crossref_primary_10_1007_s10495_018_1445_z
crossref_primary_10_1128_JVI_01299_13
crossref_primary_10_3390_cells9122612
crossref_primary_10_15252_embj_2022113118
crossref_primary_10_1371_journal_ppat_1003328
crossref_primary_10_1038_s41564_017_0017_2
crossref_primary_10_1371_journal_ppat_1003562
crossref_primary_10_1111_imm_13325
crossref_primary_10_1096_fj_201601141RR
crossref_primary_10_1016_j_imlet_2020_07_001
crossref_primary_10_1152_ajplung_00147_2013
crossref_primary_10_3390_v9050123
crossref_primary_10_1016_j_chom_2012_07_013
crossref_primary_10_1051_medsci_20173303019
crossref_primary_10_1080_15548627_2021_1994296
crossref_primary_10_15252_embr_201642443
crossref_primary_10_1016_j_coviro_2011_05_013
crossref_primary_10_1016_j_watbs_2022_100092
crossref_primary_10_1016_j_coviro_2011_05_016
crossref_primary_10_1016_j_micpath_2014_03_004
crossref_primary_10_3390_cells8020138
crossref_primary_10_1099_jgv_0_000792
crossref_primary_10_3390_biom13101454
crossref_primary_10_3389_fcimb_2021_786348
crossref_primary_10_1128_JVI_00581_17
crossref_primary_10_1016_j_coi_2021_05_004
crossref_primary_10_1016_j_bbamcr_2013_03_019
crossref_primary_10_1002_med_21303
crossref_primary_10_1016_j_genrep_2021_101370
crossref_primary_10_3390_ijms24109008
crossref_primary_10_1371_journal_pbio_2006926
crossref_primary_10_3390_v9120372
crossref_primary_10_1002_cbf_3740
crossref_primary_10_1038_s41598_019_52408_x
crossref_primary_10_1371_journal_pone_0037457
crossref_primary_10_1016_j_jbc_2023_104987
crossref_primary_10_15252_embj_201797858
crossref_primary_10_2217_fmb_12_22
crossref_primary_10_1016_j_virol_2012_12_011
crossref_primary_10_1038_s41467_024_53100_z
crossref_primary_10_1016_j_aquaculture_2024_741858
crossref_primary_10_1186_s12985_024_02568_8
crossref_primary_10_1002_path_4351
crossref_primary_10_1002_ps_3737
crossref_primary_10_1080_21505594_2018_1551010
crossref_primary_10_1080_15548627_2022_2115830
crossref_primary_10_1016_j_cell_2013_07_035
crossref_primary_10_3389_fnut_2023_1195270
crossref_primary_10_1038_s41467_019_13659_4
crossref_primary_10_1038_srep10745
crossref_primary_10_1016_j_jmb_2023_168144
crossref_primary_10_4110_in_2013_13_1_1
crossref_primary_10_1159_000346388
crossref_primary_10_3390_cells12060956
crossref_primary_10_1016_j_plipres_2021_101092
crossref_primary_10_4161_auto_29309
crossref_primary_10_1016_j_immuni_2013_07_017
crossref_primary_10_1080_21505594_2021_2014680
crossref_primary_10_1002_adtp_202000085
crossref_primary_10_1016_j_virol_2012_12_004
crossref_primary_10_1111_mpp_12852
crossref_primary_10_1128_mbio_02919_22
crossref_primary_10_1172_JCI136824
crossref_primary_10_1007_s11307_012_0585_8
crossref_primary_10_3390_v11030260
crossref_primary_10_18632_oncotarget_2219
crossref_primary_10_1080_15548627_2019_1632104
crossref_primary_10_1038_s41598_018_23610_0
crossref_primary_10_1016_j_virusres_2023_199249
crossref_primary_10_1016_j_chom_2010_02_003
crossref_primary_10_1016_j_tim_2021_02_006
crossref_primary_10_1128_JVI_01417_10
crossref_primary_10_1172_JCI58656
crossref_primary_10_1016_j_phrs_2012_07_004
crossref_primary_10_1016_j_clim_2024_110169
crossref_primary_10_1186_s12886_019_1141_y
crossref_primary_10_3390_cells13151256
crossref_primary_10_1099_jgv_0_001161
crossref_primary_10_1017_erm_2015_19
crossref_primary_10_1016_j_vetmic_2019_03_012
crossref_primary_10_1074_jbc_M114_593871
crossref_primary_10_1242_jcs_240440
crossref_primary_10_1371_journal_ppat_1002422
crossref_primary_10_1016_j_bbrc_2024_150853
crossref_primary_10_1093_infdis_jis226
crossref_primary_10_1016_j_isci_2019_09_009
crossref_primary_10_1016_j_micinf_2011_09_001
crossref_primary_10_1016_j_micinf_2011_09_007
crossref_primary_10_1186_s12977_017_0341_x
crossref_primary_10_1016_j_fsi_2019_08_009
crossref_primary_10_1371_journal_ppat_1003619
crossref_primary_10_1128_jvi_01814_22
crossref_primary_10_1016_j_cell_2016_04_006
crossref_primary_10_1128_JVI_02193_17
crossref_primary_10_4161_auto_26059
crossref_primary_10_1128_JVI_06390_11
crossref_primary_10_2217_fmb_15_5
crossref_primary_10_3390_v12040381
crossref_primary_10_1016_j_virol_2012_08_016
crossref_primary_10_4161_auto_7_11_16642
crossref_primary_10_1080_15548627_2015_1037062
crossref_primary_10_1038_srep09730
crossref_primary_10_1016_j_autrev_2013_10_007
crossref_primary_10_1080_15548627_2023_2233847
crossref_primary_10_4161_auto_7_3_14281
crossref_primary_10_3390_v4102251
crossref_primary_10_1016_j_neulet_2018_04_017
crossref_primary_10_1016_j_micinf_2015_12_006
crossref_primary_10_1016_j_cj_2021_02_009
crossref_primary_10_1038_s41579_018_0003_6
crossref_primary_10_1016_j_micinf_2011_08_014
crossref_primary_10_1016_j_jri_2023_103973
crossref_primary_10_1128_JVI_07204_11
crossref_primary_10_1042_bse0550153
crossref_primary_10_1186_s13567_023_01174_w
crossref_primary_10_1155_2014_273473
crossref_primary_10_3390_cells8050386
crossref_primary_10_1007_s40588_022_00186_y
crossref_primary_10_3109_10715762_2012_670701
crossref_primary_10_1159_000350326
crossref_primary_10_1146_annurev_immunol_020711_074948
crossref_primary_10_1128_JVI_01984_18
crossref_primary_10_1038_s41418_019_0481_8
crossref_primary_10_15252_embj_201796697
crossref_primary_10_1016_j_tim_2024_11_003
crossref_primary_10_3390_ijms22084067
crossref_primary_10_1186_s12985_019_1182_0
crossref_primary_10_1080_15548627_2017_1405187
crossref_primary_10_1002_ddr_21027
crossref_primary_10_1038_cmi_2014_127
crossref_primary_10_1360_TB_2022_0877
crossref_primary_10_1080_15548627_2018_1476014
crossref_primary_10_1146_annurev_virology_031413_085524
crossref_primary_10_1016_j_virol_2022_11_012
crossref_primary_10_1016_j_fsi_2016_11_037
crossref_primary_10_3389_fonc_2021_743780
crossref_primary_10_1007_s00281_010_0227_7
crossref_primary_10_1073_pnas_1617649113
crossref_primary_10_1038_s41467_020_17156_x
crossref_primary_10_1016_j_apsb_2023_07_016
crossref_primary_10_1093_jb_mvr083
crossref_primary_10_1002_mco2_511
crossref_primary_10_1038_cdd_2014_58
crossref_primary_10_4049_jimmunol_1100949
crossref_primary_10_3390_cells11040711
crossref_primary_10_1155_tbed_6238787
Cites_doi 10.1006/viro.1996.8342
10.1091/mbc.e03-09-0704
10.1128/JVI.01676-09
10.1128/JVI.72.11.8586-8596.1998
10.1083/jcb.200507002
10.1038/nature04724
10.1111/j.1462-5822.2008.01175.x
10.1038/ni.1634
10.4269/ajtmh.1955.4.844
10.1093/infdis/125.3.257
10.1016/j.cell.2005.03.007
10.1074/jbc.M413934200
10.1016/S0076-6879(00)22045-4
10.1074/jbc.M603783200
10.1038/26506
10.1016/j.chom.2006.12.001
10.1016/0022-2836(82)90067-5
10.1038/ncb1482
10.1038/nature03029
10.1016/j.cell.2007.12.018
10.1074/jbc.M702824200
10.1016/j.chom.2008.10.003
10.1126/science.1136880
10.1083/jcb.200412022
10.1038/nature04723
10.4049/jimmunol.0900441
10.1073/pnas.0813319106
10.1016/j.immuni.2009.02.009
10.1016/j.febslet.2006.04.008
10.1073/pnas.1332160100
10.1016/j.cell.2007.10.035
10.1083/jcb.152.4.657
10.1016/j.chom.2009.05.016
10.1007/BF01242630
ContentType Journal Article
Copyright 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2010.01.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 127
ExternalDocumentID PMC2860265
20159618
10_1016_j_chom_2010_01_007
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI151367
– fundername: NIAID NIH HHS
  grantid: R01 AI051367
– fundername: NIAID NIH HHS
  grantid: T32 AI007520
– fundername: NIAID NIH HHS
  grantid: R01 AI151367
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
HZ~
IHE
IXB
JIG
M41
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c467t-574416713776fcb176b03404a35ae91babad82fa7d64f61f1b7cf976ce7762a23
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 17:36:43 EDT 2025
Sun Sep 28 00:55:12 EDT 2025
Mon Jul 21 05:54:44 EDT 2025
Tue Jul 01 02:44:14 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2010 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-574416713776fcb176b03404a35ae91babad82fa7d64f61f1b7cf976ce7762a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Novartis Pharmaceutical Corporations, Neuroscience and Ophthalmics.
These authors contributed equally to this work
OpenAccessLink http://doi.org/10.1016/j.chom.2010.01.007
PMID 20159618
PQID 733928929
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2860265
proquest_miscellaneous_733928929
pubmed_primary_20159618
crossref_primary_10_1016_j_chom_2010_01_007
crossref_citationtrail_10_1016_j_chom_2010_01_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-18
PublicationDateYYYYMMDD 2010-02-18
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2010
References Lee (10.1016/j.chom.2010.01.007_bib17) 2007; 315
Levine (10.1016/j.chom.2010.01.007_bib19) 2002; 265
Orvedahl (10.1016/j.chom.2010.01.007_bib28) 2007; 1
Griffin (10.1016/j.chom.2010.01.007_bib4) 2005; 289
Pankiv (10.1016/j.chom.2010.01.007_bib29) 2007; 282
Jia (10.1016/j.chom.2010.01.007_bib10) 2009; 106
Leib (10.1016/j.chom.2010.01.007_bib18) 2009; 83
Levine (10.1016/j.chom.2010.01.007_bib20) 2008; 132
Johnson (10.1016/j.chom.2010.01.007_bib12) 1972; 125
Gil-Fernández (10.1016/j.chom.2010.01.007_bib3) 1973; 40
Yousefi (10.1016/j.chom.2010.01.007_bib36) 2006; 8
Hardwick (10.1016/j.chom.2010.01.007_bib7) 2000; 322
Mizushima (10.1016/j.chom.2010.01.007_bib26) 2004; 15
Mizushima (10.1016/j.chom.2010.01.007_bib24) 1998; 395
Johnson (10.1016/j.chom.2010.01.007_bib11) 1965; 46
Komatsu (10.1016/j.chom.2010.01.007_bib15) 2007; 131
Bjørkøy (10.1016/j.chom.2010.01.007_bib1) 2005; 171
Pyo (10.1016/j.chom.2010.01.007_bib30) 2005; 280
Liu (10.1016/j.chom.2010.01.007_bib23) 2005; 121
Yano (10.1016/j.chom.2010.01.007_bib35) 2008; 9
Komatsu (10.1016/j.chom.2010.01.007_bib14) 2006; 441
Zheng (10.1016/j.chom.2010.01.007_bib38) 2009; 183
Hosokawa (10.1016/j.chom.2010.01.007_bib8) 2006; 580
Su (10.1016/j.chom.2010.01.007_bib33) 2003; 100
Kuma (10.1016/j.chom.2010.01.007_bib16) 2004; 432
Hara (10.1016/j.chom.2010.01.007_bib6) 2006; 441
Jackson (10.1016/j.chom.2010.01.007_bib9) 1988; 58
Liang (10.1016/j.chom.2010.01.007_bib22) 1998; 72
Shelly (10.1016/j.chom.2010.01.007_bib32) 2009; 30
Mizushima (10.1016/j.chom.2010.01.007_bib25) 2001; 152
Rice (10.1016/j.chom.2010.01.007_bib31) 1982; 154
Deretic (10.1016/j.chom.2010.01.007_bib2) 2009; 5
Li (10.1016/j.chom.2010.01.007_bib21) 1997; 227
Komatsu (10.1016/j.chom.2010.01.007_bib13) 2005; 169
Orvedahl (10.1016/j.chom.2010.01.007_bib27) 2008; 10
Hamacher-Brady (10.1016/j.chom.2010.01.007_bib5) 2006; 281
Zhao (10.1016/j.chom.2010.01.007_bib37) 2008; 4
Taylor (10.1016/j.chom.2010.01.007_bib34) 1955; 4
20159611 - Cell Host Microbe. 2010 Feb 18;7(2):83-4. doi: 10.1016/j.chom.2010.02.003.
References_xml – volume: 227
  start-page: 361
  year: 1997
  ident: 10.1016/j.chom.2010.01.007_bib21
  article-title: Complementation of and interference with Sindbis virus replication by full-length and deleted forms of the nonstructural protein, nsP1, expressed in stable transfectants of Hela cells
  publication-title: Virology
  doi: 10.1006/viro.1996.8342
– volume: 15
  start-page: 1101
  year: 2004
  ident: 10.1016/j.chom.2010.01.007_bib26
  article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-09-0704
– volume: 83
  start-page: 12164
  year: 2009
  ident: 10.1016/j.chom.2010.01.007_bib18
  article-title: Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses
  publication-title: J. Virol.
  doi: 10.1128/JVI.01676-09
– volume: 72
  start-page: 8586
  year: 1998
  ident: 10.1016/j.chom.2010.01.007_bib22
  article-title: Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.11.8586-8596.1998
– volume: 171
  start-page: 603
  year: 2005
  ident: 10.1016/j.chom.2010.01.007_bib1
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507002
– volume: 441
  start-page: 885
  year: 2006
  ident: 10.1016/j.chom.2010.01.007_bib6
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
  doi: 10.1038/nature04724
– volume: 10
  start-page: 1747
  year: 2008
  ident: 10.1016/j.chom.2010.01.007_bib27
  article-title: Autophagy and viral neurovirulence
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2008.01175.x
– volume: 9
  start-page: 908
  year: 2008
  ident: 10.1016/j.chom.2010.01.007_bib35
  article-title: Autophagic control of listeria through intracellular innate immune recognition in drosophila
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1634
– volume: 46
  start-page: 929
  year: 1965
  ident: 10.1016/j.chom.2010.01.007_bib11
  article-title: Virus invasion of the central nervous system: a study of Sindbis virus infection in the mouse using fluorescent antibody
  publication-title: Am. J. Pathol.
– volume: 4
  start-page: 844
  year: 1955
  ident: 10.1016/j.chom.2010.01.007_bib34
  article-title: Sindbis virus: a newly recognized arthropodtransmitted virus
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.1955.4.844
– volume: 125
  start-page: 257
  year: 1972
  ident: 10.1016/j.chom.2010.01.007_bib12
  article-title: Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/125.3.257
– volume: 121
  start-page: 567
  year: 2005
  ident: 10.1016/j.chom.2010.01.007_bib23
  article-title: Autophagy regulates programmed cell death during the plant innate immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.007
– volume: 280
  start-page: 20722
  year: 2005
  ident: 10.1016/j.chom.2010.01.007_bib30
  article-title: Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413934200
– volume: 322
  start-page: 492
  year: 2000
  ident: 10.1016/j.chom.2010.01.007_bib7
  article-title: Sindbis virus vector system for functional analysis of apoptosis regulators
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(00)22045-4
– volume: 281
  start-page: 29776
  year: 2006
  ident: 10.1016/j.chom.2010.01.007_bib5
  article-title: Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603783200
– volume: 395
  start-page: 395
  year: 1998
  ident: 10.1016/j.chom.2010.01.007_bib24
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
  doi: 10.1038/26506
– volume: 1
  start-page: 23
  year: 2007
  ident: 10.1016/j.chom.2010.01.007_bib28
  article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2006.12.001
– volume: 154
  start-page: 325
  year: 1982
  ident: 10.1016/j.chom.2010.01.007_bib31
  article-title: Association of sindbis virion glycoproteins and their precursors
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(82)90067-5
– volume: 8
  start-page: 1124
  year: 2006
  ident: 10.1016/j.chom.2010.01.007_bib36
  article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1482
– volume: 432
  start-page: 1032
  year: 2004
  ident: 10.1016/j.chom.2010.01.007_bib16
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 132
  start-page: 27
  year: 2008
  ident: 10.1016/j.chom.2010.01.007_bib20
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.018
– volume: 289
  start-page: 57
  year: 2005
  ident: 10.1016/j.chom.2010.01.007_bib4
  article-title: Neuronal cell death in alphavirus encephalomyelitis
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 282
  start-page: 24131
  year: 2007
  ident: 10.1016/j.chom.2010.01.007_bib29
  article-title: P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 4
  start-page: 458
  year: 2008
  ident: 10.1016/j.chom.2010.01.007_bib37
  article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.10.003
– volume: 315
  start-page: 1398
  year: 2007
  ident: 10.1016/j.chom.2010.01.007_bib17
  article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells
  publication-title: Science
  doi: 10.1126/science.1136880
– volume: 169
  start-page: 425
  year: 2005
  ident: 10.1016/j.chom.2010.01.007_bib13
  article-title: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200412022
– volume: 441
  start-page: 880
  year: 2006
  ident: 10.1016/j.chom.2010.01.007_bib14
  article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice
  publication-title: Nature
  doi: 10.1038/nature04723
– volume: 183
  start-page: 5909
  year: 2009
  ident: 10.1016/j.chom.2010.01.007_bib38
  article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900441
– volume: 106
  start-page: 14564
  year: 2009
  ident: 10.1016/j.chom.2010.01.007_bib10
  article-title: Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0813319106
– volume: 30
  start-page: 588
  year: 2009
  ident: 10.1016/j.chom.2010.01.007_bib32
  article-title: Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.02.009
– volume: 580
  start-page: 2623
  year: 2006
  ident: 10.1016/j.chom.2010.01.007_bib8
  article-title: Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.04.008
– volume: 100
  start-page: 7824
  year: 2003
  ident: 10.1016/j.chom.2010.01.007_bib33
  article-title: Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1332160100
– volume: 131
  start-page: 1149
  year: 2007
  ident: 10.1016/j.chom.2010.01.007_bib15
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.035
– volume: 152
  start-page: 657
  year: 2001
  ident: 10.1016/j.chom.2010.01.007_bib25
  article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.4.657
– volume: 5
  start-page: 527
  year: 2009
  ident: 10.1016/j.chom.2010.01.007_bib2
  article-title: Autophagy, immunity, and microbial adaptations
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.05.016
– volume: 40
  start-page: 1
  year: 1973
  ident: 10.1016/j.chom.2010.01.007_bib3
  article-title: Electron microscopic study of Sindbis virus morphogenesis
  publication-title: Arch. Gesamte Virusforsch.
  doi: 10.1007/BF01242630
– volume: 58
  start-page: 503
  year: 1988
  ident: 10.1016/j.chom.2010.01.007_bib9
  article-title: Basis of neurovirulence in Sindbis virus encephalomyelitis of mice
  publication-title: Lab. Invest.
– volume: 265
  start-page: 95
  year: 2002
  ident: 10.1016/j.chom.2010.01.007_bib19
  article-title: Apoptosis in viral infections of neurons: a protective or pathologic host response?
  publication-title: Curr. Top. Microbiol. Immunol.
– reference: 20159611 - Cell Host Microbe. 2010 Feb 18;7(2):83-4. doi: 10.1016/j.chom.2010.02.003.
SSID ssj0055071
Score 2.4998474
Snippet Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be...
Autophagy functions in antiviral immunity. However, it is not yet known whether endogenous autophagy genes protect against viral disease in vertebrates. Using...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 115
SubjectTerms Alphavirus Infections - immunology
Animals
Apoptosis
Autophagy
Autophagy-Related Protein 5
Cell Line
Central Nervous System - physiology
Mice
Mice, Knockout
Microtubule-Associated Proteins - deficiency
Microtubule-Associated Proteins - physiology
Neurons - pathology
Neurons - virology
Sindbis Virus - immunology
Survival Analysis
Title Autophagy Protects against Sindbis Virus Infection of the Central Nervous System
URI https://www.ncbi.nlm.nih.gov/pubmed/20159618
https://www.proquest.com/docview/733928929
https://pubmed.ncbi.nlm.nih.gov/PMC2860265
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvZd9LtxU97M24WLZs2Y9taSmjX6wJhL0ISZablMwtiVNo__qeLPkjTdnXiwmOZQXdL6e70-_uEPom41SBWZ_4MVGZT_NE-6kiiR_SAgCS5ySuuTknp8nRiH4fx-OO1lxnl1RyR90_mVfyP1KFeyBXkyX7D5JtXwo34DPIF64gYbj-lYx3l6YsgLi881y5hYUnLsHVX1TeBfjacrrwbqfzZUe5KhtKgONkeiWoCkOCtQWd-5bqvgnqmRSQGhy_DG9PtiA4m9_qXExmvfIDvdD2-aQ249cCzhcAHdcH5AfsAV3QYDYz5_V7kbqvRf4TVq3qhyPMSXror2jQLKI-eEVWD-on7jm1y3roCnsqlNj0zjXVbqMMVzumh4yj5BFT-LzbyJrD-9Mzfjg6PubDg_HwOXoRMrCqTGrneK_Zo00RN2L5BvaHuXQqy_x7PMOqybLmhzym0_bsk-FrtOkcC7xrUfIGPdPlW_TSthq9e4fOW6zgBivYYQU7rOAaK7jFCr4uMGAFuwmxwwq2WHmPRocHw_0j33XT8BVshpUfM7B8E2YqTCaFkoQlMohoQEUUC50RKaTI07AQLE9okZCCSKYKMFaVhgGhCKMPaKO8LvUnhINAxaTQTFOqaK7SrAgVAUcCfHepWMYGiDQLxpUrNW86nsx4wym84maRuVlkHhAOizxAXjvmxhZa-e3TuJEDB31oDrlEqWENOIvA4k_B6B-gj1Ys7etgfGwaHA0QWxFY-4Aptb76TTmd1CXXw7pVW7z152k_o1fd3-IL2qjmS_0V7NZKbtcQfAANf5v5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+protects+against+Sindbis+virus+infection+of+the+central+nervous+system&rft.jtitle=Cell+host+%26+microbe&rft.au=Orvedahl%2C+Anthony&rft.au=MacPherson%2C+Sarah&rft.au=Sumpter%2C+Rhea&rft.au=Tall%C3%B3czy%2C+Zsolt&rft.date=2010-02-18&rft.issn=1934-6069&rft.eissn=1934-6069&rft.volume=7&rft.issue=2&rft.spage=115&rft_id=info:doi/10.1016%2Fj.chom.2010.01.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon