Autophagy Protects against Sindbis Virus Infection of the Central Nervous System
Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infect...
Saved in:
Published in | Cell host & microbe Vol. 7; no. 2; pp. 115 - 127 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
18.02.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3128 1934-6069 1934-6069 |
DOI | 10.1016/j.chom.2010.01.007 |
Cover
Abstract | Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival. |
---|---|
AbstractList | Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival.Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival. Autophagy functions in antiviral immunity. However, it is not yet known whether endogenous autophagy genes protect against viral disease in vertebrates. Using three different approaches to inactivate the autophagy gene Atg5 in virally-infected neurons, we found that loss of Atg5 function increases mouse susceptibility to lethal Sindbis virus CNS infection. This phenotype is associated with delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but not with altered levels of CNS viral replication. In vitro , p62 interacts with Sindbis virus capsid protein and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a novel function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival. Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be causally established. Here, we report that the autophagy gene Atg5 function is critical for protection against lethal Sindbis virus (SIN) infection of the mouse central nervous system. Inactivating Atg5 in SIN-infected neurons results in delayed clearance of viral proteins, increased accumulation of the cellular p62 adaptor protein, and increased cell death in neurons, but the levels of viral replication remain unaltered. In vitro, p62 interacts with SIN capsid protein, and genetic knockdown of p62 blocks the targeting of viral capsid to autophagosomes. Moreover, p62 or autophagy gene knockdown increases viral capsid accumulation and accelerates virus-induced cell death without affecting virus replication. These results suggest a function for autophagy in mammalian antiviral defense: a cell-autonomous mechanism in which p62 adaptor-mediated autophagic viral protein clearance promotes cell survival. |
Author | Tallóczy, Zsolt Sumpter, Rhea Orvedahl, Anthony Zou, Zhongju MacPherson, Sarah Levine, Beth |
AuthorAffiliation | 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 4 Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032 3 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 |
AuthorAffiliation_xml | – name: 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 – name: 3 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 – name: 4 Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032 – name: 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390 |
Author_xml | – sequence: 1 givenname: Anthony surname: Orvedahl fullname: Orvedahl, Anthony – sequence: 2 givenname: Sarah surname: MacPherson fullname: MacPherson, Sarah – sequence: 3 givenname: Rhea surname: Sumpter fullname: Sumpter, Rhea – sequence: 4 givenname: Zsolt surname: Tallóczy fullname: Tallóczy, Zsolt – sequence: 5 givenname: Zhongju surname: Zou fullname: Zou, Zhongju – sequence: 6 givenname: Beth surname: Levine fullname: Levine, Beth |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20159618$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9PIyEUxYnR-P8L-GB482m6XGYGZl5MTOOuJmZtUvWVMBRamhmoQE367Zdu1eg-7BOEe37nXu45QfvOO43QBZAREGA_liO18MOIkvxAYEQI30PH0JZVwQhr9__eoSiBNkfoJMYlIXVNOByio4zULYPmGE1u1smvFnK-wZPgk1YpYjmX1sWEp9bNOhvxiw3riO-dyVXrHfYGp4XGY-1SkD3-rcObz4LpJiY9nKEDI_uoz9_PU_T88_ZpfFc8PP66H988FKpiPBU1rypgHErOmVEdcNaRsiKVLGupW-hkJ2cNNZLPWGUYGOi4Mi1nSmeASlqeouud72rdDXqmdsOIVbCDDBvhpRXfK84uxNy_CdowQlmdDa7eDYJ_XeuYxGCj0n0vnc7fEbwsW9q0tM3Ky6-tPnt8bDEL6E6ggo8xaPMpASK2UYml2Ea1JYggIHJUGWr-gZRNcrvgPK7t_4f-AZRmm9w |
CitedBy_id | crossref_primary_10_1016_j_bbadis_2022_166484 crossref_primary_10_1016_j_it_2012_06_003 crossref_primary_10_1038_s41418_018_0185_5 crossref_primary_10_1002_rmv_1973 crossref_primary_10_1128_JVI_02174_14 crossref_primary_10_3390_cells1030248 crossref_primary_10_1517_14712598_2013_774365 crossref_primary_10_1080_15548627_2021_1897223 crossref_primary_10_1186_s12917_023_03575_7 crossref_primary_10_3390_ijms21103689 crossref_primary_10_3390_v9080224 crossref_primary_10_1016_j_it_2013_08_001 crossref_primary_10_1007_s10565_016_9374_5 crossref_primary_10_3389_fcimb_2020_00277 crossref_primary_10_1038_s41598_017_14882_z crossref_primary_10_1371_journal_ppat_1002825 crossref_primary_10_1038_nri_2016_100 crossref_primary_10_3389_fviro_2022_959586 crossref_primary_10_1155_2012_736905 crossref_primary_10_3389_fimmu_2024_1460023 crossref_primary_10_1111_j_1600_065X_2010_00995_x crossref_primary_10_1016_j_phrs_2012_10_003 crossref_primary_10_1038_embor_2013_51 crossref_primary_10_1080_15548627_2015_1017184 crossref_primary_10_4161_auto_7_12_17793 crossref_primary_10_1093_jxb_erab304 crossref_primary_10_1016_j_tim_2013_06_006 crossref_primary_10_3389_fcell_2022_1058861 crossref_primary_10_3389_fimmu_2024_1424385 crossref_primary_10_1016_j_immuni_2013_10_020 crossref_primary_10_1186_1477_5956_10_20 crossref_primary_10_1038_embor_2013_55 crossref_primary_10_1038_s41467_018_03658_2 crossref_primary_10_1016_j_semcancer_2020_02_015 crossref_primary_10_3389_fcimb_2022_858311 crossref_primary_10_1111_cmi_12165 crossref_primary_10_1111_cmi_13131 crossref_primary_10_1016_j_molcel_2014_03_009 crossref_primary_10_1016_j_tibs_2021_01_004 crossref_primary_10_3389_fcimb_2022_845368 crossref_primary_10_1007_s00281_010_0225_9 crossref_primary_10_1038_nrgastro_2013_66 crossref_primary_10_3390_v12010113 crossref_primary_10_1007_s12275_014_3479_4 crossref_primary_10_1016_j_micinf_2013_04_012 crossref_primary_10_3390_cells2010083 crossref_primary_10_3389_fcell_2018_00155 crossref_primary_10_3389_fmicb_2022_889693 crossref_primary_10_1080_15548627_2016_1254864 crossref_primary_10_1128_jvi_02278_24 crossref_primary_10_3390_vaccines5040045 crossref_primary_10_1080_15548627_2023_2277108 crossref_primary_10_1186_s13071_019_3506_8 crossref_primary_10_1016_j_virusres_2022_198830 crossref_primary_10_1186_s12985_015_0385_2 crossref_primary_10_3389_fphar_2022_832750 crossref_primary_10_3390_cells1030204 crossref_primary_10_1080_15548627_2021_1954773 crossref_primary_10_1016_j_chom_2014_01_014 crossref_primary_10_1038_nri_2016_136 crossref_primary_10_1128_JVI_00039_11 crossref_primary_10_3389_fmicb_2021_661446 crossref_primary_10_1016_j_semcdb_2010_04_004 crossref_primary_10_1016_j_semcdb_2010_04_003 crossref_primary_10_3390_v7122926 crossref_primary_10_1038_s41598_019_41029_z crossref_primary_10_1016_j_chom_2012_03_002 crossref_primary_10_1016_j_it_2013_10_012 crossref_primary_10_1093_abbs_gms010 crossref_primary_10_1007_s00401_014_1361_4 crossref_primary_10_1099_jgv_0_002086 crossref_primary_10_1105_tpc_114_129999 crossref_primary_10_1128_jvi_00051_24 crossref_primary_10_1038_s41579_023_00995_y crossref_primary_10_3390_v15040920 crossref_primary_10_1371_journal_pone_0033871 crossref_primary_10_1016_j_cellsig_2021_110204 crossref_primary_10_1038_jid_2010_423 crossref_primary_10_3389_fimmu_2022_1044721 crossref_primary_10_3389_fmicb_2020_01297 crossref_primary_10_1002_jcp_28243 crossref_primary_10_1007_s00705_022_05630_4 crossref_primary_10_3390_pathogens5020034 crossref_primary_10_1016_j_jep_2020_112611 crossref_primary_10_1038_s41418_022_00942_z crossref_primary_10_1038_s44318_024_00187_1 crossref_primary_10_1097_MOG_0b013e32833ae2ed crossref_primary_10_3390_ijms20020300 crossref_primary_10_1155_2014_825463 crossref_primary_10_1016_j_virs_2023_07_004 crossref_primary_10_1016_j_redox_2015_01_003 crossref_primary_10_1128_JVI_02908_15 crossref_primary_10_1371_journal_pntd_0007754 crossref_primary_10_1080_27694127_2025_2464986 crossref_primary_10_1084_jem_20110996 crossref_primary_10_1051_medsci_201127141 crossref_primary_10_1111_nph_16268 crossref_primary_10_1016_j_chom_2015_03_001 crossref_primary_10_1038_ncomms6779 crossref_primary_10_1086_710389 crossref_primary_10_1016_j_micpath_2017_11_034 crossref_primary_10_1038_onc_2013_181 crossref_primary_10_1111_cmi_12358 crossref_primary_10_1128_jvi_01470_23 crossref_primary_10_1016_j_semcdb_2019_07_013 crossref_primary_10_3390_cells13020123 crossref_primary_10_1080_17460441_2020_1773429 crossref_primary_10_1016_j_virusres_2018_12_013 crossref_primary_10_1186_s12870_020_02711_x crossref_primary_10_1038_nrd3802 crossref_primary_10_1128_JVI_01200_16 crossref_primary_10_1111_jpi_12534 crossref_primary_10_3390_v15102108 crossref_primary_10_1038_s41577_020_0391_5 crossref_primary_10_1080_15548627_2022_2062888 crossref_primary_10_1038_s41586_020_03056_z crossref_primary_10_1016_j_freeradbiomed_2018_12_008 crossref_primary_10_1016_j_devcel_2011_06_023 crossref_primary_10_1126_science_1233028 crossref_primary_10_1016_j_febslet_2015_07_047 crossref_primary_10_3390_v4123440 crossref_primary_10_1016_j_jhazmat_2020_124903 crossref_primary_10_1172_JCI168544 crossref_primary_10_2478_ii_2018_0001 crossref_primary_10_1038_ni_2350 crossref_primary_10_1002_iub_2582 crossref_primary_10_18632_oncotarget_12084 crossref_primary_10_4049_jimmunol_1102108 crossref_primary_10_1073_pnas_1915139116 crossref_primary_10_3389_fmicb_2022_889835 crossref_primary_10_1080_21505594_2019_1605803 crossref_primary_10_1016_j_jmb_2016_02_027 crossref_primary_10_1016_j_celrep_2024_115070 crossref_primary_10_1111_bph_15166 crossref_primary_10_1155_2012_219625 crossref_primary_10_2217_fvl_15_45 crossref_primary_10_3390_cells9040831 crossref_primary_10_1002_rmv_2447 crossref_primary_10_1080_15548627_2021_2021495 crossref_primary_10_3390_v16091440 crossref_primary_10_1016_j_virusres_2014_07_016 crossref_primary_10_1360_TB_2024_0341 crossref_primary_10_1021_acs_analchem_7b04352 crossref_primary_10_1186_s12929_023_00899_2 crossref_primary_10_1093_intimm_dxs101 crossref_primary_10_1016_j_jmb_2019_07_016 crossref_primary_10_1007_s00705_017_3652_2 crossref_primary_10_1146_annurev_immunol_042617_053253 crossref_primary_10_1038_nri3532 crossref_primary_10_1080_15548627_2019_1707487 crossref_primary_10_1016_j_bbrc_2013_01_111 crossref_primary_10_1371_journal_ppat_1006213 crossref_primary_10_1186_s13567_020_00783_z crossref_primary_10_1371_journal_pone_0033454 crossref_primary_10_1128_jvi_00070_22 crossref_primary_10_1128_JVI_01757_18 crossref_primary_10_1016_j_pestbp_2019_03_016 crossref_primary_10_1038_icb_2014_88 crossref_primary_10_1371_journal_pone_0245694 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3389_fimmu_2022_931034 crossref_primary_10_1016_j_livres_2018_09_002 crossref_primary_10_1016_j_chom_2013_03_010 crossref_primary_10_1080_15548627_2025_2474576 crossref_primary_10_4049_jimmunol_1600286 crossref_primary_10_1016_j_jmb_2018_04_018 crossref_primary_10_1016_j_celrep_2016_11_005 crossref_primary_10_1038_nature09782 crossref_primary_10_1016_j_cois_2017_05_001 crossref_primary_10_1016_j_bbrep_2016_08_023 crossref_primary_10_1016_j_jmb_2013_10_006 crossref_primary_10_1189_jlb_2MR0416_201R crossref_primary_10_1016_j_fsi_2024_109719 crossref_primary_10_3390_v3071166 crossref_primary_10_3390_ijms19123940 crossref_primary_10_1051_medsci_2022010 crossref_primary_10_1038_srep23326 crossref_primary_10_1080_15548627_2020_1831800 crossref_primary_10_1128_mbio_03528_21 crossref_primary_10_3390_v3071281 crossref_primary_10_1128_JVI_00270_12 crossref_primary_10_1016_j_nano_2014_03_019 crossref_primary_10_1016_j_dci_2020_103693 crossref_primary_10_1016_j_immuni_2012_03_025 crossref_primary_10_1146_annurev_cellbio_120219_035530 crossref_primary_10_1111_jfd_13227 crossref_primary_10_4049_jimmunol_1403249 crossref_primary_10_1016_j_coi_2011_10_006 crossref_primary_10_3390_ijms21051643 crossref_primary_10_18632_oncotarget_10970 crossref_primary_10_1242_jcs_204909 crossref_primary_10_1080_15548627_2016_1191857 crossref_primary_10_1128_JVI_03851_13 crossref_primary_10_3390_cells8070674 crossref_primary_10_1038_ni_3273 crossref_primary_10_3389_fmicb_2014_00250 crossref_primary_10_1016_j_biocel_2016_07_019 crossref_primary_10_1371_journal_pntd_0010751 crossref_primary_10_1038_s41467_022_32225_z crossref_primary_10_1155_2012_146767 crossref_primary_10_1007_s00430_014_0340_7 crossref_primary_10_3390_v12010039 crossref_primary_10_1016_j_chom_2015_12_010 crossref_primary_10_3389_fmicb_2014_00388 crossref_primary_10_1002_hep_24324 crossref_primary_10_1128_JVI_06581_11 crossref_primary_10_1371_journal_ppat_1005449 crossref_primary_10_1007_s10875_016_0254_9 crossref_primary_10_1016_j_ijantimicag_2024_107308 crossref_primary_10_1038_s43587_021_00098_4 crossref_primary_10_1128_spectrum_01995_21 crossref_primary_10_1146_annurev_pathol_020712_163918 crossref_primary_10_1016_j_immuni_2012_03_003 crossref_primary_10_3389_fcell_2021_766142 crossref_primary_10_4161_auto_7_3_14487 crossref_primary_10_1186_s11658_021_00272_x crossref_primary_10_1073_pnas_1610687114 crossref_primary_10_3389_fimmu_2023_1268104 crossref_primary_10_1016_j_antiviral_2022_105476 crossref_primary_10_1111_imm_12165 crossref_primary_10_1371_journal_ppat_1004580 crossref_primary_10_1038_s41467_017_00085_7 crossref_primary_10_1016_j_intimp_2013_11_001 crossref_primary_10_1007_s41745_016_0015_z crossref_primary_10_1128_JVI_00846_12 crossref_primary_10_1016_j_coi_2015_06_011 crossref_primary_10_1186_s43556_022_00083_2 crossref_primary_10_3390_immuno2010012 crossref_primary_10_7554_eLife_23897 crossref_primary_10_2217_fmb_10_101 crossref_primary_10_1097_TP_0b013e31827fac48 crossref_primary_10_1128_JVI_01255_20 crossref_primary_10_1080_15548627_2017_1356978 crossref_primary_10_3390_v9120359 crossref_primary_10_1155_2018_8753894 crossref_primary_10_1038_s41467_021_25642_z crossref_primary_10_3390_cancers13040614 crossref_primary_10_1038_s41423_021_00758_w crossref_primary_10_1073_pnas_1210500109 crossref_primary_10_1016_j_virusres_2013_12_034 crossref_primary_10_1242_jcs_126128 crossref_primary_10_4161_auto_21332 crossref_primary_10_1007_s40475_015_0037_z crossref_primary_10_1002_med_21571 crossref_primary_10_1042_EBC20170035 crossref_primary_10_1016_j_bbrc_2020_12_091 crossref_primary_10_1080_21505594_2024_2384563 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_1080_15548627_2024_2414424 crossref_primary_10_1371_journal_ppat_1004685 crossref_primary_10_1038_nature10546 crossref_primary_10_1051_medsci_2012288008 crossref_primary_10_1002_smll_201702841 crossref_primary_10_1038_ncomms10631 crossref_primary_10_3389_fcell_2021_738932 crossref_primary_10_1016_j_fsi_2022_07_041 crossref_primary_10_3390_insects12080728 crossref_primary_10_3390_v13122494 crossref_primary_10_1038_nature11866 crossref_primary_10_1126_sciimmunol_abc2691 crossref_primary_10_1073_pnas_1203952109 crossref_primary_10_1111_j_1600_065X_2012_01146_x crossref_primary_10_1016_j_cellin_2022_100031 crossref_primary_10_1016_j_chom_2018_05_022 crossref_primary_10_1038_cddis_2016_489 crossref_primary_10_1016_j_celrep_2024_113792 crossref_primary_10_1038_s42003_020_01285_6 crossref_primary_10_4049_jimmunol_1500150 crossref_primary_10_1016_j_fsi_2025_110258 crossref_primary_10_1007_s00204_017_2118_3 crossref_primary_10_1007_s10495_018_1445_z crossref_primary_10_1128_JVI_01299_13 crossref_primary_10_3390_cells9122612 crossref_primary_10_15252_embj_2022113118 crossref_primary_10_1371_journal_ppat_1003328 crossref_primary_10_1038_s41564_017_0017_2 crossref_primary_10_1371_journal_ppat_1003562 crossref_primary_10_1111_imm_13325 crossref_primary_10_1096_fj_201601141RR crossref_primary_10_1016_j_imlet_2020_07_001 crossref_primary_10_1152_ajplung_00147_2013 crossref_primary_10_3390_v9050123 crossref_primary_10_1016_j_chom_2012_07_013 crossref_primary_10_1051_medsci_20173303019 crossref_primary_10_1080_15548627_2021_1994296 crossref_primary_10_15252_embr_201642443 crossref_primary_10_1016_j_coviro_2011_05_013 crossref_primary_10_1016_j_watbs_2022_100092 crossref_primary_10_1016_j_coviro_2011_05_016 crossref_primary_10_1016_j_micpath_2014_03_004 crossref_primary_10_3390_cells8020138 crossref_primary_10_1099_jgv_0_000792 crossref_primary_10_3390_biom13101454 crossref_primary_10_3389_fcimb_2021_786348 crossref_primary_10_1128_JVI_00581_17 crossref_primary_10_1016_j_coi_2021_05_004 crossref_primary_10_1016_j_bbamcr_2013_03_019 crossref_primary_10_1002_med_21303 crossref_primary_10_1016_j_genrep_2021_101370 crossref_primary_10_3390_ijms24109008 crossref_primary_10_1371_journal_pbio_2006926 crossref_primary_10_3390_v9120372 crossref_primary_10_1002_cbf_3740 crossref_primary_10_1038_s41598_019_52408_x crossref_primary_10_1371_journal_pone_0037457 crossref_primary_10_1016_j_jbc_2023_104987 crossref_primary_10_15252_embj_201797858 crossref_primary_10_2217_fmb_12_22 crossref_primary_10_1016_j_virol_2012_12_011 crossref_primary_10_1038_s41467_024_53100_z crossref_primary_10_1016_j_aquaculture_2024_741858 crossref_primary_10_1186_s12985_024_02568_8 crossref_primary_10_1002_path_4351 crossref_primary_10_1002_ps_3737 crossref_primary_10_1080_21505594_2018_1551010 crossref_primary_10_1080_15548627_2022_2115830 crossref_primary_10_1016_j_cell_2013_07_035 crossref_primary_10_3389_fnut_2023_1195270 crossref_primary_10_1038_s41467_019_13659_4 crossref_primary_10_1038_srep10745 crossref_primary_10_1016_j_jmb_2023_168144 crossref_primary_10_4110_in_2013_13_1_1 crossref_primary_10_1159_000346388 crossref_primary_10_3390_cells12060956 crossref_primary_10_1016_j_plipres_2021_101092 crossref_primary_10_4161_auto_29309 crossref_primary_10_1016_j_immuni_2013_07_017 crossref_primary_10_1080_21505594_2021_2014680 crossref_primary_10_1002_adtp_202000085 crossref_primary_10_1016_j_virol_2012_12_004 crossref_primary_10_1111_mpp_12852 crossref_primary_10_1128_mbio_02919_22 crossref_primary_10_1172_JCI136824 crossref_primary_10_1007_s11307_012_0585_8 crossref_primary_10_3390_v11030260 crossref_primary_10_18632_oncotarget_2219 crossref_primary_10_1080_15548627_2019_1632104 crossref_primary_10_1038_s41598_018_23610_0 crossref_primary_10_1016_j_virusres_2023_199249 crossref_primary_10_1016_j_chom_2010_02_003 crossref_primary_10_1016_j_tim_2021_02_006 crossref_primary_10_1128_JVI_01417_10 crossref_primary_10_1172_JCI58656 crossref_primary_10_1016_j_phrs_2012_07_004 crossref_primary_10_1016_j_clim_2024_110169 crossref_primary_10_1186_s12886_019_1141_y crossref_primary_10_3390_cells13151256 crossref_primary_10_1099_jgv_0_001161 crossref_primary_10_1017_erm_2015_19 crossref_primary_10_1016_j_vetmic_2019_03_012 crossref_primary_10_1074_jbc_M114_593871 crossref_primary_10_1242_jcs_240440 crossref_primary_10_1371_journal_ppat_1002422 crossref_primary_10_1016_j_bbrc_2024_150853 crossref_primary_10_1093_infdis_jis226 crossref_primary_10_1016_j_isci_2019_09_009 crossref_primary_10_1016_j_micinf_2011_09_001 crossref_primary_10_1016_j_micinf_2011_09_007 crossref_primary_10_1186_s12977_017_0341_x crossref_primary_10_1016_j_fsi_2019_08_009 crossref_primary_10_1371_journal_ppat_1003619 crossref_primary_10_1128_jvi_01814_22 crossref_primary_10_1016_j_cell_2016_04_006 crossref_primary_10_1128_JVI_02193_17 crossref_primary_10_4161_auto_26059 crossref_primary_10_1128_JVI_06390_11 crossref_primary_10_2217_fmb_15_5 crossref_primary_10_3390_v12040381 crossref_primary_10_1016_j_virol_2012_08_016 crossref_primary_10_4161_auto_7_11_16642 crossref_primary_10_1080_15548627_2015_1037062 crossref_primary_10_1038_srep09730 crossref_primary_10_1016_j_autrev_2013_10_007 crossref_primary_10_1080_15548627_2023_2233847 crossref_primary_10_4161_auto_7_3_14281 crossref_primary_10_3390_v4102251 crossref_primary_10_1016_j_neulet_2018_04_017 crossref_primary_10_1016_j_micinf_2015_12_006 crossref_primary_10_1016_j_cj_2021_02_009 crossref_primary_10_1038_s41579_018_0003_6 crossref_primary_10_1016_j_micinf_2011_08_014 crossref_primary_10_1016_j_jri_2023_103973 crossref_primary_10_1128_JVI_07204_11 crossref_primary_10_1042_bse0550153 crossref_primary_10_1186_s13567_023_01174_w crossref_primary_10_1155_2014_273473 crossref_primary_10_3390_cells8050386 crossref_primary_10_1007_s40588_022_00186_y crossref_primary_10_3109_10715762_2012_670701 crossref_primary_10_1159_000350326 crossref_primary_10_1146_annurev_immunol_020711_074948 crossref_primary_10_1128_JVI_01984_18 crossref_primary_10_1038_s41418_019_0481_8 crossref_primary_10_15252_embj_201796697 crossref_primary_10_1016_j_tim_2024_11_003 crossref_primary_10_3390_ijms22084067 crossref_primary_10_1186_s12985_019_1182_0 crossref_primary_10_1080_15548627_2017_1405187 crossref_primary_10_1002_ddr_21027 crossref_primary_10_1038_cmi_2014_127 crossref_primary_10_1360_TB_2022_0877 crossref_primary_10_1080_15548627_2018_1476014 crossref_primary_10_1146_annurev_virology_031413_085524 crossref_primary_10_1016_j_virol_2022_11_012 crossref_primary_10_1016_j_fsi_2016_11_037 crossref_primary_10_3389_fonc_2021_743780 crossref_primary_10_1007_s00281_010_0227_7 crossref_primary_10_1073_pnas_1617649113 crossref_primary_10_1038_s41467_020_17156_x crossref_primary_10_1016_j_apsb_2023_07_016 crossref_primary_10_1093_jb_mvr083 crossref_primary_10_1002_mco2_511 crossref_primary_10_1038_cdd_2014_58 crossref_primary_10_4049_jimmunol_1100949 crossref_primary_10_3390_cells11040711 crossref_primary_10_1155_tbed_6238787 |
Cites_doi | 10.1006/viro.1996.8342 10.1091/mbc.e03-09-0704 10.1128/JVI.01676-09 10.1128/JVI.72.11.8586-8596.1998 10.1083/jcb.200507002 10.1038/nature04724 10.1111/j.1462-5822.2008.01175.x 10.1038/ni.1634 10.4269/ajtmh.1955.4.844 10.1093/infdis/125.3.257 10.1016/j.cell.2005.03.007 10.1074/jbc.M413934200 10.1016/S0076-6879(00)22045-4 10.1074/jbc.M603783200 10.1038/26506 10.1016/j.chom.2006.12.001 10.1016/0022-2836(82)90067-5 10.1038/ncb1482 10.1038/nature03029 10.1016/j.cell.2007.12.018 10.1074/jbc.M702824200 10.1016/j.chom.2008.10.003 10.1126/science.1136880 10.1083/jcb.200412022 10.1038/nature04723 10.4049/jimmunol.0900441 10.1073/pnas.0813319106 10.1016/j.immuni.2009.02.009 10.1016/j.febslet.2006.04.008 10.1073/pnas.1332160100 10.1016/j.cell.2007.10.035 10.1083/jcb.152.4.657 10.1016/j.chom.2009.05.016 10.1007/BF01242630 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2010.01.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 127 |
ExternalDocumentID | PMC2860265 20159618 10_1016_j_chom_2010_01_007 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI151367 – fundername: NIAID NIH HHS grantid: R01 AI051367 – fundername: NIAID NIH HHS grantid: T32 AI007520 – fundername: NIAID NIH HHS grantid: R01 AI151367 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF HZ~ IHE IXB JIG M41 O-L O9- OK1 OZT P2P RIG ROL RPZ SES SSZ TR2 UNMZH ZBA CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c467t-574416713776fcb176b03404a35ae91babad82fa7d64f61f1b7cf976ce7762a23 |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 17:36:43 EDT 2025 Sun Sep 28 00:55:12 EDT 2025 Mon Jul 21 05:54:44 EDT 2025 Tue Jul 01 02:44:14 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2010 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-574416713776fcb176b03404a35ae91babad82fa7d64f61f1b7cf976ce7762a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Novartis Pharmaceutical Corporations, Neuroscience and Ophthalmics. These authors contributed equally to this work |
OpenAccessLink | http://doi.org/10.1016/j.chom.2010.01.007 |
PMID | 20159618 |
PQID | 733928929 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2860265 proquest_miscellaneous_733928929 pubmed_primary_20159618 crossref_primary_10_1016_j_chom_2010_01_007 crossref_citationtrail_10_1016_j_chom_2010_01_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-18 |
PublicationDateYYYYMMDD | 2010-02-18 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2010 |
References | Lee (10.1016/j.chom.2010.01.007_bib17) 2007; 315 Levine (10.1016/j.chom.2010.01.007_bib19) 2002; 265 Orvedahl (10.1016/j.chom.2010.01.007_bib28) 2007; 1 Griffin (10.1016/j.chom.2010.01.007_bib4) 2005; 289 Pankiv (10.1016/j.chom.2010.01.007_bib29) 2007; 282 Jia (10.1016/j.chom.2010.01.007_bib10) 2009; 106 Leib (10.1016/j.chom.2010.01.007_bib18) 2009; 83 Levine (10.1016/j.chom.2010.01.007_bib20) 2008; 132 Johnson (10.1016/j.chom.2010.01.007_bib12) 1972; 125 Gil-Fernández (10.1016/j.chom.2010.01.007_bib3) 1973; 40 Yousefi (10.1016/j.chom.2010.01.007_bib36) 2006; 8 Hardwick (10.1016/j.chom.2010.01.007_bib7) 2000; 322 Mizushima (10.1016/j.chom.2010.01.007_bib26) 2004; 15 Mizushima (10.1016/j.chom.2010.01.007_bib24) 1998; 395 Johnson (10.1016/j.chom.2010.01.007_bib11) 1965; 46 Komatsu (10.1016/j.chom.2010.01.007_bib15) 2007; 131 Bjørkøy (10.1016/j.chom.2010.01.007_bib1) 2005; 171 Pyo (10.1016/j.chom.2010.01.007_bib30) 2005; 280 Liu (10.1016/j.chom.2010.01.007_bib23) 2005; 121 Yano (10.1016/j.chom.2010.01.007_bib35) 2008; 9 Komatsu (10.1016/j.chom.2010.01.007_bib14) 2006; 441 Zheng (10.1016/j.chom.2010.01.007_bib38) 2009; 183 Hosokawa (10.1016/j.chom.2010.01.007_bib8) 2006; 580 Su (10.1016/j.chom.2010.01.007_bib33) 2003; 100 Kuma (10.1016/j.chom.2010.01.007_bib16) 2004; 432 Hara (10.1016/j.chom.2010.01.007_bib6) 2006; 441 Jackson (10.1016/j.chom.2010.01.007_bib9) 1988; 58 Liang (10.1016/j.chom.2010.01.007_bib22) 1998; 72 Shelly (10.1016/j.chom.2010.01.007_bib32) 2009; 30 Mizushima (10.1016/j.chom.2010.01.007_bib25) 2001; 152 Rice (10.1016/j.chom.2010.01.007_bib31) 1982; 154 Deretic (10.1016/j.chom.2010.01.007_bib2) 2009; 5 Li (10.1016/j.chom.2010.01.007_bib21) 1997; 227 Komatsu (10.1016/j.chom.2010.01.007_bib13) 2005; 169 Orvedahl (10.1016/j.chom.2010.01.007_bib27) 2008; 10 Hamacher-Brady (10.1016/j.chom.2010.01.007_bib5) 2006; 281 Zhao (10.1016/j.chom.2010.01.007_bib37) 2008; 4 Taylor (10.1016/j.chom.2010.01.007_bib34) 1955; 4 20159611 - Cell Host Microbe. 2010 Feb 18;7(2):83-4. doi: 10.1016/j.chom.2010.02.003. |
References_xml | – volume: 227 start-page: 361 year: 1997 ident: 10.1016/j.chom.2010.01.007_bib21 article-title: Complementation of and interference with Sindbis virus replication by full-length and deleted forms of the nonstructural protein, nsP1, expressed in stable transfectants of Hela cells publication-title: Virology doi: 10.1006/viro.1996.8342 – volume: 15 start-page: 1101 year: 2004 ident: 10.1016/j.chom.2010.01.007_bib26 article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-09-0704 – volume: 83 start-page: 12164 year: 2009 ident: 10.1016/j.chom.2010.01.007_bib18 article-title: Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses publication-title: J. Virol. doi: 10.1128/JVI.01676-09 – volume: 72 start-page: 8586 year: 1998 ident: 10.1016/j.chom.2010.01.007_bib22 article-title: Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein publication-title: J. Virol. doi: 10.1128/JVI.72.11.8586-8596.1998 – volume: 171 start-page: 603 year: 2005 ident: 10.1016/j.chom.2010.01.007_bib1 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.200507002 – volume: 441 start-page: 885 year: 2006 ident: 10.1016/j.chom.2010.01.007_bib6 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature doi: 10.1038/nature04724 – volume: 10 start-page: 1747 year: 2008 ident: 10.1016/j.chom.2010.01.007_bib27 article-title: Autophagy and viral neurovirulence publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2008.01175.x – volume: 9 start-page: 908 year: 2008 ident: 10.1016/j.chom.2010.01.007_bib35 article-title: Autophagic control of listeria through intracellular innate immune recognition in drosophila publication-title: Nat. Immunol. doi: 10.1038/ni.1634 – volume: 46 start-page: 929 year: 1965 ident: 10.1016/j.chom.2010.01.007_bib11 article-title: Virus invasion of the central nervous system: a study of Sindbis virus infection in the mouse using fluorescent antibody publication-title: Am. J. Pathol. – volume: 4 start-page: 844 year: 1955 ident: 10.1016/j.chom.2010.01.007_bib34 article-title: Sindbis virus: a newly recognized arthropodtransmitted virus publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1955.4.844 – volume: 125 start-page: 257 year: 1972 ident: 10.1016/j.chom.2010.01.007_bib12 article-title: Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice publication-title: J. Infect. Dis. doi: 10.1093/infdis/125.3.257 – volume: 121 start-page: 567 year: 2005 ident: 10.1016/j.chom.2010.01.007_bib23 article-title: Autophagy regulates programmed cell death during the plant innate immune response publication-title: Cell doi: 10.1016/j.cell.2005.03.007 – volume: 280 start-page: 20722 year: 2005 ident: 10.1016/j.chom.2010.01.007_bib30 article-title: Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413934200 – volume: 322 start-page: 492 year: 2000 ident: 10.1016/j.chom.2010.01.007_bib7 article-title: Sindbis virus vector system for functional analysis of apoptosis regulators publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(00)22045-4 – volume: 281 start-page: 29776 year: 2006 ident: 10.1016/j.chom.2010.01.007_bib5 article-title: Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603783200 – volume: 395 start-page: 395 year: 1998 ident: 10.1016/j.chom.2010.01.007_bib24 article-title: A protein conjugation system essential for autophagy publication-title: Nature doi: 10.1038/26506 – volume: 1 start-page: 23 year: 2007 ident: 10.1016/j.chom.2010.01.007_bib28 article-title: HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein publication-title: Cell Host Microbe doi: 10.1016/j.chom.2006.12.001 – volume: 154 start-page: 325 year: 1982 ident: 10.1016/j.chom.2010.01.007_bib31 article-title: Association of sindbis virion glycoproteins and their precursors publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(82)90067-5 – volume: 8 start-page: 1124 year: 2006 ident: 10.1016/j.chom.2010.01.007_bib36 article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1482 – volume: 432 start-page: 1032 year: 2004 ident: 10.1016/j.chom.2010.01.007_bib16 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature doi: 10.1038/nature03029 – volume: 132 start-page: 27 year: 2008 ident: 10.1016/j.chom.2010.01.007_bib20 article-title: Autophagy in the pathogenesis of disease publication-title: Cell doi: 10.1016/j.cell.2007.12.018 – volume: 289 start-page: 57 year: 2005 ident: 10.1016/j.chom.2010.01.007_bib4 article-title: Neuronal cell death in alphavirus encephalomyelitis publication-title: Curr. Top. Microbiol. Immunol. – volume: 282 start-page: 24131 year: 2007 ident: 10.1016/j.chom.2010.01.007_bib29 article-title: P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 4 start-page: 458 year: 2008 ident: 10.1016/j.chom.2010.01.007_bib37 article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.10.003 – volume: 315 start-page: 1398 year: 2007 ident: 10.1016/j.chom.2010.01.007_bib17 article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells publication-title: Science doi: 10.1126/science.1136880 – volume: 169 start-page: 425 year: 2005 ident: 10.1016/j.chom.2010.01.007_bib13 article-title: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice publication-title: J. Cell Biol. doi: 10.1083/jcb.200412022 – volume: 441 start-page: 880 year: 2006 ident: 10.1016/j.chom.2010.01.007_bib14 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature doi: 10.1038/nature04723 – volume: 183 start-page: 5909 year: 2009 ident: 10.1016/j.chom.2010.01.007_bib38 article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.0900441 – volume: 106 start-page: 14564 year: 2009 ident: 10.1016/j.chom.2010.01.007_bib10 article-title: Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0813319106 – volume: 30 start-page: 588 year: 2009 ident: 10.1016/j.chom.2010.01.007_bib32 article-title: Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus publication-title: Immunity doi: 10.1016/j.immuni.2009.02.009 – volume: 580 start-page: 2623 year: 2006 ident: 10.1016/j.chom.2010.01.007_bib8 article-title: Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.04.008 – volume: 100 start-page: 7824 year: 2003 ident: 10.1016/j.chom.2010.01.007_bib33 article-title: Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1332160100 – volume: 131 start-page: 1149 year: 2007 ident: 10.1016/j.chom.2010.01.007_bib15 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice publication-title: Cell doi: 10.1016/j.cell.2007.10.035 – volume: 152 start-page: 657 year: 2001 ident: 10.1016/j.chom.2010.01.007_bib25 article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells publication-title: J. Cell Biol. doi: 10.1083/jcb.152.4.657 – volume: 5 start-page: 527 year: 2009 ident: 10.1016/j.chom.2010.01.007_bib2 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.05.016 – volume: 40 start-page: 1 year: 1973 ident: 10.1016/j.chom.2010.01.007_bib3 article-title: Electron microscopic study of Sindbis virus morphogenesis publication-title: Arch. Gesamte Virusforsch. doi: 10.1007/BF01242630 – volume: 58 start-page: 503 year: 1988 ident: 10.1016/j.chom.2010.01.007_bib9 article-title: Basis of neurovirulence in Sindbis virus encephalomyelitis of mice publication-title: Lab. Invest. – volume: 265 start-page: 95 year: 2002 ident: 10.1016/j.chom.2010.01.007_bib19 article-title: Apoptosis in viral infections of neurons: a protective or pathologic host response? publication-title: Curr. Top. Microbiol. Immunol. – reference: 20159611 - Cell Host Microbe. 2010 Feb 18;7(2):83-4. doi: 10.1016/j.chom.2010.02.003. |
SSID | ssj0055071 |
Score | 2.4998474 |
Snippet | Autophagy functions in antiviral immunity. However, the ability of endogenous autophagy genes to protect against viral disease in vertebrates remains to be... Autophagy functions in antiviral immunity. However, it is not yet known whether endogenous autophagy genes protect against viral disease in vertebrates. Using... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 115 |
SubjectTerms | Alphavirus Infections - immunology Animals Apoptosis Autophagy Autophagy-Related Protein 5 Cell Line Central Nervous System - physiology Mice Mice, Knockout Microtubule-Associated Proteins - deficiency Microtubule-Associated Proteins - physiology Neurons - pathology Neurons - virology Sindbis Virus - immunology Survival Analysis |
Title | Autophagy Protects against Sindbis Virus Infection of the Central Nervous System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20159618 https://www.proquest.com/docview/733928929 https://pubmed.ncbi.nlm.nih.gov/PMC2860265 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvZd9LtxU97M24WLZs2Y9taSmjX6wJhL0ISZablMwtiVNo__qeLPkjTdnXiwmOZQXdL6e70-_uEPom41SBWZ_4MVGZT_NE-6kiiR_SAgCS5ySuuTknp8nRiH4fx-OO1lxnl1RyR90_mVfyP1KFeyBXkyX7D5JtXwo34DPIF64gYbj-lYx3l6YsgLi881y5hYUnLsHVX1TeBfjacrrwbqfzZUe5KhtKgONkeiWoCkOCtQWd-5bqvgnqmRSQGhy_DG9PtiA4m9_qXExmvfIDvdD2-aQ249cCzhcAHdcH5AfsAV3QYDYz5_V7kbqvRf4TVq3qhyPMSXror2jQLKI-eEVWD-on7jm1y3roCnsqlNj0zjXVbqMMVzumh4yj5BFT-LzbyJrD-9Mzfjg6PubDg_HwOXoRMrCqTGrneK_Zo00RN2L5BvaHuXQqy_x7PMOqybLmhzym0_bsk-FrtOkcC7xrUfIGPdPlW_TSthq9e4fOW6zgBivYYQU7rOAaK7jFCr4uMGAFuwmxwwq2WHmPRocHw_0j33XT8BVshpUfM7B8E2YqTCaFkoQlMohoQEUUC50RKaTI07AQLE9okZCCSKYKMFaVhgGhCKMPaKO8LvUnhINAxaTQTFOqaK7SrAgVAUcCfHepWMYGiDQLxpUrNW86nsx4wym84maRuVlkHhAOizxAXjvmxhZa-e3TuJEDB31oDrlEqWENOIvA4k_B6B-gj1Ys7etgfGwaHA0QWxFY-4Aptb76TTmd1CXXw7pVW7z152k_o1fd3-IL2qjmS_0V7NZKbtcQfAANf5v5 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+protects+against+Sindbis+virus+infection+of+the+central+nervous+system&rft.jtitle=Cell+host+%26+microbe&rft.au=Orvedahl%2C+Anthony&rft.au=MacPherson%2C+Sarah&rft.au=Sumpter%2C+Rhea&rft.au=Tall%C3%B3czy%2C+Zsolt&rft.date=2010-02-18&rft.issn=1934-6069&rft.eissn=1934-6069&rft.volume=7&rft.issue=2&rft.spage=115&rft_id=info:doi/10.1016%2Fj.chom.2010.01.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |