Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals

Emotional decoding and automatic identification of major depressive disorder (MDD) is helpful to doctors in diagnosis of the disease on time, and electroencephalogram (EEG) is sensitive to the changes of functional state of human brain, showing its potential to help to diagnose MDD. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 14; p. 284
Main Authors Duan, Lijuan, Duan, Huifeng, Qiao, Yuanhua, Sha, Sha, Qi, Shunai, Zhang, Xiaolong, Huang, Juan, Huang, Xiaohan, Wang, Changming
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 23.09.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2020.00284

Cover

Abstract Emotional decoding and automatic identification of major depressive disorder (MDD) is helpful to doctors in diagnosis of the disease on time, and electroencephalogram (EEG) is sensitive to the changes of functional state of human brain, showing its potential to help to diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric asymmetry and cross correlation with EEG signals is proposed and tested on 32 subjects (16 MDD and 16 healthy controls (HC)). First, the structure feature and connectivity feature of theta, alpha and beta band are extracted on the preprocessed and segmented EEG. Second, the structure feature matrix of theta, alpha and beta are added to and subtracted the connectivity feature matrix respectively to obtain the mixed features. Finally, the structure feature, connectivity feature and the mixed features are fed to six classifiers respectively to select the suitable features for the classification, and it is found that we have the best classification results using the mixed features. The results are also compared with those from some of the state-of-the-art methods, and we achieve accuracy of 94.13%, sensitivity of 95.74%, specificity of 93.52% and f1_score of 95.62% on the data from the Beijing Anding Hospital, Capital Medical University. The study could be generalized to develop a Brain–computer interfacing(BCI) system that may help for clinical purposes.
AbstractList Emotional decoding and automatic identification of major depressive disorder (MDD) is helpful to doctors in diagnosis of the disease on time, and electroencephalogram (EEG) is sensitive to the changes of functional state of human brain, showing its potential to help to diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric asymmetry and cross correlation with EEG signals is proposed and tested on 32 subjects (16 MDD and 16 healthy controls (HC)). First, the structure feature and connectivity feature of theta, alpha and beta band are extracted on the preprocessed and segmented EEG. Second, the structure feature matrix of theta, alpha and beta are added to and subtracted the connectivity feature matrix respectively to obtain the mixed features. Finally, the structure feature, connectivity feature and the mixed features are fed to six classifiers respectively to select the suitable features for the classification, and it is found that we have the best classification results using the mixed features. The results are also compared with those from some of the state-of-the-art methods, and we achieve accuracy of 94.13%, sensitivity of 95.74%, specificity of 93.52% and f1_score of 95.62% on the data from the Beijing Anding Hospital, Capital Medical University. The study could be generalized to develop a Brain–computer interfacing(BCI) system that may help for clinical purposes.
Emotional decoding and automatic identification of major depressive disorder (MDD) are helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive to changes in the functional state of the human brain, showing its potential to help doctors diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric asymmetry and cross-correlation with EEG signals is proposed and tested on 32 subjects [16 patients with MDD and 16 healthy controls (HCs)]. First, the structural features and connectivity features of the θ-, α-, and β-frequency bands are extracted on the preprocessed and segmented EEG signals. Second, the structural feature matrix of the θ-, α-, and β-frequency bands are added to and subtracted from the connectivity feature matrix to obtain mixed features. Finally, the structural features, connectivity features, and the mixed features are fed to three classifiers to select suitable features for the classification, and it is found that our mode achieves the best classification results using the mixed features. The results are also compared with those from some state-of-the-art methods, and we achieved an accuracy of 94.13%, a sensitivity of 95.74%, a specificity of 93.52%, and an F1-score (f1) of 95.62% on the data from Beijing Anding Hospital, Capital Medical University. The study could be generalized to develop a system that may be helpful in clinical purposes.Emotional decoding and automatic identification of major depressive disorder (MDD) are helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive to changes in the functional state of the human brain, showing its potential to help doctors diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric asymmetry and cross-correlation with EEG signals is proposed and tested on 32 subjects [16 patients with MDD and 16 healthy controls (HCs)]. First, the structural features and connectivity features of the θ-, α-, and β-frequency bands are extracted on the preprocessed and segmented EEG signals. Second, the structural feature matrix of the θ-, α-, and β-frequency bands are added to and subtracted from the connectivity feature matrix to obtain mixed features. Finally, the structural features, connectivity features, and the mixed features are fed to three classifiers to select suitable features for the classification, and it is found that our mode achieves the best classification results using the mixed features. The results are also compared with those from some state-of-the-art methods, and we achieved an accuracy of 94.13%, a sensitivity of 95.74%, a specificity of 93.52%, and an F1-score (f1) of 95.62% on the data from Beijing Anding Hospital, Capital Medical University. The study could be generalized to develop a system that may be helpful in clinical purposes.
Emotional decoding and automatic identification of major depressive disorder (MDD) are helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive to changes in the functional state of the human brain, showing its potential to help doctors diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric asymmetry and cross-correlation with EEG signals is proposed and tested on 32 subjects [16 patients with MDD and 16 healthy controls (HCs)]. First, the structural features and connectivity features of the θ-, α-, and β-frequency bands are extracted on the preprocessed and segmented EEG signals. Second, the structural feature matrix of the θ-, α-, and β-frequency bands are added to and subtracted from the connectivity feature matrix to obtain mixed features. Finally, the structural features, connectivity features, and the mixed features are fed to three classifiers to select suitable features for the classification, and it is found that our mode achieves the best classification results using the mixed features. The results are also compared with those from some state-of-the-art methods, and we achieved an accuracy of 94.13%, a sensitivity of 95.74%, a specificity of 93.52%, and an F1-score (f1) of 95.62% on the data from Beijing Anding Hospital, Capital Medical University. The study could be generalized to develop a system that may be helpful in clinical purposes.
Author Duan, Lijuan
Wang, Changming
Huang, Juan
Qiao, Yuanhua
Sha, Sha
Zhang, Xiaolong
Huang, Xiaohan
Duan, Huifeng
Qi, Shunai
AuthorAffiliation 1 Faculty of Information Technology, Beijing University of Technology , Beijing , China
5 Beijing Anding Hospital, Capital Medical University , Beijing , China
8 Department of Neurosurgery, Xuanwu Hospital, Capitap Medical University , Beijing , China
3 National Engineering Laboratory for Critical Technologies of Information Security Classified Protection , Beijing , China
4 College of Applied Sciences, Beijing University of Technology , Beijing , China
6 Advanced Innovation Center for Human Brain Protection, Capital Medical University , Beijing , China
2 Beijing Key Laboratory of Trusted Computing , Beijing , China
7 Brain-inspired Intelligence and Clinical Translational Research Center, Xuanwu Hospital, Capitap Medical University , Beijing , China
AuthorAffiliation_xml – name: 5 Beijing Anding Hospital, Capital Medical University , Beijing , China
– name: 6 Advanced Innovation Center for Human Brain Protection, Capital Medical University , Beijing , China
– name: 7 Brain-inspired Intelligence and Clinical Translational Research Center, Xuanwu Hospital, Capitap Medical University , Beijing , China
– name: 3 National Engineering Laboratory for Critical Technologies of Information Security Classified Protection , Beijing , China
– name: 1 Faculty of Information Technology, Beijing University of Technology , Beijing , China
– name: 4 College of Applied Sciences, Beijing University of Technology , Beijing , China
– name: 2 Beijing Key Laboratory of Trusted Computing , Beijing , China
– name: 8 Department of Neurosurgery, Xuanwu Hospital, Capitap Medical University , Beijing , China
Author_xml – sequence: 1
  givenname: Lijuan
  surname: Duan
  fullname: Duan, Lijuan
– sequence: 2
  givenname: Huifeng
  surname: Duan
  fullname: Duan, Huifeng
– sequence: 3
  givenname: Yuanhua
  surname: Qiao
  fullname: Qiao, Yuanhua
– sequence: 4
  givenname: Sha
  surname: Sha
  fullname: Sha, Sha
– sequence: 5
  givenname: Shunai
  surname: Qi
  fullname: Qi, Shunai
– sequence: 6
  givenname: Xiaolong
  surname: Zhang
  fullname: Zhang, Xiaolong
– sequence: 7
  givenname: Juan
  surname: Huang
  fullname: Huang, Juan
– sequence: 8
  givenname: Xiaohan
  surname: Huang
  fullname: Huang, Xiaohan
– sequence: 9
  givenname: Changming
  surname: Wang
  fullname: Wang, Changming
BookMark eNqFUU1v1DAUtFAR_YA7x0hcuOzi7yQXpKq7tJW24kB7thznederxF7sBNR_j5OtUNsDXPyenmfGb8bn6MQHDwh9JHjJWFV_sX439kuKKV5iTCv-Bp0RKelCEElOnvWn6DylPcaSSkHeoVPGSMl4Sc_Q_Z02O-eh2ICO3vltcXk4xJCHkAobYnG3WhUrGMAMLvhC-7ZY92HuV2BCOzEe0nSu19fFD7f1ukvv0VubC3x4qhfo4dv6_upmsfl-fXt1uVkYLsthwSUxVVuVRDcSMBhquWkNCCO1sA0rG865sJXUpmEWqLGmbhrMRc0IaCIxu0C3R9026L06RNfr-KiCdmoehLhVOg7OdKCaCltOOceWVZxaWZeN1PnUHNe1lTRrkaPW6A_68bfuur-CBKspbTWnraa01Zx25nw9cg5j00Ne3Q9Rdy8WeXnj3U5twy9VCpZtsyzw-Ukghp8jpEH1LhnoOu0hjEnRbDbvVhORoZ9eQfdhjFPaGcUFEXU9JyKPKBNDShGsMm7Q03fl9133Lyv4FfG_7v8AFeXF1A
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107440
crossref_primary_10_1016_j_bbe_2021_12_005
crossref_primary_10_1109_ACCESS_2023_3270426
crossref_primary_10_3389_fnhum_2023_1197613
crossref_primary_10_1007_s11042_023_14799_y
crossref_primary_10_1109_JBHI_2024_3390847
crossref_primary_10_1016_j_jad_2023_08_006
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1007_s13534_024_00433_9
crossref_primary_10_1016_j_jad_2023_06_002
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1016_j_jad_2024_03_145
crossref_primary_10_1007_s00034_022_02265_3
crossref_primary_10_1080_03007995_2022_2038487
crossref_primary_10_3390_app14020702
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1016_j_jad_2024_01_177
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1016_j_bspc_2024_107080
crossref_primary_10_3390_s24216815
crossref_primary_10_35860_iarej_1231288
crossref_primary_10_1007_s10489_021_02426_y
crossref_primary_10_1007_s11571_022_09904_0
crossref_primary_10_1177_15500594241273181
crossref_primary_10_1016_j_medntd_2021_100102
crossref_primary_10_1109_TIM_2025_3544713
crossref_primary_10_3389_fpsyt_2021_745458
crossref_primary_10_3389_fnhum_2025_1481760
crossref_primary_10_1016_j_clinph_2024_05_017
crossref_primary_10_1109_JSEN_2022_3143176
crossref_primary_10_1515_tnsci_2022_0234
crossref_primary_10_3389_fphys_2022_956254
crossref_primary_10_1016_j_bspc_2024_107271
crossref_primary_10_1007_s11571_023_10041_5
crossref_primary_10_1016_j_bspc_2024_106964
crossref_primary_10_1186_s40708_023_00193_9
crossref_primary_10_1111_exsy_12773
crossref_primary_10_1016_j_engreg_2022_11_005
crossref_primary_10_1016_j_jad_2023_01_126
crossref_primary_10_1109_ACCESS_2024_3502540
crossref_primary_10_1109_ACCESS_2021_3049427
crossref_primary_10_1152_physiol_00013_2022
crossref_primary_10_23939_istcmtm2022_04_011
crossref_primary_10_3389_fnins_2023_1205931
crossref_primary_10_1038_s41598_022_24319_x
crossref_primary_10_1186_s40708_024_00240_z
crossref_primary_10_1089_cap_2022_0041
Cites_doi 10.1016/j.compbiomed.2015.09.019
10.1016/S.09255-4927(00)000800-9
10.1016/j.euroneuro.2017.02.002
10.1177/155005941004100407
10.1142/S0S129065715500410
10.1007/s.109166-005-90011-0
10.1016/B0B0-12-2268700-9/010700-4
10.3390/s1s7061385
10.1016/j.cmpb.2018.04.012
10.3389/fict.2016.00016
10.1016/j.bspc.2016.07.006
10.1007/BF0F0994018
10.1016/j.jad.2015.08.018
10.1109/34.655647
10.1016/j.jneumeth.2003.10.009
10.1371/journal.pone.0171409
10.1016/j.biopsycho.2008.07.008
10.3389/fnagi.2013.00060
10.1016/j.measurement.2007.07.007
10.1111/j.14699-8986.2003.00149.x
10.1016/j.biopsycho.2010.08.001
10.1016/j.ijpsycho.2014.02.001
10.3389/fnins.2018.00661
10.1109/TIT.1967.1053964
10.1016/j.copsyc.2014.12.017
10.1016/j.neucom.2011.10.047
10.1016/j.bspc.2011.07.007
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang.
Copyright © 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang. 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang.
– notice: Copyright © 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang. 2020 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang and Wang
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnhum.2020.00284
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
ProQuest Central Biological Science Database (via ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_b80f42440f3842f697b6a697a4099f62
10.3389/fnhum.2020.00284
PMC7538713
10_3389_fnhum_2020_00284
GeographicLocations Beijing China
GeographicLocations_xml – name: Beijing China
GrantInformation_xml – fundername: National Natural Science Foundation of China
– fundername: Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support
– fundername: Beijing Municipal Science and Technology Commission
– fundername: Beijing Municipal Natural Science Foundation
– fundername: Beijing Municipal Administration of Hospitals
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c467t-461c8d871ab6e0ec2f4cdce5c6a5fb37b4445f86acb3fe2cfc9bb045931ea1603
IEDL.DBID M48
ISSN 1662-5161
IngestDate Fri Oct 03 12:37:23 EDT 2025
Sun Oct 26 04:02:07 EDT 2025
Tue Sep 30 16:47:59 EDT 2025
Fri Sep 05 13:23:25 EDT 2025
Fri Jul 25 11:40:58 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Wed Oct 01 04:22:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-461c8d871ab6e0ec2f4cdce5c6a5fb37b4445f86acb3fe2cfc9bb045931ea1603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
Edited by: Chun-Shu Wei, National Chiao Tung University, Taiwan
These authors have contributed equally to this work
Reviewed by: Reza Abiri, University of California, San Francisco, United States; Yu-Kai Wang, University of Technology Sydney, Australia
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00284
PMID 33173472
PQID 2445159960
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_b80f42440f3842f697b6a697a4099f62
unpaywall_primary_10_3389_fnhum_2020_00284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7538713
proquest_miscellaneous_2459623915
proquest_journals_2445159960
crossref_citationtrail_10_3389_fnhum_2020_00284
crossref_primary_10_3389_fnhum_2020_00284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-23
PublicationDateYYYYMMDD 2020-09-23
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-23
  day: 23
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Acharya (B2) 2018; 161
Iseger (B15) 2017; 27
Ting (B26) 2008; 41
Cantisani (B7) 2015; 188
Fan (B12) 2005
Kemp (B16) 2010; 85
Rowley (B23) 1998; 20
Dasarathy (B9) 1997; 13
Saletu (B24) 2010; 41
Allen (B5) 2015; 4
Cortes (B8) 1995; 20
B30
Allen (B6) 2004; 41
Wei (B29) 2018; 12
Mumtaz (B22); 12
Alkan (B4) 2007; 30
Knott (B17) 2001; 2
Deslandes (B11) 2008; 79
Delorme (B10) 2004; 134
Wang (B28) 2013; 116
Mantri (B19) 2015
Tóth (B27) 2014; 92
Michalopoulos (B20) 2015; 2015
Schmidt (B25) 2013; 5
Acharya (B1) 2012; 7
Mumtaz (B21); 31
Hu (B14) 2003; 25
Filomena (B13) 2016; 3
Liao (B18) 2017; 17
Akdemir (B3) 2015; 67
References_xml – volume: 67
  start-page: 49
  year: 2015
  ident: B3
  article-title: Nonlinear analysis of eegs of patients with major depression during different emotional states
  publication-title: Comp. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.09.019
– volume: 2
  start-page: 140
  year: 2001
  ident: B17
  article-title: EEG power, frequency, asymmetry and coherence in male depression
  publication-title: Psychiatry Res.
  doi: 10.1016/S.09255-4927(00)000800-9
– volume: 27
  start-page: 301
  year: 2017
  ident: B15
  article-title: Eeg connectivity between the subgenual anterior cingulate and prefrontal cortices in response to antidepressant medication
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2017.02.002
– volume: 41
  start-page: 203
  year: 2010
  ident: B24
  article-title: EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression
  publication-title: Clin. EEG Neurosci
  doi: 10.1177/155005941004100407
– volume-title: 27th Annual International Conference of the Engineering in Medicine and Biology Society
  year: 2005
  ident: B12
  article-title: “Use of ann and complexity measures in cognitive eeg dis-crimination,”
– volume: 2015
  start-page: 1550041
  year: 2015
  ident: B20
  article-title: Combining EEG microstates with fMRI structural features for modeling brain activity
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0S129065715500410
– volume: 30
  start-page: 413
  year: 2007
  ident: B4
  article-title: Comparison of ar and welch methods in epileptic seizure detection
  publication-title: J. Med. Syst.
  doi: 10.1007/s.109166-005-90011-0
– volume: 25
  start-page: 4
  year: 2003
  ident: B14
  article-title: Diagnostic and statistical manual of mental disorders (dsm-iv)
  publication-title: Encyclopedia Neurol. Sci.
  doi: 10.1016/B0B0-12-2268700-9/010700-4
– volume: 17
  start-page: 1385
  year: 2017
  ident: B18
  article-title: Major depression detection from eeg signals using kernel eigen-filter-bank common spatial patterns
  publication-title: Sensors
  doi: 10.3390/s1s7061385
– volume: 161
  start-page: 103
  year: 2018
  ident: B2
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comp. Methods Progr. Biomed
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 3
  start-page: 16
  year: 2016
  ident: B13
  article-title: How major depressive disorder affects the ability to decode multimodal dynamic emotional stimuli
  publication-title: Front. ICT
  doi: 10.3389/fict.2016.00016
– volume: 31
  start-page: 108
  ident: B21
  article-title: Electroencephalogram (eeg)-based computer-aided technique to diagnose major depressive disorder (mdd)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 20
  start-page: 273
  year: 1995
  ident: B8
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF0F0994018
– volume: 188
  start-page: 167
  year: 2015
  ident: B7
  article-title: Psychomotor retardation is linked to frontal alpha asymmetry in major depression
  publication-title: J. Affective Disord.
  doi: 10.1016/j.jad.2015.08.018
– volume: 20
  start-page: 23
  year: 1998
  ident: B23
  article-title: Neural networkbased face detection
  publication-title: IEEE Trans. Pattern Anal. Machine Intellgence
  doi: 10.1109/34.655647
– volume: 134
  start-page: 9
  year: 2004
  ident: B10
  article-title: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 12
  start-page: 0171409
  ident: B22
  article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0171409
– volume: 79
  start-page: 317
  year: 2008
  ident: B11
  article-title: Electroencephalographic frontal asymmetry and depressive symptoms in the elderly
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2008.07.008
– volume: 5
  start-page: 60
  year: 2013
  ident: B25
  article-title: Index of alpha/theta ratio of the electroencephalogram: a new marker for alzheimer's disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00060
– start-page: 518
  volume-title: Sai Intelligent Systems Conference
  year: 2015
  ident: B19
  article-title: Non invasive eeg signal processing framework for real time depression analysis
– volume: 41
  start-page: 618
  year: 2008
  ident: B26
  article-title: Eeg feature extraction based on wavelet packet decomposition for brain computer interface
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.007
– volume: 41
  start-page: 269
  year: 2004
  ident: B6
  article-title: The stability of resting frontal electroencephalographic asymmetry in depression
  publication-title: Psychophysiology
  doi: 10.1111/j.14699-8986.2003.00149.x
– volume: 85
  start-page: 350
  year: 2010
  ident: B16
  article-title: Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2010.08.001
– volume: 92
  start-page: 1
  year: 2014
  ident: B27
  article-title: Eeg network connectivity changes in mild cognitive impairment—preliminary results
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.02.001
– volume: 12
  start-page: 661
  year: 2018
  ident: B29
  article-title: The changes of functional connectivity strength in electroconvulsive therapy
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00661
– volume: 13
  start-page: 21
  year: 1997
  ident: B9
  article-title: Nearest neighbor (nn) norms: Nn pattern classification tech-niques
  publication-title: Los Alamitos IEEE Computer Society Press
  doi: 10.1109/TIT.1967.1053964
– ident: B30
– volume: 4
  start-page: 93
  year: 2015
  ident: B5
  article-title: Frontal eeg asymmetry as a promising marker of depression vulnerability: summary and methodological considerations
  publication-title: Curr. Opin. Psychol.
  doi: 10.1016/j.copsyc.2014.12.017
– volume: 116
  start-page: 136
  year: 2013
  ident: B28
  article-title: A k-nearest-neighbor classifer with heart rate variability feature-based transformation algorithm for driving stress recognition
  publication-title: Neuro-computing
  doi: 10.1016/j.neucom.2011.10.047
– volume: 7
  start-page: 401
  year: 2012
  ident: B1
  article-title: Automated diagnosis of epileptic eeg using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
SSID ssj0062651
Score 2.5313408
Snippet Emotional decoding and automatic identification of major depressive disorder (MDD) is helpful to doctors in diagnosis of the disease on time, and...
Emotional decoding and automatic identification of major depressive disorder (MDD) are helpful for the timely diagnosis of the disease. Electroencephalography...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 284
SubjectTerms Accuracy
Artificial intelligence
Asymmetry
Brain
Cerebral hemispheres
Classification
cross correlation
EEG
Electroconvulsive therapy
Electrodes
Electroencephalography
feature
Human Neuroscience
interhemispheric asymmetry
Learning algorithms
Machine learning
major depressive disorder (MDD)
Medical research
Mental depression
Mental disorders
Neural networks
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXuCCKAURKMhICAmkaPPhOPZxYbdUSMuFVurNsh27rbR4q3ZXqP-eGSe7aji0l15ysJ3InhnbM_HzG4BP1srWOC_yUlQ85y33uRRc5dJ3pePSCZ7A44tf4viU_zxrzu6k-iJMWE8P3AtuYmUR6DJWEWrJqyBUa4XBp8HARIV-9S2k2gZT_RqMXnpT9oeSGIKpSYgXG7p2XhUJOMlHm1Di6h85mP_DI59u4pW5_WuWyzt7z9ELeD44jWzad3Yfnvj4Eg6mEQPmP7fsM0swzvR__ABOFgke6dnAnHrOpgNtuL9h6KGyxWzGZn6dIFiRmdixeZ_KB0vdirYylnAEbD7_wX5fnhPB8is4PZqffD_Oh9QJucOVb51zUTrZYTBkrPCFd1XgDsfTOGGaYOvWcs6bIIVxtg6-csEpa9G7U3XpDWWefg17cRX9G2AKfcAOlVYLhcrjnfKdrZ0Npa-M4yFkMNnKUruBV5zSWyw1xhckfZ2kr0n6Okk_gy-7N656To172n4j9ezaERt2KkAb0YON6IdsJIPDrXL1MEVvdEXUbImcJoOPu2qcXHRiYqJfbagNJSciDv0M2pFRjDo0romXF4mmGwNBVECdwded-Tw43LePMdx38Iy-SKiWqj6EvfX1xr9H12ltP6RZ8g9okRcL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6N7gFeEDAQgYGMhJBAito4rpM8INTRjAmpFYJN2ltkO3Y3qXPK1grtv-fOTQrhYbzkwb5I9p1_3NmfvwN4q3WeKWNlnEguYpEJG-dSFHFu68SI3EgRwOOzuTw5E1_Px-d7MO_ewhCsslsTw0JdN4bOyIecmLQCl8in1c-YskbR7WqXQkO1qRXqj4Fi7B7sc2LGGsD-UTn_9r1bm9F7Hyfby0oMzYqh8xcbeo7ORwFQKXqbU-Dw7zme_8Im72_8St3-UsvlX3vS8SN42DqTbLK1_mPYs_4JHEw8BtJXt-wdC_DOcG5-AKezAJu0rGVUXbBJSydubxh6rmw2nbKpXQdolmfK16zcpvjBUtPQFscCvoCV5Rf243JBxMtP4ey4PP18ErcpFWKDK-I6FjIxeY1BktLSjqzhThjsz9hINXY6zbRANbtcKqNTZ7lxptAavb4iTayijNTPYOAbb58DK9A3rNGYqSzQqKIubK1To11iuTLCuQiGnS4r0_KNU9qLZYVxB2m_CtqvSPtV0H4E73d_rLZcG3fIHpF5dnLEkh0KmutF1U66SucjRw_5Ri7NBXeyyLRU-FUY1BZO8ggOO-NW7dS9qf4MtAje7Kpx0tFNivK22ZAMJS0ibv0Ist6g6DWoX-MvLwJ9NwaIaIA0gg-74fPf7r64u6Uv4QHJEo6Fp4cwWF9v7Ct0ltb6dTsDfgN-uBZU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEB5070Ffzh-nXPWUCCIo9Hbbpmn7uLp7HsIegregTyVJk7vFNbvctsj51zuTdhd7iCK-FNpMIJlMkpnmyzcAL5XKM6mNCCMR85Bn3IS54EWYmyrSPNeCe_D47EyczvmHz-kWTbjpYJWWru5TIuiFa5mCO4gYzXCMqIqhdZcN3SKPRx4HyYfryt6GPZGiOz6AvfnZx_EXCrSEwEALXZr2ePK3VXvbkWft77maN4GSdxq3ltff5XL5yy50cg_Utv0t-OTrcVOrY_3jBrXjf3XwPux3Piobt_IP4JZxD-Fg7DA-_3bNXjGPGvW_4w_gfObRmIZ1RK0XbNyxlJsNQ4eYzSYTNjG1R3w5Jl3Fpm3mIPyqV7RzMg9bYNPpe_ZpcUF8zo9gfjI9f3cadpkaQo0LbR1yEem8wthLKmFGRseWa1RaqoVMrUoyxTlPbS6kVok1sba6UAqdySKJjKRE149h4FbOHAIr0OWs0EYSUaCt8KowlUq0spGJpebWBjDcDlipOxpzyqaxLDGcIeWVXnklKa_0ygvg9a7GuqXw-IPsW7KBnRyRb_sPOExlN0ylykeW7geObJLz2IoiU0LiU2KsXFgRB3C0taCyWxE2ZUxMcJ4LJ4AXu2Kcy3RAI51ZNSRDuZCIsj-ArGd5vQb1S9zi0rOCY9yJA5AE8GZno3_t7pN_EX4Kd-mFwDJxcgSD-qoxz9Ajq9Xzbs79BFWqNmY
  priority: 102
  providerName: Unpaywall
Title Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
URI https://www.proquest.com/docview/2445159960
https://www.proquest.com/docview/2459623915
https://pubmed.ncbi.nlm.nih.gov/PMC7538713
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00284/pdf
https://doaj.org/article/b80f42440f3842f697b6a697a4099f62
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: BENPR
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QFe0GAgAqMyEpoEUliTuE7ygFBHs01IrSZYpfIU2Y7dTSpu17Ua_e-5c9OKoAl4yYN_RMndOXcXn78P4K1SWSq1EWEkYh7ylJswEzwPM1NFmmdacF883h-I8yH_MuqMdmBzuqQW4O29qR3xSQ3nkw8_b1afcMF_pIwT_e2xdVdLOlQet31ZJD-a3YREK0XbrzXHxgPYQ9eVE7dDn2-3GTCY9_yMkRCYkWHss97HvPemDb_l4f0bMemfFZUPl24mV3dyMvnNXZ3uw-M6zmTdtWE8gR3jnsJB12GO_WPFjpiv_PS_1A_gsu8rKg2rwVbHrFsjjZtbhkEt6_d6rGcWvmrLMekqVqzZf7BVT8n7MV96wIrijH27HpNsn8HwtLj8fB7WbAuhxo_lIuQi0lmF-ZNUwrSNji3X-D4dLWTHqiRVnPOOzYTUKrEm1lbnSmFAmCeRkURW_Rx23dSZF8ByDBsr1HMictQ3r3JTqUQrG5lYam5tAMcbWZa6hiInRoxJiSkJSb_00i9J-qWXfgDvtjNmaxiOv4w9IfVsxxGAtm-YzsdlvR5LlbUtnfFr2yTjsRV5qoTEq0Qrya2IAzjcKLfcGGUZE5qbx7MJ4M22G9cjbbJIZ6ZLGkN8RgS7H0DaMIrGAzV73PWVR_bG3BEVkATwfms-_3zdl__xKK_gEU2gOpc4OYTdxXxpXmMwtVAt2DspBhdfW_5nBF7PRlHLLxLsGQ4uut9_AbsLJAo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4a22FcEDAQgQFGAiSQojaO6yaHCXW0o2NrhaCTdgu2Y3eTSlLWVlP_HL-N99ykUA7jtEsOiZM4z8_2e_Hn7wN4rXXSVsbKMJJchKItbJhIkYaJzSMjEiOFB48PhrJ_Jj6ft8634Fe9F4ZglfWY6AfqvDT0j7zBiUnLc4l8mP4MSTWKVldrCQ1VSSvkB55irNrYcWKX15jCzQ6Ou9jebzg_6o0-9sNKZSA0OEjMQyEjk-SYNygtbdMa7oTJjW0ZqVpOx20t8M0ukcro2FlunEm1xkAojSOrSKQZn3sHdkQsUkz-dg57wy9f67kAs4VWtFocxVQwbbjiYkHb33nTAzjFxmToNQM2At1_YZq7i2KqltdqMvlrDjy6D_eq4JV1Vt72ALZs8RD2OgUm7j-W7C3zcFL_n34PRgMP07SsYnAds05FX25nDCNlNuh2WdfOPRSsYKrIWW8lKYRnTUlTKvN4BtbrfWLfLsdE9PwIzm7FuI9huygL-wRYirFojs4TyxSdSOSpzXVstIssV0Y4F0CjtmVmKn5zktmYZJjnkPUzb_2MrJ956wfwbn3HdMXtcUPZQ2qedTli5fYnyqtxVnXyTCdNRxsHmy5OBHcybWup8KgwiU6d5AHs142bVUPFLPvj2AG8Wl_GTk4rN6qw5YLKkEgScfkH0N5wio0KbV4pLi88XTgmpNgAcQDv1-7z3899enNNX8JufzQ4zU6PhyfP4C7dRxgaHu_D9vxqYZ9joDbXL6rewOD7bXfA39ysVUY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTQJeEDAQgQFGAiSQojaO6yYPE-poy8boNMEm7S3Yjt1NKmlZW039i_wq7lynUB7G017ykDiRc74739mfvwN4rXXWVsbKOJFcxKItbJxJkceZLRMjMiOFB48PjuT-qfh81jrbgF_1WRiCVdY-0TvqcmxojbzBiUnLc4k0XIBFHHf7HyY_Y6ogRTutdTkNFcoslLuebiwc8ji0iytM56a7B10c-zec93snH_fjUHEgNugwZrGQiclKzCGUlrZpDXfClMa2jFQtp9O2FtgLl0lldOosN87kWmNQlKeJVVSwGb97C7Zo8wudxNZe7-j4az0vYObQSpYbpZgW5g1Xnc_pKDxvejCnWJsYff2AtaD3X8jmnXk1UYsrNRr9NR_278O9EMiyzlLzHsCGrR7CdqfCJP7Hgr1lHlrq1-y34WTgIZuWBTbXIesEKnM7ZRg1s0G3y7p25mFhFVNVyXrL8kJ414xpemUe28B6vU_s28WQSJ8fwemNCPcxbFbjyj4BlmNcWqIipTJHhRJlbkudGu0Sy5URzkXQqGVZmMB1TiU3RgXmPCT9wku_IOkXXvoRvFu9MVnyfFzTdo-GZ9WOGLr9jfHlsAgGX-is6egQYdOlmeBO5m0tFV4VJtS5kzyCnXpwi-A2psUfJY_g1eoxGjzt4qjKjufUhgomEa9_BO01pVjr0PqT6uLcU4djcooDkEbwfqU-__3dp9f39CXcRkMsvhwcHT6Du_QawWl4ugObs8u5fY4x20y_CMbA4PtN299vaQ5ZdQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEB5070Ffzh-nXPWUCCIo9Hbbpmn7uLp7HsIegregTyVJk7vFNbvctsj51zuTdhd7iCK-FNpMIJlMkpnmyzcAL5XKM6mNCCMR85Bn3IS54EWYmyrSPNeCe_D47EyczvmHz-kWTbjpYJWWru5TIuiFa5mCO4gYzXCMqIqhdZcN3SKPRx4HyYfryt6GPZGiOz6AvfnZx_EXCrSEwEALXZr2ePK3VXvbkWft77maN4GSdxq3ltff5XL5yy50cg_Utv0t-OTrcVOrY_3jBrXjf3XwPux3Piobt_IP4JZxD-Fg7DA-_3bNXjGPGvW_4w_gfObRmIZ1RK0XbNyxlJsNQ4eYzSYTNjG1R3w5Jl3Fpm3mIPyqV7RzMg9bYNPpe_ZpcUF8zo9gfjI9f3cadpkaQo0LbR1yEem8wthLKmFGRseWa1RaqoVMrUoyxTlPbS6kVok1sba6UAqdySKJjKRE149h4FbOHAIr0OWs0EYSUaCt8KowlUq0spGJpebWBjDcDlipOxpzyqaxLDGcIeWVXnklKa_0ygvg9a7GuqXw-IPsW7KBnRyRb_sPOExlN0ylykeW7geObJLz2IoiU0LiU2KsXFgRB3C0taCyWxE2ZUxMcJ4LJ4AXu2Kcy3RAI51ZNSRDuZCIsj-ArGd5vQb1S9zi0rOCY9yJA5AE8GZno3_t7pN_EX4Kd-mFwDJxcgSD-qoxz9Ajq9Xzbs79BFWqNmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Approaches+for+MDD+Detection+and+Emotion+Decoding+Using+EEG+Signals&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Duan%2C+Lijuan&rft.au=Duan%2C+Huifeng&rft.au=Qiao%2C+Yuanhua&rft.au=Sha%2C+Sha&rft.date=2020-09-23&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=14&rft.spage=284&rft_id=info:doi/10.3389%2Ffnhum.2020.00284&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon