A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics
The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k -means clustering technique—the Fast, Efficient, and Scalable k...
        Saved in:
      
    
          | Published in | EURASIP journal on bioinformatics & systems biology Vol. 2010; no. 1; pp. 1 - 14 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        2010
     Springer Nature B.V Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1687-4145 1687-4153 1687-4153  | 
| DOI | 10.1155/2010/746021 | 
Cover
| Abstract | The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original
k
-means clustering technique—the Fast, Efficient, and Scalable
k
-means algorithm (
FES-k
-means). The
FES-k
-means algorithm uses a hybrid approach that comprises the
k-d
tree data structure that enhances the nearest neighbor query, the original
k
-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original
k
-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines. | 
    
|---|---|
| AbstractList | The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique--the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines. The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k -means clustering technique—the Fast, Efficient, and Scalable k -means algorithm ( FES-k -means). The FES-k -means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k -means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k -means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines. The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.  | 
    
| Author | Oyana, Tonny J | 
    
| AuthorAffiliation | 1 GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University, 1000 Faner Drive, MC 4514, Carbondale, IL 62901-4514, USA | 
    
| AuthorAffiliation_xml | – name: 1 GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University, 1000 Faner Drive, MC 4514, Carbondale, IL 62901-4514, USA | 
    
| Author_xml | – sequence: 1 givenname: Tonny J surname: Oyana fullname: Oyana, Tonny J email: tjoyana@siu.edu organization: GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20689710$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkk1vEzEQhi1URD_gxB1ZXECCpZ61vfZeKkWhAaQCBz4kTpazO5tucexg77bKv8dpQgsI0dNY8uN3PI99SPZ88EjIY2CvAKQ8LhmwYyUqVsI9cgCVVoUAyfdu1kLuk8OULhgTlZTqAdkvWaVrBeyAfJvQD3hVzKxfOGzp7PRT8b14j9YnOnVjGjD2fkEnbhFiP5wvaRcifd0ntAk3tQmXGNfU-pZ-7dNoHZ1469ZD36SH5H5nXcJHu3pEvsxOP0_fFmcf37ybTs6KRlRqKHipUfCOz1veNc28A8FrhrwpNdRcW2wZVwplVaNomWwbtCCZVrYGVVdMWn5EXm5zR7-y6yvrnFnFfmnj2gAzG0NmY8hsDWX8ZIuvxvkSc54for09Emxv_tzx_blZhEvDQQGveA54tguI4ceIaTDL7AGdsx7DmIySQitdQnk3KXQeUZQ6k8__S4LijOX21_d_-hd6EcaYpSejpZQa1DX05Pchb6b79e4ZeLEFmhhSitjd4WynOK023wHjbc9_4T8BjlHIIw | 
    
| Cites_doi | 10.1145/280277.280279 10.1016/S0031-3203(02)00060-2 10.1145/361002.361007 10.1109/72.846731 10.1109/72.846732 10.1109/TPAMI.2002.1017616 10.3201/eid0505.990501 10.1109/TPAMI.1979.4766909 10.1006/jcom.2001.0633 10.1109/5.58325 10.1023/A:1009769707641 10.1145/355744.355745 10.1109/72.846725 10.1145/331499.331504 10.1109/72.846729 10.1243/0954406042369008  | 
    
| ContentType | Journal Article | 
    
| Copyright | Tonny J. Oyana. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2010 Tonny J. Oyana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2010 Tonny J. Oyana. 2010 Tonny J. Oyana.  | 
    
| Copyright_xml | – notice: Tonny J. Oyana. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2010 Tonny J. Oyana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2010 Tonny J. Oyana. 2010 Tonny J. Oyana.  | 
    
| DBID | C6C AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- KR7 L7M LK8 L~C L~D M0N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1155/2010/746021 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database PubMed Engineering Research Database MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Biology  | 
    
| EISSN | 1687-4153 | 
    
| EndPage | 14 | 
    
| ExternalDocumentID | oai:europepmc.org:2177062 PMC3171363 2285153051 20689710 10_1155_2010_746021  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -A0 29G 2WC 3V. 53G 5GY 5VS 8FE 8FG 8FH 8R4 8R5 AAKKN ABDBF ABEEZ ABUWG ACACY ACGFS ACIWK ACPRK ACUHS ACULB ADBBV ADINQ ADRAZ AEGXH AEUYN AFGXO AFKRA AFRAH AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ARAPS AZQEC BAWUL BBNVY BENPR BGLVJ BHPHI BPHCQ C1A C24 C6C CCPQU CS3 DIK DWQXO E3Z EBS EJD ESX F5P GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE I-F IL9 IPNFZ K6V K7- KQ8 LK8 M0N M48 M7P MK~ ML0 M~E O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC Q2X RHU RIG RNS RPM RSV SOJ TUS WOQ ~8M 0R~ 2VQ 4.4 40G AAYXX AHYZX CITATION HZ~ O9- OVT PHGZM PHGZT PQGLB PUEGO SEG U2A NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c467t-328e43f3bd3fccbf14390e3c281938aed0377e569e4d05dcea15087a9179605a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1687-4145 1687-4153  | 
    
| IngestDate | Sun Oct 26 03:42:20 EDT 2025 Tue Sep 30 16:53:02 EDT 2025 Tue Oct 07 09:21:08 EDT 2025 Fri Sep 05 10:31:16 EDT 2025 Fri Sep 05 12:03:38 EDT 2025 Fri Jul 25 11:01:01 EDT 2025 Wed Feb 19 02:30:31 EST 2025 Wed Oct 01 00:44:36 EDT 2025 Fri Feb 21 02:32:52 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Cluster Center Housing Unit Synthetic Dataset Neighbor Query Mean Square Error  | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c467t-328e43f3bd3fccbf14390e3c281938aed0377e569e4d05dcea15087a9179605a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3171363 | 
    
| PMID | 20689710 | 
    
| PQID | 855581721 | 
    
| PQPubID | 237297 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1155_2010_746021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171363 proquest_miscellaneous_754878212 proquest_miscellaneous_748938428 proquest_miscellaneous_1730071321 proquest_journals_855581721 pubmed_primary_20689710 crossref_primary_10_1155_2010_746021 springer_journals_10_1155_2010_746021  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-00-00 | 
    
| PublicationDateYYYYMMDD | 2010-01-01 | 
    
| PublicationDate_xml | – year: 2010 text: 2010-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Germany – name: New York  | 
    
| PublicationTitle | EURASIP journal on bioinformatics & systems biology | 
    
| PublicationTitleAbbrev | J Bioinform Sys Biology | 
    
| PublicationTitleAlternate | EURASIP J Bioinform Syst Biol | 
    
| PublicationYear | 2010 | 
    
| Publisher | Springer International Publishing Springer Nature B.V Springer  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer  | 
    
| References | Oyana, Scott, Lars, Anders, Hardy (CR6) 2008 Vesanto, Alhoniemi (CR19) 2000; 11 Alahakoon, Halgamuge, Srinivasan (CR11) 2000; 11 Bengio, Buhmann, Embrechts, Zurada (CR13) 2000; 11 Bação, Lobo, Painho, Egenhofer, Freskes, Miller (CR27) 2004 Jain, Murty, Flynn (CR34) 1999; 31 Oyana, Boppidi, Yan, Lwebuga-Mukasa (CR10) 2005 Likas, Vlassis, J. Verbeek (CR14) 2003; 36 Alsabti, Ranka, Singh (CR17) 1997 Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (CR15) 2002; 24 Darken, Moody (CR24) 1990; 2 Karypis, Han, Kumar (CR33) 1999; 32 Bradley, Fayyad (CR28) 1998 Vrahatis, Boutsinas, Alevizos, Pavlides (CR5) 2002; 18 Friedman, Bentley, Finkel (CR35) 1977; 3 Demiriz, Bennet, Embrechts (CR7) 1999 Kohonen (CR26) 1990; 78 Gaede, Günther (CR22) 1998; 30 Ng, Han (CR31) 1994 Mashor (CR18) 1998; 6 Pham, Dimov, Nguyen (CR16) 2004; 218 Curtis (CR9) 1999; 5 Hamerly, Elkan (CR29) 2002 Theodoridis, Koutroumbas (CR2) 2003 Davies, Bouldin (CR20) 1979; 1 Ester, Kriegel, Sander, Xu (CR30) 1996 CR25 Yano, Kotani (CR8) 2003 CR23 Guha, Rastogi, Shim (CR32) 1998 MacQueen (CR3) 1967 Bentley (CR21) 1975; 18 Huang (CR1) 1998; 2 Kohonen, Kaski, Lagus, Salojärvi, Honkela, Paatero, Saarela (CR12) 2000; 11 Pelleg, Moore (CR4) 2000 11 12 (20) 1979; 1 14 (18) 1998; 6 25 15 26 (9) 1999; 5 16 19 (34) 1999; 31 (13) 2000; 11 (22) 1998; 30 (35) 1977; 3 (2) 2003 5 (33) 1999; 32 (6) 2008 (1) 1998; 2 21  | 
    
| References_xml | – start-page: 226 year: 1996 end-page: 231 ident: CR30 publication-title: A density based algorithm for discovering clusters in large geospatial databases with noise – volume: 32 start-page: 68 issue: 8 year: 1999 end-page: 75 ident: CR33 article-title: Chameleon: hierarchical clustering using dynamic modelling publication-title: IEEE Computer Special Issue on Data Analysis and Mining – volume: 6 start-page: 121 issue: 2 year: 1998 end-page: 124 ident: CR18 article-title: Improving the performance of k-means clustering algorithm to position the centers of RBF network publication-title: International Journal of the Computer, The Internet and Management – volume: 30 start-page: 170 issue: 2 year: 1998 end-page: 231 ident: CR22 article-title: Multidimensional access methods publication-title: ACM Computing Surveys doi: 10.1145/280277.280279 – volume: 2 start-page: 233 year: 1990 end-page: 238 ident: CR24 article-title: Fast adaptive k-means clustering: some empirical results publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN '90) – year: 2005 ident: CR10 article-title: Exploration of geographic information systems-based medical databases with self-organizing maps: a case study of adult asthma publication-title: Proceedings of the 8th International Conference on GeoComputation, Ann Arbor, Mich, USA – volume: 36 start-page: 451 issue: 2 year: 2003 end-page: 461 ident: CR14 article-title: The global k-means clustering algorithm publication-title: Pattern Recognition doi: 10.1016/S0031-3203(02)00060-2 – year: 1998 ident: CR32 article-title: Cure: an efficient clustering algorithm for large databases publication-title: Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD '98) – volume: 18 start-page: 509 issue: 9 year: 1975 end-page: 517 ident: CR21 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM doi: 10.1145/361002.361007 – start-page: 282 year: 1967 end-page: 297 ident: CR3 publication-title: Some methods for classification and analysis of multivariate observations – volume: 11 start-page: 586 issue: 3 year: 2000 end-page: 600 ident: CR19 article-title: Clustering of the self-organizing map publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846731 – volume: 11 start-page: 601 issue: 3 year: 2000 end-page: 614 ident: CR11 article-title: Dynamic self-organizing maps with controlled growth for knowledge discovery publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846732 – volume: 24 start-page: 881 issue: 7 year: 2002 end-page: 892 ident: CR15 article-title: An efficient k-means clustering algorithms: analysis and implementation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2002.1017616 – start-page: 34 year: 1997 end-page: 39 ident: CR17 article-title: An efficient k-means clustering algorithm publication-title: Proceedings of 1st IN/IPPS/SPDP Workshop on High Performance Data Mining – start-page: 3211 year: 2003 end-page: 3215 ident: CR8 article-title: Clustering gene expression data using self-organizing maps and k-means clustering publication-title: Jido Seigyo Rengo Koenkai Koen Ronbunshu SICE Annual Conference, Fukui, Japan – year: 2004 ident: CR27 article-title: Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions publication-title: Proceedings of 3rd International Conference on Geographical Information Science (GIScience '04) – ident: CR25 – volume: 5 start-page: 603 issue: 5 year: 1999 end-page: 606 ident: CR9 article-title: Using a spatial filter and a geographic information system to improve rabies surveillance data publication-title: Emerging Infectious Diseases doi: 10.3201/eid0505.990501 – ident: CR23 – start-page: 144 year: 1994 end-page: 155 ident: CR31 article-title: Efficient and effective clustering methods for spatial data mining publication-title: Proceedings of the 20th International Conference of Very Large Data Bases (VLDB '94), Santiago, Chile – volume: 1 start-page: 224 issue: 2 year: 1979 end-page: 227 ident: CR20 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766909 – volume: 18 start-page: 375 issue: 1 year: 2002 end-page: 391 ident: CR5 article-title: The new k-windows algorithm for improving the k-means clustering algorithm publication-title: Journal of Complexity doi: 10.1006/jcom.2001.0633 – volume: 78 start-page: 1464 issue: 9 year: 1990 end-page: 1480 ident: CR26 article-title: The self-organizing map publication-title: Proceedings of the IEEE doi: 10.1109/5.58325 – volume: 2 start-page: 283 issue: 3 year: 1998 end-page: 304 ident: CR1 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009769707641 – start-page: 809 year: 1999 end-page: 814 ident: CR7 publication-title: Semi-supervised clustering using genetic algorithms. – volume: 3 start-page: 209 year: 1977 end-page: 226 ident: CR35 article-title: An algorithm for finding the best matches in logarithmic expected time publication-title: ACM Transactions on Mathematical Software doi: 10.1145/355744.355745 – volume: 11 start-page: 545 issue: 3 year: 2000 end-page: 549 ident: CR13 article-title: Introduction to the special issue on neural networks for data mining and knowledge discovery publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846725 – volume: 31 start-page: 264 issue: 3 year: 1999 end-page: 323 ident: CR34 article-title: Data clustering: a review publication-title: ACM Computing Surveys doi: 10.1145/331499.331504 – year: 2003 ident: CR2 publication-title: Pattern Recognition – start-page: 600 year: 2002 end-page: 607 ident: CR29 article-title: Alternatives to the k-means algorithm that find better clusterings publication-title: Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM '02), New York, NY, USA – start-page: 727 year: 2000 end-page: 734 ident: CR4 publication-title: X-means: extending k-means with efficient estimation of the number of clusters – volume: 218 start-page: 1269 issue: 10 year: 2004 end-page: 1273 ident: CR16 article-title: A two-phase k-means algorithm for large datasets publication-title: Proceedings of the Institution of Mechanical Engineers C – start-page: 91 year: 1998 end-page: 99 ident: CR28 publication-title: Refining initial points for k-means clustering. – year: 2008 ident: CR6 article-title: A geospatial implementation of a novel delineation clustering algorithm employing the k-means (pp 135–157) publication-title: The European Information Society, Taking Geoinformation Science One Step Further Series, Lecture Notes in Geoinformation and Cartography – volume: 11 start-page: 574 issue: 3 year: 2000 end-page: 585 ident: CR12 article-title: Self organization of a massive document collection publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846729 – ident: 26 doi: 10.1109/5.58325 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 1 – year: 2003 ident: 2 – volume: 5 start-page: 603 issue: 5 year: 1999 ident: 9 – volume: 30 start-page: 170 issue: 2 year: 1998 ident: 22 – volume: 6 start-page: 121 issue: 2 year: 1998 ident: 18 – ident: 12 doi: 10.1109/72.846729 – ident: 19 doi: 10.1109/72.846731 – volume-title: A geospatial implementation of a novel delineation clustering algorithm employing the k-means (pp 135–157) year: 2008 ident: 6 – ident: 11 doi: 10.1109/72.846732 – ident: 14 doi: 10.1109/TPAMI.2002.1017616 – volume: 11 start-page: 545 issue: 3 year: 2000 ident: 13 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 34 – ident: 21 doi: 10.1145/361002.361007 – ident: 5 doi: 10.1006/jcom.2001.0633 – ident: 16 doi: 10.1243/0954406042369008 – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 33 – volume: 1 start-page: 224 issue: 2 year: 1979 ident: 20 – volume: 3 start-page: 209 year: 1977 ident: 35 – ident: 15 doi: 10.1016/S0031-3203(02)00060-2 – volume-title: A mathematical improvement of the self-organizing map algorithm. Chapter 8: ICT and mathematical modeling (pp 522–531) ident: 25  | 
    
| SSID | ssj0046557 | 
    
| Score | 1.7923598 | 
    
| Snippet | The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Bioinformatics Biology Biomedical Engineering and Bioengineering Blood Blood levels Cluster analysis Computational Biology/Bioinformatics Data mining Elevated Engineering Field study Gene expression Human subjects Mathematical analysis Mean square errors Methods Quality Research Article Signal,Image and Speech Processing Systems Biology Visual  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QDxLKCAjtUdrkzjPA0JL2VWFtBUCisopmthOWxGyC7sR6r9nJi-6KuwpB0-UeGyP5_OMvwE4RFQ2KrQnNeZaEt5AmaIlqEJblXUtQxK-KDw_jU7Ogg_n4fkOzPu7MJxW2dvExlCbheYz8nHCxFSMV94uf0ouGsXB1b6CBnaVFcybhmHsDuz6TIw1gt1309OPn3rTzFxhTbWViFZW4AVhd2GPXhpzVHgcB5Hre5tb1C2_83b65BBD3YO7dbXE699Ylje2qdkDuN_5l2LSToiHsGOrR7B3g3XwMXybCDJtcobVRWmNmE0_y-9ybmnPEsdlzcQJJCYm5QX1f335Q5BbK963cRx-ak76vBZYGfH1alXzx5jYhOmen8DZbPrl-ER2FRakJgO5lspPbKAKlRtVaJ0X5DylrlWao2sqQWtcFcc2jFIbGDekDiPTx8dIGI-QT4jqKYyqRWWfgfCNX9gcscDQDWKdo5vHaWp8ywQ7Fl0HDnulZsuWSCNrAEgYZqz7rNW9Awe9wrNuNa2yYewdeD200jLg2AZWdlGvMo959wlws4z4j0xDtJMQ3toiwgAuocnjwH47yMPP-m6UpOSPORBvDP8gwETdmy3V1WVD2E0-mqci5cBRP1H-9u2fOjgaZtE2XT3fqqsDuNdmOvBx0QsYrX_V9iU5UOv8Vbcs_gC8aBig priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZQOUAPiPIMLWiQ2uOos5lMHsfV0lWFVC5QVE6RkzjtipCtuhuh_nvsvNqlpeKUwziP8TzsL7a_AdhHtBSW-UTnmOWa8QbqBImhCpsqMiSQRAqFT76Ex6fB5zN31herr4Zs9yEk2e7U7bJ27lDCtodREBopG3_MjocvJzXMpLih23iFCSzqS_D-umHT6NzxJO8mRI5R0W140tSXeP0bq-qW4Zk_h2e9x6im3RDvwCOqX8D2LR7Bl_Bjqniz0nOszysq1Pzoq_6pT4itkJpVjVAhsJiaVufLq8X64pdiR1V96iIzcs0ljfNaYV2o74tVIy8TqhIhcH4Fp_Ojb7Nj3Z-ZoHPe8tba-jEFtrRZYcs8z0p2hxJDNpd4mY2RCmOjiFyYUFAYxx1GIYSPkFEbYxmH9jVs1cua3oLyC7-kDLFEZ4Ioz9BkUZIUPgllDqHxYH9QanrZUWOkLaRwLhXdp53uPdgdFJ7262OVxkIzJujTg49jK09siVZgTctmlU6ESZ8htMiof8i01DkxI6gHRASSxWygPXjTDfL4sb4J44Q9LA-ijeEfBYR6e7OlXly0FNzsdU1saD04GCbKTd_u1cHBOIse0tW7_3zeLjztshjkV9AebK2vGnrPztE6-9AuiT_vpAmZ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5FPp2KdVWgqMT2-vnMQIiVAlUtU0FJ2u8XkOE40TEVkV_fWf8Kiktak-2tCPZOzPrmc8z-y3APqLUfqZsU2GiTMIbaEaoCapQqNKWZkjCG4VPz_yTqfvx3DvfALvbC1M37atkNizy-bCYXdW9lcu5GnV9YiMKeLb05SPY9D1KvwewOT37NL5gYOXTgnHt-mDi9t6T7Z48CpsjLvyOAte3HHs9Ct1LLe93SPZl0i14XBVLvP2OeX4nEk224XM3h6YB5XpYlclQ_fiN3vG_JrkDT9u8VIyboWewoYvnsHWHrfAFXIwFfRLNCRaXuU7F5PiLeW2eaop14jCvmHCBxMQ4v1zczMqruaB0WBw19R--Km4WvRVYpOLbbFXxw5gQhWmiX8J0cvz18MRsT2YwFX1YS1M6oXZlJpNUZkolGSVdkaWl4qqcDFGnlgwC7fmRdlPLIy0i084HSNiQTOahfAWDYlHoNyCc1Ml0gpihZ7mBStBKgihKHc3EPBotA_Y7S8XLhoAjroGL58Vs0LgxqAG7nRXjdhWu4pDJzBjjGvChH6XlwzURLPSiWsU28_WTrllG_EWmJugJCac9IMLAL6Q0wIDXjef0L-tYfhhRHmdAsOZTvQATfK-PkEvURN-tFxhw0Hnfr7n9UQcHvWs-pKu3_yi3C0-aXgn-4fQOBuVNpfcoBSuT9-2i-wnm1i16 priority: 102 providerName: Unpaywall  | 
    
| Title | A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics | 
    
| URI | https://link.springer.com/article/10.1155/2010/746021 https://www.ncbi.nlm.nih.gov/pubmed/20689710 https://www.proquest.com/docview/855581721 https://www.proquest.com/docview/1730071321 https://www.proquest.com/docview/748938428 https://www.proquest.com/docview/754878212 https://pubmed.ncbi.nlm.nih.gov/PMC3171363 https://www.ncbi.nlm.nih.gov/pmc/articles/3171363  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 2010 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-4153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-4153 dateEnd: 20141231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-4153 dateEnd: 20170920 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-4153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-4153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-4153 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-4153 dateEnd: 20170930 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-4153 dateEnd: 20170930 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-4153 dateEnd: 20170228 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: M48 dateStart: 20060101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-4153 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: C24 dateStart: 20061201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-4153 dateEnd: 20170112 omitProxy: true ssIdentifier: ssj0046557 issn: 1687-4153 databaseCode: C6C dateStart: 20061201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7QH2gMbXCGOVkbbHMDfO5wNCXdcwIbWagKLtKbokzlYR0tE2gv733CVN6NjHS6LIF8U-n333y9k_AxwgKu1mSddMME5MwhtoBqgJqpCr0lIzJOGNwsORezq2P5875xvQHMa5UuD8TmjH50mNZ_n7P7-WH2nAf6gGvOMccUL3yLNdyRvKt8hFBXyGw9Bu0wnMEeatNuf99wKTAUvXDzzeQrvumW6Fm7dXTbap0214XBbXuPyNeb7mncIdeLoKK0WvtoNnsKGL57C9Rjb4Ai56gmY0M8TiMtepCAdfzR_mUJOrEv28ZL4EEhO9_HI6myyufgqKZsVJnb7he8JrPZcCi1R8n8xL_hjzmTDL80sYh4Nv_VNzdbCCmdC8uDCV5WtbZSpOVZYkcUYxUyC1SjippnzUqVSepx030HYqHWowMmu8hwTtCPA4qF7BZjEt9GsQVmplOkbM0JG2l8QoYy8IUkszr45GacBBo9TouubPiCrc4TgRd0NUd4MBe43Co8YGIp-5yBiiGvCuLSXr55QGFnpazqMu0-0TzmYZcY9Mxa_jE8x6QIRxm09e3IDdupPbyjbWYYB3o_tbAebnvllSTK4qnm4KzbrKVQYcNobyr2136uCwtaKHdPXm3jruwZN6cQP_IXoLm4tZqfcpZlrEHXjkh586sHU8GJ19oae-ZfPV7XeqkUIl49FZ7-IvLywXxA | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOqO8a-thK5GjF9vp5QFUKiUIhUdVCRU9mvbsGVNdJm1goP67_rTN-lYg2N04-eJTY3-7szOfZ_QZgTwiu_VTaphSJNJFvCDMSGqkKhiptaaIkdFB4NPaHZ-7Hc-98DX43Z2FoW2WzJpYLtZpI-kbeDUmYivjK--lPk5pGUXG16aAh6s4Kar9UGKvPdRzrxQ0yuNn-0SEOd8dxBv3Tg6FZNxkwJa4Rc5M7oXZ5yhPFUymTFPOHyNJcUoGJh0IriweB9vxIu8rylNSCFNQDgTQHk39PcPzdB7DhcjdC7rfxoT_-9LkJBaRNVnZ38dGTXdv16gOC-JBdqkJ3A9e3HHs5JN7Jc-9u12xrtluwWeRTsbgRWXYrLA4ewXadz7JeNQEfw5rOn8DWLZXDp_Ctx3ApNQciv8y0YoP-F_O7OdIYI9lBVpBQA5qxXnaJeM-vfjBMo9lhVTeiq6RNpgsmcsW-Xs8K-jMSUiF56Wdwdi9gP4f1fJLrl8Ac5aQ6ESIVnuUGMhFWEkSRcjQJ-mhhGbDXgBpPK-GOuCQ8nhcT9nGFvQG7DeBx7b2zuJ1rBrxr76LbUS1F5HpSzGKbdP6R4JMN-49NKewTIr9bYUKEMcT0wYAX1SC3D-tYfhhh_mdAsDT8rQEJgy_fya-vSoFwzAlt7nMDOs1E-ftu_8Sg086iVVjtrMTqLWwOT0cn8cnR-HgXHla7LOhT1StYn_8q9GtM3ubJm9pFGFzct1f-AUnVVRA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkYAeEO-G8hik7jHaJJPnAaFVt6GltEKConIKk4nTVg3Zhd2o2p_Gv8POi64Ke-sph1h5eOyxv7HnG4BtpST6ubZNrVJtEt5QZqSQoAqFKrSQIQlvFD488veO3Q8n3ska_O72wnBbZTcn1hN1NtG8Rj4MmZiK8cowb7siPo3jd9OfJh8gxYXW7jSNxkIOcHFJ6G32dn9MQz1wnHj3y86e2R4wYGqaH-amdEJ0ZS7TTOZapznlDpGFUnNxSYYKM0sGAXp-hG5meZlGxezpgSKIQ4m_pyQ99xbcDpjEnTepx--7IMCsZPW5Lj75sGu7Xrs1kKL3kOvPw8D1LcdeDobXMtzrjZp9tXYD7lblVC0uVVFcCYjxA7jfZrJi1JjeQ1jD8hFsXOE3fAzfRoImUTNW5WmBmYh3P5sX5iFSdBQ7RcUUDSQmRsUpaXd-9kNQAi3GTcWIr5rbSxdClZn4ej6r-GVMocLE0k_g-EZU_RTWy0mJmyCczMkxVSpXnuUGOlVWGkRR5iBT-aCyDNjulJpMG8qOpIY6npew7pNG9wZsdQpPWr-dJb2VGfCmv0sOx1UUVeKkmiU2M_wTtGcZ8R-ZmtInJGS3QoShYkiJgwHPmkHuP9ax_DCizM-AYGn4ewGmBF--U56f1dTglA3a0pcGDDpD-ftv_9TBoLeiVbp6vlJXr-EO-WLycf_oYAvuNe0VvEb1Atbnvyp8SVnbPH1V-4eA7zftkH8A6w9Sqg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5FPp2KdVWgqMT2-vnMQIiVAlUtU0FJ2u8XkOE40TEVkV_fWf8Kiktak-2tCPZOzPrmc8z-y3APqLUfqZsU2GiTMIbaEaoCapQqNKWZkjCG4VPz_yTqfvx3DvfALvbC1M37atkNizy-bCYXdW9lcu5GnV9YiMKeLb05SPY9D1KvwewOT37NL5gYOXTgnHt-mDi9t6T7Z48CpsjLvyOAte3HHs9Ct1LLe93SPZl0i14XBVLvP2OeX4nEk224XM3h6YB5XpYlclQ_fiN3vG_JrkDT9u8VIyboWewoYvnsHWHrfAFXIwFfRLNCRaXuU7F5PiLeW2eaop14jCvmHCBxMQ4v1zczMqruaB0WBw19R--Km4WvRVYpOLbbFXxw5gQhWmiX8J0cvz18MRsT2YwFX1YS1M6oXZlJpNUZkolGSVdkaWl4qqcDFGnlgwC7fmRdlPLIy0i084HSNiQTOahfAWDYlHoNyCc1Ml0gpihZ7mBStBKgihKHc3EPBotA_Y7S8XLhoAjroGL58Vs0LgxqAG7nRXjdhWu4pDJzBjjGvChH6XlwzURLPSiWsU28_WTrllG_EWmJugJCac9IMLAL6Q0wIDXjef0L-tYfhhRHmdAsOZTvQATfK-PkEvURN-tFxhw0Hnfr7n9UQcHvWs-pKu3_yi3C0-aXgn-4fQOBuVNpfcoBSuT9-2i-wnm1i16 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New-Fangled+FES-k-Means+Clustering+Algorithm+for+Disease+Discovery+and+Visual+Analytics&rft.jtitle=EURASIP+journal+on+bioinformatics+%26+systems+biology&rft.au=Oyana%2C+Tonny+J&rft.date=2010&rft.eissn=1687-4153&rft_id=info:doi/10.1155%2F2010%2F746021&rft_id=info%3Apmid%2F20689710&rft.externalDocID=20689710 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-4145&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-4145&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-4145&client=summon |