A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics

The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k -means clustering technique—the Fast, Efficient, and Scalable k...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on bioinformatics & systems biology Vol. 2010; no. 1; pp. 1 - 14
Main Author Oyana, Tonny J
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 2010
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1687-4145
1687-4153
1687-4153
DOI10.1155/2010/746021

Cover

Abstract The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k -means clustering technique—the Fast, Efficient, and Scalable k -means algorithm ( FES-k -means). The FES-k -means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k -means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k -means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.
AbstractList The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique--the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.
The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k -means clustering technique—the Fast, Efficient, and Scalable k -means algorithm ( FES-k -means). The FES-k -means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k -means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k -means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.
The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.
Author Oyana, Tonny J
AuthorAffiliation 1 GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University, 1000 Faner Drive, MC 4514, Carbondale, IL 62901-4514, USA
AuthorAffiliation_xml – name: 1 GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University, 1000 Faner Drive, MC 4514, Carbondale, IL 62901-4514, USA
Author_xml – sequence: 1
  givenname: Tonny J
  surname: Oyana
  fullname: Oyana, Tonny J
  email: tjoyana@siu.edu
  organization: GIS Research Laboratory for Geographic Medicine, Advanced Geospatial Analysis Laboratory, Department of Geography & Environmental Resources, Southern Illinois University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20689710$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URD_gxB1ZXECCpZ61vfZeKkWhAaQCBz4kTpazO5tucexg77bKv8dpQgsI0dNY8uN3PI99SPZ88EjIY2CvAKQ8LhmwYyUqVsI9cgCVVoUAyfdu1kLuk8OULhgTlZTqAdkvWaVrBeyAfJvQD3hVzKxfOGzp7PRT8b14j9YnOnVjGjD2fkEnbhFiP5wvaRcifd0ntAk3tQmXGNfU-pZ-7dNoHZ1469ZD36SH5H5nXcJHu3pEvsxOP0_fFmcf37ybTs6KRlRqKHipUfCOz1veNc28A8FrhrwpNdRcW2wZVwplVaNomWwbtCCZVrYGVVdMWn5EXm5zR7-y6yvrnFnFfmnj2gAzG0NmY8hsDWX8ZIuvxvkSc54for09Emxv_tzx_blZhEvDQQGveA54tguI4ceIaTDL7AGdsx7DmIySQitdQnk3KXQeUZQ6k8__S4LijOX21_d_-hd6EcaYpSejpZQa1DX05Pchb6b79e4ZeLEFmhhSitjd4WynOK023wHjbc9_4T8BjlHIIw
Cites_doi 10.1145/280277.280279
10.1016/S0031-3203(02)00060-2
10.1145/361002.361007
10.1109/72.846731
10.1109/72.846732
10.1109/TPAMI.2002.1017616
10.3201/eid0505.990501
10.1109/TPAMI.1979.4766909
10.1006/jcom.2001.0633
10.1109/5.58325
10.1023/A:1009769707641
10.1145/355744.355745
10.1109/72.846725
10.1145/331499.331504
10.1109/72.846729
10.1243/0954406042369008
ContentType Journal Article
Copyright Tonny J. Oyana. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2010 Tonny J. Oyana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2010 Tonny J. Oyana. 2010 Tonny J. Oyana.
Copyright_xml – notice: Tonny J. Oyana. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2010 Tonny J. Oyana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2010 Tonny J. Oyana. 2010 Tonny J. Oyana.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
KR7
L7M
LK8
L~C
L~D
M0N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2010/746021
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

Engineering Research Database

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1687-4153
EndPage 14
ExternalDocumentID oai:europepmc.org:2177062
PMC3171363
2285153051
20689710
10_1155_2010_746021
Genre Journal Article
GroupedDBID ---
-A0
29G
2WC
3V.
53G
5GY
5VS
8FE
8FG
8FH
8R4
8R5
AAKKN
ABDBF
ABEEZ
ABUWG
ACACY
ACGFS
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
AEGXH
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
C1A
C24
C6C
CCPQU
CS3
DIK
DWQXO
E3Z
EBS
EJD
ESX
F5P
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
I-F
IL9
IPNFZ
K6V
K7-
KQ8
LK8
M0N
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
Q2X
RHU
RIG
RNS
RPM
RSV
SOJ
TUS
WOQ
~8M
0R~
2VQ
4.4
40G
AAYXX
AHYZX
CITATION
HZ~
O9-
OVT
PHGZM
PHGZT
PQGLB
PUEGO
SEG
U2A
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c467t-328e43f3bd3fccbf14390e3c281938aed0377e569e4d05dcea15087a9179605a3
IEDL.DBID M48
ISSN 1687-4145
1687-4153
IngestDate Sun Oct 26 03:42:20 EDT 2025
Tue Sep 30 16:53:02 EDT 2025
Tue Oct 07 09:21:08 EDT 2025
Fri Sep 05 10:31:16 EDT 2025
Fri Sep 05 12:03:38 EDT 2025
Fri Jul 25 11:01:01 EDT 2025
Wed Feb 19 02:30:31 EST 2025
Wed Oct 01 00:44:36 EDT 2025
Fri Feb 21 02:32:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cluster Center
Housing Unit
Synthetic Dataset
Neighbor Query
Mean Square Error
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-328e43f3bd3fccbf14390e3c281938aed0377e569e4d05dcea15087a9179605a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3171363
PMID 20689710
PQID 855581721
PQPubID 237297
PageCount 14
ParticipantIDs unpaywall_primary_10_1155_2010_746021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171363
proquest_miscellaneous_754878212
proquest_miscellaneous_748938428
proquest_miscellaneous_1730071321
proquest_journals_855581721
pubmed_primary_20689710
crossref_primary_10_1155_2010_746021
springer_journals_10_1155_2010_746021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-00-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010-00-00
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: New York
PublicationTitle EURASIP journal on bioinformatics & systems biology
PublicationTitleAbbrev J Bioinform Sys Biology
PublicationTitleAlternate EURASIP J Bioinform Syst Biol
PublicationYear 2010
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Oyana, Scott, Lars, Anders, Hardy (CR6) 2008
Vesanto, Alhoniemi (CR19) 2000; 11
Alahakoon, Halgamuge, Srinivasan (CR11) 2000; 11
Bengio, Buhmann, Embrechts, Zurada (CR13) 2000; 11
Bação, Lobo, Painho, Egenhofer, Freskes, Miller (CR27) 2004
Jain, Murty, Flynn (CR34) 1999; 31
Oyana, Boppidi, Yan, Lwebuga-Mukasa (CR10) 2005
Likas, Vlassis, J. Verbeek (CR14) 2003; 36
Alsabti, Ranka, Singh (CR17) 1997
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (CR15) 2002; 24
Darken, Moody (CR24) 1990; 2
Karypis, Han, Kumar (CR33) 1999; 32
Bradley, Fayyad (CR28) 1998
Vrahatis, Boutsinas, Alevizos, Pavlides (CR5) 2002; 18
Friedman, Bentley, Finkel (CR35) 1977; 3
Demiriz, Bennet, Embrechts (CR7) 1999
Kohonen (CR26) 1990; 78
Gaede, Günther (CR22) 1998; 30
Ng, Han (CR31) 1994
Mashor (CR18) 1998; 6
Pham, Dimov, Nguyen (CR16) 2004; 218
Curtis (CR9) 1999; 5
Hamerly, Elkan (CR29) 2002
Theodoridis, Koutroumbas (CR2) 2003
Davies, Bouldin (CR20) 1979; 1
Ester, Kriegel, Sander, Xu (CR30) 1996
CR25
Yano, Kotani (CR8) 2003
CR23
Guha, Rastogi, Shim (CR32) 1998
MacQueen (CR3) 1967
Bentley (CR21) 1975; 18
Huang (CR1) 1998; 2
Kohonen, Kaski, Lagus, Salojärvi, Honkela, Paatero, Saarela (CR12) 2000; 11
Pelleg, Moore (CR4) 2000
11
12
(20) 1979; 1
14
(18) 1998; 6
25
15
26
(9) 1999; 5
16
19
(34) 1999; 31
(13) 2000; 11
(22) 1998; 30
(35) 1977; 3
(2) 2003
5
(33) 1999; 32
(6) 2008
(1) 1998; 2
21
References_xml – start-page: 226
  year: 1996
  end-page: 231
  ident: CR30
  publication-title: A density based algorithm for discovering clusters in large geospatial databases with noise
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  end-page: 75
  ident: CR33
  article-title: Chameleon: hierarchical clustering using dynamic modelling
  publication-title: IEEE Computer Special Issue on Data Analysis and Mining
– volume: 6
  start-page: 121
  issue: 2
  year: 1998
  end-page: 124
  ident: CR18
  article-title: Improving the performance of k-means clustering algorithm to position the centers of RBF network
  publication-title: International Journal of the Computer, The Internet and Management
– volume: 30
  start-page: 170
  issue: 2
  year: 1998
  end-page: 231
  ident: CR22
  article-title: Multidimensional access methods
  publication-title: ACM Computing Surveys
  doi: 10.1145/280277.280279
– volume: 2
  start-page: 233
  year: 1990
  end-page: 238
  ident: CR24
  article-title: Fast adaptive k-means clustering: some empirical results
  publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN '90)
– year: 2005
  ident: CR10
  article-title: Exploration of geographic information systems-based medical databases with self-organizing maps: a case study of adult asthma
  publication-title: Proceedings of the 8th International Conference on GeoComputation, Ann Arbor, Mich, USA
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  end-page: 461
  ident: CR14
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00060-2
– year: 1998
  ident: CR32
  article-title: Cure: an efficient clustering algorithm for large databases
  publication-title: Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD '98)
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  end-page: 517
  ident: CR21
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
  doi: 10.1145/361002.361007
– start-page: 282
  year: 1967
  end-page: 297
  ident: CR3
  publication-title: Some methods for classification and analysis of multivariate observations
– volume: 11
  start-page: 586
  issue: 3
  year: 2000
  end-page: 600
  ident: CR19
  article-title: Clustering of the self-organizing map
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846731
– volume: 11
  start-page: 601
  issue: 3
  year: 2000
  end-page: 614
  ident: CR11
  article-title: Dynamic self-organizing maps with controlled growth for knowledge discovery
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846732
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  end-page: 892
  ident: CR15
  article-title: An efficient k-means clustering algorithms: analysis and implementation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1017616
– start-page: 34
  year: 1997
  end-page: 39
  ident: CR17
  article-title: An efficient k-means clustering algorithm
  publication-title: Proceedings of 1st IN/IPPS/SPDP Workshop on High Performance Data Mining
– start-page: 3211
  year: 2003
  end-page: 3215
  ident: CR8
  article-title: Clustering gene expression data using self-organizing maps and k-means clustering
  publication-title: Jido Seigyo Rengo Koenkai Koen Ronbunshu SICE Annual Conference, Fukui, Japan
– year: 2004
  ident: CR27
  article-title: Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions
  publication-title: Proceedings of 3rd International Conference on Geographical Information Science (GIScience '04)
– ident: CR25
– volume: 5
  start-page: 603
  issue: 5
  year: 1999
  end-page: 606
  ident: CR9
  article-title: Using a spatial filter and a geographic information system to improve rabies surveillance data
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid0505.990501
– ident: CR23
– start-page: 144
  year: 1994
  end-page: 155
  ident: CR31
  article-title: Efficient and effective clustering methods for spatial data mining
  publication-title: Proceedings of the 20th International Conference of Very Large Data Bases (VLDB '94), Santiago, Chile
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  end-page: 227
  ident: CR20
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766909
– volume: 18
  start-page: 375
  issue: 1
  year: 2002
  end-page: 391
  ident: CR5
  article-title: The new k-windows algorithm for improving the k-means clustering algorithm
  publication-title: Journal of Complexity
  doi: 10.1006/jcom.2001.0633
– volume: 78
  start-page: 1464
  issue: 9
  year: 1990
  end-page: 1480
  ident: CR26
  article-title: The self-organizing map
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58325
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  end-page: 304
  ident: CR1
  article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009769707641
– start-page: 809
  year: 1999
  end-page: 814
  ident: CR7
  publication-title: Semi-supervised clustering using genetic algorithms.
– volume: 3
  start-page: 209
  year: 1977
  end-page: 226
  ident: CR35
  article-title: An algorithm for finding the best matches in logarithmic expected time
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/355744.355745
– volume: 11
  start-page: 545
  issue: 3
  year: 2000
  end-page: 549
  ident: CR13
  article-title: Introduction to the special issue on neural networks for data mining and knowledge discovery
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846725
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  end-page: 323
  ident: CR34
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys
  doi: 10.1145/331499.331504
– year: 2003
  ident: CR2
  publication-title: Pattern Recognition
– start-page: 600
  year: 2002
  end-page: 607
  ident: CR29
  article-title: Alternatives to the k-means algorithm that find better clusterings
  publication-title: Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM '02), New York, NY, USA
– start-page: 727
  year: 2000
  end-page: 734
  ident: CR4
  publication-title: X-means: extending k-means with efficient estimation of the number of clusters
– volume: 218
  start-page: 1269
  issue: 10
  year: 2004
  end-page: 1273
  ident: CR16
  article-title: A two-phase k-means algorithm for large datasets
  publication-title: Proceedings of the Institution of Mechanical Engineers C
– start-page: 91
  year: 1998
  end-page: 99
  ident: CR28
  publication-title: Refining initial points for k-means clustering.
– year: 2008
  ident: CR6
  article-title: A geospatial implementation of a novel delineation clustering algorithm employing the k-means (pp 135–157)
  publication-title: The European Information Society, Taking Geoinformation Science One Step Further Series, Lecture Notes in Geoinformation and Cartography
– volume: 11
  start-page: 574
  issue: 3
  year: 2000
  end-page: 585
  ident: CR12
  article-title: Self organization of a massive document collection
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846729
– ident: 26
  doi: 10.1109/5.58325
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: 1
– year: 2003
  ident: 2
– volume: 5
  start-page: 603
  issue: 5
  year: 1999
  ident: 9
– volume: 30
  start-page: 170
  issue: 2
  year: 1998
  ident: 22
– volume: 6
  start-page: 121
  issue: 2
  year: 1998
  ident: 18
– ident: 12
  doi: 10.1109/72.846729
– ident: 19
  doi: 10.1109/72.846731
– volume-title: A geospatial implementation of a novel delineation clustering algorithm employing the k-means (pp 135–157)
  year: 2008
  ident: 6
– ident: 11
  doi: 10.1109/72.846732
– ident: 14
  doi: 10.1109/TPAMI.2002.1017616
– volume: 11
  start-page: 545
  issue: 3
  year: 2000
  ident: 13
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 34
– ident: 21
  doi: 10.1145/361002.361007
– ident: 5
  doi: 10.1006/jcom.2001.0633
– ident: 16
  doi: 10.1243/0954406042369008
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 33
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  ident: 20
– volume: 3
  start-page: 209
  year: 1977
  ident: 35
– ident: 15
  doi: 10.1016/S0031-3203(02)00060-2
– volume-title: A mathematical improvement of the self-organizing map algorithm. Chapter 8: ICT and mathematical modeling (pp 522–531)
  ident: 25
SSID ssj0046557
Score 1.7923598
Snippet The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bioinformatics
Biology
Biomedical Engineering and Bioengineering
Blood
Blood levels
Cluster analysis
Computational Biology/Bioinformatics
Data mining
Elevated
Engineering
Field study
Gene expression
Human subjects
Mathematical analysis
Mean square errors
Methods
Quality
Research Article
Signal,Image and Speech Processing
Systems Biology
Visual
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QF6QDxLKCAjtUdrkzjPA0JL2VWFtBUCisopmthOWxGyC7sR6r9nJi-6KuwpB0-UeGyP5_OMvwE4RFQ2KrQnNeZaEt5AmaIlqEJblXUtQxK-KDw_jU7Ogg_n4fkOzPu7MJxW2dvExlCbheYz8nHCxFSMV94uf0ouGsXB1b6CBnaVFcybhmHsDuz6TIw1gt1309OPn3rTzFxhTbWViFZW4AVhd2GPXhpzVHgcB5Hre5tb1C2_83b65BBD3YO7dbXE699Ylje2qdkDuN_5l2LSToiHsGOrR7B3g3XwMXybCDJtcobVRWmNmE0_y-9ybmnPEsdlzcQJJCYm5QX1f335Q5BbK963cRx-ak76vBZYGfH1alXzx5jYhOmen8DZbPrl-ER2FRakJgO5lspPbKAKlRtVaJ0X5DylrlWao2sqQWtcFcc2jFIbGDekDiPTx8dIGI-QT4jqKYyqRWWfgfCNX9gcscDQDWKdo5vHaWp8ywQ7Fl0HDnulZsuWSCNrAEgYZqz7rNW9Awe9wrNuNa2yYewdeD200jLg2AZWdlGvMo959wlws4z4j0xDtJMQ3toiwgAuocnjwH47yMPP-m6UpOSPORBvDP8gwETdmy3V1WVD2E0-mqci5cBRP1H-9u2fOjgaZtE2XT3fqqsDuNdmOvBx0QsYrX_V9iU5UOv8Vbcs_gC8aBig
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZQOUAPiPIMLWiQ2uOos5lMHsfV0lWFVC5QVE6RkzjtipCtuhuh_nvsvNqlpeKUwziP8TzsL7a_AdhHtBSW-UTnmOWa8QbqBImhCpsqMiSQRAqFT76Ex6fB5zN31herr4Zs9yEk2e7U7bJ27lDCtodREBopG3_MjocvJzXMpLih23iFCSzqS_D-umHT6NzxJO8mRI5R0W140tSXeP0bq-qW4Zk_h2e9x6im3RDvwCOqX8D2LR7Bl_Bjqniz0nOszysq1Pzoq_6pT4itkJpVjVAhsJiaVufLq8X64pdiR1V96iIzcs0ljfNaYV2o74tVIy8TqhIhcH4Fp_Ojb7Nj3Z-ZoHPe8tba-jEFtrRZYcs8z0p2hxJDNpd4mY2RCmOjiFyYUFAYxx1GIYSPkFEbYxmH9jVs1cua3oLyC7-kDLFEZ4Ioz9BkUZIUPgllDqHxYH9QanrZUWOkLaRwLhXdp53uPdgdFJ7262OVxkIzJujTg49jK09siVZgTctmlU6ESZ8htMiof8i01DkxI6gHRASSxWygPXjTDfL4sb4J44Q9LA-ijeEfBYR6e7OlXly0FNzsdU1saD04GCbKTd_u1cHBOIse0tW7_3zeLjztshjkV9AebK2vGnrPztE6-9AuiT_vpAmZ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5FPp2KdVWgqMT2-vnMQIiVAlUtU0FJ2u8XkOE40TEVkV_fWf8Kiktak-2tCPZOzPrmc8z-y3APqLUfqZsU2GiTMIbaEaoCapQqNKWZkjCG4VPz_yTqfvx3DvfALvbC1M37atkNizy-bCYXdW9lcu5GnV9YiMKeLb05SPY9D1KvwewOT37NL5gYOXTgnHt-mDi9t6T7Z48CpsjLvyOAte3HHs9Ct1LLe93SPZl0i14XBVLvP2OeX4nEk224XM3h6YB5XpYlclQ_fiN3vG_JrkDT9u8VIyboWewoYvnsHWHrfAFXIwFfRLNCRaXuU7F5PiLeW2eaop14jCvmHCBxMQ4v1zczMqruaB0WBw19R--Km4WvRVYpOLbbFXxw5gQhWmiX8J0cvz18MRsT2YwFX1YS1M6oXZlJpNUZkolGSVdkaWl4qqcDFGnlgwC7fmRdlPLIy0i084HSNiQTOahfAWDYlHoNyCc1Ml0gpihZ7mBStBKgihKHc3EPBotA_Y7S8XLhoAjroGL58Vs0LgxqAG7nRXjdhWu4pDJzBjjGvChH6XlwzURLPSiWsU28_WTrllG_EWmJugJCac9IMLAL6Q0wIDXjef0L-tYfhhRHmdAsOZTvQATfK-PkEvURN-tFxhw0Hnfr7n9UQcHvWs-pKu3_yi3C0-aXgn-4fQOBuVNpfcoBSuT9-2i-wnm1i16
  priority: 102
  providerName: Unpaywall
Title A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics
URI https://link.springer.com/article/10.1155/2010/746021
https://www.ncbi.nlm.nih.gov/pubmed/20689710
https://www.proquest.com/docview/855581721
https://www.proquest.com/docview/1730071321
https://www.proquest.com/docview/748938428
https://www.proquest.com/docview/754878212
https://pubmed.ncbi.nlm.nih.gov/PMC3171363
https://www.ncbi.nlm.nih.gov/pmc/articles/3171363
UnpaywallVersion submittedVersion
Volume 2010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20141231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-4153
  dateEnd: 20170920
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-4153
  dateEnd: 20170930
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20170930
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20170228
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: M48
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: C24
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-4153
  dateEnd: 20170112
  omitProxy: true
  ssIdentifier: ssj0046557
  issn: 1687-4153
  databaseCode: C6C
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7QH2gMbXCGOVkbbHMDfO5wNCXdcwIbWagKLtKbokzlYR0tE2gv733CVN6NjHS6LIF8U-n333y9k_AxwgKu1mSddMME5MwhtoBqgJqpCr0lIzJOGNwsORezq2P5875xvQHMa5UuD8TmjH50mNZ_n7P7-WH2nAf6gGvOMccUL3yLNdyRvKt8hFBXyGw9Bu0wnMEeatNuf99wKTAUvXDzzeQrvumW6Fm7dXTbap0214XBbXuPyNeb7mncIdeLoKK0WvtoNnsKGL57C9Rjb4Ai56gmY0M8TiMtepCAdfzR_mUJOrEv28ZL4EEhO9_HI6myyufgqKZsVJnb7he8JrPZcCi1R8n8xL_hjzmTDL80sYh4Nv_VNzdbCCmdC8uDCV5WtbZSpOVZYkcUYxUyC1SjippnzUqVSepx030HYqHWowMmu8hwTtCPA4qF7BZjEt9GsQVmplOkbM0JG2l8QoYy8IUkszr45GacBBo9TouubPiCrc4TgRd0NUd4MBe43Co8YGIp-5yBiiGvCuLSXr55QGFnpazqMu0-0TzmYZcY9Mxa_jE8x6QIRxm09e3IDdupPbyjbWYYB3o_tbAebnvllSTK4qnm4KzbrKVQYcNobyr2136uCwtaKHdPXm3jruwZN6cQP_IXoLm4tZqfcpZlrEHXjkh586sHU8GJ19oae-ZfPV7XeqkUIl49FZ7-IvLywXxA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOqO8a-thK5GjF9vp5QFUKiUIhUdVCRU9mvbsGVNdJm1goP67_rTN-lYg2N04-eJTY3-7szOfZ_QZgTwiu_VTaphSJNJFvCDMSGqkKhiptaaIkdFB4NPaHZ-7Hc-98DX43Z2FoW2WzJpYLtZpI-kbeDUmYivjK--lPk5pGUXG16aAh6s4Kar9UGKvPdRzrxQ0yuNn-0SEOd8dxBv3Tg6FZNxkwJa4Rc5M7oXZ5yhPFUymTFPOHyNJcUoGJh0IriweB9vxIu8rylNSCFNQDgTQHk39PcPzdB7DhcjdC7rfxoT_-9LkJBaRNVnZ38dGTXdv16gOC-JBdqkJ3A9e3HHs5JN7Jc-9u12xrtluwWeRTsbgRWXYrLA4ewXadz7JeNQEfw5rOn8DWLZXDp_Ctx3ApNQciv8y0YoP-F_O7OdIYI9lBVpBQA5qxXnaJeM-vfjBMo9lhVTeiq6RNpgsmcsW-Xs8K-jMSUiF56Wdwdi9gP4f1fJLrl8Ac5aQ6ESIVnuUGMhFWEkSRcjQJ-mhhGbDXgBpPK-GOuCQ8nhcT9nGFvQG7DeBx7b2zuJ1rBrxr76LbUS1F5HpSzGKbdP6R4JMN-49NKewTIr9bYUKEMcT0wYAX1SC3D-tYfhhh_mdAsDT8rQEJgy_fya-vSoFwzAlt7nMDOs1E-ftu_8Sg086iVVjtrMTqLWwOT0cn8cnR-HgXHla7LOhT1StYn_8q9GtM3ubJm9pFGFzct1f-AUnVVRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkYAeEO-G8hik7jHaJJPnAaFVt6GltEKConIKk4nTVg3Zhd2o2p_Gv8POi64Ke-sph1h5eOyxv7HnG4BtpST6ubZNrVJtEt5QZqSQoAqFKrSQIQlvFD488veO3Q8n3ska_O72wnBbZTcn1hN1NtG8Rj4MmZiK8cowb7siPo3jd9OfJh8gxYXW7jSNxkIOcHFJ6G32dn9MQz1wnHj3y86e2R4wYGqaH-amdEJ0ZS7TTOZapznlDpGFUnNxSYYKM0sGAXp-hG5meZlGxezpgSKIQ4m_pyQ99xbcDpjEnTepx--7IMCsZPW5Lj75sGu7Xrs1kKL3kOvPw8D1LcdeDobXMtzrjZp9tXYD7lblVC0uVVFcCYjxA7jfZrJi1JjeQ1jD8hFsXOE3fAzfRoImUTNW5WmBmYh3P5sX5iFSdBQ7RcUUDSQmRsUpaXd-9kNQAi3GTcWIr5rbSxdClZn4ej6r-GVMocLE0k_g-EZU_RTWy0mJmyCczMkxVSpXnuUGOlVWGkRR5iBT-aCyDNjulJpMG8qOpIY6npew7pNG9wZsdQpPWr-dJb2VGfCmv0sOx1UUVeKkmiU2M_wTtGcZ8R-ZmtInJGS3QoShYkiJgwHPmkHuP9ax_DCizM-AYGn4ewGmBF--U56f1dTglA3a0pcGDDpD-ftv_9TBoLeiVbp6vlJXr-EO-WLycf_oYAvuNe0VvEb1Atbnvyp8SVnbPH1V-4eA7zftkH8A6w9Sqg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5FPp2KdVWgqMT2-vnMQIiVAlUtU0FJ2u8XkOE40TEVkV_fWf8Kiktak-2tCPZOzPrmc8z-y3APqLUfqZsU2GiTMIbaEaoCapQqNKWZkjCG4VPz_yTqfvx3DvfALvbC1M37atkNizy-bCYXdW9lcu5GnV9YiMKeLb05SPY9D1KvwewOT37NL5gYOXTgnHt-mDi9t6T7Z48CpsjLvyOAte3HHs9Ct1LLe93SPZl0i14XBVLvP2OeX4nEk224XM3h6YB5XpYlclQ_fiN3vG_JrkDT9u8VIyboWewoYvnsHWHrfAFXIwFfRLNCRaXuU7F5PiLeW2eaop14jCvmHCBxMQ4v1zczMqruaB0WBw19R--Km4WvRVYpOLbbFXxw5gQhWmiX8J0cvz18MRsT2YwFX1YS1M6oXZlJpNUZkolGSVdkaWl4qqcDFGnlgwC7fmRdlPLIy0i084HSNiQTOahfAWDYlHoNyCc1Ml0gpihZ7mBStBKgihKHc3EPBotA_Y7S8XLhoAjroGL58Vs0LgxqAG7nRXjdhWu4pDJzBjjGvChH6XlwzURLPSiWsU28_WTrllG_EWmJugJCac9IMLAL6Q0wIDXjef0L-tYfhhRHmdAsOZTvQATfK-PkEvURN-tFxhw0Hnfr7n9UQcHvWs-pKu3_yi3C0-aXgn-4fQOBuVNpfcoBSuT9-2i-wnm1i16
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New-Fangled+FES-k-Means+Clustering+Algorithm+for+Disease+Discovery+and+Visual+Analytics&rft.jtitle=EURASIP+journal+on+bioinformatics+%26+systems+biology&rft.au=Oyana%2C+Tonny+J&rft.date=2010&rft.eissn=1687-4153&rft_id=info:doi/10.1155%2F2010%2F746021&rft_id=info%3Apmid%2F20689710&rft.externalDocID=20689710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-4145&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-4145&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-4145&client=summon