Robust integrative biclustering for multi-view data
In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups...
        Saved in:
      
    
          | Published in | Statistical methods in medical research Vol. 31; no. 11; pp. 2201 - 2216 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London, England
          SAGE Publications
    
        01.11.2022
     Sage Publications Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0962-2802 1477-0334 1477-0334  | 
| DOI | 10.1177/09622802221122427 | 
Cover
| Abstract | In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row–column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row–column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row–column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications. | 
    
|---|---|
| AbstractList | In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications. In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.  | 
    
| Author | Zhang, Weijie Hersh, Craig P Bowler, Russel Wendt, Christine Safo, Sandra E  | 
    
| AuthorAffiliation | 1 Division of Biostatistics, University of Minnesota, MN, USA 2 Division of Pulmonary, Allergy and Critical Care, University of Minnesota, MN, USA 3 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, USA 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, USA  | 
    
| AuthorAffiliation_xml | – name: 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, USA – name: 3 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, USA – name: 1 Division of Biostatistics, University of Minnesota, MN, USA – name: 2 Division of Pulmonary, Allergy and Critical Care, University of Minnesota, MN, USA  | 
    
| Author_xml | – sequence: 1 givenname: Weijie surname: Zhang fullname: Zhang, Weijie – sequence: 2 givenname: Christine surname: Wendt fullname: Wendt, Christine – sequence: 3 givenname: Russel surname: Bowler fullname: Bowler, Russel – sequence: 4 givenname: Craig P surname: Hersh fullname: Hersh, Craig P – sequence: 5 givenname: Sandra E orcidid: 0000-0001-9593-4778 surname: Safo fullname: Safo, Sandra E email: ssafo@umn.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36113157$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkd1rFDEUxYNU7PbjD-hLGfDFl6m5-ZjsPBUp2goFQfQ53MlktimzyTbJbOl_b4atVlsUnwK5v3M499wDsueDt4ScAD0DUOo9bRvGlpQxBsCYYOoVWYBQqqaciz2ymOf1DOyTg5RuKaWKivYN2ecNAAepFoR_Dd2UcuV8tquI2W1t1Tkzlj8bnV9VQ4jVehqzq7fO3lc9Zjwirwcckz1-fA_J908fv11c1ddfLj9ffLiujWhUrjm1wCQygXIwsrMUzXIJy0Z1vWGSW9UMXPZtK9kACnpUJVDXdgZZZ2XbID8kbOc7-Q0-3OM46k10a4wPGqieG9AvGiii851oM3Vr2xvrc8QnYUCn_5x4d6NXYVssQXIh2uLw7tEhhrvJpqzXLhk7juhtmJJmJagQIGFG3z5Db8MUfSmlUFxSxlXbFOr090i_svy8QgHUDjAxpBTtoI3L5RZhTujGf24Lz5T_09DZTpNwZZ8C_13wA8SJtRM | 
    
| CitedBy_id | crossref_primary_10_1093_bioadv_vbae005 crossref_primary_10_1007_s11749_024_00953_7  | 
    
| Cites_doi | 10.1145/3195833 10.1002/sim.6866 10.1111/j.2517-6161.1996.tb02080.x 10.1093/bioinformatics/btz977 10.1145/1557019.1557095 10.1093/biostatistics/kxy081 10.1016/j.ygeno.2016.01.004 10.1111/j.1467-9868.2010.00740.x 10.1016/j.ins.2019.09.047 10.1016/j.tibs.2013.01.004 10.1056/NEJMoa021322 10.1111/j.1467-9868.2011.00771.x 10.1093/nar/gkp491 10.1111/biom.12540 10.1145/565196.565203 10.1214/aos/1176344136 10.1093/bioinformatics/btp543 10.1172/jci.insight.93203 10.1109/TSP.2016.2516971 10.1186/1471-2156-15-73 10.1111/j.1541-0420.2010.01392.x 10.1093/bioinformatics/btq227 10.3109/15412550903499522 10.1073/pnas.210134797 10.1093/bioinformatics/btw207 10.1198/016214506000000735 10.1093/bioinformatics/btl060 10.1093/bioinformatics/btr322 10.1093/bioinformatics/btp588 10.1371/journal.pcbi.1004791 10.15585/mmwr.mm6430a1 10.1093/bioinformatics/18.suppl_1.S136 10.1109/ICDM.2013.34 10.1214/ss/1056397487 10.1093/bioinformatics/btz692  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 | 
    
| Copyright_xml | – notice: The Author(s) 2022 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QJ 7SC 8FD JQ2 K9. L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1177/09622802221122427 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Applied Social Sciences Index & Abstracts (ASSIA) Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Applied Social Sciences Index and Abstracts (ASSIA) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Statistics Mathematics  | 
    
| EISSN | 1477-0334 | 
    
| EndPage | 2216 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10153449 PMC10153449 36113157 10_1177_09622802221122427 10.1177_09622802221122427  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: National Institute of General Medical Sciences grantid: 1R35GM142695 funderid: https://doi.org/10.13039/100000057 – fundername: National Institutes of Health grantid: 5KL2TR002492-03 funderid: https://doi.org/10.13039/100000002 – fundername: National Heart, Lung, and Blood Institute grantid: U01 HL089856; U01 HL089897 funderid: https://doi.org/10.13039/100000050 – fundername: NHLBI NIH HHS grantid: U01 HL089856 – fundername: NIGMS NIH HHS grantid: R35 GM142695 – fundername: NHLBI NIH HHS grantid: U01 HL089897 – fundername: NCATS NIH HHS grantid: KL2 TR002492  | 
    
| GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI AAEJI AAPII AAYXX AJGYC AJHME AJVBE CITATION PJZUB POGQB PPXIY PQGLB PRQQA PUEGO 3V. AADTT AAMGE ACSBE ACTQU AEUIJ AIOMO CGR CUY CVF EAD EAP ECM EIF EMB EMK ESX M4V NPM SV3 7QJ 7SC 8FD JQ2 K9. L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c467t-30e125a24a5fc5be0ac881867bdc253e76f35d9952f171da7157b9bca2be596a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0962-2802 1477-0334  | 
    
| IngestDate | Sun Oct 26 03:25:33 EDT 2025 Tue Sep 30 17:11:31 EDT 2025 Sun Sep 28 06:54:13 EDT 2025 Mon Oct 06 17:09:19 EDT 2025 Wed Feb 19 02:23:58 EST 2025 Thu Apr 24 22:56:31 EDT 2025 Wed Oct 01 06:44:13 EDT 2025 Tue Jun 17 22:37:21 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | co-clustering integrative biclustering multiomics stability selection Multi-view biclustering biclustering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c467t-30e125a24a5fc5be0ac881867bdc253e76f35d9952f171da7157b9bca2be596a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9593-4778 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10153449/pdf/nihms-1839868.pdf | 
    
| PMID | 36113157 | 
    
| PQID | 2735023796 | 
    
| PQPubID | 29398 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_1177_09622802221122427 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10153449 proquest_miscellaneous_2715441519 proquest_journals_2735023796 pubmed_primary_36113157 crossref_citationtrail_10_1177_09622802221122427 crossref_primary_10_1177_09622802221122427 sage_journals_10_1177_09622802221122427  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-01 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London, England | 
    
| PublicationPlace_xml | – name: London, England – name: England – name: London  | 
    
| PublicationTitle | Statistical methods in medical research | 
    
| PublicationTitleAlternate | Stat Methods Med Res | 
    
| PublicationYear | 2022 | 
    
| Publisher | SAGE Publications Sage Publications Ltd  | 
    
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd  | 
    
| References | Chi, Allen, Baraniuk 2017; 73 Li, Chang, Kundu 2018; 21 Vandromme, Jacques, Taillard 2020; 34 Li, Reisner, Pham 2020; 510 Tanay, Sharan, Shamir 2002; 18 Getz, Levine, Domany 2000; 97 Regan, Hokanson, Murphy 2011; 7 Liu, Shen, Pan 2016; 35 Houssaini, Breau, Kanny Kebe 2018; 3 Lee, Shen, Huang 2010; 66 Sun, Bi, Kranzler 2014; 15 Hochreiter, Bodenhofer, Heusel 2010; 26 Prelić, Bleuler, Zimmermann 2006; 22 Celli, Cote, Marin 2004; 350 Schwarz 1978; 6 Tepper, Sapiro 2016; 64 Li, Ma, Tang 2009; 37 Henriques, Madeira 2018; 51 Zou 2006; 101 Tibshirani 1996; 58 Sill, Kaiser, Benner 2011; 27 Wheaton, Cunningham, Ford 2015; 64 Chang, Glass, Liu 2016; 107 Bunte, Leppäaho, Saarinen 2016; 32 Michalak, Jaksik, Śle¸zak; 30 Meinshausen, Bühlmann 2010; 72 Lazzeroni, Owen 2002; 12 Liang, Zhu, Lu 2020; 36 Xie, Ma, Zhang 2020; 36 Shen, Olshen, Ladanyi 2009; 25 Huttenhower, Mutungu, Indik 2009; 25 Tibshirani 2011; 73 Dudoit, Shaffer, Boldrick 2003; 18 Gao, McDowell, Zhao 2016; 12 Jewell, Guan 2013; 38 bibr18-09622802221122427 bibr2-09622802221122427 bibr28-09622802221122427 bibr15-09622802221122427 bibr5-09622802221122427 bibr12-09622802221122427 Vandromme M (bibr21-09622802221122427) 2020; 34 bibr26-09622802221122427 bibr13-09622802221122427 bibr16-09622802221122427 bibr29-09622802221122427 bibr36-09622802221122427 bibr19-09622802221122427 bibr39-09622802221122427 bibr20-09622802221122427 bibr6-09622802221122427 bibr33-09622802221122427 bibr23-09622802221122427 bibr3-09622802221122427 bibr30-09622802221122427 bibr10-09622802221122427 bibr34-09622802221122427 Michalak M (bibr22-09622802221122427); 30 bibr11-09622802221122427 bibr9-09622802221122427 bibr1-09622802221122427 bibr4-09622802221122427 bibr31-09622802221122427 bibr37-09622802221122427 bibr24-09622802221122427 bibr27-09622802221122427 bibr17-09622802221122427 bibr7-09622802221122427 Lazzeroni L (bibr14-09622802221122427) 2002; 12 Wheaton AG (bibr35-09622802221122427) 2015; 64 bibr32-09622802221122427 bibr25-09622802221122427 bibr8-09622802221122427 bibr38-09622802221122427  | 
    
| References_xml | – volume: 32 start-page: 2457 year: 2016 end-page: 2463 article-title: Sparse group factor analysis for biclustering of multiple data sources publication-title: Bioinformatics – volume: 30 start-page: 161 end-page: 171 article-title: Heuristic search of exact biclusters in binary data publication-title: Int J Appl Math Comput Sci – volume: 35 start-page: 2235 year: 2016 end-page: 2250 article-title: Integrative and regularized principal component analysis of multiple sources of data publication-title: Stat Med – volume: 22 start-page: 1122 year: 2006 end-page: 1129 article-title: A systematic comparison and evaluation of biclustering methods for gene expression data publication-title: Bioinformatics – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 12 start-page: 61 year: 2002 end-page: 86 article-title: Plaid models for gene expression data publication-title: Stat Sin – volume: 26 start-page: 1520 year: 2010 end-page: 1527 article-title: Fabia: factor analysis for bicluster acquisition publication-title: Bioinformatics – volume: 25 start-page: 3267 year: 2009 end-page: 3274 article-title: Detailing regulatory networks through large scale data integration publication-title: Bioinformatics – volume: 64 start-page: 2269 year: 2016 end-page: 2283 article-title: Compressed nonnegative matrix factorization is fast and accurate publication-title: IEEE Trans Signal Process – volume: 7 start-page: 32 year: 2011 end-page: 43 article-title: Genetic epidemiology of copd (copdgene) study design publication-title: COPD – volume: 21 start-page: 610 year: 2018 end-page: 624 article-title: Bayesian generalized biclustering analysis via adaptive structured shrinkage publication-title: Biostatistics – volume: 36 start-page: 4030 year: 2020 end-page: 4037 article-title: Bem: mining coregulation patterns in transcriptomics via Boolean matrix factorization publication-title: Bioinformatics – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The adaptive lasso and its oracle properties publication-title: J Am Stat Assoc – volume: 38 start-page: 233 year: 2013 end-page: 242 article-title: Nutrient signaling to mtor and cell growth publication-title: Trends Biochem Sci – volume: 34 start-page: 1 year: 2020 end-page: 1 article-title: A biclustering method for heterogeneous and temporal medical data publication-title: IEEE Trans Knowl Data Eng – volume: 510 start-page: 304 year: 2020 end-page: 316 article-title: Biclustering with missing data publication-title: Inf Sci (Ny) – volume: 27 start-page: 2089 year: 2011 end-page: 2097 article-title: Robust biclustering by sparse singular value decomposition incorporating stability selection publication-title: Bioinformatics (Oxford, England) – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc: Ser B (Methodological) – volume: 51 start-page: 1 year: 2018 end-page: 43 article-title: Triclustering algorithms for three-dimensional data analysis: a comprehensive survey publication-title: ACM Comput Surv – volume: 72 start-page: 417 year: 2010 end-page: 473 article-title: Stability selection publication-title: J R Stat Soc: Ser B (Statistical Methodology) – volume: 3 start-page: 1 year: 2018 end-page: 20 article-title: mTOR pathway activation drives lung cell senescence and emphysema publication-title: JCI insight – volume: 18 start-page: 71 year: 2003 end-page: 103 article-title: Multiple hypothesis testing in microarray experiments publication-title: Stat Sci – volume: 350 start-page: 1005 year: 2004 end-page: 1012 article-title: The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease publication-title: N Engl J Med – volume: 12 start-page: e1004791 year: 2016 article-title: Context specific and differential gene co-expression networks via Bayesian biclustering publication-title: PLoS Comput Biol – volume: 66 start-page: 1087 year: 2010 end-page: 1095 article-title: Biclustering via sparse singular value decomposition publication-title: Biometrics – volume: 64 start-page: 289 year: 2015 article-title: Employment and activity limitations among adults with chronic obstructive pulmonary disease—united states, 2013 publication-title: MMWR Morb Mortal Wkly Rep – volume: 18 start-page: S136 year: 2002 end-page: S144 article-title: Discovering statistically significant biclusters in gene expression data publication-title: Bioinformatics – volume: 25 start-page: 2906 year: 2009 end-page: 2912 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics – volume: 36 start-page: 1143 year: 2020 end-page: 1149 article-title: Qubic2: a novel and robust biclustering algorithm for analyses and interpretation of large-scale rna-seq data publication-title: Bioinformatics – volume: 37 start-page: e101 year: 2009 end-page: e101 article-title: Qubic: a qualitative biclustering algorithm for analyses of gene expression data publication-title: Nucleic Acids Res – volume: 73 start-page: 273 year: 2011 end-page: 282 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J R Stat Soc: Ser B (Statistical Methodology) – volume: 73 start-page: 10 year: 2017 end-page: 19 article-title: Convex biclustering publication-title: Biometrics – volume: 97 start-page: 12079 year: 2000 end-page: 12084 article-title: Coupled two-way clustering analysis of gene microarray data publication-title: Proc Natl Acad Sci USA – volume: 107 start-page: 51 year: 2016 end-page: 58 article-title: Copd subtypes identified by network-based clustering of blood gene expression publication-title: Genomics – volume: 15 start-page: 73 year: 2014 article-title: Multi-view singular value decomposition for disease subtyping and genetic associations publication-title: BMC Genet – ident: bibr1-09622802221122427 doi: 10.1145/3195833 – ident: bibr29-09622802221122427 doi: 10.1002/sim.6866 – ident: bibr30-09622802221122427 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: bibr18-09622802221122427 doi: 10.1093/bioinformatics/btz977 – ident: bibr5-09622802221122427 doi: 10.1145/1557019.1557095 – ident: bibr13-09622802221122427 doi: 10.1093/biostatistics/kxy081 – volume: 12 start-page: 61 year: 2002 ident: bibr14-09622802221122427 publication-title: Stat Sin – ident: bibr36-09622802221122427 doi: 10.1016/j.ygeno.2016.01.004 – ident: bibr27-09622802221122427 doi: 10.1111/j.1467-9868.2010.00740.x – ident: bibr20-09622802221122427 doi: 10.1016/j.ins.2019.09.047 – volume: 34 start-page: 1 year: 2020 ident: bibr21-09622802221122427 publication-title: IEEE Trans Knowl Data Eng – ident: bibr38-09622802221122427 doi: 10.1016/j.tibs.2013.01.004 – ident: bibr37-09622802221122427 doi: 10.1056/NEJMoa021322 – ident: bibr32-09622802221122427 doi: 10.1111/j.1467-9868.2011.00771.x – ident: bibr7-09622802221122427 doi: 10.1093/nar/gkp491 – ident: bibr12-09622802221122427 doi: 10.1111/biom.12540 – ident: bibr3-09622802221122427 doi: 10.1145/565196.565203 – ident: bibr31-09622802221122427 doi: 10.1214/aos/1176344136 – ident: bibr34-09622802221122427 doi: 10.1093/bioinformatics/btp543 – ident: bibr39-09622802221122427 doi: 10.1172/jci.insight.93203 – ident: bibr17-09622802221122427 doi: 10.1109/TSP.2016.2516971 – ident: bibr23-09622802221122427 doi: 10.1186/1471-2156-15-73 – ident: bibr15-09622802221122427 doi: 10.1111/j.1541-0420.2010.01392.x – ident: bibr10-09622802221122427 doi: 10.1093/bioinformatics/btq227 – ident: bibr28-09622802221122427 doi: 10.3109/15412550903499522 – ident: bibr2-09622802221122427 doi: 10.1073/pnas.210134797 – ident: bibr25-09622802221122427 doi: 10.1093/bioinformatics/btw207 – ident: bibr24-09622802221122427 – volume: 30 start-page: 161 ident: bibr22-09622802221122427 publication-title: Int J Appl Math Comput Sci – ident: bibr26-09622802221122427 doi: 10.1198/016214506000000735 – ident: bibr4-09622802221122427 doi: 10.1093/bioinformatics/btl060 – ident: bibr16-09622802221122427 doi: 10.1093/bioinformatics/btr322 – ident: bibr6-09622802221122427 doi: 10.1093/bioinformatics/btp588 – ident: bibr11-09622802221122427 doi: 10.1371/journal.pcbi.1004791 – volume: 64 start-page: 289 year: 2015 ident: bibr35-09622802221122427 publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6430a1 – ident: bibr9-09622802221122427 doi: 10.1093/bioinformatics/18.suppl_1.S136 – ident: bibr19-09622802221122427 doi: 10.1109/ICDM.2013.34 – ident: bibr33-09622802221122427 doi: 10.1214/ss/1056397487 – ident: bibr8-09622802221122427 doi: 10.1093/bioinformatics/btz692  | 
    
| SSID | ssj0007049 | 
    
| Score | 2.3726156 | 
    
| Snippet | In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref sage  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2201 | 
    
| SubjectTerms | Algorithms Biomedical data Cluster Analysis Clusters Decomposition Gene Expression Profiling - methods Genomics Medical research Oligonucleotide Array Sequence Analysis - methods Proteomics Regularization Singular value decomposition Subgroups Variables  | 
    
| Title | Robust integrative biclustering for multi-view data | 
    
| URI | https://journals.sagepub.com/doi/full/10.1177/09622802221122427 https://www.ncbi.nlm.nih.gov/pubmed/36113157 https://www.proquest.com/docview/2735023796 https://www.proquest.com/docview/2715441519 https://pubmed.ncbi.nlm.nih.gov/PMC10153449 https://pmc.ncbi.nlm.nih.gov/articles/PMC10153449/pdf/nihms-1839868.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1477-0334 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007049 issn: 0962-2802 databaseCode: AMVHM dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6BLb2oduyj3rrigeDwYYdy5Is-zGUdWHgUsYyuqcgyTItS5zQ2JTtr9_JX_2CjsFerZPsQyfdz9zd7wDe2SZFGRGRp5LMeEzhmUsoyzypWU6MjvK4Yfs8jqYz9uWUn27B564WZr3EVbQ694vF0i_Oz-rcyi5HbHySHqIJccpYMl5n-RgFlhvPOvk4in188gCGEUdQPoDh7Phk8qNm2otsAXKTfciE8AJKWRvfrKmXcNwOh_grhP7Mtpe57qHuwM672ZNtff6jqljLX5dysbjmoY4ew1mvW52Y8tOvSuXr37doH_-D8k9gt0Wx7qSZ9BS2TDGCnbSngN2M4GHaRu1HsG0RbUMI_Qzo15WqNqXb8VTgbesqXKWyjA3oR11E0W6d5ujZqIVrU1ifw-zo07fDqdd2bvA0XrylRwODwEmGTPJcc2UCqeOaOk9lOuTUiCinPEsSHuZEkEwKwoVKlJahMrh9kr6AQbEqzB64moax5CIPudKMGJIwkWUB1zJBZBfm0oGg2625bmnNbXeNxZx0TOa3N9iBD_2UdcPpcZ_wfmcC8_Z4b-aI-TiCHZFEDrzth_Fg2miLLMyqsjJ1fzdEyA68bCymfxuNCKGoswPxDVvqBSzp980R3O2a_LszAQfeW7O7-qZ7NPjYW-bf9X31T9KvYTu09SB1ceY-DMqLyrxBlFaqAxhO0u_T9KA9iX8AsfUwxg | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFbR-8HFqjVaJIAjK5rKvbPKxFGsRrhTxoH46djcbWrzLHV5C0b_e2bzsAyqCX7Ozmww7u_MLM_MbgLe-SVFOVUJMljsiDJ65jIucaCsK6mxSpC3b53FyNBOfT-XpFnzqa2HWS1zFmvOoXCyj8vysya3sc8QmJ9MDNCHJhcgm67yYoMByQ7yTT5M0wid3YDuRCMpHsD07Ptn_1jDtJb4Auc0-FEqRmHPRxTcb6iUc98MMf4XQn_n2Mpc91A3YeTN7sqvPv1eXa_3zQi8WlzzU4UM4G3RrElO-R3VlIvvrGu3jf1D-ETzoUGy43056DFuuHMP96UABuxnD3WkXtR_Djke0LSH0E-BfVqbeVGHPU4G3bWhwldozNqAfDRFFh02aI_FRi9CnsD6F2eHHrwdHpOvcQCxevBXhsUPgpJnQsrDSuFjbtKHOM7llkjuVFFzmWSZZQRXNtaJSmcxYzYzD7dP8GYzKVemeQ2g5S7VUBZPGCupoJlSex9LqDJEdK3QAcb9bc9vRmvvuGos57ZnMr29wAO-HKeuW0-M24b3eBObd8d7MEfNJBDsqSwJ4MwzjwfTRFl26Ve1lmv5uiJAD2G0tZngbTyjlqHMA6RVbGgQ86ffVEdzthvy7N4EA3nmz-_NNt2jwYbDMv-v74p-kX8IO8_UgTXHmHoyqH7V7hSitMq-7E_gbM9AvKg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+integrative+biclustering+for+multi-view+data&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Zhang%2C+Weijie&rft.au=Wendt%2C+Christine&rft.au=Bowler%2C+Russel&rft.au=Hersh%2C+Craig+P&rft.date=2022-11-01&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=31&rft.issue=11&rft.spage=2201&rft.epage=2216&rft_id=info:doi/10.1177%2F09622802221122427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_09622802221122427 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon |