Robust integrative biclustering for multi-view data

In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 31; no. 11; pp. 2201 - 2216
Main Authors Zhang, Weijie, Wendt, Christine, Bowler, Russel, Hersh, Craig P, Safo, Sandra E
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.11.2022
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN0962-2802
1477-0334
1477-0334
DOI10.1177/09622802221122427

Cover

Abstract In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row–column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row–column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row–column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.
AbstractList In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.
In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample subgroups characterized by specific groups of variables. Biclustering methods are well-suited for this problem as they assume that specific groups of variables might be relevant only to specific groups of samples. Many biclustering methods exist for detecting row-column clusters in a view but few methods exist for data from multiple views. The few existing algorithms are heavily dependent on regularization parameters for getting row-column clusters, and they impose unnecessary burden on users thus limiting their use in practice. We extend an existing biclustering method based on sparse singular value decomposition for single-view data to data from multiple views. Our method, integrative sparse singular value decomposition (iSSVD), incorporates stability selection to control Type I error rates, estimates the probability of samples and variables to belong to a bicluster, finds stable biclusters, and results in interpretable row-column associations. Simulations and real data analyses show that integrative sparse singular value decomposition outperforms several other single- and multi-view biclustering methods and is able to detect meaningful biclusters. iSSVD is a user-friendly, computationally efficient algorithm that will be useful in many disease subtyping applications.
Author Zhang, Weijie
Hersh, Craig P
Bowler, Russel
Wendt, Christine
Safo, Sandra E
AuthorAffiliation 1 Division of Biostatistics, University of Minnesota, MN, USA
2 Division of Pulmonary, Allergy and Critical Care, University of Minnesota, MN, USA
3 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, USA
4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, USA
AuthorAffiliation_xml – name: 4 Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, USA
– name: 3 Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, USA
– name: 1 Division of Biostatistics, University of Minnesota, MN, USA
– name: 2 Division of Pulmonary, Allergy and Critical Care, University of Minnesota, MN, USA
Author_xml – sequence: 1
  givenname: Weijie
  surname: Zhang
  fullname: Zhang, Weijie
– sequence: 2
  givenname: Christine
  surname: Wendt
  fullname: Wendt, Christine
– sequence: 3
  givenname: Russel
  surname: Bowler
  fullname: Bowler, Russel
– sequence: 4
  givenname: Craig P
  surname: Hersh
  fullname: Hersh, Craig P
– sequence: 5
  givenname: Sandra E
  orcidid: 0000-0001-9593-4778
  surname: Safo
  fullname: Safo, Sandra E
  email: ssafo@umn.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36113157$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1rFDEUxYNU7PbjD-hLGfDFl6m5-ZjsPBUp2goFQfQ53MlktimzyTbJbOl_b4atVlsUnwK5v3M499wDsueDt4ScAD0DUOo9bRvGlpQxBsCYYOoVWYBQqqaciz2ymOf1DOyTg5RuKaWKivYN2ecNAAepFoR_Dd2UcuV8tquI2W1t1Tkzlj8bnV9VQ4jVehqzq7fO3lc9Zjwirwcckz1-fA_J908fv11c1ddfLj9ffLiujWhUrjm1wCQygXIwsrMUzXIJy0Z1vWGSW9UMXPZtK9kACnpUJVDXdgZZZ2XbID8kbOc7-Q0-3OM46k10a4wPGqieG9AvGiii851oM3Vr2xvrc8QnYUCn_5x4d6NXYVssQXIh2uLw7tEhhrvJpqzXLhk7juhtmJJmJagQIGFG3z5Db8MUfSmlUFxSxlXbFOr090i_svy8QgHUDjAxpBTtoI3L5RZhTujGf24Lz5T_09DZTpNwZZ8C_13wA8SJtRM
CitedBy_id crossref_primary_10_1093_bioadv_vbae005
crossref_primary_10_1007_s11749_024_00953_7
Cites_doi 10.1145/3195833
10.1002/sim.6866
10.1111/j.2517-6161.1996.tb02080.x
10.1093/bioinformatics/btz977
10.1145/1557019.1557095
10.1093/biostatistics/kxy081
10.1016/j.ygeno.2016.01.004
10.1111/j.1467-9868.2010.00740.x
10.1016/j.ins.2019.09.047
10.1016/j.tibs.2013.01.004
10.1056/NEJMoa021322
10.1111/j.1467-9868.2011.00771.x
10.1093/nar/gkp491
10.1111/biom.12540
10.1145/565196.565203
10.1214/aos/1176344136
10.1093/bioinformatics/btp543
10.1172/jci.insight.93203
10.1109/TSP.2016.2516971
10.1186/1471-2156-15-73
10.1111/j.1541-0420.2010.01392.x
10.1093/bioinformatics/btq227
10.3109/15412550903499522
10.1073/pnas.210134797
10.1093/bioinformatics/btw207
10.1198/016214506000000735
10.1093/bioinformatics/btl060
10.1093/bioinformatics/btr322
10.1093/bioinformatics/btp588
10.1371/journal.pcbi.1004791
10.15585/mmwr.mm6430a1
10.1093/bioinformatics/18.suppl_1.S136
10.1109/ICDM.2013.34
10.1214/ss/1056397487
10.1093/bioinformatics/btz692
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QJ
7SC
8FD
JQ2
K9.
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1177/09622802221122427
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Applied Social Sciences Index & Abstracts (ASSIA)
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Applied Social Sciences Index and Abstracts (ASSIA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
EndPage 2216
ExternalDocumentID oai:pubmedcentral.nih.gov:10153449
PMC10153449
36113157
10_1177_09622802221122427
10.1177_09622802221122427
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: 1R35GM142695
  funderid: https://doi.org/10.13039/100000057
– fundername: National Institutes of Health
  grantid: 5KL2TR002492-03
  funderid: https://doi.org/10.13039/100000002
– fundername: National Heart, Lung, and Blood Institute
  grantid: U01 HL089856; U01 HL089897
  funderid: https://doi.org/10.13039/100000050
– fundername: NHLBI NIH HHS
  grantid: U01 HL089856
– fundername: NIGMS NIH HHS
  grantid: R35 GM142695
– fundername: NHLBI NIH HHS
  grantid: U01 HL089897
– fundername: NCATS NIH HHS
  grantid: KL2 TR002492
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
AAEJI
AAPII
AAYXX
AJGYC
AJHME
AJVBE
CITATION
PJZUB
POGQB
PPXIY
PQGLB
PRQQA
PUEGO
3V.
AADTT
AAMGE
ACSBE
ACTQU
AEUIJ
AIOMO
CGR
CUY
CVF
EAD
EAP
ECM
EIF
EMB
EMK
ESX
M4V
NPM
SV3
7QJ
7SC
8FD
JQ2
K9.
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c467t-30e125a24a5fc5be0ac881867bdc253e76f35d9952f171da7157b9bca2be596a3
IEDL.DBID UNPAY
ISSN 0962-2802
1477-0334
IngestDate Sun Oct 26 03:25:33 EDT 2025
Tue Sep 30 17:11:31 EDT 2025
Sun Sep 28 06:54:13 EDT 2025
Mon Oct 06 17:09:19 EDT 2025
Wed Feb 19 02:23:58 EST 2025
Thu Apr 24 22:56:31 EDT 2025
Wed Oct 01 06:44:13 EDT 2025
Tue Jun 17 22:37:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords co-clustering
integrative biclustering
multiomics
stability selection
Multi-view biclustering
biclustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-30e125a24a5fc5be0ac881867bdc253e76f35d9952f171da7157b9bca2be596a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9593-4778
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10153449/pdf/nihms-1839868.pdf
PMID 36113157
PQID 2735023796
PQPubID 29398
PageCount 16
ParticipantIDs unpaywall_primary_10_1177_09622802221122427
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10153449
proquest_miscellaneous_2715441519
proquest_journals_2735023796
pubmed_primary_36113157
crossref_citationtrail_10_1177_09622802221122427
crossref_primary_10_1177_09622802221122427
sage_journals_10_1177_09622802221122427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
– name: London
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2022
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Chi, Allen, Baraniuk 2017; 73
Li, Chang, Kundu 2018; 21
Vandromme, Jacques, Taillard 2020; 34
Li, Reisner, Pham 2020; 510
Tanay, Sharan, Shamir 2002; 18
Getz, Levine, Domany 2000; 97
Regan, Hokanson, Murphy 2011; 7
Liu, Shen, Pan 2016; 35
Houssaini, Breau, Kanny Kebe 2018; 3
Lee, Shen, Huang 2010; 66
Sun, Bi, Kranzler 2014; 15
Hochreiter, Bodenhofer, Heusel 2010; 26
Prelić, Bleuler, Zimmermann 2006; 22
Celli, Cote, Marin 2004; 350
Schwarz 1978; 6
Tepper, Sapiro 2016; 64
Li, Ma, Tang 2009; 37
Henriques, Madeira 2018; 51
Zou 2006; 101
Tibshirani 1996; 58
Sill, Kaiser, Benner 2011; 27
Wheaton, Cunningham, Ford 2015; 64
Chang, Glass, Liu 2016; 107
Bunte, Leppäaho, Saarinen 2016; 32
Michalak, Jaksik, Śle¸zak; 30
Meinshausen, Bühlmann 2010; 72
Lazzeroni, Owen 2002; 12
Liang, Zhu, Lu 2020; 36
Xie, Ma, Zhang 2020; 36
Shen, Olshen, Ladanyi 2009; 25
Huttenhower, Mutungu, Indik 2009; 25
Tibshirani 2011; 73
Dudoit, Shaffer, Boldrick 2003; 18
Gao, McDowell, Zhao 2016; 12
Jewell, Guan 2013; 38
bibr18-09622802221122427
bibr2-09622802221122427
bibr28-09622802221122427
bibr15-09622802221122427
bibr5-09622802221122427
bibr12-09622802221122427
Vandromme M (bibr21-09622802221122427) 2020; 34
bibr26-09622802221122427
bibr13-09622802221122427
bibr16-09622802221122427
bibr29-09622802221122427
bibr36-09622802221122427
bibr19-09622802221122427
bibr39-09622802221122427
bibr20-09622802221122427
bibr6-09622802221122427
bibr33-09622802221122427
bibr23-09622802221122427
bibr3-09622802221122427
bibr30-09622802221122427
bibr10-09622802221122427
bibr34-09622802221122427
Michalak M (bibr22-09622802221122427); 30
bibr11-09622802221122427
bibr9-09622802221122427
bibr1-09622802221122427
bibr4-09622802221122427
bibr31-09622802221122427
bibr37-09622802221122427
bibr24-09622802221122427
bibr27-09622802221122427
bibr17-09622802221122427
bibr7-09622802221122427
Lazzeroni L (bibr14-09622802221122427) 2002; 12
Wheaton AG (bibr35-09622802221122427) 2015; 64
bibr32-09622802221122427
bibr25-09622802221122427
bibr8-09622802221122427
bibr38-09622802221122427
References_xml – volume: 32
  start-page: 2457
  year: 2016
  end-page: 2463
  article-title: Sparse group factor analysis for biclustering of multiple data sources
  publication-title: Bioinformatics
– volume: 30
  start-page: 161
  end-page: 171
  article-title: Heuristic search of exact biclusters in binary data
  publication-title: Int J Appl Math Comput Sci
– volume: 35
  start-page: 2235
  year: 2016
  end-page: 2250
  article-title: Integrative and regularized principal component analysis of multiple sources of data
  publication-title: Stat Med
– volume: 22
  start-page: 1122
  year: 2006
  end-page: 1129
  article-title: A systematic comparison and evaluation of biclustering methods for gene expression data
  publication-title: Bioinformatics
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 12
  start-page: 61
  year: 2002
  end-page: 86
  article-title: Plaid models for gene expression data
  publication-title: Stat Sin
– volume: 26
  start-page: 1520
  year: 2010
  end-page: 1527
  article-title: Fabia: factor analysis for bicluster acquisition
  publication-title: Bioinformatics
– volume: 25
  start-page: 3267
  year: 2009
  end-page: 3274
  article-title: Detailing regulatory networks through large scale data integration
  publication-title: Bioinformatics
– volume: 64
  start-page: 2269
  year: 2016
  end-page: 2283
  article-title: Compressed nonnegative matrix factorization is fast and accurate
  publication-title: IEEE Trans Signal Process
– volume: 7
  start-page: 32
  year: 2011
  end-page: 43
  article-title: Genetic epidemiology of copd (copdgene) study design
  publication-title: COPD
– volume: 21
  start-page: 610
  year: 2018
  end-page: 624
  article-title: Bayesian generalized biclustering analysis via adaptive structured shrinkage
  publication-title: Biostatistics
– volume: 36
  start-page: 4030
  year: 2020
  end-page: 4037
  article-title: Bem: mining coregulation patterns in transcriptomics via Boolean matrix factorization
  publication-title: Bioinformatics
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: J Am Stat Assoc
– volume: 38
  start-page: 233
  year: 2013
  end-page: 242
  article-title: Nutrient signaling to mtor and cell growth
  publication-title: Trends Biochem Sci
– volume: 34
  start-page: 1
  year: 2020
  end-page: 1
  article-title: A biclustering method for heterogeneous and temporal medical data
  publication-title: IEEE Trans Knowl Data Eng
– volume: 510
  start-page: 304
  year: 2020
  end-page: 316
  article-title: Biclustering with missing data
  publication-title: Inf Sci (Ny)
– volume: 27
  start-page: 2089
  year: 2011
  end-page: 2097
  article-title: Robust biclustering by sparse singular value decomposition incorporating stability selection
  publication-title: Bioinformatics (Oxford, England)
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc: Ser B (Methodological)
– volume: 51
  start-page: 1
  year: 2018
  end-page: 43
  article-title: Triclustering algorithms for three-dimensional data analysis: a comprehensive survey
  publication-title: ACM Comput Surv
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  article-title: Stability selection
  publication-title: J R Stat Soc: Ser B (Statistical Methodology)
– volume: 3
  start-page: 1
  year: 2018
  end-page: 20
  article-title: mTOR pathway activation drives lung cell senescence and emphysema
  publication-title: JCI insight
– volume: 18
  start-page: 71
  year: 2003
  end-page: 103
  article-title: Multiple hypothesis testing in microarray experiments
  publication-title: Stat Sci
– volume: 350
  start-page: 1005
  year: 2004
  end-page: 1012
  article-title: The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease
  publication-title: N Engl J Med
– volume: 12
  start-page: e1004791
  year: 2016
  article-title: Context specific and differential gene co-expression networks via Bayesian biclustering
  publication-title: PLoS Comput Biol
– volume: 66
  start-page: 1087
  year: 2010
  end-page: 1095
  article-title: Biclustering via sparse singular value decomposition
  publication-title: Biometrics
– volume: 64
  start-page: 289
  year: 2015
  article-title: Employment and activity limitations among adults with chronic obstructive pulmonary disease—united states, 2013
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 18
  start-page: S136
  year: 2002
  end-page: S144
  article-title: Discovering statistically significant biclusters in gene expression data
  publication-title: Bioinformatics
– volume: 25
  start-page: 2906
  year: 2009
  end-page: 2912
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
– volume: 36
  start-page: 1143
  year: 2020
  end-page: 1149
  article-title: Qubic2: a novel and robust biclustering algorithm for analyses and interpretation of large-scale rna-seq data
  publication-title: Bioinformatics
– volume: 37
  start-page: e101
  year: 2009
  end-page: e101
  article-title: Qubic: a qualitative biclustering algorithm for analyses of gene expression data
  publication-title: Nucleic Acids Res
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J R Stat Soc: Ser B (Statistical Methodology)
– volume: 73
  start-page: 10
  year: 2017
  end-page: 19
  article-title: Convex biclustering
  publication-title: Biometrics
– volume: 97
  start-page: 12079
  year: 2000
  end-page: 12084
  article-title: Coupled two-way clustering analysis of gene microarray data
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 51
  year: 2016
  end-page: 58
  article-title: Copd subtypes identified by network-based clustering of blood gene expression
  publication-title: Genomics
– volume: 15
  start-page: 73
  year: 2014
  article-title: Multi-view singular value decomposition for disease subtyping and genetic associations
  publication-title: BMC Genet
– ident: bibr1-09622802221122427
  doi: 10.1145/3195833
– ident: bibr29-09622802221122427
  doi: 10.1002/sim.6866
– ident: bibr30-09622802221122427
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: bibr18-09622802221122427
  doi: 10.1093/bioinformatics/btz977
– ident: bibr5-09622802221122427
  doi: 10.1145/1557019.1557095
– ident: bibr13-09622802221122427
  doi: 10.1093/biostatistics/kxy081
– volume: 12
  start-page: 61
  year: 2002
  ident: bibr14-09622802221122427
  publication-title: Stat Sin
– ident: bibr36-09622802221122427
  doi: 10.1016/j.ygeno.2016.01.004
– ident: bibr27-09622802221122427
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: bibr20-09622802221122427
  doi: 10.1016/j.ins.2019.09.047
– volume: 34
  start-page: 1
  year: 2020
  ident: bibr21-09622802221122427
  publication-title: IEEE Trans Knowl Data Eng
– ident: bibr38-09622802221122427
  doi: 10.1016/j.tibs.2013.01.004
– ident: bibr37-09622802221122427
  doi: 10.1056/NEJMoa021322
– ident: bibr32-09622802221122427
  doi: 10.1111/j.1467-9868.2011.00771.x
– ident: bibr7-09622802221122427
  doi: 10.1093/nar/gkp491
– ident: bibr12-09622802221122427
  doi: 10.1111/biom.12540
– ident: bibr3-09622802221122427
  doi: 10.1145/565196.565203
– ident: bibr31-09622802221122427
  doi: 10.1214/aos/1176344136
– ident: bibr34-09622802221122427
  doi: 10.1093/bioinformatics/btp543
– ident: bibr39-09622802221122427
  doi: 10.1172/jci.insight.93203
– ident: bibr17-09622802221122427
  doi: 10.1109/TSP.2016.2516971
– ident: bibr23-09622802221122427
  doi: 10.1186/1471-2156-15-73
– ident: bibr15-09622802221122427
  doi: 10.1111/j.1541-0420.2010.01392.x
– ident: bibr10-09622802221122427
  doi: 10.1093/bioinformatics/btq227
– ident: bibr28-09622802221122427
  doi: 10.3109/15412550903499522
– ident: bibr2-09622802221122427
  doi: 10.1073/pnas.210134797
– ident: bibr25-09622802221122427
  doi: 10.1093/bioinformatics/btw207
– ident: bibr24-09622802221122427
– volume: 30
  start-page: 161
  ident: bibr22-09622802221122427
  publication-title: Int J Appl Math Comput Sci
– ident: bibr26-09622802221122427
  doi: 10.1198/016214506000000735
– ident: bibr4-09622802221122427
  doi: 10.1093/bioinformatics/btl060
– ident: bibr16-09622802221122427
  doi: 10.1093/bioinformatics/btr322
– ident: bibr6-09622802221122427
  doi: 10.1093/bioinformatics/btp588
– ident: bibr11-09622802221122427
  doi: 10.1371/journal.pcbi.1004791
– volume: 64
  start-page: 289
  year: 2015
  ident: bibr35-09622802221122427
  publication-title: MMWR Morb Mortal Wkly Rep
  doi: 10.15585/mmwr.mm6430a1
– ident: bibr9-09622802221122427
  doi: 10.1093/bioinformatics/18.suppl_1.S136
– ident: bibr19-09622802221122427
  doi: 10.1109/ICDM.2013.34
– ident: bibr33-09622802221122427
  doi: 10.1214/ss/1056397487
– ident: bibr8-09622802221122427
  doi: 10.1093/bioinformatics/btz692
SSID ssj0007049
Score 2.3726156
Snippet In many biomedical research, multiple views of data (e.g. genomics, proteomics) are available, and a particular interest might be the detection of sample...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2201
SubjectTerms Algorithms
Biomedical data
Cluster Analysis
Clusters
Decomposition
Gene Expression Profiling - methods
Genomics
Medical research
Oligonucleotide Array Sequence Analysis - methods
Proteomics
Regularization
Singular value decomposition
Subgroups
Variables
Title Robust integrative biclustering for multi-view data
URI https://journals.sagepub.com/doi/full/10.1177/09622802221122427
https://www.ncbi.nlm.nih.gov/pubmed/36113157
https://www.proquest.com/docview/2735023796
https://www.proquest.com/docview/2715441519
https://pubmed.ncbi.nlm.nih.gov/PMC10153449
https://pmc.ncbi.nlm.nih.gov/articles/PMC10153449/pdf/nihms-1839868.pdf
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1477-0334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007049
  issn: 0962-2802
  databaseCode: AMVHM
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6BLb2oduyj3rrigeDwYYdy5Is-zGUdWHgUsYyuqcgyTItS5zQ2JTtr9_JX_2CjsFerZPsQyfdz9zd7wDe2SZFGRGRp5LMeEzhmUsoyzypWU6MjvK4Yfs8jqYz9uWUn27B564WZr3EVbQ694vF0i_Oz-rcyi5HbHySHqIJccpYMl5n-RgFlhvPOvk4in188gCGEUdQPoDh7Phk8qNm2otsAXKTfciE8AJKWRvfrKmXcNwOh_grhP7Mtpe57qHuwM672ZNtff6jqljLX5dysbjmoY4ew1mvW52Y8tOvSuXr37doH_-D8k9gt0Wx7qSZ9BS2TDGCnbSngN2M4GHaRu1HsG0RbUMI_Qzo15WqNqXb8VTgbesqXKWyjA3oR11E0W6d5ujZqIVrU1ifw-zo07fDqdd2bvA0XrylRwODwEmGTPJcc2UCqeOaOk9lOuTUiCinPEsSHuZEkEwKwoVKlJahMrh9kr6AQbEqzB64moax5CIPudKMGJIwkWUB1zJBZBfm0oGg2625bmnNbXeNxZx0TOa3N9iBD_2UdcPpcZ_wfmcC8_Z4b-aI-TiCHZFEDrzth_Fg2miLLMyqsjJ1fzdEyA68bCymfxuNCKGoswPxDVvqBSzp980R3O2a_LszAQfeW7O7-qZ7NPjYW-bf9X31T9KvYTu09SB1ceY-DMqLyrxBlFaqAxhO0u_T9KA9iX8AsfUwxg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qFbR-8HFqjVaJIAjK5rKvbPKxFGsRrhTxoH46djcbWrzLHV5C0b_e2bzsAyqCX7Ozmww7u_MLM_MbgLe-SVFOVUJMljsiDJ65jIucaCsK6mxSpC3b53FyNBOfT-XpFnzqa2HWS1zFmvOoXCyj8vysya3sc8QmJ9MDNCHJhcgm67yYoMByQ7yTT5M0wid3YDuRCMpHsD07Ptn_1jDtJb4Auc0-FEqRmHPRxTcb6iUc98MMf4XQn_n2Mpc91A3YeTN7sqvPv1eXa_3zQi8WlzzU4UM4G3RrElO-R3VlIvvrGu3jf1D-ETzoUGy43056DFuuHMP96UABuxnD3WkXtR_Djke0LSH0E-BfVqbeVGHPU4G3bWhwldozNqAfDRFFh02aI_FRi9CnsD6F2eHHrwdHpOvcQCxevBXhsUPgpJnQsrDSuFjbtKHOM7llkjuVFFzmWSZZQRXNtaJSmcxYzYzD7dP8GYzKVemeQ2g5S7VUBZPGCupoJlSex9LqDJEdK3QAcb9bc9vRmvvuGos57ZnMr29wAO-HKeuW0-M24b3eBObd8d7MEfNJBDsqSwJ4MwzjwfTRFl26Ve1lmv5uiJAD2G0tZngbTyjlqHMA6RVbGgQ86ffVEdzthvy7N4EA3nmz-_NNt2jwYbDMv-v74p-kX8IO8_UgTXHmHoyqH7V7hSitMq-7E_gbM9AvKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+integrative+biclustering+for+multi-view+data&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Zhang%2C+Weijie&rft.au=Wendt%2C+Christine&rft.au=Bowler%2C+Russel&rft.au=Hersh%2C+Craig+P&rft.date=2022-11-01&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=31&rft.issue=11&rft.spage=2201&rft.epage=2216&rft_id=info:doi/10.1177%2F09622802221122427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_09622802221122427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon