pyPPG: a Python toolbox for comprehensive photoplethysmography signal analysis

Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart ra...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 45; no. 4; pp. 45001 - 45023
Main Authors Goda, Márton Á, Charlton, Peter H, Behar, Joachim A
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2024
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
1361-6579
DOI10.1088/1361-6579/ad33a2

Cover

Abstract Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. Approach. This work describes the creation of a standard Python toolbox, denoted pyPPG , for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter. Main results. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Significance. Based on these fiducial points, pyPPG engineered a set of 74 PPG biomarkers. Studying PPG time-series variability using pyPPG can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. pyPPG is available on https://physiozoo.com/ .
AbstractList Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. This work describes the creation of a standard Python toolbox, denoted , for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Based on these fiducial points, engineered a set of 74 PPG biomarkers. Studying PPG time-series variability using can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. is available onhttps://physiozoo.com/.
Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.Approach.This work describes the creation of a standard Python toolbox, denotedpyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.Main results.The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.Significance.Based on these fiducial points,pyPPGengineered a set of 74 PPG biomarkers. Studying PPG time-series variability usingpyPPGcan enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.pyPPGis available onhttps://physiozoo.com/.Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.Approach.This work describes the creation of a standard Python toolbox, denotedpyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.Main results.The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.Significance.Based on these fiducial points,pyPPGengineered a set of 74 PPG biomarkers. Studying PPG time-series variability usingpyPPGcan enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.pyPPGis available onhttps://physiozoo.com/.
Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. Approach. This work describes the creation of a standard Python toolbox, denoted pyPPG , for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter. Main results. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Significance. Based on these fiducial points, pyPPG engineered a set of 74 PPG biomarkers. Studying PPG time-series variability using pyPPG can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. pyPPG is available on https://physiozoo.com/ .
Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. Approach. This work describes the creation of a standard Python toolbox, denoted pyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter. Main results. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Significance. Based on these fiducial points, pyPPG engineered a set of 74 PPG biomarkers. Studying PPG time-series variability using pyPPG can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. pyPPG is available on https://physiozoo.com/.
Author Charlton, Peter H
Behar, Joachim A
Goda, Márton Á
Author_xml – sequence: 1
  givenname: Márton Á
  orcidid: 0000-0003-0120-5940
  surname: Goda
  fullname: Goda, Márton Á
  organization: Pázmány Péter Catholic University Faculty of Information Technology and Bionics, Budapest, Práter u. 50/A, 1083, Hungary
– sequence: 2
  givenname: Peter H
  orcidid: 0000-0003-3836-8655
  surname: Charlton
  fullname: Charlton, Peter H
  organization: University of Cambridge Department of Public Health and Primary Care, Cambridge, CB1 8RN, United Kingdom
– sequence: 3
  givenname: Joachim A
  surname: Behar
  fullname: Behar, Joachim A
  organization: Technion Institute of Technology Faculty of Biomedical Engineering, Technion-IIT, Haifa, 32000, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38478997$$D View this record in MEDLINE/PubMed
BookMark eNqNks9v1iAYx4nZ4t5N755MjztYB6Ut4MUsi06Txb0HPZOnQN-y0ILQTvvf2zed0xmz7AIJfH_k-cAxOhj8YBB6RfBbgjk_I7QmeV0xcQaaUiieoc390QHaYFGznFJaHqHjlG4wJoQX1XN0RHnJuBBsg76Eebu9fJdBtp3Hzg_Z6L1r_M-s9TFTvg_RdGZI9tZkofOjD86M3Zx6v4sQujlLdjeAy2BZ5mTTC3TYgkvm5d1-gr59_PD14lN-dX35-eL8Kldlzca8qLgqQFda1aSBSijalkJzXXMtDGtZ2wCvQGPNBZREMEIKI3irjaKNBt3QE0TW3GkIMP8A52SItoc4S4Llno3cg5B7EHJls3jer54wNb3RygxjhD8-D1Y-vBlsJ3f-VhKCMaU1XRJO7xKi_z6ZNMreJmWcg8H4KclCVIzUJWVkkb7-u-y-5Tf5RVCvAhV9StG0UtkRRuv33dY9Ngb-x_iEyd-sFuuDvPFTXF4rPSY__Y889AZkWclS4rJavpIMuqW_AH0Hxe8
CODEN PMEAE3
CitedBy_id crossref_primary_10_1088_1361_6579_adb89e
crossref_primary_10_7717_peerj_cs_2295
Cites_doi 10.1016/j.eclinm.2019.05.015
10.3390/s20113127
10.1088/1361-6579/aa670e
10.5665/sleep.5774
10.3389/fphys.2021.808451
10.1109/TBME.2016.2528507
10.1016/S0735-1097(99)00441-6
10.1088/1361-6579/aada72
10.3390/s23042220
10.1088/1361-6579/ac826d
10.1038/sdata.2018.20
10.3390/s20174844
10.1152/ajpheart.00218.2019
10.5334/jors.241
10.1109/TBME.2020.2976989
10.1088/0022-3727/38/15/004
10.1016/S0002-8703(41)90966-3
10.1088/0967-3334/31/9/015
10.1056/NEJMoa1901183
10.1109/JBHI.2021.3053909
10.1016/j.trf.2019.09.015
10.1016/S2589-7500(20)30246-6
10.1109/JBHI.2017.2679904
10.3389/fbioe.2023.1199604
10.3758/s13428-020-01516-y
10.1146/annurev-bioeng-110220-014644
10.1109/TBME.2012.2207384
10.1088/0967-3334/23/3/305
10.1016/S0895-7061(99)00192-2
10.1088/1361-6579/aae021
10.1177/000331977302400407
10.3390/jcm11061467
10.1136/bmj.n677
10.2196/biomedeng.7143
10.1088/1361-6579/aac7ac
10.1088/0967-3334/35/10/2027
10.1504/IJBET.2021.119500
10.1109/TBME.2020.3025908
10.1007/978-3-319-43742-2_26
10.3389/fmed.2020.597774
10.1042/cs1030371
10.1109/TBME.2005.855725
10.1088/1361-6579/aabe6a
10.1038/s41598-022-27170-2
10.1007/s00540-003-0192-6
10.5665/sleep.4732
10.1109/JBHI.2014.2307913
10.1016/S0140-6736(86)90837-8
10.1152/ajpheart.00705.2022
10.1161/01.HYP.32.2.365
10.1088/0967-3334/28/3/R01
10.1109/TBME.2017.2676243
10.1109/TIM.2018.2857878
10.4258/hir.2017.23.1.53
10.1109/ACCESS.2019.2939798
10.1109/TBME.2015.2476337
10.1109/JPROC.2022.3149785
10.1097/MBP.0000000000000531
10.1371/journal.pone.0135659
10.3389/fpubh.2022.920946
10.1093/jamia/ocy064
10.1088/1361-6579/acead2
10.2196/40163
10.1088/0967-3334/21/3/303
10.1056/NEJMvcm0904262
10.1109/RBME.2017.2763681
10.1152/ajpheart.00392.2021
10.1088/0967-3334/33/9/1491
ContentType Journal Article
Copyright 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
Creative Commons Attribution license.
2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2024
Copyright_xml – notice: 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
– notice: 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2024
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1361-6579/ad33a2
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
ExternalDocumentID 10.1088/1361-6579/ad33a2
PMC11003363
38478997
10_1088_1361_6579_ad33a2
pmeaad33a2
Genre Journal Article
GrantInformation_xml – fundername: Estate of Zofia (Sophie) Fridman and funding from the Israel Innovation Authority
– fundername: British Heart Foundation
  grantid: FS/20/20/34626
  funderid: https://doi.org/10.13039/501100000274
– fundername: NHLBI NIH HHS
  grantid: R01 HL098433
– fundername: NHLBI NIH HHS
  grantid: R24 HL114473
– fundername: NHLBI NIH HHS
  grantid: N01 HC095164
– fundername: NHLBI NIH HHS
  grantid: N01 HC095160
– fundername: NHLBI NIH HHS
  grantid: N01 HC095168
– fundername: NHLBI NIH HHS
  grantid: N01 HC095169
– fundername: NHLBI NIH HHS
  grantid: N01 HC095165
– fundername: NHLBI NIH HHS
  grantid: HHSN268201500003C
– fundername: NHLBI NIH HHS
  grantid: N01 HC095162
– fundername: NHLBI NIH HHS
  grantid: N01 HC095159
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.GJ
02O
1WK
29O
AAGCF
AALHV
ACARI
ADTOC
AERVB
AETNG
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
ID FETCH-LOGICAL-c467t-258c2ad5dc61ba59c3f49d8d68d9e7f7fba85ad0d89a4197112e98fdec3bdadb3
IEDL.DBID UNPAY
ISSN 0967-3334
1361-6579
IngestDate Sun Oct 26 04:13:17 EDT 2025
Tue Sep 30 17:09:34 EDT 2025
Thu Sep 04 20:34:47 EDT 2025
Sat May 31 02:13:10 EDT 2025
Wed Oct 01 05:09:01 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Sun Aug 18 16:30:26 EDT 2024
Tue Aug 20 22:14:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords digital biomarkers
beat detection
photoplethysmography
pyPPG
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-258c2ad5dc61ba59c3f49d8d68d9e7f7fba85ad0d89a4197112e98fdec3bdadb3
Notes PMEA-105385.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3836-8655
0000-0003-0120-5940
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6579/ad33a2
PMID 38478997
PQID 2957164371
PQPubID 23479
PageCount 23
ParticipantIDs pubmed_primary_38478997
crossref_citationtrail_10_1088_1361_6579_ad33a2
unpaywall_primary_10_1088_1361_6579_ad33a2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11003363
proquest_miscellaneous_2957164371
crossref_primary_10_1088_1361_6579_ad33a2
iop_journals_10_1088_1361_6579_ad33a2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAbbrev PMEA
PublicationTitleAlternate Physiol. Meas
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Chua (pmeaad33a2bib33) 2006
Kyriacou (pmeaad33a2bib51) 2002; 23
Kurylyak (pmeaad33a2bib50) 2013
Temko (pmeaad33a2bib81) 2017; 64
Dean (pmeaad33a2bib35) 2016; 39
Allen (pmeaad33a2bib7) 2000; 21
Addison (pmeaad33a2bib3) 2016; 63
Charlton (pmeaad33a2bib26) 2019; 317
Nitzan (pmeaad33a2bib64) 2020; 20
Sun (pmeaad33a2bib78) 2015; 63
Zhang (pmeaad33a2bib91) 2018; 25
Carreiras (pmeaad33a2bib18) 2015
Chen (pmeaad33a2bib30) 2015; 38
Gu (pmeaad33a2bib44) 2008
Wang (pmeaad33a2bib89) 2009
Lyzwinski (pmeaad33a2bib56) 2023; 10
Wei (pmeaad33a2bib90) 2013; 60
Park (pmeaad33a2bib67) 2022; 12
Charlton (pmeaad33a2bib21) 2017a; 11
Finnegan (pmeaad33a2bib40) 2023; 13
Greenhalgh (pmeaad33a2bib43) 2021; 372
Kontaxis (pmeaad33a2bib46) 2020; 68
Liang (pmeaad33a2bib53) 2018; 5
Van Gent (pmeaad33a2bib84) 2019a; 66
Charlton (pmeaad33a2bib23) 2018; 39
Ortega (pmeaad33a2bib65) 2011; 364
Goda (pmeaad33a2bib42) 2023
Lueken (pmeaad33a2bib55) 2017
Chakraborty (pmeaad33a2bib19) 2021; 37
Vest (pmeaad33a2bib86) 2018; 39
Bashkatov (pmeaad33a2bib12) 2005; 38
Charlton (pmeaad33a2bib22) 2017b; 38
Charlton (pmeaad33a2bib27) 2022
Makowski (pmeaad33a2bib57) 2021
Khan (pmeaad33a2bib45) 2019; 7
Dillon (pmeaad33a2bib37) 1941; 21
Vybornova (pmeaad33a2bib88) 2021; 26
NOTEPAD Study Team (pmeaad33a2bib75) 2022
Duan (pmeaad33a2bib38) 2016
Deshmane (pmeaad33a2bib36) 2009
Suboh (pmeaad33a2bib77) 2022
Allen (pmeaad33a2bib6) 2007; 28
Gil (pmeaad33a2bib41) 2010; 31
Van Gent (pmeaad33a2bib85) 2019b; 7
Charlton (pmeaad33a2bib29) 2023
pmeaad33a2bib76
Dawber (pmeaad33a2bib34) 1973; 24
Aoyagi (pmeaad33a2bib9) 2003; 17
Bland (pmeaad33a2bib15) 1986; 327
Ahn (pmeaad33a2bib4) 2017; 23
Cakmak (pmeaad33a2bib17) 2021; 25
Abdullah (pmeaad33a2bib1) 2023; 11
Kotzen (pmeaad33a2bib49) 2022
Liu (pmeaad33a2bib54) 2021; 12
Prinable (pmeaad33a2bib71) 2017; 2
Rajala (pmeaad33a2bib72) 2018; 39
Chowienczyk (pmeaad33a2bib32) 1999; 34
Millasseau (pmeaad33a2bib59) 2002; 103
Mejia-Mejia (pmeaad33a2bib58) 2022
Vadrevu (pmeaad33a2bib83) 2019; 68
Takazawa (pmeaad33a2bib79) 1998; 32
Kotzen (pmeaad33a2bib48) 2021; vol 48
Behar (pmeaad33a2bib13) 2014; 19
Charlton (pmeaad33a2bib28) 2022c; 322
Charlton (pmeaad33a2bib25) 2022b; 110
Li (pmeaad33a2bib52) 2012; 33
Perez (pmeaad33a2bib69) 2019; 381
Bortolotto (pmeaad33a2bib16) 2000; 13
Spaccarotella (pmeaad33a2bib74) 2022; 11
Pilt (pmeaad33a2bib70) 2014; 35
Behar (pmeaad33a2bib14) 2019; 11
Natarajan (pmeaad33a2bib62) 2020; 2
Nemati (pmeaad33a2bib63) 2016
Tang (pmeaad33a2bib80) 2020; 7
von Wowern (pmeaad33a2bib87) 2015; 10
Aboy (pmeaad33a2bib2) 2005; 52
Alastruey (pmeaad33a2bib5) 2023; 325
Charlton (pmeaad33a2bib24) 2022a; 43
Balmer (pmeaad33a2bib11) 2018; 39
Charlton (pmeaad33a2bib60) 2016
Ushiroyama (pmeaad33a2bib82) 2005; 51
Baek (pmeaad33a2bib10) 2007
Chandrasekhar (pmeaad33a2bib20) 2020; 67
Farooq (pmeaad33a2bib39) 2010
Mukkamala (pmeaad33a2bib61) 2022; 24
Alty (pmeaad33a2bib8) 2003; vol 1
Chowdhury (pmeaad33a2bib31) 2020; 20
Peltokangas (pmeaad33a2bib68) 2017; 22
Paliakaitė (pmeaad33a2bib66) 2020
Rinkevičius (pmeaad33a2bib73) 2023; 23
Kotzen (pmeaad33a2bib47) 2022
References_xml – volume: 11
  start-page: 81
  year: 2019
  ident: pmeaad33a2bib14
  article-title: Feasibility of single channel oximetry for mass screening of obstructive sleep apnea
  publication-title: ClinicalMedicine
  doi: 10.1016/j.eclinm.2019.05.015
– volume: 20
  start-page: 1
  year: 2020
  ident: pmeaad33a2bib31
  article-title: Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s20113127
– year: 2023
  ident: pmeaad33a2bib42
  article-title: Robust peak detection for photoplethysmography signal analysis
– volume: 38
  start-page: 669
  year: 2017b
  ident: pmeaad33a2bib22
  article-title: Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa670e
– volume: 39
  start-page: 1151
  year: 2016
  ident: pmeaad33a2bib35
  article-title: Scaling up scientific discovery in sleep medicine: the national sleep research resource
  publication-title: Sleep
  doi: 10.5665/sleep.5774
– volume: 12
  start-page: 1
  year: 2022
  ident: pmeaad33a2bib67
  article-title: Photoplethysmogram analysis and applications: an integrative review
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.808451
– volume: 63
  start-page: 2441
  year: 2016
  ident: pmeaad33a2bib3
  article-title: Slope transit time (stt): a pulse transit time proxy requiring only a single signal fiducial point
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2528507
– volume: 34
  start-page: 2007
  year: 1999
  ident: pmeaad33a2bib32
  article-title: Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type ii diabetes mellitus
  publication-title: J. Am. College Cardiol.
  doi: 10.1016/S0735-1097(99)00441-6
– volume: 39
  year: 2018
  ident: pmeaad33a2bib11
  article-title: Pre-ejection period, the reason why the electrocardiogram q-wave is an unreliable indicator of pulse wave initialization
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aada72
– volume: 12
  year: 2021
  ident: pmeaad33a2bib54
  article-title: The assessment of autonomic nervous system activity based on photoplethysmography in healthy young men
  publication-title: Front. Physiol.
– volume: 23
  start-page: 1
  year: 2023
  ident: pmeaad33a2bib73
  article-title: Influence of photoplethysmogram signal quality on pulse arrival time during polysomnography
  publication-title: Sensors
  doi: 10.3390/s23042220
– volume: 43
  year: 2022a
  ident: pmeaad33a2bib24
  article-title: Detecting beats in the photoplethysmogram: benchmarking open-source algorithms
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ac826d
– start-page: 70
  year: 2007
  ident: pmeaad33a2bib10
  article-title: Second derivative of photoplethysmography for estimating vascular aging
– volume: 5
  start-page: 1
  year: 2018
  ident: pmeaad33a2bib53
  article-title: A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in china
  publication-title: Scientific Data
  doi: 10.1038/sdata.2018.20
– volume: 20
  start-page: 1
  year: 2020
  ident: pmeaad33a2bib64
  article-title: The various oximetric techniques used for the evaluation of blood oxygenation
  publication-title: Sensors
  doi: 10.3390/s20174844
– volume: 317
  start-page: H1062
  year: 2019
  ident: pmeaad33a2bib26
  article-title: Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes
  publication-title: Am. J. Physiol.-Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.00218.2019
– volume: 7
  start-page: 1
  year: 2019b
  ident: pmeaad33a2bib85
  article-title: Analysing noisy driver physiology real-time using off-the-shelf sensors: heart rate analysis software from the taking the fast lane project
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.241
– volume: 67
  start-page: 3134
  year: 2020
  ident: pmeaad33a2bib20
  article-title: Pulse oximetry: its invention, theory, and future
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.2976989
– volume: 38
  start-page: 2543
  year: 2005
  ident: pmeaad33a2bib12
  article-title: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/15/004
– volume: 21
  start-page: 172
  year: 1941
  ident: pmeaad33a2bib37
  article-title: The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension
  publication-title: Am. Heart J.
  doi: 10.1016/S0002-8703(41)90966-3
– volume: 31
  start-page: 1271
  year: 2010
  ident: pmeaad33a2bib41
  article-title: Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/9/015
– volume: 381
  start-page: 1909
  year: 2019
  ident: pmeaad33a2bib69
  article-title: Large-scale assessment of a smartwatch to identify atrial fibrillation
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1901183
– start-page: 280
  year: 2013
  ident: pmeaad33a2bib50
  article-title: A neural network-based method for continuous blood pressure estimation from a ppg signal
– volume: 25
  start-page: 2866
  year: 2021
  ident: pmeaad33a2bib17
  article-title: Classification and prediction of post-trauma outcomes related to ptsd using circadian rhythm changes measured via wrist-worn research watch in a large longitudinal cohort
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3053909
– volume: 66
  start-page: 368
  year: 2019a
  ident: pmeaad33a2bib84
  article-title: Heartpy: a novel heart rate algorithm for the analysis of noisy signals
  publication-title: Transp. Res.
  doi: 10.1016/j.trf.2019.09.015
– volume: 2
  start-page: e650
  year: 2020
  ident: pmeaad33a2bib62
  article-title: Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30246-6
– volume: 22
  start-page: 750
  year: 2017
  ident: pmeaad33a2bib68
  article-title: Parameters extracted from arterial pulse waves as markers of atherosclerotic changes: performance and repeatability
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2679904
– volume: 11
  start-page: 1
  year: 2023
  ident: pmeaad33a2bib1
  article-title: Ppgfeat: a novel matlab toolbox for extracting ppg fiducial points
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1199604
– start-page: 1
  year: 2021
  ident: pmeaad33a2bib57
  article-title: NeuroKit2: a python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-020-01516-y
– volume: 24
  start-page: 203
  year: 2022
  ident: pmeaad33a2bib61
  article-title: Cuffless blood pressure measurement
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-110220-014644
– volume: 60
  start-page: 151
  year: 2013
  ident: pmeaad33a2bib90
  article-title: Developing an effective arterial stiffness monitoring system using the spring constant method and photoplethysmography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2207384
– volume: 23
  start-page: 533
  year: 2002
  ident: pmeaad33a2bib51
  article-title: Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/23/3/305
– volume: 13
  start-page: 165
  year: 2000
  ident: pmeaad33a2bib16
  article-title: Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity
  publication-title: Am. J. Hypertension
  doi: 10.1016/S0895-7061(99)00192-2
– volume: 39
  year: 2018
  ident: pmeaad33a2bib86
  article-title: An open source benchmarked toolbox for cardiovascular waveform and interval analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aae021
– volume: 24
  start-page: 244
  year: 1973
  ident: pmeaad33a2bib34
  article-title: Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease
  publication-title: Angiology
  doi: 10.1177/000331977302400407
– volume: 11
  start-page: 1
  year: 2022
  ident: pmeaad33a2bib74
  article-title: Assessment of non-invasive measurements of oxygen saturation and heart rate with an apple smartwatch: comparison with a standard pulse oximeter
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11061467
– volume: 372
  start-page: n677
  year: 2021
  ident: pmeaad33a2bib43
  article-title: Remote management of Covid-19 using home pulse oximetry and virtual ward support
  publication-title: Bmj
  doi: 10.1136/bmj.n677
– start-page: 401
  year: 2022
  ident: pmeaad33a2bib27
  article-title: Wearable photoplethysmography devices
– ident: pmeaad33a2bib76
– volume: 2
  start-page: 1
  year: 2017
  ident: pmeaad33a2bib71
  article-title: Motivations and key features for a wearable device for continuous monitoring of breathing: a web-based survey
  publication-title: JMIR Biomed. Eng.
  doi: 10.2196/biomedeng.7143
– volume: 39
  year: 2018
  ident: pmeaad33a2bib72
  article-title: Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aac7ac
– year: 2022
  ident: pmeaad33a2bib75
  article-title: Prospective assessment of the diagnostic accuracy of multi-site photoplethysmography pulse measurements for diagnosis of peripheral artery disease in primary care
  publication-title: Angiology
– volume: 35
  start-page: 2027
  year: 2014
  ident: pmeaad33a2bib70
  article-title: Photoplethysmographic signal waveform index for detection of increased arterial stiffness
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/10/2027
– volume: 37
  start-page: 121
  year: 2021
  ident: pmeaad33a2bib19
  article-title: Accurate detection of dicrotic notch from ppg signal for telemonitoring applications
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2021.119500
– start-page: 86
  year: 2008
  ident: pmeaad33a2bib44
  article-title: A novel parameter from ppg dicrotic notch for estimation of systolic blood pressure using pulse transit time
– volume: 68
  start-page: 1273
  year: 2020
  ident: pmeaad33a2bib46
  article-title: Photoplethysmographic waveform analysis for autonomic reactivity assessment in depression
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3025908
– start-page: 377
  year: 2016
  ident: pmeaad33a2bib60
  article-title: Waveform analysis to estimate respiratory rate
  doi: 10.1007/978-3-319-43742-2_26
– year: 2022
  ident: pmeaad33a2bib49
  article-title: Sleepppg-net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 7
  year: 2020
  ident: pmeaad33a2bib80
  article-title: Ppgsynth: an innovative toolbox for synthesizing regular and irregular photoplethysmography waveforms
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.597774
– volume: vol 1
  start-page: 376
  year: 2003
  ident: pmeaad33a2bib8
  article-title: Cardiovascular disease prediction using support vector machines
– volume: 103
  start-page: 371
  year: 2002
  ident: pmeaad33a2bib59
  article-title: Determination of age-related increases in large artery stiffness by digital pulse contour analysis
  publication-title: Clin. Sci.
  doi: 10.1042/cs1030371
– volume: 52
  start-page: 1662
  year: 2005
  ident: pmeaad33a2bib2
  article-title: An automatic beat detection algorithm for pressure signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.855725
– start-page: 4582
  year: 2010
  ident: pmeaad33a2bib39
  article-title: Ppg delineator for real-time ubiquitous applications
– volume: 39
  year: 2018
  ident: pmeaad33a2bib23
  article-title: Assessing mental stress from the photoplethysmogram: a numerical study
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aabe6a
– year: 2015
  ident: pmeaad33a2bib18
– volume: 51
  start-page: 76
  year: 2005
  ident: pmeaad33a2bib82
  article-title: Assessment of chilly sensation in japanese women with laser doppler fluxmetry and acceleration plethysmogram with respect to peripheral circulation
  publication-title: Bull Osaka Med. Coll.
– start-page: 5117
  year: 2006
  ident: pmeaad33a2bib33
  article-title: Continuous blood pressure monitoring using ecg and finger photoplethysmogram
– volume: 13
  start-page: 986
  year: 2023
  ident: pmeaad33a2bib40
  article-title: Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27170-2
– volume: 17
  start-page: 259
  year: 2003
  ident: pmeaad33a2bib9
  article-title: Pulse oximetry: its invention, theory, and future
  publication-title: J. Anesthesia
  doi: 10.1007/s00540-003-0192-6
– year: 2022
  ident: pmeaad33a2bib47
  article-title: Sleep architecture and fragmentation estimation from photoplethysmography using feature engineering and deep learning
– start-page: 1165
  year: 2020
  ident: pmeaad33a2bib66
  article-title: Photoplethysmogram modeling of extreme bradycardia and ventricular tachycardia
– volume: 38
  start-page: 877
  year: 2015
  ident: pmeaad33a2bib30
  article-title: Racial/ethnic differences in sleep disturbances: the multi-ethnic study of atherosclerosis (MESA)
  publication-title: Sleep
  doi: 10.5665/sleep.4732
– volume: 19
  start-page: 325
  year: 2014
  ident: pmeaad33a2bib13
  article-title: Sleepap: an automated obstructive sleep apnoea screening application for smartphones
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2307913
– volume: 327
  start-page: 307
  year: 1986
  ident: pmeaad33a2bib15
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: vol 48
  year: 2021
  ident: pmeaad33a2bib48
  article-title: Benchmarking photoplethysmography peak detection algorithms using the electrocardiogram signal as a reference; benchmarking photoplethysmography peak detection algorithms using the electrocardiogram signal as a reference
– volume: 325
  start-page: H1–-H29
  year: 2023
  ident: pmeaad33a2bib5
  article-title: Arterial pulse wave modelling and analysis for vascular age studies: a review from vascagenet
  publication-title: Am. J. Physiol.-Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.00705.2022
– volume: 32
  start-page: 365
  year: 1998
  ident: pmeaad33a2bib79
  article-title: Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform
  publication-title: Hypertension
  doi: 10.1161/01.HYP.32.2.365
– start-page: 6385
  year: 2016
  ident: pmeaad33a2bib38
  article-title: A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography
– volume: 28
  start-page: R1–R39
  year: 2007
  ident: pmeaad33a2bib6
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– volume: 64
  start-page: 2016
  year: 2017
  ident: pmeaad33a2bib81
  article-title: Accurate heart rate monitoring during physical exercises using ppg
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2676243
– start-page: 1746
  year: 2009
  ident: pmeaad33a2bib89
  article-title: Noninvasive cardiac output estimation using a novel photoplethysmogram index
– volume: 68
  start-page: 807
  year: 2019
  ident: pmeaad33a2bib83
  article-title: A robust pulse onset and peak detection method for automated ppg signal analysis system
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2857878
– volume: 23
  start-page: 53
  year: 2017
  ident: pmeaad33a2bib4
  article-title: New aging index using signal features of both photoplethysmograms and acceleration plethysmograms
  publication-title: Healthcare Informat. Res.
  doi: 10.4258/hir.2017.23.1.53
– volume: 7
  year: 2019
  ident: pmeaad33a2bib45
  article-title: Organic multi-channel optoelectronic sensors for wearable health monitoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939798
– volume: 63
  start-page: 463
  year: 2015
  ident: pmeaad33a2bib78
  article-title: Photoplethysmography revisited: from contact to noncontact, from point to imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2476337
– volume: 110
  start-page: 355
  year: 2022b
  ident: pmeaad33a2bib25
  article-title: Wearable photoplethysmography for cardiovascular monitoring
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2022.3149785
– volume: 26
  start-page: 305
  year: 2021
  ident: pmeaad33a2bib88
  article-title: Blood pressure from the optical aktiia bracelet: a 1 month validation study using an extended iso81060-2 protocol adapted for a cuffless wrist device
  publication-title: Blood Pressure Monit.
  doi: 10.1097/MBP.0000000000000531
– volume: 10
  year: 2015
  ident: pmeaad33a2bib87
  article-title: Digital photoplethysmography for assessment of arterial stiffness: repeatability and comparison with applanation tonometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135659
– start-page: 3394
  year: 2016
  ident: pmeaad33a2bib63
  article-title: Monitoring and detecting atrial fibrillation using wearable technology
– year: 2022
  ident: pmeaad33a2bib77
  article-title: Analysis on four derivative waveforms of photoplethysmogram (ppg) for fiducial points detection
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.920946
– volume: 25
  start-page: 1351
  year: 2018
  ident: pmeaad33a2bib91
  article-title: The national sleep research resource: towards a sleep data commons
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy064
– year: 2009
  ident: pmeaad33a2bib36
  article-title: False arrhythmia alarm suppression using ECG, ABP, and photoplethysmogram
– year: 2023
  ident: pmeaad33a2bib29
  article-title: The 2023 wearable photoplethysmography roadmap
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/acead2
– volume: 10
  year: 2023
  ident: pmeaad33a2bib56
  article-title: The use of photoplethysmography in the assessment of mental health: scoping review
  publication-title: JMIR Mental Health
  doi: 10.2196/40163
– volume: 21
  start-page: 369
  year: 2000
  ident: pmeaad33a2bib7
  article-title: Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/21/3/303
– volume: 364
  start-page: e33–e33
  year: 2011
  ident: pmeaad33a2bib65
  article-title: Pulse oximetry
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMvcm0904262
– volume: 11
  start-page: 2
  year: 2017a
  ident: pmeaad33a2bib21
  article-title: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2763681
– start-page: 83
  year: 2017
  ident: pmeaad33a2bib55
  article-title: Photoplethysmography-based in-ear sensor system for identification of increased stress arousal in everyday life
– volume: 322
  start-page: H493
  year: 2022c
  ident: pmeaad33a2bib28
  article-title: Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from vascagenet
  publication-title: Am. J. Physiol.-Heart Circulatory Physiol.
  doi: 10.1152/ajpheart.00392.2021
– start-page: 69
  year: 2022
  ident: pmeaad33a2bib58
  article-title: Photoplethysmography signal processing and synthesis
– volume: 33
  start-page: 1491
  year: 2012
  ident: pmeaad33a2bib52
  article-title: Dynamic time warping and machine learning for signal quality assessment of pulsatile signals
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/33/9/1491
SSID ssj0011825
Score 2.4785337
Snippet Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly...
Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a...
Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly...
Objective. Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45001
SubjectTerms Algorithms
beat detection
Biomarkers
digital biomarkers
Heart Rate - physiology
photoplethysmography
Photoplethysmography - methods
Polysomnography
pyPPG
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: Institute of Physics (IOP) - journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIl4HHguF8FKQ4ECl7G7i2LHhhBClQmrZA5V6QLL8ihZ1m0TdrGD59Yw33qgLVUHcImUsZ8Zj-4vm82eAly7LGcm4TYgWNMkLaxONMCLhVpNxmTNrhD-cfHDI9o_yT8f0eAve9mdh6iYs_UN87ISCuxAGQhwfpYSlnrEhRsoSonD9vUo4AmN_eu_zpC8hIHCmoS55UauNfegK9nURxPyTKXljUTVq-V3NZue2ob078HXtQMc-ORkuWj00P3_TdvxPD-_C7QBP43ed6T3YctUAbp0TLRzA9YNQjh_AtRV_1Mzvw2GznEw-volVPFl6NYK4reuZrn_EiIljT1s_c9OOKh8307r1rHWfIadBMDv2NBLsVwWJlAdwtPfhy_v9JFzVkBhcadsko9xkylJrWKoVFYaUubDcMm6FK8qi1IpTZceWC5WnokCU5wQvrTNEW4V5sQPbVV25RxBr9FlnSvvD7jlLmWaKGDs2ZUm4tVREMFoPnDRBx9xfpzGTq3o659KHT_rwyS58EbzuWzSdhscltq9wVGSYyPNL7F5s2DWnTsmcylwiRsbsk40t0WadURInra_EqMrVi7nMBPX_qaRII3jYZVj_ZQTxAv4EFxHwjdzrDbwg-Oab6tt0JQzu5f8IYSSC3T5N_-rx43_0-AnczBDQdaylp7Ddni3cMwRkrX6-mni_AHKPMOY
  priority: 102
  providerName: IOP Publishing
Title pyPPG: a Python toolbox for comprehensive photoplethysmography signal analysis
URI https://iopscience.iop.org/article/10.1088/1361-6579/ad33a2
https://www.ncbi.nlm.nih.gov/pubmed/38478997
https://www.proquest.com/docview/2957164371
https://pubmed.ncbi.nlm.nih.gov/PMC11003363
https://doi.org/10.1088/1361-6579/ad33a2
UnpaywallVersion publishedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6579
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011825
  issn: 0967-3334
  databaseCode: IOP
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLboVGwHloGWsFRBggOV0k7i2LG5VYhSkDrNgRHlZHmLpmKaRJ2MYPj1PCeeUQNVgUsueVlsv2d_9vv8GaFXNkkpTpiJsOIkSjNjIgUwImJG4VGRUqO525x8PKZHk_TTKTn16x1uL0wvfw-TsxjT2NEz-L40GEvobDcpAdQ9QJuTcX7wtZXSg1jHuEsgr8x9RvKqV_RGoI2zqr4KXP7Jkby9KGu5_C5ns0sD0OH9Tg1p3uoWOt7Jt71Fo_b0z99UHf-lbA_QPY9Cw4PObR6iG7YcoruXtAmH6Naxz7oP0c2WJqrnj9C4Xub5h7ehDPOlEx0Im6qaqepHCNA3dOz0CzvtGPFhPa0aR053jnDudbFDxxaB70qvhPIYTQ7ff353FPkTGSINHWoTJYTpRBpiNI2VJFzjIuWGGcoMt1mRFUoyIs3IMC7TmGcA5ixnhbEaKyOh-bfQoKxK-wSFCsqsEqncnvaUxlRRibUZ6aLAzBjCA7S_aiWhvVy5OzVjJtq0OWPCVZ9w1Se66gvQm_UTdSfVcY3ta2h44eN1fo3dy55dfW6lSIlIBUBhGOFFbQqwWbmPgNh0CRdZ2moxFwknbjqKszhA2507rf8MAyyAuW4WINZztLWB0_3u3ynPpq3-t1P5w5jiAO2uffKvJX76P8bP0J0EwFvHUHqOBs3Fwr4A8NWoHbTx8SSH6wn-suNj8BdFjyhg
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iQ2zwwKUMCNcgwQNIaZs4dmzeEFDGZSUPTNqb8S0qokuiNRWUX4-duNEK00DiLVKO5ZzjY_uLzufPAE9MkhKUUB0hyXCUZlpH0sKIiGqJxkVKtGLucPLBlOwfpu-P8JG_57Q9C1PVfukf2sdOKLgLoSfE0VGMSOwYG2wkNEIiGdW62IKLrU6JO8H3Ke_LCBY8Y1-bPKvlxl60Zfs7C2b-yZbcXZa1WH0X8_mprWhyDb6snegYKN-Gy0YO1c_f9B3_w8vrcNXD1PBlZ34DLphyAFdOiRcOYOfAl-UHcKnlkarFTZjWqzx_-yIUYb5yqgRhU1VzWf0ILTYOHX39xMw6ynxYz6rGsdddphx74ezQ0Ulsv8JLpezB4eTN51f7kb-yIVJ2xW2iBFOVCI21IrEUmClUpExTTahmJiuyQgqKhR5rykQas8yiPcNooY1CUgubH7dgu6xKcwdCaf2WiZDu0HtKYiKJQEqPVVEgqjVmAYzWg8eV1zN312rMeVtXp5S7EHIXQt6FMIBnfYu60_I4x_apHRnuJ_TiHLvHG3b1sRE8xTzlFivbDOR22KzNOqu4nbyuIiNKUy0XPGHY_a-iLA7gdpdl_Zchixvsz3AWAN3Iv97ACYNvvim_zlqBcCcDiBBBATzvU_WvHt_9R48fwU7-esI_vpt-uAeXE4vxOiLTfdhuTpbmgcVojXzYzsNfehU2Rw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE7cHLuUWbgoSPDApWxPHjs3bhBgT0qo-UGk8WbaPo050SbSmgvLrOU7caoVpwHNOLj4-x_6c8_kzIW9clnOaCUiokSzJC4DEIIxIBBg6KnMOVvrNycdjfjTNP5-wk_C_w--F2arf4-IspTz19Ay5r4FSjYPtDmeIugdkZzqeHHztpPQw1yntC8hr81CRvOwRWzPQ9dO6uQxc_smRvLWsGr36rufzCxPQ4b1eDWnR6RZ63sm3vWVr9uzP31Qd_6Vt98ndgELjgz5sHpBrrhqSOxe0CYfk5nGoug_JjY4mahcPybhZTSaf3sc6nqy86EDc1vXc1D9ihL6xZ6efu1nPiI-bWd16croPhLOgix17tgi-VwcllEdkevjxy4ejJJzIkFgcUNskY8JmGhhYnhrNpKVlLkEAFyBdURal0YJpGIGQOk9lgWDOSVGCs9SAxu5_TAZVXbmnJDbYZpNp4_e05zzlhmtqYWTLkgoAJiOyv-4lZYNcuT81Y666srkQyrtPefep3n0Rebe5o-mlOq6wfYsdr0K-Lq6we71l15w5rXKmcoVQGGd41UCJNuvwUZibvuCiK1cvFyqTzC9HaZFG5EkfTpsvowgLcK1bRERsBdrGwOt-b1-pTmed_rdX-aOU04jsbmLyry1-9j_Gz8ntDMFbz1B6QQbt-dK9RPDVmlch734BchQmXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyPPG%3A+a+Python+toolbox+for+comprehensive+photoplethysmography+signal+analysis&rft.jtitle=Physiological+measurement&rft.au=Goda%2C+M%C3%A1rton+%C3%81&rft.au=Charlton%2C+Peter+H&rft.au=Behar%2C+Joachim+A&rft.date=2024-04-01&rft.issn=1361-6579&rft.eissn=1361-6579&rft.volume=45&rft.issue=4&rft_id=info:doi/10.1088%2F1361-6579%2Fad33a2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon