USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes
Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathoph...
Saved in:
Published in | Circulation research Vol. 132; no. 4; pp. 465 - 480 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Lippincott Williams & Wilkins
17.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7330 1524-4571 1524-4571 |
DOI | 10.1161/CIRCRESAHA.122.321849 |
Cover
Abstract | Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy.
The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction.
We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25
mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25.
We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a. |
---|---|
AbstractList | Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy.BACKGROUNDPathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy.The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction.METHODSThe role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction.We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25.RESULTSWe revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25.We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.CONCLUSIONSWe confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a. Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25 mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a. |
Author | Liang, Guang Zhou, Hao Wang, Xu Chen, Yanghao Lin, Wante Luo, Wu Ye, Bozhi Wu, Gaojun Huang, Weijian Han, Xue Zhao, Ying Han, Jibo |
AuthorAffiliation | Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.) |
AuthorAffiliation_xml | – name: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China – name: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – name: Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China – name: School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.) |
Author_xml | – sequence: 1 givenname: Bozhi surname: Ye fullname: Ye, Bozhi organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 2 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 3 givenname: Yanghao surname: Chen fullname: Chen, Yanghao organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 4 givenname: Wu surname: Luo fullname: Luo, Wu organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 5 givenname: Wante surname: Lin fullname: Lin, Wante organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 6 givenname: Ying surname: Zhao fullname: Zhao, Ying organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 7 givenname: Jibo surname: Han fullname: Han, Jibo organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 8 givenname: Xue surname: Han fullname: Han, Xue organization: School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.) – sequence: 9 givenname: Weijian surname: Huang fullname: Huang, Weijian organization: Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 10 givenname: Gaojun surname: Wu fullname: Wu, Gaojun organization: Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China – sequence: 11 givenname: Xu surname: Wang fullname: Wang, Xu organization: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China – sequence: 12 givenname: Guang surname: Liang fullname: Liang, Guang organization: Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36722348$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9r3DAQxUVJaTZpP0KLj714oz-WZNOTMdtuINCw25x6MLIkx2ply5VkFvfT18FJSgM9DQzvN2_mzQU4G9ygAXiP4BYhhq6q60N12B3LfblFGG8JRnlWvAIbRHGWZpSjM7CBEBYpJwSeg4sQfkCIMoKLN-CcMI4xyfIN-H53vMU0KXttjfMi6pDcitg56-6NFDaphFdGyGQ_j9pH78ZuTpo5OUbRGGt-m-E-Oe4OVYlFYoZV7frZyXmZ9Ba8boUN-t1jvQR3n3ffqn168_XLdVXepDJjvEhzxlgBGeNM5oS2VBUUCqKkzhUlLeVYK6KVhE0hlMKcNjpnQjHOUSZp22bkErB17jSMYj4Ja-vRm174uUawfkirlsZLr4PoRL2kVa9pLeDHFRy9-zXpEOveBKmtFYN2U6jx4sFIjnm-SD88Sqem1-rZ4CnJRfBpFUjvQvC6XTyjiMYN0Qtjnzf5-7d_N6Ev6JcX_I_LVu7kbNQ-_LTTSfu608LGrl7-DwlEOMUQE4gRh-lDqyB_AEG0qpo |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2023_05_111 crossref_primary_10_2147_DDDT_S446324 crossref_primary_10_1097_FJC_0000000000001640 crossref_primary_10_1016_j_phymed_2025_156389 crossref_primary_10_1016_j_phymed_2023_155331 crossref_primary_10_1111_jcmm_18158 crossref_primary_10_1038_s41418_025_01444_4 crossref_primary_10_1021_acs_jmedchem_4c03229 crossref_primary_10_1063_5_0206356 crossref_primary_10_1016_j_bbadis_2024_167061 crossref_primary_10_1016_j_freeradbiomed_2024_10_302 crossref_primary_10_1142_S0192415X25500193 crossref_primary_10_1042_BST20230562 crossref_primary_10_1016_j_intimp_2023_110877 crossref_primary_10_1016_j_biopha_2024_117384 crossref_primary_10_1016_j_bbadis_2024_167140 crossref_primary_10_1016_j_mce_2023_111938 crossref_primary_10_1016_j_ejphar_2023_176223 crossref_primary_10_1038_s41417_023_00722_y crossref_primary_10_1186_s13018_023_04083_y crossref_primary_10_1161_HYPERTENSIONAHA_124_23823 crossref_primary_10_1152_ajpcell_00394_2023 crossref_primary_10_3892_ol_2024_14743 crossref_primary_10_1186_s12885_025_13869_8 crossref_primary_10_1016_j_aquatox_2023_106709 crossref_primary_10_1038_s41401_024_01278_9 crossref_primary_10_1016_j_intimp_2024_113711 crossref_primary_10_1016_j_intimp_2024_112143 crossref_primary_10_1016_j_intimp_2024_112660 crossref_primary_10_1002_mco2_70036 crossref_primary_10_1161_JAHA_124_034257 crossref_primary_10_1186_s12964_025_02123_0 crossref_primary_10_1002_advs_202407132 crossref_primary_10_1002_advs_202305677 crossref_primary_10_1017_erm_2024_2 crossref_primary_10_1080_26895293_2024_2308904 crossref_primary_10_1038_s41401_024_01410_9 crossref_primary_10_1002_ctm2_70243 crossref_primary_10_1016_j_ejphar_2025_177416 crossref_primary_10_1161_CIRCULATIONAHA_123_065539 crossref_primary_10_1016_j_jacbts_2024_08_001 crossref_primary_10_1016_j_tifs_2024_104723 crossref_primary_10_1016_j_mtbio_2024_101162 crossref_primary_10_1016_j_bcp_2024_116597 crossref_primary_10_1186_s12967_023_04540_6 crossref_primary_10_1007_s00018_023_05037_7 crossref_primary_10_1016_j_freeradbiomed_2025_02_010 crossref_primary_10_1016_j_freeradbiomed_2024_04_221 crossref_primary_10_1016_j_apsb_2024_12_033 |
Cites_doi | 10.1161/hypertensionaha.119.12998 10.1111/j.1440-1681.2007.04585.x 10.1161/hypertensionaha.118.11357 10.1161/hypertensionaha.116.07392 10.1172/JCI152170 10.1152/ajpheart.1994.267.3.H1167 10.1038/mt.2015.158 10.1371/journal.pone.0005571 10.1016/j.jcmgh.2022.07.013 10.1038/s41418-020-00708-5 10.1038/nature10407 10.1139/cjpp-2016-0303 10.1073/pnas.1509968112 10.1016/j.phymed.2022.154238 10.1038/s41423-021-00810-9 10.1172/jci62834 10.1016/j.molimm.2018.12.017 10.1101/gad.339804.120 10.1371/journal.pone.0036542 10.1161/JAHA.120.017751 10.1161/hypertensionaha.116.07562 10.3389/fphar.2021.678886 10.1038/srep45037 10.1016/s0140-6736(07)61299-9 10.1111/jcmm.15724 10.1161/circresaha.116.309202 10.1161/CIRCHEARTFAILURE.114.001469 10.1038/nrm3011 10.1371/journal.ppat.1010299 10.2147/DDDT.S195412 10.1155/2020/4121750 10.1038/s41418-021-00922-9 10.1038/ncomms8229 10.1016/j.yjmcc.2016.04.005 10.1038/ni.2427 10.1016/j.bbagrm.2018.08.001 10.3390/ijms19041086 10.1161/CIRCRESAHA.119.315861 10.1126/scisignal.2003708 10.1016/j.biopha.2022.113075 10.1038/s43018-020-0089-4 10.1093/cvr/cvx151 10.1161/CIRCGEN.119.002491 10.1006/geno.1999.6025 10.1038/s41569-020-00480-6 |
ContentType | Journal Article |
Copyright | Lippincott Williams & Wilkins |
Copyright_xml | – notice: Lippincott Williams & Wilkins |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
DOI | 10.1161/CIRCRESAHA.122.321849 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 480 |
ExternalDocumentID | 10.1161/circresaha.122.321849 36722348 10_1161_CIRCRESAHA_122_321849 00003012-202302170-00009 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM DU5 E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV AAYXX ADKSD ADSXY CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM ODA OLW RHF 7X8 .55 .GJ 1CY 41~ ACCJW ADFPA ADGHP ADNKB ADTOC AEETU AFFNX AHRYX AJNYG BS7 BYPQX C1A DUNZO FW0 H13 H~9 J5H JF9 JG8 MVM N~M OCUKA ORVUJ OUVQU OWU OWV OWX OWZ P-K R58 UNPAY X7M XXN XYM ZGI ZZMQN |
ID | FETCH-LOGICAL-c4679-8666906676c835f5d950a3dce8d53f572ed3edc0b9add275be86ad67714c5ff43 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Tue Aug 19 21:53:15 EDT 2025 Sat Sep 27 20:20:48 EDT 2025 Wed Feb 19 02:24:30 EST 2025 Wed Oct 01 04:49:01 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Fri May 16 03:50:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cardiomyocytes cardiac hypertrophy deubiquitinating enzyme |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4679-8666906676c835f5d950a3dce8d53f572ed3edc0b9add275be86ad67714c5ff43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2958-134X 0000-0002-8278-849X 0000-0002-8713-0822 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.122.321849 |
PMID | 36722348 |
PQID | 2771638278 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | unpaywall_primary_10_1161_circresaha_122_321849 proquest_miscellaneous_2771638278 pubmed_primary_36722348 crossref_citationtrail_10_1161_CIRCRESAHA_122_321849 crossref_primary_10_1161_CIRCRESAHA_122_321849 wolterskluwer_health_00003012-202302170-00009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-February-17 2023-02-17 20230217 |
PublicationDateYYYYMMDD | 2023-02-17 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-February-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2023 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Rates D (e_1_3_3_47_2) 2015; 67 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_32_2 doi: 10.1161/hypertensionaha.119.12998 – ident: e_1_3_3_15_2 doi: 10.1111/j.1440-1681.2007.04585.x – ident: e_1_3_3_31_2 doi: 10.1161/hypertensionaha.118.11357 – ident: e_1_3_3_7_2 doi: 10.1161/hypertensionaha.116.07392 – ident: e_1_3_3_11_2 doi: 10.1172/JCI152170 – ident: e_1_3_3_14_2 doi: 10.1152/ajpheart.1994.267.3.H1167 – ident: e_1_3_3_29_2 doi: 10.1038/mt.2015.158 – ident: e_1_3_3_19_2 doi: 10.1371/journal.pone.0005571 – ident: e_1_3_3_37_2 doi: 10.1016/j.jcmgh.2022.07.013 – ident: e_1_3_3_4_2 doi: 10.1038/s41418-020-00708-5 – ident: e_1_3_3_21_2 doi: 10.1038/nature10407 – ident: e_1_3_3_39_2 doi: 10.1139/cjpp-2016-0303 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1509968112 – ident: e_1_3_3_40_2 doi: 10.1016/j.phymed.2022.154238 – ident: e_1_3_3_6_2 doi: 10.1038/s41423-021-00810-9 – ident: e_1_3_3_27_2 doi: 10.1172/jci62834 – ident: e_1_3_3_33_2 doi: 10.1016/j.molimm.2018.12.017 – ident: e_1_3_3_5_2 doi: 10.1101/gad.339804.120 – ident: e_1_3_3_10_2 doi: 10.1371/journal.pone.0036542 – ident: e_1_3_3_22_2 doi: 10.1161/JAHA.120.017751 – ident: e_1_3_3_23_2 doi: 10.1161/hypertensionaha.116.07562 – ident: e_1_3_3_42_2 doi: 10.3389/fphar.2021.678886 – ident: e_1_3_3_36_2 doi: 10.1038/srep45037 – ident: e_1_3_3_2_2 doi: 10.1016/s0140-6736(07)61299-9 – ident: e_1_3_3_24_2 doi: 10.1111/jcmm.15724 – ident: e_1_3_3_45_2 doi: 10.1161/circresaha.116.309202 – ident: e_1_3_3_16_2 doi: 10.1161/CIRCHEARTFAILURE.114.001469 – ident: e_1_3_3_20_2 doi: 10.1038/nrm3011 – ident: e_1_3_3_35_2 doi: 10.1371/journal.ppat.1010299 – ident: e_1_3_3_44_2 doi: 10.2147/DDDT.S195412 – volume: 67 start-page: 1 year: 2015 ident: e_1_3_3_47_2 article-title: Fitting linear mixed-effects using lme4. publication-title: J Stat Softw – ident: e_1_3_3_25_2 doi: 10.1155/2020/4121750 – ident: e_1_3_3_3_2 doi: 10.1038/s41418-021-00922-9 – ident: e_1_3_3_30_2 doi: 10.1038/ncomms8229 – ident: e_1_3_3_17_2 doi: 10.1016/j.yjmcc.2016.04.005 – ident: e_1_3_3_12_2 doi: 10.1038/ni.2427 – ident: e_1_3_3_34_2 doi: 10.1016/j.bbagrm.2018.08.001 – ident: e_1_3_3_28_2 doi: 10.3390/ijms19041086 – ident: e_1_3_3_43_2 doi: 10.1161/CIRCRESAHA.119.315861 – ident: e_1_3_3_38_2 doi: 10.1126/scisignal.2003708 – ident: e_1_3_3_41_2 doi: 10.1016/j.biopha.2022.113075 – ident: e_1_3_3_13_2 doi: 10.1038/s43018-020-0089-4 – ident: e_1_3_3_46_2 doi: 10.1093/cvr/cvx151 – ident: e_1_3_3_18_2 doi: 10.1161/CIRCGEN.119.002491 – ident: e_1_3_3_9_2 doi: 10.1006/geno.1999.6025 – ident: e_1_3_3_26_2 doi: 10.1038/s41569-020-00480-6 |
SSID | ssj0014329 |
Score | 2.6361737 |
Snippet | Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of... |
SourceID | unpaywall proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 465 |
SubjectTerms | Animals Cardiomegaly - metabolism Heart Failure - metabolism Mice Myocardium - metabolism Myocytes, Cardiac - metabolism Sarcoplasmic Reticulum Calcium-Transporting ATPases - genetics Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism Ubiquitin Thiolesterase - genetics |
Title | USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-202302170-00009 https://www.ncbi.nlm.nih.gov/pubmed/36722348 https://www.proquest.com/docview/2771638278 https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.122.321849 |
UnpaywallVersion | publishedVersion |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1524-4571 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014329 issn: 1524-4571 databaseCode: KQ8 dateStart: 19530101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1524-4571 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014329 issn: 1524-4571 databaseCode: DIK dateStart: 19530101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1524-4571 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014329 issn: 1524-4571 databaseCode: GX1 dateStart: 19530101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgSGMTQrwpLxmJb1O61rHz-FjKUAcMTWMVm_gQOU5CK7qk6hJN7V_PneM8Sod4fIkqt_FV_p3Pd-d7EPIGzriw78jEsmNlW1z0IssHvRkrI4JyIHjIOWYjH312RmP-4UycNe1SdXZJHnbV6tq8kv9BFcYAV8yS_Qdk60lhAD4DvvAEhOH5VxiPvxwzgZcuM0y0Rw_qscwbcTbU6Ku9Ediai3yRwYqitgn6JUbErnQt7oOT4YBJnfunI1Mvlpla5iawsKpgMF0o0-VrzxQHqp3I59oh-jZbTaaNDzor9IkmsyZ4oJRu5zL9PmmGPxXaUfu1aPseGN74WmWqZTc28pJxQLjsolIL1MZj2bgLtHjkZV-ITbHtoNgeHp4Mge0GI_TQsq6N1qff_j2s_vxCY2k7Lug1ZY3OX-plV1_dJLeY6zjY1eLd4cf6ZonbzDeZXEB1_1qaO2S7mmVdXdmwQXbJ7SKdy-WVnM12yZ2rDEMcLn_oDIeWnnJ6j9w1BgYdlNxyn9yI0wdk-8iEUDwk3zTT0BbT0DbTUMM0tMU0NFzSFtNQwzR0mtJ1pnlExu8PTocjy3TYsBQckL7lgfHq6zBnBZp4IiJf9KQdqdiLhJ0Il8WRHUeqF_pwDDJXhLHnyMhx3T5XIkm4_ZhspVkaPyVUgCbUl_0Q_QXc70V-aHvKS2C7J46KOO8QXi1koEz5eeyCMgu0Ger0gwaKAKAISig6pFu_Ni_rr_zphdcVSgFISrz-kmmcFZcBg78Npw1zvQ55UsJXT1nB3SH7NZ4b9BTsNthlciLX6FlrqAdl_jIGdaC3gVm4b9Dw1wUcev6z39J-TnaaPfaCbOWLIn4JGm8evtIs_BPYTqMZ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=USP25+Ameliorates+Pathological+Cardiac+Hypertrophy+by+Stabilizing+SERCA2a+in+Cardiomyocytes&rft.jtitle=Circulation+research&rft.au=Ye%2C+Bozhi&rft.au=Zhou%2C+Hao&rft.au=Chen%2C+Yanghao&rft.au=Luo%2C+Wu&rft.date=2023-02-17&rft.eissn=1524-4571&rft.volume=132&rft.issue=4&rft.spage=465&rft_id=info:doi/10.1161%2FCIRCRESAHA.122.321849&rft_id=info%3Apmid%2F36722348&rft.externalDocID=36722348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |