Glymphatic imaging using MRI

In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 51; no. 1; pp. 11 - 24
Main Authors Taoka, Toshiaki, Naganawa, Shinji
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.26892

Cover

Abstract In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24.
AbstractList In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24.
In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17 O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24.In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17 O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24.
In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24.
In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies.Level of Evidence: 5Technical Efficacy: Stage 3J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24.
Author Taoka, Toshiaki
Naganawa, Shinji
Author_xml – sequence: 1
  givenname: Toshiaki
  orcidid: 0000-0001-9227-0240
  surname: Taoka
  fullname: Taoka, Toshiaki
  email: ttaoka@med.nagoya-y.ac.jp
  organization: Nagoya University
– sequence: 2
  givenname: Shinji
  surname: Naganawa
  fullname: Naganawa, Shinji
  organization: Nagoya University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31423710$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAYhoNMnJtePIsMvIjQ-eVr06RHGTonE0H0HNo0nR39MZMW2X9vaqeHIRJIcnjel-97RmRQ1ZUm5IzClALgzbo0-RRDEeEBOaYM0UMmwoH7A_M9KoAPycjaNQBEUcCOyNCnAfqcwjE5nxfbcvMeN7ma5GW8yqvVpLXd_fSyOCGHWVxYfbp7x-Tt_u519uAtn-eL2e3SU0HI0WMsFSlo5WeMIwoqhE6QRbGfcR5DAkpgEGWhj5AorbRWGaQCk0BlmoJIqD8mV33vxtQfrbaNLHOrdFHEla5bKxE5iwLOGXPo5R66rltTuekk-u7wQGBXeLGj2qTUqdwYt5vZyp-9HXDdA8rU1hqd_SIUZCdVdlLlt1QHwx6s8sYZq6vGxHnxd4T2kc-80Nt_yuWj89xnvgBnx4Ze
CitedBy_id crossref_primary_10_1007_s13311_021_01049_y
crossref_primary_10_1111_jon_12837
crossref_primary_10_1016_j_jad_2024_08_094
crossref_primary_10_13104_imri_2023_0031
crossref_primary_10_1016_j_nbd_2023_105990
crossref_primary_10_13104_imri_2023_0032
crossref_primary_10_3389_fnagi_2024_1443028
crossref_primary_10_1148_radiol_2021204088
crossref_primary_10_2463_mrms_mp_2020_0016
crossref_primary_10_1177_0284185120969950
crossref_primary_10_3389_fnagi_2024_1362457
crossref_primary_10_1016_j_medcle_2021_03_003
crossref_primary_10_1186_s12987_021_00243_6
crossref_primary_10_3389_fnins_2023_1321365
crossref_primary_10_1016_j_yebeh_2024_110258
crossref_primary_10_1016_j_brainres_2025_149450
crossref_primary_10_2463_mrms_mp_2021_0126
crossref_primary_10_3390_cells12060957
crossref_primary_10_18705_2782_3806_2025_5_1_50_57
crossref_primary_10_1016_j_survophthal_2022_04_004
crossref_primary_10_3390_brainsci14100983
crossref_primary_10_1007_s11604_020_01017_0
crossref_primary_10_33140_JCEI_05_03_04
crossref_primary_10_1136_bmjopen_2021_054885
crossref_primary_10_1016_j_isci_2022_104258
crossref_primary_10_3389_fneur_2021_767470
crossref_primary_10_1007_s11604_021_01187_5
crossref_primary_10_2463_mrms_mp_2023_0023
crossref_primary_10_1016_j_neuroscience_2024_07_026
crossref_primary_10_29328_journal_icci_1001014
crossref_primary_10_1186_s10194_024_01741_2
crossref_primary_10_3389_fnagi_2022_974114
crossref_primary_10_1212_WNL_0000000000201300
crossref_primary_10_1038_s41526_024_00368_6
crossref_primary_10_2463_mrms_mp_2020_0030
crossref_primary_10_3389_fnins_2023_1205489
crossref_primary_10_1016_j_smrv_2021_101572
crossref_primary_10_1111_ene_16097
crossref_primary_10_1002_ana_25928
crossref_primary_10_1002_mrm_28645
crossref_primary_10_3389_fnagi_2021_693787
crossref_primary_10_3233_JAD_231089
crossref_primary_10_3348_kjr_2020_0042
crossref_primary_10_1002_mrm_28806
crossref_primary_10_3389_fncel_2021_729706
crossref_primary_10_1002_jmri_27124
crossref_primary_10_1097_RLI_0000000000000870
crossref_primary_10_1002_gps_6104
crossref_primary_10_1007_s13139_020_00665_4
crossref_primary_10_3390_ijms21186457
crossref_primary_10_1002_jmri_28977
crossref_primary_10_1111_jsr_14479
crossref_primary_10_1093_schbul_sbae039
crossref_primary_10_3389_fnagi_2022_871612
crossref_primary_10_3390_traumacare2040042
crossref_primary_10_3389_fneur_2024_1480536
crossref_primary_10_31083_j_jin2104117
crossref_primary_10_1007_s00234_021_02718_7
crossref_primary_10_3389_fneur_2022_976089
crossref_primary_10_2463_mrms_mp_2019_0182
crossref_primary_10_1371_journal_pone_0229702
crossref_primary_10_3389_fneur_2022_1016577
crossref_primary_10_1177_07067437241290193
crossref_primary_10_3389_fmed_2023_1189614
crossref_primary_10_1016_j_jtcme_2024_04_010
crossref_primary_10_1016_j_brainresbull_2023_110776
crossref_primary_10_1002_nep3_53
crossref_primary_10_1186_s41747_021_00246_w
crossref_primary_10_1002_mrm_28389
crossref_primary_10_17650_1683_3295_2022_24_4_111_117
crossref_primary_10_1016_j_neuropharm_2024_109907
crossref_primary_10_1097_MD_0000000000032061
crossref_primary_10_1007_s00330_023_09796_6
crossref_primary_10_1098_rsif_2022_0257
crossref_primary_10_3389_fnagi_2022_873697
crossref_primary_10_1007_s00415_023_12004_6
crossref_primary_10_1097_RLI_0000000000001021
crossref_primary_10_1016_j_brainresbull_2025_111295
crossref_primary_10_1002_jmri_27542
crossref_primary_10_2463_mrms_mp_2020_0062
crossref_primary_10_1097_MCP_0000000000000923
crossref_primary_10_1177_27325016231160291
crossref_primary_10_3389_fnins_2021_685977
crossref_primary_10_1007_s00415_021_10799_w
crossref_primary_10_2463_mrms_rev_2022_0012
crossref_primary_10_1016_j_neubiorev_2022_104999
crossref_primary_10_1097_RLI_0000000000000969
crossref_primary_10_1186_s12987_022_00318_y
crossref_primary_10_3390_j6030031
crossref_primary_10_3389_fneur_2024_1459356
crossref_primary_10_1007_s00701_024_06161_4
crossref_primary_10_1016_j_neuroimage_2022_119464
crossref_primary_10_1111_ene_15999
crossref_primary_10_3390_molecules27010058
crossref_primary_10_1002_mds_29908
crossref_primary_10_3389_fnagi_2023_1221667
crossref_primary_10_1002_brb3_2504
crossref_primary_10_1016_j_jmro_2020_100004
crossref_primary_10_3389_fnins_2021_624690
crossref_primary_10_2463_mrms_rev_2023_0175
crossref_primary_10_1016_j_neurad_2025_101322
crossref_primary_10_2463_mrms_mp_2023_0081
crossref_primary_10_2463_mrms_mp_2020_0085
crossref_primary_10_1002_nbm_4984
crossref_primary_10_1002_nbm_5314
crossref_primary_10_1177_15500594251320294
crossref_primary_10_1177_0271678X251321305
crossref_primary_10_1007_s11604_020_01075_4
crossref_primary_10_1007_s00234_024_03415_x
crossref_primary_10_1038_s41598_023_40896_x
crossref_primary_10_3389_fneur_2021_809438
crossref_primary_10_3389_fnins_2023_1222857
crossref_primary_10_1016_j_acra_2024_11_030
crossref_primary_10_1016_j_medcli_2020_08_020
crossref_primary_10_2463_mrms_mp_2020_0121
crossref_primary_10_1016_j_nic_2024_12_004
crossref_primary_10_1007_s00415_023_11594_5
Cites_doi 10.1177/2058460115609635
10.1002/alr.21475
10.1016/j.nbd.2016.05.015
10.2463/mrms.mp.2016-0039
10.1016/j.neuroimage.2018.10.043
10.2463/mrms.mp.2017-0137
10.3325/cmj.2014.55.337
10.1016/j.biopsych.2017.11.031
10.1016/j.neuroimage.2018.02.026
10.1177/0271678X16654702
10.1038/nature14432
10.2463/mrms.tn.2017-0056
10.2463/mrms.2014-0089
10.1093/brain/awx191
10.1007/s00701-005-0645-9
10.1161/STROKEAHA.114.006617
10.1085/jgp.201611684
10.1007/s00234-018-2014-4
10.2463/mrms.rev.2017-0116
10.1002/jmri.20828
10.1186/s11689-018-9256-7
10.1007/s002340050436
10.2463/mrms.mp.2018-0053
10.1126/science.1241224
10.1097/RLI.0000000000000327
10.1148/radiol.2016152244
10.1073/pnas.1721694115
10.1097/RLI.0000000000000473
10.1007/s00401-018-1862-7
10.1158/0008-5472.CAN-05-0161
10.1016/j.jmr.2018.12.009
10.1136/rapm-2019-100422
10.1111/jon.12067
10.1016/j.neuroimage.2018.12.026
10.2463/mrms.ci.2016-0114
10.1046/j.1440-1789.1999.00215.x
10.1016/j.bbi.2019.06.029
10.2463/mrms.mp.2017-0014
10.2463/mrms.e.2017-0176
10.1007/s00415-006-0439-x
10.1148/radiol.13131669
10.1038/cddis.2016.63
10.1007/s11604-017-0617-z
10.1063/1.1695690
10.1016/j.mri.2018.10.007
10.1053/crad.2001.0761
10.1007/s11604-018-0790-8
10.1007/s11604-015-0503-5
10.1126/scitranslmed.3003748
10.1080/15360288.2017.1313353
10.2463/mrms.mp.2017-0094
10.1148/rg.2017160061
10.1002/mrm.10403
10.1038/scientificamerican0316-44
10.7554/eLife.29738
10.1016/S1474-4422(09)70299-6
10.3174/ajnr.A2899
10.1038/srep38635
10.1097/WNR.0000000000000042
10.1148/radiol.2492071985
10.7554/eLife.34028
10.2176/nmc.oa.2017-0117
10.1172/JCI67677
10.1148/radiology.161.2.3763909
10.1093/brain/awt166
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
2020 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
– notice: 2020 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.26892
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 24
ExternalDocumentID 31423710
10_1002_jmri_26892
JMRI26892
Genre article
Journal Article
Review
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4672-55d8d0ec3f57228188eb259a3f77a0b0c8249f6320bceceecf0d82b4cfe108b13
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 13:06:28 EDT 2025
Fri Jul 25 12:04:52 EDT 2025
Wed Feb 19 02:28:00 EST 2025
Thu Apr 24 23:08:48 EDT 2025
Wed Oct 01 04:37:04 EDT 2025
Wed Jan 22 16:35:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords interstitial fluid
magnetic resonance imaging
diffusion imaging
glymphatic system
cerebrospinal fluid
contrast media
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4672-55d8d0ec3f57228188eb259a3f77a0b0c8249f6320bceceecf0d82b4cfe108b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9227-0240
OpenAccessLink https://nagoya.repo.nii.ac.jp/records/30440
PMID 31423710
PQID 2323274821
PQPubID 1006400
PageCount 14
ParticipantIDs proquest_miscellaneous_2275947755
proquest_journals_2323274821
pubmed_primary_31423710
crossref_primary_10_1002_jmri_26892
crossref_citationtrail_10_1002_jmri_26892
wiley_primary_10_1002_jmri_26892_JMRI26892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 6
2019; 56
2013; 123
2014; 25
2005; 65
2019; 18
2018; 83
2016; 148
2016; 34
2018; 7
2017; 31
2018; 173
2017; 37
1999; 19
2005; 147
2007; 254
2017; 35
2018; 136
2003; 49
2016; 314
2001; 56
2014; 55
2007; 25
2010; 9
2015; 14
2015; 5
2015; 4
2015; 523
2019; 37
2013; 342
2008; 249
2016; 93
2018; 60
2014; 270
2016; 281
2019; 185
2014; 45
2019; 188
1965; 42
2016; 6
2015; 25
2017; 52
2018; 17
2016; 7
2013; 34
2017; 16
1986; 161
2018; 115
2019
1997; 39
2018
2013; 136
2017; 140
2012; 4
2018; 10
2018; 53
2019; 299
2018; 58
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
Igarashi H (e_1_2_7_36_1) 2014; 25
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Speck U. (e_1_2_7_11_1) 1997; 39
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 45
  start-page: 3092
  year: 2014
  end-page: 3096
  article-title: Impaired glymphatic perfusion after strokes revealed by contrast‐enhanced MRI: A new target for fibrinolysis?
  publication-title: Stroke
– volume: 53
  start-page: 529
  year: 2018
  end-page: 534
  article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: Observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations
  publication-title: Invest Radiol
– volume: 56
  start-page: 763
  year: 2001
  end-page: 772
  article-title: SPAMM, cine phase contrast imaging and fast spin‐echo T2‐weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow
  publication-title: Clin Radiol
– volume: 14
  start-page: 263
  year: 2015
  end-page: 273
  article-title: Visualization of pulsatile CSF motion around membrane‐like structures with both 4D velocity mMapping and Time‐SLIP technique
  publication-title: Magn Reson Med Sci
– volume: 523
  start-page: 337
  year: 2015
  end-page: 341
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
– volume: 342
  start-page: 373
  year: 2013
  end-page: 377
  article-title: Sleep drives metabolite clearance from the adult brain
  publication-title: Science
– volume: 249
  start-page: 644
  year: 2008
  end-page: 652
  article-title: Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: Preliminary results in normal and pathophysiologic conditions
  publication-title: Radiology
– volume: 4
  start-page: 147ra111
  year: 2012
  article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
  publication-title: Sci Transl Med
– volume: 17
  start-page: 223
  year: 2018
  end-page: 230
  article-title: Indirect proton MR imaging and kinetic analysis of (17)O‐labeled water tracer in the brain
  publication-title: Magn Reson Med Sci
– volume: 56
  start-page: 181
  year: 2019
  end-page: 186
  article-title: A novel MRI phantom to study interstitial fluid transport in the glymphatic system
  publication-title: Magn Reson Imaging
– volume: 4
  start-page: 1
  year: 2015
  end-page: 5
  article-title: MRI with intrathecal MRI gadolinium contrast medium administration: A possible method to assess glymphatic function in human brain
  publication-title: Acta Radiol Open
– volume: 16
  start-page: 89
  year: 2017
  end-page: 90
  article-title: Lack of contrast enhancement in a giant perivascular space of the basal ganglion on delayed FLAIR images: Implications for the glymphatic system
  publication-title: Magn Reson Med Sci
– volume: 25
  start-page: 136
  year: 2015
  end-page: 139
  article-title: Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy
  publication-title: J Neuroimaging
– volume: 83
  start-page: 328
  year: 2018
  end-page: 336
  article-title: The emerging relationship between interstitial fluid‐cerebrospinal fluid exchange, amyloid‐beta, and sleep
  publication-title: Biol Psychiatry
– volume: 299
  start-page: 49
  year: 2019
  end-page: 58
  article-title: Phase contrast MRI of creeping flows using stimulated echo
  publication-title: J Magn Reson
– volume: 35
  start-page: 172
  year: 2017
  end-page: 178
  article-title: Evaluation of glymphatic system activity with the diffusion MR technique: Diffusion tensor image analysis along the perivascular space (DTI‐ALPS) in Alzheimer's disease cases
  publication-title: Jpn J Radiol
– volume: 52
  start-page: 195
  year: 2017
  end-page: 197
  article-title: Intrathecal contrast‐enhanced magnetic resonance imaging‐related brain signal changes: Residual gadolinium deposition?
  publication-title: Invest Radiol
– volume: 140
  start-page: 2691
  year: 2017
  end-page: 2705
  article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus
  publication-title: Brain
– volume: 6
  year: 2017
  article-title: Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI
  publication-title: Elife
– volume: 16
  start-page: 61
  year: 2017
  end-page: 65
  article-title: Gd‐based contrast enhancement of the perivascular spaces in the basal ganglia
  publication-title: Magn Reson Med Sci
– volume: 17
  start-page: 111
  year: 2018
  end-page: 119
  article-title: Gadolinium‐based contrast media, cerebrospinal fluid and the glymphatic system: Possible mechanisms for the deposition of gadolinium in the brain
  publication-title: Magn Reson Med Sci
– volume: 65
  start-page: 6858
  year: 2005
  end-page: 6863
  article-title: Convection‐enhanced drug delivery: Increased efficacy and magnetic resonance image monitoring
  publication-title: Cancer Res
– volume: 10
  start-page: 39
  year: 2018
  article-title: Cerebrospinal fluid and the early brain development of autism
  publication-title: J Neurodev Disord
– volume: 19
  start-page: 93
  year: 1999
  end-page: 111
  article-title: Micro‐angiographical studies of the medullary venous system of the cerebral hemisphere
  publication-title: Neuropathology
– volume: 58
  start-page: 23
  year: 2018
  end-page: 31
  article-title: the choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable
  publication-title: Neurol Med Chir (Tokyo)
– year: 2019
  article-title: Experimental alcoholism primes structural and functional impairment of the glymphatic pathway
  publication-title: Brain Behav Immun
– volume: 93
  start-page: 215
  year: 2016
  end-page: 225
  article-title: Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease
  publication-title: Neurobiol Dis
– volume: 6
  start-page: 38635
  year: 2016
  article-title: Glymphatic solute transport does not require bulk flow
  publication-title: Sci Rep
– volume: 37
  start-page: 1326
  year: 2017
  end-page: 1337
  article-title: Impairment of the glymphatic system after diabetes
  publication-title: J Cereb Blood Flow Metab
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: Spin echoes in the presence of a time‐dependent field gradient
  publication-title: J Chem Phys
– volume: 60
  start-page: 471
  year: 2018
  end-page: 477
  article-title: Intrathecal gadolinium‐enhanced MR cisternography in patients with otorhinorrhea: 10‐year experience of a tertiary referral center
  publication-title: Neuroradiology
– volume: 49
  start-page: 479
  year: 2003
  end-page: 487
  article-title: Indirect 17(O)‐magnetic resonance imaging of cerebral blood flow in the rat
  publication-title: Magn Reson Med
– volume: 314
  start-page: 44
  year: 2016
  end-page: 49
  article-title: Brain drain
  publication-title: Sci Am
– volume: 18
  start-page: 163
  year: 2019
  end-page: 169
  article-title: Age dependence of gadolinium leakage from the cortical veins into the cerebrospinal fluid assessed with whole brain 3D‐real inversion recovery MR imaging
  publication-title: Magn Reson Med Sci
– volume: 115
  start-page: 4483
  year: 2018
  end-page: 4488
  article-title: beta‐Amyloid accumulation in the human brain after one night of sleep deprivation
  publication-title: Proc Natl Acad Sci U S A
– year: 2019
  article-title: Fatal gadolinium‐induced encephalopathy following accidental intrathecal administration: A case report and a comprehensive evidence‐based review
  publication-title: Reg Anesth Pain Med
– volume: 270
  start-page: 834
  year: 2014
  end-page: 841
  article-title: High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1‐weighted MR images: Relationship with increasing cumulative dose of a gadolinium‐based contrast material
  publication-title: Radiology
– volume: 17
  start-page: 265
  year: 2018
  end-page: 268
  article-title: Measurement of cerebrospinal fluid flow dynamics using phase contrast MR imaging with bilateral jugular vein compression: A feasibility study in healthy volunteers
  publication-title: Magn Reson Med Sci
– volume: 39
  start-page: 422
  year: 1997
  article-title: Gadolinium DTPA for intrathecal use
  publication-title: Neuroradiology
– start-page: 3425
  year: 2019
– volume: 31
  start-page: 139
  year: 2017
  end-page: 143
  article-title: Intrathecal injection of gadobutrol: A tale of caution
  publication-title: J Pain Palliat Care Pharmacother
– volume: 123
  start-page: 1299
  year: 2013
  end-page: 1309
  article-title: Brain‐wide pathway for waste clearance captured by contrast‐enhanced MRI
  publication-title: J Clin Invest
– volume: 39
  start-page: 418
  year: 1997
  end-page: 422
  article-title: Magnetic resonance ventriculography with gadolinium DTPA: Report of two cases
  publication-title: Neuroradiology
– volume: 55
  start-page: 337
  year: 2014
  end-page: 346
  article-title: Cerebrospinal fluid physiology: Visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging Time‐Spatial Inversion Pulse method
  publication-title: Croat Med J
– volume: 185
  start-page: 263
  year: 2019
  end-page: 273
  article-title: Apparent diffusion coefficient changes in human brain during sleep — Does it inform on the existence of a glymphatic system?
  publication-title: Neuroimage
– volume: 37
  start-page: 281
  year: 2017
  end-page: 297
  article-title: Structure of the medullary veins of the cerebral hemisphere and related disorders
  publication-title: Radiographics
– volume: 136
  start-page: 2825
  issue: Pt 9
  year: 2013
  end-page: 2835
  article-title: Early brain enlargement and elevated extra‐axial fluid in infants who develop autism spectrum disorder
  publication-title: Brain
– volume: 7
  year: 2016
  article-title: Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control
  publication-title: Cell Death Dis
– volume: 173
  start-page: 25
  year: 2018
  end-page: 34
  article-title: Impact of time‐of‐day on diffusivity measures of brain tissue derived from diffusion tensor imaging
  publication-title: Neuroimage
– volume: 148
  start-page: 489
  year: 2016
  end-page: 501
  article-title: Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism
  publication-title: J Gen Physiol
– volume: 17
  start-page: 151
  year: 2018
  end-page: 160
  article-title: Cardiac‐driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique
  publication-title: Magn Reson Med Sci
– volume: 7
  year: 2018
  article-title: Non‐invasive imaging of CSF‐mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI
  publication-title: Elife
– volume: 37
  start-page: 135
  year: 2019
  end-page: 144
  article-title: Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics?
  publication-title: Jpn J Radiol
– volume: 136
  start-page: 139
  year: 2018
  end-page: 152
  article-title: Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways
  publication-title: Acta Neuropathol
– volume: 17
  start-page: 301
  year: 2018
  end-page: 307
  article-title: Differences in signal intensity and enhancement on MR images of the perivascular spaces in the basal ganglia versus those in white matter
  publication-title: Magn Reson Med Sci
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol
– volume: 34
  start-page: 14
  year: 2013
  end-page: 22
  article-title: Intrathecal gadolinium‐enhanced MR cisternography: A comprehensive review
  publication-title: AJNR Am J Neuroradiol
– volume: 34
  start-page: 3
  year: 2016
  end-page: 9
  article-title: Brain gadolinium deposition after administration of gadolinium‐based contrast agents
  publication-title: Jpn J Radiol
– volume: 18
  start-page: 1
  year: 2019
  end-page: 3
  article-title: The new restrictions on the use of linear gadolinium‐based contrast agents in Japan
  publication-title: Magn Reson Med Sci
– volume: 188
  start-page: 515
  year: 2019
  end-page: 523
  article-title: Non‐invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: An aquaporin‐4 study
  publication-title: Neuroimage
– volume: 5
  start-page: 333
  year: 2015
  end-page: 338
  article-title: Magnetic resonance cisternogram with intrathecal gadolinium with delayed imaging for difficult to diagnose cerebrospinal fluid leaks of anterior skull base
  publication-title: Int Forum Allergy Rhinol
– start-page: O‐518
  year: 2018
– volume: 281
  start-page: 527
  year: 2016
  end-page: 535
  article-title: Blood‐brain barrier leakage in patients with early Alzheimer disease
  publication-title: Radiology
– volume: 147
  start-page: 1223
  year: 2005
  end-page: 1233
  article-title: Chiari malformation: CSF flow dynamics in the craniocervical junction and syrinx
  publication-title: Acta Neurochir
– volume: 25
  start-page: 473
  year: 2007
  end-page: 478
  article-title: Visualization of hemodynamics in intracranial arteries using time‐resolved three‐dimensional phase‐contrast MRI
  publication-title: J Magn Reson Imaging
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  article-title: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 254
  start-page: 810
  year: 2007
  end-page: 812
  article-title: Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine
  publication-title: J Neurol
– volume: 25
  start-page: 39
  year: 2014
  end-page: 43
  article-title: Water influx into cerebrospinal fluid is primarily controlled by aquaporin‐4, not by aquaporin‐1: 17O JJVCPE MRI study in knockout mice
  publication-title: Neuroreport
– ident: e_1_2_7_16_1
  doi: 10.1177/2058460115609635
– ident: e_1_2_7_19_1
  doi: 10.1002/alr.21475
– ident: e_1_2_7_60_1
  doi: 10.1016/j.nbd.2016.05.015
– ident: e_1_2_7_24_1
  doi: 10.2463/mrms.mp.2016-0039
– ident: e_1_2_7_57_1
  doi: 10.1016/j.neuroimage.2018.10.043
– ident: e_1_2_7_26_1
  doi: 10.2463/mrms.mp.2017-0137
– ident: e_1_2_7_40_1
  doi: 10.3325/cmj.2014.55.337
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biopsych.2017.11.031
– ident: e_1_2_7_56_1
  doi: 10.1016/j.neuroimage.2018.02.026
– ident: e_1_2_7_62_1
  doi: 10.1177/0271678X16654702
– ident: e_1_2_7_29_1
  doi: 10.1038/nature14432
– ident: e_1_2_7_46_1
  doi: 10.2463/mrms.tn.2017-0056
– ident: e_1_2_7_44_1
  doi: 10.2463/mrms.2014-0089
– ident: e_1_2_7_21_1
  doi: 10.1093/brain/awx191
– ident: e_1_2_7_38_1
  doi: 10.1007/s00701-005-0645-9
– ident: e_1_2_7_9_1
  doi: 10.1161/STROKEAHA.114.006617
– ident: e_1_2_7_68_1
  doi: 10.1085/jgp.201611684
– ident: e_1_2_7_20_1
  doi: 10.1007/s00234-018-2014-4
– ident: e_1_2_7_5_1
– ident: e_1_2_7_33_1
  doi: 10.2463/mrms.rev.2017-0116
– ident: e_1_2_7_42_1
  doi: 10.1002/jmri.20828
– ident: e_1_2_7_65_1
  doi: 10.1186/s11689-018-9256-7
– ident: e_1_2_7_10_1
  doi: 10.1007/s002340050436
– ident: e_1_2_7_27_1
  doi: 10.2463/mrms.mp.2018-0053
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1241224
– ident: e_1_2_7_17_1
  doi: 10.1097/RLI.0000000000000327
– ident: e_1_2_7_23_1
  doi: 10.1148/radiol.2016152244
– ident: e_1_2_7_54_1
– ident: e_1_2_7_61_1
  doi: 10.1073/pnas.1721694115
– ident: e_1_2_7_22_1
  doi: 10.1097/RLI.0000000000000473
– ident: e_1_2_7_70_1
  doi: 10.1007/s00401-018-1862-7
– ident: e_1_2_7_6_1
  doi: 10.1158/0008-5472.CAN-05-0161
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jmr.2018.12.009
– ident: e_1_2_7_15_1
  doi: 10.1136/rapm-2019-100422
– ident: e_1_2_7_12_1
  doi: 10.1111/jon.12067
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neuroimage.2018.12.026
– ident: e_1_2_7_25_1
  doi: 10.2463/mrms.ci.2016-0114
– ident: e_1_2_7_51_1
  doi: 10.1046/j.1440-1789.1999.00215.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.bbi.2019.06.029
– ident: e_1_2_7_43_1
  doi: 10.2463/mrms.mp.2017-0014
– ident: e_1_2_7_32_1
  doi: 10.2463/mrms.e.2017-0176
– ident: e_1_2_7_13_1
  doi: 10.1007/s00415-006-0439-x
– ident: e_1_2_7_30_1
  doi: 10.1148/radiol.13131669
– ident: e_1_2_7_66_1
  doi: 10.1038/cddis.2016.63
– ident: e_1_2_7_50_1
  doi: 10.1007/s11604-017-0617-z
– ident: e_1_2_7_48_1
  doi: 10.1063/1.1695690
– volume: 39
  start-page: 422
  year: 1997
  ident: e_1_2_7_11_1
  article-title: Gadolinium DTPA for intrathecal use
  publication-title: Neuroradiology
– ident: e_1_2_7_58_1
  doi: 10.1016/j.mri.2018.10.007
– ident: e_1_2_7_37_1
  doi: 10.1053/crad.2001.0761
– ident: e_1_2_7_59_1
  doi: 10.1007/s11604-018-0790-8
– ident: e_1_2_7_31_1
  doi: 10.1007/s11604-015-0503-5
– ident: e_1_2_7_2_1
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_2_7_14_1
  doi: 10.1080/15360288.2017.1313353
– ident: e_1_2_7_35_1
  doi: 10.2463/mrms.mp.2017-0094
– ident: e_1_2_7_52_1
  doi: 10.1148/rg.2017160061
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.10403
– ident: e_1_2_7_3_1
  doi: 10.1038/scientificamerican0316-44
– ident: e_1_2_7_28_1
  doi: 10.7554/eLife.29738
– ident: e_1_2_7_67_1
  doi: 10.1016/S1474-4422(09)70299-6
– ident: e_1_2_7_18_1
  doi: 10.3174/ajnr.A2899
– ident: e_1_2_7_69_1
  doi: 10.1038/srep38635
– volume: 25
  start-page: 39
  year: 2014
  ident: e_1_2_7_36_1
  article-title: Water influx into cerebrospinal fluid is primarily controlled by aquaporin‐4, not by aquaporin‐1: 17O JJVCPE MRI study in knockout mice
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000042
– ident: e_1_2_7_39_1
  doi: 10.1148/radiol.2492071985
– ident: e_1_2_7_53_1
– ident: e_1_2_7_55_1
  doi: 10.7554/eLife.34028
– ident: e_1_2_7_45_1
  doi: 10.2176/nmc.oa.2017-0117
– ident: e_1_2_7_8_1
  doi: 10.1172/JCI67677
– ident: e_1_2_7_49_1
  doi: 10.1148/radiology.161.2.3763909
– ident: e_1_2_7_64_1
  doi: 10.1093/brain/awt166
SSID ssj0009945
Score 2.6265311
SecondaryResourceType review_article
Snippet In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Animals
Brain
Cerebrospinal fluid
Contrast agents
Contrast Media
Diffusion
diffusion imaging
Fluorescence
Fluorescent indicators
Gadolinium
glymphatic system
Glymphatic System - diagnostic imaging
Glymphatic System - physiology
Humans
Image Enhancement - methods
In vivo methods and tests
interstitial fluid
Intravenous administration
Isotopes
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mass transport
Medical imaging
Mice
Neuroimaging
Phase contrast
Stable isotopes
Studies
Tracers
Transportation systems
Title Glymphatic imaging using MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26892
https://www.ncbi.nlm.nih.gov/pubmed/31423710
https://www.proquest.com/docview/2323274821
https://www.proquest.com/docview/2275947755
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-1807
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Eg3jx_aiuUtGLQnfTpGla8CLiugrrYVHwIqVJG1kfu7LuHvTXO0kfiw8EvZRCp-Qxmcw3eXwDcEBkwBkXyqMCH4HU2kszpj0eU4QnWqFXNBecu1dh5ya4vOW3M3Bc3YUp-CHqBTdjGXa-NgaeytfWlDT04XnUb9Iwis0E7DNu92h7U-6oOLYZihE_MM-PiKi5SWlr-utnb_QNYn5GrNbltBfhrqpscdLksTkZy6Z6_8Lj-N_WLMFCiUXdk2LwLMNMPliBuW65274KjfOnN1S24XR1-882nZFrzsnfu93exRrctM-uTztemU3BUzgZYsTJsygjuWKaC2o4oCIMqnmcMi1ESiRREUZiOmSUSJWj61SaZBGVgdK5TyLps3WYHQwH-Sa4GX5iGGcgmJLo3NI4DMJUqCxPGdEyIw4cVr2aqJJq3GS8eEoKkmSamOYmtrkO7NeyLwXBxo9SjUo5SWlkrwmCQYZBdUR9B_bqz2geZs8jHeTDCcpQweNACM4d2CiUWhfDfHMmyMfqHlnV_FJ-cokda9-2_iK8DfPUxOd2yaYBs-PRJN9BEDOWu3awfgBx1urb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfSkUCIILSGkdO46TIwJKW2gPVSv1FsVOjApdUJcDfD1jJ6RiERJcokh25Njj8byxx28QOsfCZZRxaRMOD1coZUcxVTYLCMATJcEq6gvOjaZX7bj1LutmsTn6LkzKD5FvuGnNMOu1VnC9IV2es4Y-Dca9EvH8AFbgJX1Ap_XypjVnjwoCk6MYEAS1HR_znJ2UlOfffrZH30DmZ8xqjE5lPc2sOjFchTrW5Lk0m4qSfPvC5Pjv_mygtQyOWlfp_NlEC8lwCy03sgP3bVS867-CvDWtq9UbmIxGlg6Vf7QardoO6lRu29dVO0uoYEtYD8HpZLEf40RSxTjRNFA--NUsiKjiPMICSx-cMeVRgoVMwHpKhWOfCFeqxMG-cOguWhyOhsk-smIoouBqAJ4SYN-iwHO9iMs4iShWIsYFdPExrKHM2MZ10ot-mPIkk1B3NzTdLaCzvO5LyrHxY63ih3TCTM8mIeBBCn61T5wCOs2LQUP0sUc0TEYzqEM4C1zOGSugvVSqeTPU0WFBDvzupZHNL-2HdRhY83bwl8onaKXabjyED7Xm_SFaJdpdNzs4RbQ4Hc-SI8A0U3FsZu47KYPu9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbz4fqyuWtGLQtc0aZoWvIi6uqsrIgpepDRpI-ruKrp70F_vJO128YGgl1LolDwmk_kmj28Atoj0OeNCuVTgw5dau0nKtMsjivBEK_SK5oJz6zw4ufabN_xmBPYGd2Fyfohywc1Yhp2vjYE_p3p3SBr60Hm5r9EgjHACHvMDDK8MJLockkdFkU1RjACCuV5IRElOSneH_352R98w5mfIan1OfQpuB7XNj5o81vo9WVPvX4gc_9ucaZgswKizn4-eGRjJurMw3iq22-egetx-Q20bUlfnvmPzGTnmoPyd07pszMN1_ejq4MQt0im4CmdDDDl5GqYkU0xzQQ0JVIhRNY8SpoVIiCQqxFBMB4wSqTL0nUqTNKTSVzrzSCg9tgCj3adutgROip8YBhqIpiR6tyQK_CARKs0SRrRMSQW2B70aq4Jr3KS8aMc5SzKNTXNj29wKbJayzznDxo9S1YFy4sLKXmNEgwyj6pB6FdgoP6N9mE2PpJs99VGGCh75QnBegcVcqWUxzDOHgjys7o5VzS_lx03sWPu2_BfhdRi_OKzHZ43z0xWYoCZWt8s3VRjtvfSzVQQ0Pblmx-0HaoLtpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glymphatic+imaging+using+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Taoka%2C+Toshiaki&rft.au=Naganawa%2C+Shinji&rft.date=2020-01-01&rft.eissn=1522-2586&rft.volume=51&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1002%2Fjmri.26892&rft_id=info%3Apmid%2F31423710&rft.externalDocID=31423710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon