Glymphatic imaging using MRI
In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 51; no. 1; pp. 11 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.26892 |
Cover
Abstract | In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies.
Level of Evidence: 5
Technical Efficacy: Stage 3
J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24. |
---|---|
AbstractList | In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies.
Level of Evidence: 5
Technical Efficacy: Stage 3
J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24. In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17 O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24.In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17 O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24. In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two-photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium-based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as O-labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion-weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11-24. In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many studies. The glymphatic system is hypothesized to be a waste clearance system of the CSF through the perivascular and interstitial spaces in the brain. Tracer studies have primarily been used to visualize or evaluate the waste clearance system in the brain, and evidence for this system has accumulated. The initial study that identified the glymphatic system was an in vivo tracer study in mice. In that study, fluorescent tracers were injected into the cisterna magna and visualized by two‐photon microscopy. MRI has also been used to evaluate glymphatic function primarily with gadolinium‐based contrast agents (GBCAs) as tracers. A number of GBCA studies evaluating glymphatic function have been conducted using either intrathecal or intravenous injections. Stable isotopes, such as 17O‐labeled water, may also be used as tracers since they can be detected by MRI. In addition to tracer studies, several other approaches have been used to evaluate ISF dynamics within the brain, including diffusion imaging. Phase contrast evaluation is a powerful method for visualizing flow within the CSF space. In order to evaluate the movement of water within tissue, diffusion‐weighted MRI represents another promising technique, and several studies have utilized diffusion techniques for the evaluation of the glymphatic system. This review will discuss the findings of these diffusion studies.Level of Evidence: 5Technical Efficacy: Stage 3J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:11–24. |
Author | Taoka, Toshiaki Naganawa, Shinji |
Author_xml | – sequence: 1 givenname: Toshiaki orcidid: 0000-0001-9227-0240 surname: Taoka fullname: Taoka, Toshiaki email: ttaoka@med.nagoya-y.ac.jp organization: Nagoya University – sequence: 2 givenname: Shinji surname: Naganawa fullname: Naganawa, Shinji organization: Nagoya University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31423710$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9LwzAYhoNMnJtePIsMvIjQ-eVr06RHGTonE0H0HNo0nR39MZMW2X9vaqeHIRJIcnjel-97RmRQ1ZUm5IzClALgzbo0-RRDEeEBOaYM0UMmwoH7A_M9KoAPycjaNQBEUcCOyNCnAfqcwjE5nxfbcvMeN7ma5GW8yqvVpLXd_fSyOCGHWVxYfbp7x-Tt_u519uAtn-eL2e3SU0HI0WMsFSlo5WeMIwoqhE6QRbGfcR5DAkpgEGWhj5AorbRWGaQCk0BlmoJIqD8mV33vxtQfrbaNLHOrdFHEla5bKxE5iwLOGXPo5R66rltTuekk-u7wQGBXeLGj2qTUqdwYt5vZyp-9HXDdA8rU1hqd_SIUZCdVdlLlt1QHwx6s8sYZq6vGxHnxd4T2kc-80Nt_yuWj89xnvgBnx4Ze |
CitedBy_id | crossref_primary_10_1007_s13311_021_01049_y crossref_primary_10_1111_jon_12837 crossref_primary_10_1016_j_jad_2024_08_094 crossref_primary_10_13104_imri_2023_0031 crossref_primary_10_1016_j_nbd_2023_105990 crossref_primary_10_13104_imri_2023_0032 crossref_primary_10_3389_fnagi_2024_1443028 crossref_primary_10_1148_radiol_2021204088 crossref_primary_10_2463_mrms_mp_2020_0016 crossref_primary_10_1177_0284185120969950 crossref_primary_10_3389_fnagi_2024_1362457 crossref_primary_10_1016_j_medcle_2021_03_003 crossref_primary_10_1186_s12987_021_00243_6 crossref_primary_10_3389_fnins_2023_1321365 crossref_primary_10_1016_j_yebeh_2024_110258 crossref_primary_10_1016_j_brainres_2025_149450 crossref_primary_10_2463_mrms_mp_2021_0126 crossref_primary_10_3390_cells12060957 crossref_primary_10_18705_2782_3806_2025_5_1_50_57 crossref_primary_10_1016_j_survophthal_2022_04_004 crossref_primary_10_3390_brainsci14100983 crossref_primary_10_1007_s11604_020_01017_0 crossref_primary_10_33140_JCEI_05_03_04 crossref_primary_10_1136_bmjopen_2021_054885 crossref_primary_10_1016_j_isci_2022_104258 crossref_primary_10_3389_fneur_2021_767470 crossref_primary_10_1007_s11604_021_01187_5 crossref_primary_10_2463_mrms_mp_2023_0023 crossref_primary_10_1016_j_neuroscience_2024_07_026 crossref_primary_10_29328_journal_icci_1001014 crossref_primary_10_1186_s10194_024_01741_2 crossref_primary_10_3389_fnagi_2022_974114 crossref_primary_10_1212_WNL_0000000000201300 crossref_primary_10_1038_s41526_024_00368_6 crossref_primary_10_2463_mrms_mp_2020_0030 crossref_primary_10_3389_fnins_2023_1205489 crossref_primary_10_1016_j_smrv_2021_101572 crossref_primary_10_1111_ene_16097 crossref_primary_10_1002_ana_25928 crossref_primary_10_1002_mrm_28645 crossref_primary_10_3389_fnagi_2021_693787 crossref_primary_10_3233_JAD_231089 crossref_primary_10_3348_kjr_2020_0042 crossref_primary_10_1002_mrm_28806 crossref_primary_10_3389_fncel_2021_729706 crossref_primary_10_1002_jmri_27124 crossref_primary_10_1097_RLI_0000000000000870 crossref_primary_10_1002_gps_6104 crossref_primary_10_1007_s13139_020_00665_4 crossref_primary_10_3390_ijms21186457 crossref_primary_10_1002_jmri_28977 crossref_primary_10_1111_jsr_14479 crossref_primary_10_1093_schbul_sbae039 crossref_primary_10_3389_fnagi_2022_871612 crossref_primary_10_3390_traumacare2040042 crossref_primary_10_3389_fneur_2024_1480536 crossref_primary_10_31083_j_jin2104117 crossref_primary_10_1007_s00234_021_02718_7 crossref_primary_10_3389_fneur_2022_976089 crossref_primary_10_2463_mrms_mp_2019_0182 crossref_primary_10_1371_journal_pone_0229702 crossref_primary_10_3389_fneur_2022_1016577 crossref_primary_10_1177_07067437241290193 crossref_primary_10_3389_fmed_2023_1189614 crossref_primary_10_1016_j_jtcme_2024_04_010 crossref_primary_10_1016_j_brainresbull_2023_110776 crossref_primary_10_1002_nep3_53 crossref_primary_10_1186_s41747_021_00246_w crossref_primary_10_1002_mrm_28389 crossref_primary_10_17650_1683_3295_2022_24_4_111_117 crossref_primary_10_1016_j_neuropharm_2024_109907 crossref_primary_10_1097_MD_0000000000032061 crossref_primary_10_1007_s00330_023_09796_6 crossref_primary_10_1098_rsif_2022_0257 crossref_primary_10_3389_fnagi_2022_873697 crossref_primary_10_1007_s00415_023_12004_6 crossref_primary_10_1097_RLI_0000000000001021 crossref_primary_10_1016_j_brainresbull_2025_111295 crossref_primary_10_1002_jmri_27542 crossref_primary_10_2463_mrms_mp_2020_0062 crossref_primary_10_1097_MCP_0000000000000923 crossref_primary_10_1177_27325016231160291 crossref_primary_10_3389_fnins_2021_685977 crossref_primary_10_1007_s00415_021_10799_w crossref_primary_10_2463_mrms_rev_2022_0012 crossref_primary_10_1016_j_neubiorev_2022_104999 crossref_primary_10_1097_RLI_0000000000000969 crossref_primary_10_1186_s12987_022_00318_y crossref_primary_10_3390_j6030031 crossref_primary_10_3389_fneur_2024_1459356 crossref_primary_10_1007_s00701_024_06161_4 crossref_primary_10_1016_j_neuroimage_2022_119464 crossref_primary_10_1111_ene_15999 crossref_primary_10_3390_molecules27010058 crossref_primary_10_1002_mds_29908 crossref_primary_10_3389_fnagi_2023_1221667 crossref_primary_10_1002_brb3_2504 crossref_primary_10_1016_j_jmro_2020_100004 crossref_primary_10_3389_fnins_2021_624690 crossref_primary_10_2463_mrms_rev_2023_0175 crossref_primary_10_1016_j_neurad_2025_101322 crossref_primary_10_2463_mrms_mp_2023_0081 crossref_primary_10_2463_mrms_mp_2020_0085 crossref_primary_10_1002_nbm_4984 crossref_primary_10_1002_nbm_5314 crossref_primary_10_1177_15500594251320294 crossref_primary_10_1177_0271678X251321305 crossref_primary_10_1007_s11604_020_01075_4 crossref_primary_10_1007_s00234_024_03415_x crossref_primary_10_1038_s41598_023_40896_x crossref_primary_10_3389_fneur_2021_809438 crossref_primary_10_3389_fnins_2023_1222857 crossref_primary_10_1016_j_acra_2024_11_030 crossref_primary_10_1016_j_medcli_2020_08_020 crossref_primary_10_2463_mrms_mp_2020_0121 crossref_primary_10_1016_j_nic_2024_12_004 crossref_primary_10_1007_s00415_023_11594_5 |
Cites_doi | 10.1177/2058460115609635 10.1002/alr.21475 10.1016/j.nbd.2016.05.015 10.2463/mrms.mp.2016-0039 10.1016/j.neuroimage.2018.10.043 10.2463/mrms.mp.2017-0137 10.3325/cmj.2014.55.337 10.1016/j.biopsych.2017.11.031 10.1016/j.neuroimage.2018.02.026 10.1177/0271678X16654702 10.1038/nature14432 10.2463/mrms.tn.2017-0056 10.2463/mrms.2014-0089 10.1093/brain/awx191 10.1007/s00701-005-0645-9 10.1161/STROKEAHA.114.006617 10.1085/jgp.201611684 10.1007/s00234-018-2014-4 10.2463/mrms.rev.2017-0116 10.1002/jmri.20828 10.1186/s11689-018-9256-7 10.1007/s002340050436 10.2463/mrms.mp.2018-0053 10.1126/science.1241224 10.1097/RLI.0000000000000327 10.1148/radiol.2016152244 10.1073/pnas.1721694115 10.1097/RLI.0000000000000473 10.1007/s00401-018-1862-7 10.1158/0008-5472.CAN-05-0161 10.1016/j.jmr.2018.12.009 10.1136/rapm-2019-100422 10.1111/jon.12067 10.1016/j.neuroimage.2018.12.026 10.2463/mrms.ci.2016-0114 10.1046/j.1440-1789.1999.00215.x 10.1016/j.bbi.2019.06.029 10.2463/mrms.mp.2017-0014 10.2463/mrms.e.2017-0176 10.1007/s00415-006-0439-x 10.1148/radiol.13131669 10.1038/cddis.2016.63 10.1007/s11604-017-0617-z 10.1063/1.1695690 10.1016/j.mri.2018.10.007 10.1053/crad.2001.0761 10.1007/s11604-018-0790-8 10.1007/s11604-015-0503-5 10.1126/scitranslmed.3003748 10.1080/15360288.2017.1313353 10.2463/mrms.mp.2017-0094 10.1148/rg.2017160061 10.1002/mrm.10403 10.1038/scientificamerican0316-44 10.7554/eLife.29738 10.1016/S1474-4422(09)70299-6 10.3174/ajnr.A2899 10.1038/srep38635 10.1097/WNR.0000000000000042 10.1148/radiol.2492071985 10.7554/eLife.34028 10.2176/nmc.oa.2017-0117 10.1172/JCI67677 10.1148/radiology.161.2.3763909 10.1093/brain/awt166 |
ContentType | Journal Article |
Copyright | 2019 International Society for Magnetic Resonance in Medicine 2019 International Society for Magnetic Resonance in Medicine. 2020 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2019 International Society for Magnetic Resonance in Medicine – notice: 2019 International Society for Magnetic Resonance in Medicine. – notice: 2020 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.26892 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 24 |
ExternalDocumentID | 31423710 10_1002_jmri_26892 JMRI26892 |
Genre | article Journal Article Review |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4672-55d8d0ec3f57228188eb259a3f77a0b0c8249f6320bceceecf0d82b4cfe108b13 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 13:06:28 EDT 2025 Fri Jul 25 12:04:52 EDT 2025 Wed Feb 19 02:28:00 EST 2025 Thu Apr 24 23:08:48 EDT 2025 Wed Oct 01 04:37:04 EDT 2025 Wed Jan 22 16:35:59 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | interstitial fluid magnetic resonance imaging diffusion imaging glymphatic system cerebrospinal fluid contrast media |
Language | English |
License | 2019 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4672-55d8d0ec3f57228188eb259a3f77a0b0c8249f6320bceceecf0d82b4cfe108b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9227-0240 |
OpenAccessLink | https://nagoya.repo.nii.ac.jp/records/30440 |
PMID | 31423710 |
PQID | 2323274821 |
PQPubID | 1006400 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2275947755 proquest_journals_2323274821 pubmed_primary_31423710 crossref_primary_10_1002_jmri_26892 crossref_citationtrail_10_1002_jmri_26892 wiley_primary_10_1002_jmri_26892_JMRI26892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 6 2019; 56 2013; 123 2014; 25 2005; 65 2019; 18 2018; 83 2016; 148 2016; 34 2018; 7 2017; 31 2018; 173 2017; 37 1999; 19 2005; 147 2007; 254 2017; 35 2018; 136 2003; 49 2016; 314 2001; 56 2014; 55 2007; 25 2010; 9 2015; 14 2015; 5 2015; 4 2015; 523 2019; 37 2013; 342 2008; 249 2016; 93 2018; 60 2014; 270 2016; 281 2019; 185 2014; 45 2019; 188 1965; 42 2016; 6 2015; 25 2017; 52 2018; 17 2016; 7 2013; 34 2017; 16 1986; 161 2018; 115 2019 1997; 39 2018 2013; 136 2017; 140 2012; 4 2018; 10 2018; 53 2019; 299 2018; 58 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 Igarashi H (e_1_2_7_36_1) 2014; 25 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Speck U. (e_1_2_7_11_1) 1997; 39 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 45 start-page: 3092 year: 2014 end-page: 3096 article-title: Impaired glymphatic perfusion after strokes revealed by contrast‐enhanced MRI: A new target for fibrinolysis? publication-title: Stroke – volume: 53 start-page: 529 year: 2018 end-page: 534 article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: Observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations publication-title: Invest Radiol – volume: 56 start-page: 763 year: 2001 end-page: 772 article-title: SPAMM, cine phase contrast imaging and fast spin‐echo T2‐weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow publication-title: Clin Radiol – volume: 14 start-page: 263 year: 2015 end-page: 273 article-title: Visualization of pulsatile CSF motion around membrane‐like structures with both 4D velocity mMapping and Time‐SLIP technique publication-title: Magn Reson Med Sci – volume: 523 start-page: 337 year: 2015 end-page: 341 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature – volume: 342 start-page: 373 year: 2013 end-page: 377 article-title: Sleep drives metabolite clearance from the adult brain publication-title: Science – volume: 249 start-page: 644 year: 2008 end-page: 652 article-title: Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: Preliminary results in normal and pathophysiologic conditions publication-title: Radiology – volume: 4 start-page: 147ra111 year: 2012 article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta publication-title: Sci Transl Med – volume: 17 start-page: 223 year: 2018 end-page: 230 article-title: Indirect proton MR imaging and kinetic analysis of (17)O‐labeled water tracer in the brain publication-title: Magn Reson Med Sci – volume: 56 start-page: 181 year: 2019 end-page: 186 article-title: A novel MRI phantom to study interstitial fluid transport in the glymphatic system publication-title: Magn Reson Imaging – volume: 4 start-page: 1 year: 2015 end-page: 5 article-title: MRI with intrathecal MRI gadolinium contrast medium administration: A possible method to assess glymphatic function in human brain publication-title: Acta Radiol Open – volume: 16 start-page: 89 year: 2017 end-page: 90 article-title: Lack of contrast enhancement in a giant perivascular space of the basal ganglion on delayed FLAIR images: Implications for the glymphatic system publication-title: Magn Reson Med Sci – volume: 25 start-page: 136 year: 2015 end-page: 139 article-title: Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy publication-title: J Neuroimaging – volume: 83 start-page: 328 year: 2018 end-page: 336 article-title: The emerging relationship between interstitial fluid‐cerebrospinal fluid exchange, amyloid‐beta, and sleep publication-title: Biol Psychiatry – volume: 299 start-page: 49 year: 2019 end-page: 58 article-title: Phase contrast MRI of creeping flows using stimulated echo publication-title: J Magn Reson – volume: 35 start-page: 172 year: 2017 end-page: 178 article-title: Evaluation of glymphatic system activity with the diffusion MR technique: Diffusion tensor image analysis along the perivascular space (DTI‐ALPS) in Alzheimer's disease cases publication-title: Jpn J Radiol – volume: 52 start-page: 195 year: 2017 end-page: 197 article-title: Intrathecal contrast‐enhanced magnetic resonance imaging‐related brain signal changes: Residual gadolinium deposition? publication-title: Invest Radiol – volume: 140 start-page: 2691 year: 2017 end-page: 2705 article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus publication-title: Brain – volume: 6 year: 2017 article-title: Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI publication-title: Elife – volume: 16 start-page: 61 year: 2017 end-page: 65 article-title: Gd‐based contrast enhancement of the perivascular spaces in the basal ganglia publication-title: Magn Reson Med Sci – volume: 17 start-page: 111 year: 2018 end-page: 119 article-title: Gadolinium‐based contrast media, cerebrospinal fluid and the glymphatic system: Possible mechanisms for the deposition of gadolinium in the brain publication-title: Magn Reson Med Sci – volume: 65 start-page: 6858 year: 2005 end-page: 6863 article-title: Convection‐enhanced drug delivery: Increased efficacy and magnetic resonance image monitoring publication-title: Cancer Res – volume: 10 start-page: 39 year: 2018 article-title: Cerebrospinal fluid and the early brain development of autism publication-title: J Neurodev Disord – volume: 19 start-page: 93 year: 1999 end-page: 111 article-title: Micro‐angiographical studies of the medullary venous system of the cerebral hemisphere publication-title: Neuropathology – volume: 58 start-page: 23 year: 2018 end-page: 31 article-title: the choroid plexus of the lateral ventricle as the origin of CSF pulsation is questionable publication-title: Neurol Med Chir (Tokyo) – year: 2019 article-title: Experimental alcoholism primes structural and functional impairment of the glymphatic pathway publication-title: Brain Behav Immun – volume: 93 start-page: 215 year: 2016 end-page: 225 article-title: Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease publication-title: Neurobiol Dis – volume: 6 start-page: 38635 year: 2016 article-title: Glymphatic solute transport does not require bulk flow publication-title: Sci Rep – volume: 37 start-page: 1326 year: 2017 end-page: 1337 article-title: Impairment of the glymphatic system after diabetes publication-title: J Cereb Blood Flow Metab – volume: 42 start-page: 288 year: 1965 end-page: 292 article-title: Spin diffusion measurements: Spin echoes in the presence of a time‐dependent field gradient publication-title: J Chem Phys – volume: 60 start-page: 471 year: 2018 end-page: 477 article-title: Intrathecal gadolinium‐enhanced MR cisternography in patients with otorhinorrhea: 10‐year experience of a tertiary referral center publication-title: Neuroradiology – volume: 49 start-page: 479 year: 2003 end-page: 487 article-title: Indirect 17(O)‐magnetic resonance imaging of cerebral blood flow in the rat publication-title: Magn Reson Med – volume: 314 start-page: 44 year: 2016 end-page: 49 article-title: Brain drain publication-title: Sci Am – volume: 18 start-page: 163 year: 2019 end-page: 169 article-title: Age dependence of gadolinium leakage from the cortical veins into the cerebrospinal fluid assessed with whole brain 3D‐real inversion recovery MR imaging publication-title: Magn Reson Med Sci – volume: 115 start-page: 4483 year: 2018 end-page: 4488 article-title: beta‐Amyloid accumulation in the human brain after one night of sleep deprivation publication-title: Proc Natl Acad Sci U S A – year: 2019 article-title: Fatal gadolinium‐induced encephalopathy following accidental intrathecal administration: A case report and a comprehensive evidence‐based review publication-title: Reg Anesth Pain Med – volume: 270 start-page: 834 year: 2014 end-page: 841 article-title: High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1‐weighted MR images: Relationship with increasing cumulative dose of a gadolinium‐based contrast material publication-title: Radiology – volume: 17 start-page: 265 year: 2018 end-page: 268 article-title: Measurement of cerebrospinal fluid flow dynamics using phase contrast MR imaging with bilateral jugular vein compression: A feasibility study in healthy volunteers publication-title: Magn Reson Med Sci – volume: 39 start-page: 422 year: 1997 article-title: Gadolinium DTPA for intrathecal use publication-title: Neuroradiology – start-page: 3425 year: 2019 – volume: 31 start-page: 139 year: 2017 end-page: 143 article-title: Intrathecal injection of gadobutrol: A tale of caution publication-title: J Pain Palliat Care Pharmacother – volume: 123 start-page: 1299 year: 2013 end-page: 1309 article-title: Brain‐wide pathway for waste clearance captured by contrast‐enhanced MRI publication-title: J Clin Invest – volume: 39 start-page: 418 year: 1997 end-page: 422 article-title: Magnetic resonance ventriculography with gadolinium DTPA: Report of two cases publication-title: Neuroradiology – volume: 55 start-page: 337 year: 2014 end-page: 346 article-title: Cerebrospinal fluid physiology: Visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging Time‐Spatial Inversion Pulse method publication-title: Croat Med J – volume: 185 start-page: 263 year: 2019 end-page: 273 article-title: Apparent diffusion coefficient changes in human brain during sleep — Does it inform on the existence of a glymphatic system? publication-title: Neuroimage – volume: 37 start-page: 281 year: 2017 end-page: 297 article-title: Structure of the medullary veins of the cerebral hemisphere and related disorders publication-title: Radiographics – volume: 136 start-page: 2825 issue: Pt 9 year: 2013 end-page: 2835 article-title: Early brain enlargement and elevated extra‐axial fluid in infants who develop autism spectrum disorder publication-title: Brain – volume: 7 year: 2016 article-title: Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control publication-title: Cell Death Dis – volume: 173 start-page: 25 year: 2018 end-page: 34 article-title: Impact of time‐of‐day on diffusivity measures of brain tissue derived from diffusion tensor imaging publication-title: Neuroimage – volume: 148 start-page: 489 year: 2016 end-page: 501 article-title: Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism publication-title: J Gen Physiol – volume: 17 start-page: 151 year: 2018 end-page: 160 article-title: Cardiac‐driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique publication-title: Magn Reson Med Sci – volume: 7 year: 2018 article-title: Non‐invasive imaging of CSF‐mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI publication-title: Elife – volume: 37 start-page: 135 year: 2019 end-page: 144 article-title: Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics? publication-title: Jpn J Radiol – volume: 136 start-page: 139 year: 2018 end-page: 152 article-title: Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways publication-title: Acta Neuropathol – volume: 17 start-page: 301 year: 2018 end-page: 307 article-title: Differences in signal intensity and enhancement on MR images of the perivascular spaces in the basal ganglia versus those in white matter publication-title: Magn Reson Med Sci – volume: 9 start-page: 119 year: 2010 end-page: 128 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol – volume: 34 start-page: 14 year: 2013 end-page: 22 article-title: Intrathecal gadolinium‐enhanced MR cisternography: A comprehensive review publication-title: AJNR Am J Neuroradiol – volume: 34 start-page: 3 year: 2016 end-page: 9 article-title: Brain gadolinium deposition after administration of gadolinium‐based contrast agents publication-title: Jpn J Radiol – volume: 18 start-page: 1 year: 2019 end-page: 3 article-title: The new restrictions on the use of linear gadolinium‐based contrast agents in Japan publication-title: Magn Reson Med Sci – volume: 188 start-page: 515 year: 2019 end-page: 523 article-title: Non‐invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: An aquaporin‐4 study publication-title: Neuroimage – volume: 5 start-page: 333 year: 2015 end-page: 338 article-title: Magnetic resonance cisternogram with intrathecal gadolinium with delayed imaging for difficult to diagnose cerebrospinal fluid leaks of anterior skull base publication-title: Int Forum Allergy Rhinol – start-page: O‐518 year: 2018 – volume: 281 start-page: 527 year: 2016 end-page: 535 article-title: Blood‐brain barrier leakage in patients with early Alzheimer disease publication-title: Radiology – volume: 147 start-page: 1223 year: 2005 end-page: 1233 article-title: Chiari malformation: CSF flow dynamics in the craniocervical junction and syrinx publication-title: Acta Neurochir – volume: 25 start-page: 473 year: 2007 end-page: 478 article-title: Visualization of hemodynamics in intracranial arteries using time‐resolved three‐dimensional phase‐contrast MRI publication-title: J Magn Reson Imaging – volume: 161 start-page: 401 year: 1986 end-page: 407 article-title: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 254 start-page: 810 year: 2007 end-page: 812 article-title: Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine publication-title: J Neurol – volume: 25 start-page: 39 year: 2014 end-page: 43 article-title: Water influx into cerebrospinal fluid is primarily controlled by aquaporin‐4, not by aquaporin‐1: 17O JJVCPE MRI study in knockout mice publication-title: Neuroreport – ident: e_1_2_7_16_1 doi: 10.1177/2058460115609635 – ident: e_1_2_7_19_1 doi: 10.1002/alr.21475 – ident: e_1_2_7_60_1 doi: 10.1016/j.nbd.2016.05.015 – ident: e_1_2_7_24_1 doi: 10.2463/mrms.mp.2016-0039 – ident: e_1_2_7_57_1 doi: 10.1016/j.neuroimage.2018.10.043 – ident: e_1_2_7_26_1 doi: 10.2463/mrms.mp.2017-0137 – ident: e_1_2_7_40_1 doi: 10.3325/cmj.2014.55.337 – ident: e_1_2_7_4_1 doi: 10.1016/j.biopsych.2017.11.031 – ident: e_1_2_7_56_1 doi: 10.1016/j.neuroimage.2018.02.026 – ident: e_1_2_7_62_1 doi: 10.1177/0271678X16654702 – ident: e_1_2_7_29_1 doi: 10.1038/nature14432 – ident: e_1_2_7_46_1 doi: 10.2463/mrms.tn.2017-0056 – ident: e_1_2_7_44_1 doi: 10.2463/mrms.2014-0089 – ident: e_1_2_7_21_1 doi: 10.1093/brain/awx191 – ident: e_1_2_7_38_1 doi: 10.1007/s00701-005-0645-9 – ident: e_1_2_7_9_1 doi: 10.1161/STROKEAHA.114.006617 – ident: e_1_2_7_68_1 doi: 10.1085/jgp.201611684 – ident: e_1_2_7_20_1 doi: 10.1007/s00234-018-2014-4 – ident: e_1_2_7_5_1 – ident: e_1_2_7_33_1 doi: 10.2463/mrms.rev.2017-0116 – ident: e_1_2_7_42_1 doi: 10.1002/jmri.20828 – ident: e_1_2_7_65_1 doi: 10.1186/s11689-018-9256-7 – ident: e_1_2_7_10_1 doi: 10.1007/s002340050436 – ident: e_1_2_7_27_1 doi: 10.2463/mrms.mp.2018-0053 – ident: e_1_2_7_7_1 doi: 10.1126/science.1241224 – ident: e_1_2_7_17_1 doi: 10.1097/RLI.0000000000000327 – ident: e_1_2_7_23_1 doi: 10.1148/radiol.2016152244 – ident: e_1_2_7_54_1 – ident: e_1_2_7_61_1 doi: 10.1073/pnas.1721694115 – ident: e_1_2_7_22_1 doi: 10.1097/RLI.0000000000000473 – ident: e_1_2_7_70_1 doi: 10.1007/s00401-018-1862-7 – ident: e_1_2_7_6_1 doi: 10.1158/0008-5472.CAN-05-0161 – ident: e_1_2_7_47_1 doi: 10.1016/j.jmr.2018.12.009 – ident: e_1_2_7_15_1 doi: 10.1136/rapm-2019-100422 – ident: e_1_2_7_12_1 doi: 10.1111/jon.12067 – ident: e_1_2_7_41_1 doi: 10.1016/j.neuroimage.2018.12.026 – ident: e_1_2_7_25_1 doi: 10.2463/mrms.ci.2016-0114 – ident: e_1_2_7_51_1 doi: 10.1046/j.1440-1789.1999.00215.x – ident: e_1_2_7_63_1 doi: 10.1016/j.bbi.2019.06.029 – ident: e_1_2_7_43_1 doi: 10.2463/mrms.mp.2017-0014 – ident: e_1_2_7_32_1 doi: 10.2463/mrms.e.2017-0176 – ident: e_1_2_7_13_1 doi: 10.1007/s00415-006-0439-x – ident: e_1_2_7_30_1 doi: 10.1148/radiol.13131669 – ident: e_1_2_7_66_1 doi: 10.1038/cddis.2016.63 – ident: e_1_2_7_50_1 doi: 10.1007/s11604-017-0617-z – ident: e_1_2_7_48_1 doi: 10.1063/1.1695690 – volume: 39 start-page: 422 year: 1997 ident: e_1_2_7_11_1 article-title: Gadolinium DTPA for intrathecal use publication-title: Neuroradiology – ident: e_1_2_7_58_1 doi: 10.1016/j.mri.2018.10.007 – ident: e_1_2_7_37_1 doi: 10.1053/crad.2001.0761 – ident: e_1_2_7_59_1 doi: 10.1007/s11604-018-0790-8 – ident: e_1_2_7_31_1 doi: 10.1007/s11604-015-0503-5 – ident: e_1_2_7_2_1 doi: 10.1126/scitranslmed.3003748 – ident: e_1_2_7_14_1 doi: 10.1080/15360288.2017.1313353 – ident: e_1_2_7_35_1 doi: 10.2463/mrms.mp.2017-0094 – ident: e_1_2_7_52_1 doi: 10.1148/rg.2017160061 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.10403 – ident: e_1_2_7_3_1 doi: 10.1038/scientificamerican0316-44 – ident: e_1_2_7_28_1 doi: 10.7554/eLife.29738 – ident: e_1_2_7_67_1 doi: 10.1016/S1474-4422(09)70299-6 – ident: e_1_2_7_18_1 doi: 10.3174/ajnr.A2899 – ident: e_1_2_7_69_1 doi: 10.1038/srep38635 – volume: 25 start-page: 39 year: 2014 ident: e_1_2_7_36_1 article-title: Water influx into cerebrospinal fluid is primarily controlled by aquaporin‐4, not by aquaporin‐1: 17O JJVCPE MRI study in knockout mice publication-title: Neuroreport doi: 10.1097/WNR.0000000000000042 – ident: e_1_2_7_39_1 doi: 10.1148/radiol.2492071985 – ident: e_1_2_7_53_1 – ident: e_1_2_7_55_1 doi: 10.7554/eLife.34028 – ident: e_1_2_7_45_1 doi: 10.2176/nmc.oa.2017-0117 – ident: e_1_2_7_8_1 doi: 10.1172/JCI67677 – ident: e_1_2_7_49_1 doi: 10.1148/radiology.161.2.3763909 – ident: e_1_2_7_64_1 doi: 10.1093/brain/awt166 |
SSID | ssj0009945 |
Score | 2.6265311 |
SecondaryResourceType | review_article |
Snippet | In recent years, the existence of a mass transport system in the brain via cerebrospinal fluid (CSF) or interstitial fluid (ISF) has been suggested by many... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Animals Brain Cerebrospinal fluid Contrast agents Contrast Media Diffusion diffusion imaging Fluorescence Fluorescent indicators Gadolinium glymphatic system Glymphatic System - diagnostic imaging Glymphatic System - physiology Humans Image Enhancement - methods In vivo methods and tests interstitial fluid Intravenous administration Isotopes Magnetic resonance imaging Magnetic Resonance Imaging - methods Mass transport Medical imaging Mice Neuroimaging Phase contrast Stable isotopes Studies Tracers Transportation systems |
Title | Glymphatic imaging using MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26892 https://www.ncbi.nlm.nih.gov/pubmed/31423710 https://www.proquest.com/docview/2323274821 https://www.proquest.com/docview/2275947755 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Eg3jx_aiuUtGLQnfTpGla8CLiugrrYVHwIqVJG1kfu7LuHvTXO0kfiw8EvZRCp-Qxmcw3eXwDcEBkwBkXyqMCH4HU2kszpj0eU4QnWqFXNBecu1dh5ya4vOW3M3Bc3YUp-CHqBTdjGXa-NgaeytfWlDT04XnUb9Iwis0E7DNu92h7U-6oOLYZihE_MM-PiKi5SWlr-utnb_QNYn5GrNbltBfhrqpscdLksTkZy6Z6_8Lj-N_WLMFCiUXdk2LwLMNMPliBuW65274KjfOnN1S24XR1-882nZFrzsnfu93exRrctM-uTztemU3BUzgZYsTJsygjuWKaC2o4oCIMqnmcMi1ESiRREUZiOmSUSJWj61SaZBGVgdK5TyLps3WYHQwH-Sa4GX5iGGcgmJLo3NI4DMJUqCxPGdEyIw4cVr2aqJJq3GS8eEoKkmSamOYmtrkO7NeyLwXBxo9SjUo5SWlkrwmCQYZBdUR9B_bqz2geZs8jHeTDCcpQweNACM4d2CiUWhfDfHMmyMfqHlnV_FJ-cokda9-2_iK8DfPUxOd2yaYBs-PRJN9BEDOWu3awfgBx1urb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQSMCFfSkUCIILSGkdO46TIwJKW2gPVSv1FsVOjApdUJcDfD1jJ6RiERJcokh25Njj8byxx28QOsfCZZRxaRMOD1coZUcxVTYLCMATJcEq6gvOjaZX7bj1LutmsTn6LkzKD5FvuGnNMOu1VnC9IV2es4Y-Dca9EvH8AFbgJX1Ap_XypjVnjwoCk6MYEAS1HR_znJ2UlOfffrZH30DmZ8xqjE5lPc2sOjFchTrW5Lk0m4qSfPvC5Pjv_mygtQyOWlfp_NlEC8lwCy03sgP3bVS867-CvDWtq9UbmIxGlg6Vf7QardoO6lRu29dVO0uoYEtYD8HpZLEf40RSxTjRNFA--NUsiKjiPMICSx-cMeVRgoVMwHpKhWOfCFeqxMG-cOguWhyOhsk-smIoouBqAJ4SYN-iwHO9iMs4iShWIsYFdPExrKHM2MZ10ot-mPIkk1B3NzTdLaCzvO5LyrHxY63ih3TCTM8mIeBBCn61T5wCOs2LQUP0sUc0TEYzqEM4C1zOGSugvVSqeTPU0WFBDvzupZHNL-2HdRhY83bwl8onaKXabjyED7Xm_SFaJdpdNzs4RbQ4Hc-SI8A0U3FsZu47KYPu9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbz4fqyuWtGLQtc0aZoWvIi6uqsrIgpepDRpI-ruKrp70F_vJO128YGgl1LolDwmk_kmj28Atoj0OeNCuVTgw5dau0nKtMsjivBEK_SK5oJz6zw4ufabN_xmBPYGd2Fyfohywc1Yhp2vjYE_p3p3SBr60Hm5r9EgjHACHvMDDK8MJLockkdFkU1RjACCuV5IRElOSneH_352R98w5mfIan1OfQpuB7XNj5o81vo9WVPvX4gc_9ucaZgswKizn4-eGRjJurMw3iq22-egetx-Q20bUlfnvmPzGTnmoPyd07pszMN1_ejq4MQt0im4CmdDDDl5GqYkU0xzQQ0JVIhRNY8SpoVIiCQqxFBMB4wSqTL0nUqTNKTSVzrzSCg9tgCj3adutgROip8YBhqIpiR6tyQK_CARKs0SRrRMSQW2B70aq4Jr3KS8aMc5SzKNTXNj29wKbJayzznDxo9S1YFy4sLKXmNEgwyj6pB6FdgoP6N9mE2PpJs99VGGCh75QnBegcVcqWUxzDOHgjys7o5VzS_lx03sWPu2_BfhdRi_OKzHZ43z0xWYoCZWt8s3VRjtvfSzVQQ0Pblmx-0HaoLtpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glymphatic+imaging+using+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Taoka%2C+Toshiaki&rft.au=Naganawa%2C+Shinji&rft.date=2020-01-01&rft.eissn=1522-2586&rft.volume=51&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1002%2Fjmri.26892&rft_id=info%3Apmid%2F31423710&rft.externalDocID=31423710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |