GPU-based acceleration of free energy calculations in solid state physics
Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be signi...
Saved in:
Published in | Computer physics communications Vol. 192; pp. 220 - 227 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4655 1879-2944 |
DOI | 10.1016/j.cpc.2015.02.012 |
Cover
Abstract | Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.
Program title: Free_Energy
Catalogue identifier: AEVX_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEVX_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU Lesser General Public License, version 3
No. of lines in distributed program, including test data, etc.: 786
No. of bytes in distributed program, including test data, etc.: 6304
Distribution format: tar.gz
Programming language: Fortran, CUDA C.
Computer: Any with a CUDA-compliant GPU.
Operating system: No limits (tested on Linux).
RAM: Typically tens of megabytes.
Classification: 7, 6.5.
Nature of problem: GPU-accelerated free energy calculations in multi-band iron-based superconductor models.
Solution method: Parallel parameter space search for a global minimum of free energy.
Unusual features: The same core algorithm is implemented in Fortran with OpenMP and OpenACC compiler annotations, as well as in CUDA C. The original Fortran implementation targets the CPU architecture, while the CUDA C version is hand-optimized for modern GPUs.
Running time: Problem-dependent, up to several seconds for a single value of momentum and a linear lattice size on the order of 103 |
---|---|
AbstractList | Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19speedup compared to the CPU (119compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects. Program summary Program title: Free_Energy Catalogue identifier: AEVX_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEVX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 786 No. of bytes in distributed program, including test data, etc.: 6304 Distribution format: tar.gz Programming language: Fortran, CUDA C. Computer: Any with a CUDA-compliant GPU. Operating system: No limits (tested on Linux). RAM: Typically tens of megabytes. Classification: 7, 6.5. Nature of problem: GPU-accelerated free energy calculations in multi-band iron-based superconductor models. Solution method: Parallel parameter space search for a global minimum of free energy. Unusual features: The same core algorithm is implemented in Fortran with OpenMP and OpenACC compiler annotations, as well as in CUDA C. The original Fortran implementation targets the CPU architecture, while the CUDA C version is hand-optimized for modern GPUs. Running time: Problem-dependent, up to several seconds for a single value of momentum and a linear lattice size on the order of Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects. Program title: Free_Energy Catalogue identifier: AEVX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEVX_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 786 No. of bytes in distributed program, including test data, etc.: 6304 Distribution format: tar.gz Programming language: Fortran, CUDA C. Computer: Any with a CUDA-compliant GPU. Operating system: No limits (tested on Linux). RAM: Typically tens of megabytes. Classification: 7, 6.5. Nature of problem: GPU-accelerated free energy calculations in multi-band iron-based superconductor models. Solution method: Parallel parameter space search for a global minimum of free energy. Unusual features: The same core algorithm is implemented in Fortran with OpenMP and OpenACC compiler annotations, as well as in CUDA C. The original Fortran implementation targets the CPU architecture, while the CUDA C version is hand-optimized for modern GPUs. Running time: Problem-dependent, up to several seconds for a single value of momentum and a linear lattice size on the order of 103 |
Author | Crivelli, Dawid Januszewski, Michał Ptok, Andrzej Gardas, Bartłomiej |
Author_xml | – sequence: 1 givenname: Michał surname: Januszewski fullname: Januszewski, Michał email: michalj@gmail.com organization: Institute of Physics, University of Silesia, 40-007 Katowice, Poland – sequence: 2 givenname: Andrzej orcidid: 0000-0002-5566-2656 surname: Ptok fullname: Ptok, Andrzej email: aptok@mmj.pl organization: Institute of Physics, University of Silesia, 40-007 Katowice, Poland – sequence: 3 givenname: Dawid surname: Crivelli fullname: Crivelli, Dawid organization: Institute of Physics, University of Silesia, 40-007 Katowice, Poland – sequence: 4 givenname: Bartłomiej surname: Gardas fullname: Gardas, Bartłomiej organization: Institute of Physics, University of Silesia, 40-007 Katowice, Poland |
BookMark | eNp9kDFPwzAQhS1UJNrCD2DzyJJwjhM7FhOqoFSqBAOdLcc5g6s0CXaK1H9P2jIxMN1J732ne29GJm3XIiG3DFIGTNxvU9vbNANWpJClwLILMmWlVEmm8nxCpgAMklwUxRWZxbgFACkVn5LV8m2TVCZiTY212GAwg-9a2jnqAiLFFsPHgVrT2H1zkiL1LY1d42saBzMg7T8P0dt4TS6daSLe_M452Tw_vS9ekvXrcrV4XCc2F2JInEUuVe7KgouKiVqpcUUr0ZbI1SiWBUOlVA6VKcCICsoCKnBSYu6MkXxO7s53-9B97TEOeufj-HljWuz2UTMpgXPJMzFa5dlqQxdjQKetH04hhmB8oxnoY3l6q8fy9LE8DZkeyxtJ9ofsg9-ZcPiXeTgzOKb_9hh0tB5bi7UPaAddd_4f-gfhOIl3 |
CitedBy_id | crossref_primary_10_1364_OE_545401 crossref_primary_10_1088_1361_648X_aa928d crossref_primary_10_1103_PhysRevMaterials_2_024801 crossref_primary_10_3389_fphy_2020_00284 crossref_primary_10_1016_j_cpc_2017_02_014 crossref_primary_10_1038_srep41979 crossref_primary_10_7566_JPSJ_86_014708 crossref_primary_10_1016_j_cpc_2020_107728 crossref_primary_10_1088_2399_6528_ab8f02 crossref_primary_10_1007_s10948_017_4366_0 crossref_primary_10_4208_cicp_OA_2016_0041 crossref_primary_10_1103_PhysRevA_97_053619 crossref_primary_10_1103_PhysRevA_95_033613 crossref_primary_10_1108_EC_07_2019_0328 crossref_primary_10_12693_APhysPolA_130_507 crossref_primary_10_1088_0953_8984_27_48_482001 crossref_primary_10_7566_JPSJ_85_044708 crossref_primary_10_1088_1367_2630_aa6d9d |
Cites_doi | 10.1103/PhysRevB.88.214510 10.1103/PhysRevB.85.184515 10.1007/s10948-012-1574-5 10.1016/j.cpc.2015.01.021 10.1016/j.jcp.2009.03.018 10.1103/PhysRevLett.105.167006 10.7566/JPSJ.82.094701 10.1103/PhysRevB.83.100502 10.1103/PhysRevB.78.174526 10.1209/0295-5075/103/67001 10.1103/RevModPhys.78.275 10.1021/ja800073m 10.1103/PhysRevLett.111.057007 10.1103/PhysRevB.75.184515 10.1209/0295-5075/85/37002 10.1103/PhysRevB.68.024513 10.1143/JPSJ.76.051005 10.1016/j.cpc.2009.09.009 10.1103/PhysRevLett.100.237003 10.1080/10618560802238275 10.1103/PhysRevB.81.014511 10.1016/j.cpc.2010.08.005 10.1209/0295-5075/83/47001 10.1016/j.physc.2009.03.050 10.3938/jkps.62.2223 10.1088/1367-2630/11/2/025016 10.1103/PhysRevB.89.064505 10.12693/APhysPolA.118.420 10.1103/PhysRevB.87.184513 10.1103/PhysRevB.83.060502 10.1016/j.jcp.2008.01.047 10.1103/PhysRevB.83.174506 10.1007/978-3-642-27833-4_915-3 10.1016/j.cpc.2012.04.006 10.1103/PhysRevB.80.220510 10.1103/PhysRevB.57.8709 10.1143/JPSJ.73.1482 10.1143/JPSJ.81.024710 10.1103/PhysRevB.81.020511 10.1103/PhysRevB.77.220503 10.1007/s10948-013-2156-x 10.1103/PhysRevB.78.140509 10.1016/j.cpc.2007.03.004 10.1143/JPSJ.78.062001 10.1103/PhysRevB.84.184522 10.1103/PhysRevLett.101.147003 10.1103/PhysRevB.82.184504 10.7566/JPSJ.83.023703 10.1007/s10909-013-0871-0 10.1103/PhysRevB.79.214519 10.1103/PhysRevLett.101.087004 10.1103/PhysRevB.84.104502 10.1016/0921-4534(95)00438-6 10.1103/PhysRevB.80.174525 10.1103/PhysRevB.80.024512 10.12693/APhysPolA.126.A-16 10.1103/PhysRevB.88.014517 10.1103/PhysRevB.82.054509 10.1103/PhysRevB.85.092505 10.1103/PhysRevLett.101.026403 10.1140/epjb/e2013-41007-2 10.1103/PhysRevB.84.094525 10.1103/PhysRevB.74.212501 10.1016/j.cpc.2014.04.018 10.1088/0034-4885/74/12/124501 10.1209/0295-5075/100/37002 10.1103/PhysRev.135.A550 10.1103/PhysRevB.84.094526 10.1103/PhysRevB.81.052506 10.1103/PhysRevLett.101.057003 10.1143/JPSJ.80.013706 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1016/j.cpc.2015.02.012 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2944 |
EndPage | 227 |
ExternalDocumentID | 10_1016_j_cpc_2015_02_012 S0010465515000697 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7U5 8FD ACLOT EFKBS H8D JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c466t-fce3794f8536b16d99f85ec7ec8e39ce3851e99940ba50a6b0850b0f77e4faa73 |
IEDL.DBID | AIKHN |
ISSN | 0010-4655 |
IngestDate | Sun Sep 28 02:58:12 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 02:40:26 EDT 2025 Fri Feb 23 02:30:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pnictides FFLO NVIDIA CUDA PGI CUDA Fortran Superconductivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-fce3794f8536b16d99f85ec7ec8e39ce3851e99940ba50a6b0850b0f77e4faa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5566-2656 |
PQID | 1770337326 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1770337326 crossref_citationtrail_10_1016_j_cpc_2015_02_012 crossref_primary_10_1016_j_cpc_2015_02_012 elsevier_sciencedirect_doi_10_1016_j_cpc_2015_02_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computer physics communications |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaczmarczyk, Spałek (br000210) 2009; 79 Gurevich (br000275) 2011; 74 Tölke, Krafczyk (br000020) 2008; 22 Siro, Harju (br000045) 2012; 183 Cvetkovic, Tesanovic (br000140) 2009; 80 Andersona, Goddard III, Schröderb (br000040) 2007; 177 Litak, Miller, Gyöffy (br000325) 1995; 251 Terashima, Kihou, Tomita, Tsuchiya, Kikugawa, Ishida, Lee, Iyo, Eisaki, Uji (br000180) 2013; 87 Ptok (br000105) 2014; 87 Matsuda, Shimahara (br000195) 2007; 76 He, Song (br000370) 2013; 62 Gao, Huang, Tong (br000350) 2012; 100 Ptok (br000315) 2012; 25 Kaczmarczyk, Sadzikowski, Spałek (br000225) 2011; 84 Wang, Hu, Ting (br000230) 2006; 74 Januszewski, Kostur (br000010) 2010; 181 Nagai, Nakai, Machida (br000355) 2012; 85 Zhou, Zhang, Ting (br000320) 2010; 81 Ptok, Maśka, Mierzejewski (br000205) 2009; 21 Kunes, Arita, Wissgott, Toschi, Ikeda, Held (br000065) 2010; 181 Furukawa, Motome (br000340) 2004; 73 Zhang, Jiao, Balakirev, Wang, Jin, Yuan (br000170) 2011; 83 Graser, Maier, Hirschfeld, Scalapino (br000080) 2009; 11 Ptok (br000240) 2010; 118 Tai, Zhu, Graf, Ting (br000100) 2013; 103 Burger, Hardy, Aoki, Böhmer, Eder, Heid, Wolf, Schweiss, Fromknecht, Jackson, Paulsen, Meingast (br000260) 2013; 88 PGI CUDA Fortran Compiler. Liu, Kondo, Palczewski, Samolyuk, Lee, Tillman, Ni, Mun, Gordon, Santander-Syro, Bud’ko, McChesney, Rotenberg, Fedorov, Valla, Copie, Tanatar, Martin, Harmon, Canfield, Prozorov, Schmalian, Kaminski (br000145) 2009; 469 Larkin, Ovchinnikov (br000190) 1964; 47 Martin, Annett (br000330) 1998; 57 Anderson, Lorenz, Travesset (br000030) 2008; 227 Harris, Sengupta, Owens (br000395) 2007; 3 Kondo, Santander-Syro, Copie, Liu, Tillman, Mun, Schmalian, Bud’ko, Tanatar, Canfield, Kaminski (br000135) 2008; 101 Wang, Hu, Ting (br000235) 2007; 75 Covaci, Peeters, Berciu (br000345) 2010; 105 . Ptok, Crivelli (br000280) 2013; 172 Maśka, Mierzejewski (br000300) 2003; 68 Nagai, Shinohara, Futamura, Ota, Sakurai (br000365) 2013; 82 Kaczmarczyk, Spałek (br000215) 2010; 22 Pan, Li, Tai, Graf, Zhu, Ting (br000090) 2013; 88 Daghofer, Nicholson, Moreo, Dagotto (br000115) 2010; 81 Mazin, Singh, Johannes, Du (br000060) 2008; 101 Matsuda, Izawa, Vekhter (br000200) 2006; 18 Zocco, Grube, Eilers, Wolf, Löhneysen (br000265) 2013; 111 Daghofer, Nicholson, Moreo (br000120) 2012; 85 Yanase (br000310) 2009; 80 Mierzejewski, Ptok, Maśka (br000390) 2010; 80 Januszewski, Kostur (br000025) 2014 Khim, Lee, Kim, Choi, Stewart, Kim (br000160) 2011; 84 Fulde, Ferrel (br000185) 1964; 135 Tarantini, Gurevich, Jaroszynski, Balakirev, Bellingeri, Pallecchi, Ferdeghini, Shen, Wen, Larbalestier (br000255) 2011; 84 Kim, Tanatar, Song, Kwon, Prozorov (br000155) 2011; 83 MAGMA 1.6, 2014. Preis, Virnau, Wolfgang, Schneider (br000035) 2009; 228 Kuroki, Onari, Arita, Usui, Tanaka, Kontani, Aoki (br000085) 2008; 101 Takahashi, Mizushima, Machida (br000290) 2014; 89 Cho, Kim, Tanatar, Song, Kwon, Coniglio, Agosta, Gurevich, Prozorov (br000165) 2011; 83 Cvetkovic, Tesanovic (br000150) 2009; 85 Boeri, Dolgov, Golubov (br000070) 2008; 101 Gurevich (br000270) 2010; 82 Korshunov, Eremin (br000130) 2008; 78 Kamihara, Watanabe, Hirano, Hosono (br000050) 2008; 130 Ishida, Nakai, Hosono (br000055) 2009; 78 Kurita, Kitagawa, Matsubayashi, Kismarahardja, Choi, Brooks, Uwatoko, Uji, Terashima (br000175) 2011; 80 Nagai, Ota, Machida (br000360) 2012; 81 NVIDIA Corporation, CDUA C Programming Guide, version 5.5, 2013. OpenMP Architecture Review Board, OpenMP Application Programming Interface Version 3.0, 2008. Spiechowicz, Kostur, Machura (br000015) 2015 Loder, Kampf, Kopp (br000250) 2010; 81 Raghu, Qi, Liu, Scalapino, Zhang (br000110) 2008; 77 Loder, Kampf, Kopp (br000305) 2008; 78 Maśka, Mierzejewski, Kaczmarczyk, Spałek (br000220) 2010; 82 Ptok, Maśka, Mierzejewski (br000245) 2011; 84 Crivelli, Ptok (br000295) 2014; 126 Ding, Richard, Nakayama, Sugawara, Arakane, Sekiba, Takayama, Souma, Sato, Takahashi, Wang, Dai, Fang, Chen, Luo, Wang (br000095) 2008; 83 Korshunov, Togushova, Eremin (br000125) 2013; 26 Mizushima, Takahashi, Machida (br000285) 2014; 83 Singh, Du (br000075) 2008; 100 Weiße, Wellein, Alvermann, Fehske (br000335) 2006; 78 Tölke (10.1016/j.cpc.2015.02.012_br000020) 2008; 22 Matsuda (10.1016/j.cpc.2015.02.012_br000195) 2007; 76 Spiechowicz (10.1016/j.cpc.2015.02.012_br000015) 2015 Kaczmarczyk (10.1016/j.cpc.2015.02.012_br000210) 2009; 79 Ptok (10.1016/j.cpc.2015.02.012_br000240) 2010; 118 Burger (10.1016/j.cpc.2015.02.012_br000260) 2013; 88 Furukawa (10.1016/j.cpc.2015.02.012_br000340) 2004; 73 10.1016/j.cpc.2015.02.012_br000385 10.1016/j.cpc.2015.02.012_br000380 Januszewski (10.1016/j.cpc.2015.02.012_br000010) 2010; 181 Kaczmarczyk (10.1016/j.cpc.2015.02.012_br000215) 2010; 22 Takahashi (10.1016/j.cpc.2015.02.012_br000290) 2014; 89 Ptok (10.1016/j.cpc.2015.02.012_br000245) 2011; 84 Harris (10.1016/j.cpc.2015.02.012_br000395) 2007; 3 Januszewski (10.1016/j.cpc.2015.02.012_br000025) 2014 Kuroki (10.1016/j.cpc.2015.02.012_br000085) 2008; 101 Matsuda (10.1016/j.cpc.2015.02.012_br000200) 2006; 18 Mazin (10.1016/j.cpc.2015.02.012_br000060) 2008; 101 Crivelli (10.1016/j.cpc.2015.02.012_br000295) 2014; 126 Korshunov (10.1016/j.cpc.2015.02.012_br000130) 2008; 78 Tarantini (10.1016/j.cpc.2015.02.012_br000255) 2011; 84 Cvetkovic (10.1016/j.cpc.2015.02.012_br000140) 2009; 80 Mizushima (10.1016/j.cpc.2015.02.012_br000285) 2014; 83 He (10.1016/j.cpc.2015.02.012_br000370) 2013; 62 Tai (10.1016/j.cpc.2015.02.012_br000100) 2013; 103 Ptok (10.1016/j.cpc.2015.02.012_br000205) 2009; 21 Boeri (10.1016/j.cpc.2015.02.012_br000070) 2008; 101 Korshunov (10.1016/j.cpc.2015.02.012_br000125) 2013; 26 Andersona (10.1016/j.cpc.2015.02.012_br000040) 2007; 177 Kim (10.1016/j.cpc.2015.02.012_br000155) 2011; 83 Nagai (10.1016/j.cpc.2015.02.012_br000360) 2012; 81 Covaci (10.1016/j.cpc.2015.02.012_br000345) 2010; 105 Cvetkovic (10.1016/j.cpc.2015.02.012_br000150) 2009; 85 Zhang (10.1016/j.cpc.2015.02.012_br000170) 2011; 83 Cho (10.1016/j.cpc.2015.02.012_br000165) 2011; 83 Anderson (10.1016/j.cpc.2015.02.012_br000030) 2008; 227 Wang (10.1016/j.cpc.2015.02.012_br000230) 2006; 74 Ptok (10.1016/j.cpc.2015.02.012_br000315) 2012; 25 Preis (10.1016/j.cpc.2015.02.012_br000035) 2009; 228 Daghofer (10.1016/j.cpc.2015.02.012_br000120) 2012; 85 Ptok (10.1016/j.cpc.2015.02.012_br000105) 2014; 87 Gao (10.1016/j.cpc.2015.02.012_br000350) 2012; 100 10.1016/j.cpc.2015.02.012_br000005 Zhou (10.1016/j.cpc.2015.02.012_br000320) 2010; 81 Singh (10.1016/j.cpc.2015.02.012_br000075) 2008; 100 Kondo (10.1016/j.cpc.2015.02.012_br000135) 2008; 101 Wang (10.1016/j.cpc.2015.02.012_br000235) 2007; 75 Mierzejewski (10.1016/j.cpc.2015.02.012_br000390) 2010; 80 Zocco (10.1016/j.cpc.2015.02.012_br000265) 2013; 111 Weiße (10.1016/j.cpc.2015.02.012_br000335) 2006; 78 Siro (10.1016/j.cpc.2015.02.012_br000045) 2012; 183 Nagai (10.1016/j.cpc.2015.02.012_br000365) 2013; 82 Gurevich (10.1016/j.cpc.2015.02.012_br000275) 2011; 74 Terashima (10.1016/j.cpc.2015.02.012_br000180) 2013; 87 Kamihara (10.1016/j.cpc.2015.02.012_br000050) 2008; 130 Larkin (10.1016/j.cpc.2015.02.012_br000190) 1964; 47 Loder (10.1016/j.cpc.2015.02.012_br000305) 2008; 78 Maśka (10.1016/j.cpc.2015.02.012_br000220) 2010; 82 Ishida (10.1016/j.cpc.2015.02.012_br000055) 2009; 78 Yanase (10.1016/j.cpc.2015.02.012_br000310) 2009; 80 Khim (10.1016/j.cpc.2015.02.012_br000160) 2011; 84 10.1016/j.cpc.2015.02.012_br000375 Loder (10.1016/j.cpc.2015.02.012_br000250) 2010; 81 Kunes (10.1016/j.cpc.2015.02.012_br000065) 2010; 181 Martin (10.1016/j.cpc.2015.02.012_br000330) 1998; 57 Graser (10.1016/j.cpc.2015.02.012_br000080) 2009; 11 Nagai (10.1016/j.cpc.2015.02.012_br000355) 2012; 85 Kaczmarczyk (10.1016/j.cpc.2015.02.012_br000225) 2011; 84 Gurevich (10.1016/j.cpc.2015.02.012_br000270) 2010; 82 Raghu (10.1016/j.cpc.2015.02.012_br000110) 2008; 77 Liu (10.1016/j.cpc.2015.02.012_br000145) 2009; 469 Fulde (10.1016/j.cpc.2015.02.012_br000185) 1964; 135 Daghofer (10.1016/j.cpc.2015.02.012_br000115) 2010; 81 Ptok (10.1016/j.cpc.2015.02.012_br000280) 2013; 172 Kurita (10.1016/j.cpc.2015.02.012_br000175) 2011; 80 Litak (10.1016/j.cpc.2015.02.012_br000325) 1995; 251 Ding (10.1016/j.cpc.2015.02.012_br000095) 2008; 83 Pan (10.1016/j.cpc.2015.02.012_br000090) 2013; 88 Maśka (10.1016/j.cpc.2015.02.012_br000300) 2003; 68 |
References_xml | – volume: 82 start-page: 054509 year: 2010 ident: br000220 article-title: Superconducting Bardeen–Cooper–Schrieffer versus Fulde–Ferrell-Larkin–Ovchinnikov states of heavy quasiparticles with spin-dependent masses and Kondo-type pairing publication-title: Phys. Rev. B – volume: 84 start-page: 104502 year: 2011 ident: br000160 article-title: Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal publication-title: Phys. Rev. B – volume: 76 start-page: 051005 year: 2007 ident: br000195 article-title: Fulde–Ferrell-Larkin–Ovchinnikov state in Heavy Fermion superconductors publication-title: J. Phys. Soc. Japan – volume: 84 start-page: 094526 year: 2011 ident: br000245 article-title: Coexistence of superconductivity and incommensurate magnetic order publication-title: Phys. Rev. B – reference: NVIDIA Corporation, CDUA C Programming Guide, version 5.5, 2013. – volume: 111 start-page: 057007 year: 2013 ident: br000265 article-title: Pauli-limited multiband superconductivity in publication-title: Phys. Rev. Lett. – volume: 74 start-page: 124501 year: 2011 ident: br000275 article-title: Iron-based superconductors at high magnetic fields publication-title: Rep. Progr. Phys. – volume: 81 start-page: 014511 year: 2010 ident: br000115 article-title: Three orbital model for the iron-based superconductors publication-title: Phys. Rev. B – volume: 82 start-page: 094701 year: 2013 ident: br000365 article-title: Numerical construction of a low-energy effective Hamiltonian in a self-consistent Bogoliubov-de Gennes approach of superconductivity publication-title: J. Phys. Soc. Japan – volume: 84 start-page: 094525 year: 2011 ident: br000225 article-title: Conductance spectroscopy of correlated superconductor in magnetic field in the Pauli limit: evidence for strong correlations publication-title: Phys. Rev. B – reference: OpenMP Architecture Review Board, OpenMP Application Programming Interface Version 3.0, 2008. – volume: 84 start-page: 184522 year: 2011 ident: br000255 article-title: Significant enhancement of upper critical fields by doping and strain in iron-based superconductors publication-title: Phys. Rev. B – volume: 181 start-page: 1888 year: 2010 ident: br000065 article-title: Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions publication-title: Comput. Phys. Commun. – volume: 62 start-page: 2223 year: 2013 ident: br000370 article-title: Self-consistent calculations of the effects of disorder in d-wave and s-wave superconductors publication-title: J. Korean Phys. Soc. – volume: 25 start-page: 1843 year: 2012 ident: br000315 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov state in quantum rings publication-title: J. Supercond. Nov. Magn. – reference: PGI CUDA Fortran Compiler. – volume: 77 start-page: 220503(R) year: 2008 ident: br000110 article-title: Minimal two-band model of the superconducting iron oxypnictides publication-title: Phys. Rev. B – volume: 83 start-page: 023703 year: 2014 ident: br000285 article-title: Fulde–Ferrell-Larkin–Ovchinnikov states in two-band superconductors publication-title: J. Phys. Soc. Japan – volume: 101 start-page: 057003 year: 2008 ident: br000060 article-title: Unconventional superconductivity with a sign reversal in the order parameter of publication-title: Phys. Rev. Lett. – year: 2014 ident: br000025 article-title: Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method publication-title: Comput. Phys. Commun. – volume: 78 start-page: 174526 year: 2008 ident: br000305 article-title: Crossover from hc/e to hc/2e current oscillations in rings of s-wave superconductors publication-title: Phys. Rev. B. – volume: 73 start-page: 1482 year: 2004 ident: br000340 article-title: Order N Monte Carlo algorithm for Fermion systems coupled with fluctuating adiabatical fields publication-title: J. Phys. Soc. Japan – volume: 80 start-page: 174525 year: 2010 ident: br000390 article-title: Mutual enhancement of magnetism and Fulde–Ferrell-Larkin–Ovchinnikov superconductivity in publication-title: Phys. Rev. B – volume: 22 start-page: 355702 year: 2010 ident: br000215 article-title: Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model publication-title: J. Phys.: Condens. Matter – volume: 81 start-page: 020511(R) year: 2010 ident: br000250 article-title: Superconducting state with a finite-momentum pairing mechanism in zero external magnetic field publication-title: Phys. Rev. B – volume: 85 start-page: 37002 year: 2009 ident: br000150 article-title: Multiband magnetism and superconductivity in Fe-based compounds publication-title: Europhys. Lett. – volume: 74 start-page: 212501 year: 2006 ident: br000230 article-title: Impurity effects on the quasiparticle spectrum of the Fulde–Ferrell-Larkin–Ovchinnikov state of a d-wave superconductor publication-title: Phys. Rev. B – volume: 68 start-page: 024513 year: 2003 ident: br000300 article-title: Vortex structure in the publication-title: Phys. Rev. B. – volume: 18 start-page: R705 year: 2006 ident: br000200 article-title: Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements publication-title: J. Phys.: Condens. Matter – volume: 75 start-page: 184515 year: 2007 ident: br000235 article-title: Impurity-induced configuration-transition in the Fulde–Ferrell-Larkin–Ovchinnikov state of a d-wave superconductor publication-title: Phys. Rev. B – volume: 78 start-page: 062001 year: 2009 ident: br000055 article-title: To what extent iron-pnictide new superconductors have been clarified: A progress report publication-title: J. Phys. Soc. Japan – volume: 89 start-page: 064505 year: 2014 ident: br000290 article-title: Multiband effects on Fulde–Ferrell-Larkin–Ovchinnikov states of Pauli-limited superconductors publication-title: Phys. Rev. B – volume: 80 start-page: 013706 year: 2011 ident: br000175 article-title: Determination of the upper critical field of a single crystal LiFeAs: The magnetic torque study up to 35 Tesla publication-title: J. Phys. Soc. Japan – volume: 251 start-page: 263 year: 1995 ident: br000325 article-title: A recursion method for solving the Bogoliubov equations for inhomogeneous superconductors publication-title: Physica C – volume: 78 start-page: 275 year: 2006 ident: br000335 article-title: The Kernel polynomial method publication-title: Rev. Modern Phys. – volume: 3 start-page: 851 year: 2007 end-page: 876 ident: br000395 article-title: Parallel prefix sum (scan) with CUDA publication-title: GPU Gems – volume: 11 start-page: 025016 year: 2009 ident: br000080 article-title: Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides publication-title: New J. Phys. – volume: 87 start-page: 184513 year: 2013 ident: br000180 article-title: First-order superconducting resistive transition in publication-title: Phys. Rev. B – volume: 172 start-page: 226 year: 2013 ident: br000280 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov state in pnictides publication-title: J. Low Temp. Phys. – volume: 22 start-page: 443 year: 2008 ident: br000020 article-title: TeraFLOP computing on a desktop PC with GPUs for 3D CFD publication-title: Int. J. Comput. Fluid Dyn. – volume: 85 start-page: 092505 year: 2012 ident: br000355 article-title: Direct numerical demonstration of sign-preserving quasiparticle interference via an impurity inside a vortex core in an unconventional superconductor publication-title: Phys. Rev. B – volume: 181 start-page: 183 year: 2010 ident: br000010 article-title: Accelerating numerical solution of Stochastic differential equations with CUDA publication-title: Comput. Phys. Commun. – volume: 80 start-page: 024512 year: 2009 ident: br000140 article-title: Valley density-wave and multiband superconductivity in iron-based pnictide superconductors publication-title: Phys. Rev. B – volume: 469 start-page: 491 year: 2009 ident: br000145 article-title: Electronic properties of iron arsenic high temperature superconductors revealed by angle resolved photoemission spectroscopy (ARPES) publication-title: Physica C – volume: 135 start-page: A550 year: 1964 ident: br000185 article-title: Superconductivity in a strong spin-exchange field publication-title: Phys. Rev. – volume: 126 start-page: A16 year: 2014 ident: br000295 article-title: Unconventional superconductivity in iron-based superconductors in a three-band model publication-title: Acta Phys. Polon. A – volume: 88 start-page: 214510 year: 2013 ident: br000090 article-title: Evolution of the Fermi surface topology in doped 122 iron pnictides publication-title: Phys. Rev. B – volume: 81 start-page: 052506 year: 2010 ident: br000320 article-title: Spin-density wave and asymmetry of coherence peaks in iron pnictide superconductors from a two-orbital model publication-title: Phys. Rev. B – volume: 21 start-page: 295601 year: 2009 ident: br000205 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov phase in the presence of pair hopping interaction publication-title: J. Phys.: Condens. Matter – volume: 101 start-page: 147003 year: 2008 ident: br000135 article-title: Momentum dependence of the superconducting gap in publication-title: Phys. Rev. Lett. – volume: 83 start-page: 060502(R) year: 2011 ident: br000165 article-title: Anisotropic upper critical field and possible Fulde–Ferrel–Larkin–Ovchinnikov state in the stoichiometric pnictide superconductor LiFeAs publication-title: Phys. Rev. B – volume: 118 start-page: 420 year: 2010 ident: br000240 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov superconductivity in disordered systems publication-title: Acta Phys. Polon. A – volume: 183 start-page: 1884 year: 2012 ident: br000045 article-title: Exact diagonalization of the Hubbard model on graphics processing units publication-title: Comput. Phys. Commun. – volume: 101 start-page: 026403 year: 2008 ident: br000070 article-title: Is publication-title: Phys. Rev. Lett. – volume: 57 start-page: 8709 year: 1998 ident: br000330 article-title: Self-consistent interface properties of d- and s-wave superconductors publication-title: Phys. Rev. B – volume: 81 start-page: 024710 year: 2012 ident: br000360 article-title: Efficient numerical self-consistent mean-field approach for fermionic many-body systems by polynomial expansion on spectral density publication-title: J. Phys. Soc. Japan – year: 2015 ident: br000015 article-title: GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA publication-title: Comput. Phys. Commun. – volume: 177 start-page: 298 year: 2007 ident: br000040 article-title: Quantum Monte Carlo on graphical processing units publication-title: Comput. Phys. Commun. – volume: 79 start-page: 214519 year: 2009 ident: br000210 article-title: Superconductivity in an almost localized Fermi liquid of quasiparticles with spin-dependent masses and effective-field induced by electron correlations publication-title: Phys. Rev. B – volume: 130 start-page: 3296 year: 2008 ident: br000050 article-title: Iron-based layered superconductor publication-title: J. Am. Chem. Soc. – volume: 80 start-page: 220510(R) year: 2009 ident: br000310 article-title: Angular Fulde–Ferrell-Larkin–Ovchinnikov state in cold fermion gases in a toroidal trap publication-title: Phys. Rev. B – volume: 228 start-page: 4468 year: 2009 ident: br000035 article-title: GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model publication-title: J. Comput. Phys. – volume: 105 start-page: 167006 year: 2010 ident: br000345 article-title: Efficient numerical approach to inhomogeneous superconductivity: The Chebyshev–Bogoliubov-de Gennes method publication-title: Phys. Rev. Lett. – reference: MAGMA 1.6, 2014. – volume: 101 start-page: 087004 year: 2008 ident: br000085 article-title: Unconventional pairing originating from the disconnected Fermi surfaces of superconducting publication-title: Phys. Rev. Lett. – volume: 83 start-page: 100502(R) year: 2011 ident: br000155 article-title: Nodeless two-gap superconducting state in single crystals of the stoichiometric iron pnictide LiFeAs publication-title: Phys. Rev. B – volume: 83 start-page: 174506 year: 2011 ident: br000170 article-title: Upper critical field and its anisotropy in LiFeAs publication-title: Phys. Rev. B – volume: 88 start-page: 014517 year: 2013 ident: br000260 article-title: Strong Pauli-limiting behavior of Hc2 and uniaxial pressure dependencies in publication-title: Phys. Rev. B – volume: 100 start-page: 37002 year: 2012 ident: br000350 article-title: Mixed-state effect on quasiparticle interference in iron-based superconductors publication-title: Europhys. Lett. – volume: 47 start-page: 1136 year: 1964 ident: br000190 article-title: Inhomogeneous state of superconductors publication-title: Zh. Eksp. Teor. Fiz. – reference: . – volume: 83 start-page: 47001 year: 2008 ident: br000095 article-title: Observation of Fermi-surface–dependent nodeless superconducting gaps in publication-title: Europhys. Lett. – volume: 227 start-page: 5342 year: 2008 ident: br000030 article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units publication-title: J. Comput. Phys. – volume: 100 start-page: 237003 year: 2008 ident: br000075 article-title: Density functional study of publication-title: Phys. Rev. Lett. – volume: 82 start-page: 184504 year: 2010 ident: br000270 article-title: Upper critical field and the Fulde–Ferrel–Larkin–Ovchinnikov transition in multiband superconductors publication-title: Phys. Rev. B – volume: 26 start-page: 2665 year: 2013 ident: br000125 article-title: Spin–orbit coupling in Fe-based superconductors publication-title: J. Supercond. Nov. Magn. – volume: 85 start-page: 184515 year: 2012 ident: br000120 article-title: Spectral density in a nematic state of iron pnictides publication-title: Phys. Rev. B – volume: 103 start-page: 67001 year: 2013 ident: br000100 article-title: Calculated phase diagram of doped publication-title: Europhys. Lett. – volume: 78 start-page: 140509(R) year: 2008 ident: br000130 article-title: Theory of magnetic excitations in iron-based layered superconductors publication-title: Phys. Rev. B – volume: 87 start-page: 2 year: 2014 ident: br000105 article-title: Influence of publication-title: Eur. Phys. J. B – volume: 88 start-page: 214510 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000090 article-title: Evolution of the Fermi surface topology in doped 122 iron pnictides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.214510 – volume: 85 start-page: 184515 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000120 article-title: Spectral density in a nematic state of iron pnictides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.184515 – volume: 25 start-page: 1843 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000315 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov state in quantum rings publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-012-1574-5 – ident: 10.1016/j.cpc.2015.02.012_br000005 – year: 2015 ident: 10.1016/j.cpc.2015.02.012_br000015 article-title: GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.01.021 – volume: 228 start-page: 4468 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000035 article-title: GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.03.018 – volume: 105 start-page: 167006 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000345 article-title: Efficient numerical approach to inhomogeneous superconductivity: The Chebyshev–Bogoliubov-de Gennes method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.167006 – volume: 82 start-page: 094701 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000365 article-title: Numerical construction of a low-energy effective Hamiltonian in a self-consistent Bogoliubov-de Gennes approach of superconductivity publication-title: J. Phys. Soc. Japan doi: 10.7566/JPSJ.82.094701 – volume: 83 start-page: 100502(R) year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000155 article-title: Nodeless two-gap superconducting state in single crystals of the stoichiometric iron pnictide LiFeAs publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.100502 – volume: 78 start-page: 174526 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000305 article-title: Crossover from hc/e to hc/2e current oscillations in rings of s-wave superconductors publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.78.174526 – volume: 103 start-page: 67001 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000100 article-title: Calculated phase diagram of doped BaFe2As2 superconductor in a C4-symmetry breaking model publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/67001 – volume: 78 start-page: 275 year: 2006 ident: 10.1016/j.cpc.2015.02.012_br000335 article-title: The Kernel polynomial method publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.78.275 – volume: 130 start-page: 3296 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000050 article-title: Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26~K publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800073m – volume: 111 start-page: 057007 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000265 article-title: Pauli-limited multiband superconductivity in KFe2As2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.057007 – volume: 22 start-page: 355702 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000215 article-title: Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model publication-title: J. Phys.: Condens. Matter – volume: 75 start-page: 184515 year: 2007 ident: 10.1016/j.cpc.2015.02.012_br000235 article-title: Impurity-induced configuration-transition in the Fulde–Ferrell-Larkin–Ovchinnikov state of a d-wave superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.184515 – volume: 85 start-page: 37002 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000150 article-title: Multiband magnetism and superconductivity in Fe-based compounds publication-title: Europhys. Lett. doi: 10.1209/0295-5075/85/37002 – volume: 68 start-page: 024513 year: 2003 ident: 10.1016/j.cpc.2015.02.012_br000300 article-title: Vortex structure in the d-density-wave scenario publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.68.024513 – volume: 76 start-page: 051005 year: 2007 ident: 10.1016/j.cpc.2015.02.012_br000195 article-title: Fulde–Ferrell-Larkin–Ovchinnikov state in Heavy Fermion superconductors publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.76.051005 – volume: 181 start-page: 183 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000010 article-title: Accelerating numerical solution of Stochastic differential equations with CUDA publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.09.009 – volume: 100 start-page: 237003 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000075 article-title: Density functional study of LaFeAsO1−xFx: A low carrier density superconductor near Itinerant magnetism publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.237003 – volume: 22 start-page: 443 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000020 article-title: TeraFLOP computing on a desktop PC with GPUs for 3D CFD publication-title: Int. J. Comput. Fluid Dyn. doi: 10.1080/10618560802238275 – volume: 81 start-page: 014511 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000115 article-title: Three orbital model for the iron-based superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.014511 – volume: 47 start-page: 1136 year: 1964 ident: 10.1016/j.cpc.2015.02.012_br000190 article-title: Inhomogeneous state of superconductors publication-title: Zh. Eksp. Teor. Fiz. – volume: 181 start-page: 1888 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000065 article-title: Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.08.005 – volume: 83 start-page: 47001 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000095 article-title: Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/83/47001 – ident: 10.1016/j.cpc.2015.02.012_br000375 – volume: 469 start-page: 491 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000145 article-title: Electronic properties of iron arsenic high temperature superconductors revealed by angle resolved photoemission spectroscopy (ARPES) publication-title: Physica C doi: 10.1016/j.physc.2009.03.050 – volume: 62 start-page: 2223 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000370 article-title: Self-consistent calculations of the effects of disorder in d-wave and s-wave superconductors publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.62.2223 – volume: 11 start-page: 025016 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000080 article-title: Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides publication-title: New J. Phys. doi: 10.1088/1367-2630/11/2/025016 – volume: 89 start-page: 064505 year: 2014 ident: 10.1016/j.cpc.2015.02.012_br000290 article-title: Multiband effects on Fulde–Ferrell-Larkin–Ovchinnikov states of Pauli-limited superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.064505 – volume: 118 start-page: 420 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000240 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov superconductivity in disordered systems publication-title: Acta Phys. Polon. A doi: 10.12693/APhysPolA.118.420 – volume: 87 start-page: 184513 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000180 article-title: First-order superconducting resistive transition in Ba0.07K0.93Fe2As2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.184513 – volume: 83 start-page: 060502(R) year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000165 article-title: Anisotropic upper critical field and possible Fulde–Ferrel–Larkin–Ovchinnikov state in the stoichiometric pnictide superconductor LiFeAs publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.060502 – volume: 227 start-page: 5342 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000030 article-title: General purpose molecular dynamics simulations fully implemented on graphics processing units publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.047 – volume: 83 start-page: 174506 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000170 article-title: Upper critical field and its anisotropy in LiFeAs publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.174506 – ident: 10.1016/j.cpc.2015.02.012_br000385 doi: 10.1007/978-3-642-27833-4_915-3 – volume: 183 start-page: 1884 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000045 article-title: Exact diagonalization of the Hubbard model on graphics processing units publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.04.006 – volume: 80 start-page: 220510(R) year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000310 article-title: Angular Fulde–Ferrell-Larkin–Ovchinnikov state in cold fermion gases in a toroidal trap publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.220510 – volume: 57 start-page: 8709 year: 1998 ident: 10.1016/j.cpc.2015.02.012_br000330 article-title: Self-consistent interface properties of d- and s-wave superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.8709 – volume: 73 start-page: 1482 year: 2004 ident: 10.1016/j.cpc.2015.02.012_br000340 article-title: Order N Monte Carlo algorithm for Fermion systems coupled with fluctuating adiabatical fields publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.73.1482 – volume: 81 start-page: 024710 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000360 article-title: Efficient numerical self-consistent mean-field approach for fermionic many-body systems by polynomial expansion on spectral density publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.81.024710 – volume: 81 start-page: 020511(R) year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000250 article-title: Superconducting state with a finite-momentum pairing mechanism in zero external magnetic field publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.020511 – volume: 77 start-page: 220503(R) year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000110 article-title: Minimal two-band model of the superconducting iron oxypnictides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.220503 – volume: 26 start-page: 2665 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000125 article-title: Spin–orbit coupling in Fe-based superconductors publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-013-2156-x – volume: 78 start-page: 140509(R) year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000130 article-title: Theory of magnetic excitations in iron-based layered superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.140509 – volume: 177 start-page: 298 year: 2007 ident: 10.1016/j.cpc.2015.02.012_br000040 article-title: Quantum Monte Carlo on graphical processing units publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2007.03.004 – volume: 78 start-page: 062001 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000055 article-title: To what extent iron-pnictide new superconductors have been clarified: A progress report publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.78.062001 – volume: 84 start-page: 184522 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000255 article-title: Significant enhancement of upper critical fields by doping and strain in iron-based superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.184522 – volume: 101 start-page: 147003 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000135 article-title: Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.147003 – volume: 82 start-page: 184504 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000270 article-title: Upper critical field and the Fulde–Ferrel–Larkin–Ovchinnikov transition in multiband superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.184504 – volume: 83 start-page: 023703 year: 2014 ident: 10.1016/j.cpc.2015.02.012_br000285 article-title: Fulde–Ferrell-Larkin–Ovchinnikov states in two-band superconductors publication-title: J. Phys. Soc. Japan doi: 10.7566/JPSJ.83.023703 – volume: 172 start-page: 226 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000280 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov state in pnictides publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-013-0871-0 – volume: 79 start-page: 214519 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000210 article-title: Superconductivity in an almost localized Fermi liquid of quasiparticles with spin-dependent masses and effective-field induced by electron correlations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.214519 – volume: 101 start-page: 087004 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000085 article-title: Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.087004 – volume: 84 start-page: 104502 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000160 article-title: Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.104502 – volume: 251 start-page: 263 year: 1995 ident: 10.1016/j.cpc.2015.02.012_br000325 article-title: A recursion method for solving the Bogoliubov equations for inhomogeneous superconductors publication-title: Physica C doi: 10.1016/0921-4534(95)00438-6 – volume: 80 start-page: 174525 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000390 article-title: Mutual enhancement of magnetism and Fulde–Ferrell-Larkin–Ovchinnikov superconductivity in CeCoIn5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174525 – volume: 80 start-page: 024512 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000140 article-title: Valley density-wave and multiband superconductivity in iron-based pnictide superconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.024512 – volume: 18 start-page: R705 year: 2006 ident: 10.1016/j.cpc.2015.02.012_br000200 article-title: Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements publication-title: J. Phys.: Condens. Matter – volume: 126 start-page: A16 year: 2014 ident: 10.1016/j.cpc.2015.02.012_br000295 article-title: Unconventional superconductivity in iron-based superconductors in a three-band model publication-title: Acta Phys. Polon. A doi: 10.12693/APhysPolA.126.A-16 – volume: 88 start-page: 014517 year: 2013 ident: 10.1016/j.cpc.2015.02.012_br000260 article-title: Strong Pauli-limiting behavior of Hc2 and uniaxial pressure dependencies in KFe2As2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.014517 – volume: 82 start-page: 054509 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000220 article-title: Superconducting Bardeen–Cooper–Schrieffer versus Fulde–Ferrell-Larkin–Ovchinnikov states of heavy quasiparticles with spin-dependent masses and Kondo-type pairing publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.054509 – volume: 85 start-page: 092505 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000355 article-title: Direct numerical demonstration of sign-preserving quasiparticle interference via an impurity inside a vortex core in an unconventional superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.092505 – volume: 101 start-page: 026403 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000070 article-title: Is LaFeAsO1−xFx an electron–phonon superconductor? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.026403 – volume: 87 start-page: 2 year: 2014 ident: 10.1016/j.cpc.2015.02.012_br000105 article-title: Influence of s± symmetry on unconventional superconductivity in pnictides above the Pauli limit—two-band model study publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-41007-2 – volume: 84 start-page: 094525 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000225 article-title: Conductance spectroscopy of correlated superconductor in magnetic field in the Pauli limit: evidence for strong correlations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.094525 – volume: 74 start-page: 212501 year: 2006 ident: 10.1016/j.cpc.2015.02.012_br000230 article-title: Impurity effects on the quasiparticle spectrum of the Fulde–Ferrell-Larkin–Ovchinnikov state of a d-wave superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.212501 – volume: 21 start-page: 295601 year: 2009 ident: 10.1016/j.cpc.2015.02.012_br000205 article-title: The Fulde–Ferrell-Larkin–Ovchinnikov phase in the presence of pair hopping interaction publication-title: J. Phys.: Condens. Matter – year: 2014 ident: 10.1016/j.cpc.2015.02.012_br000025 article-title: Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.04.018 – volume: 74 start-page: 124501 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000275 article-title: Iron-based superconductors at high magnetic fields publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/74/12/124501 – volume: 100 start-page: 37002 year: 2012 ident: 10.1016/j.cpc.2015.02.012_br000350 article-title: Mixed-state effect on quasiparticle interference in iron-based superconductors publication-title: Europhys. Lett. doi: 10.1209/0295-5075/100/37002 – volume: 135 start-page: A550 year: 1964 ident: 10.1016/j.cpc.2015.02.012_br000185 article-title: Superconductivity in a strong spin-exchange field publication-title: Phys. Rev. doi: 10.1103/PhysRev.135.A550 – volume: 84 start-page: 094526 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000245 article-title: Coexistence of superconductivity and incommensurate magnetic order publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.094526 – volume: 3 start-page: 851 year: 2007 ident: 10.1016/j.cpc.2015.02.012_br000395 article-title: Parallel prefix sum (scan) with CUDA publication-title: GPU Gems – volume: 81 start-page: 052506 year: 2010 ident: 10.1016/j.cpc.2015.02.012_br000320 article-title: Spin-density wave and asymmetry of coherence peaks in iron pnictide superconductors from a two-orbital model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.052506 – ident: 10.1016/j.cpc.2015.02.012_br000380 – volume: 101 start-page: 057003 year: 2008 ident: 10.1016/j.cpc.2015.02.012_br000060 article-title: Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1xFx publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.057003 – volume: 80 start-page: 013706 year: 2011 ident: 10.1016/j.cpc.2015.02.012_br000175 article-title: Determination of the upper critical field of a single crystal LiFeAs: The magnetic torque study up to 35 Tesla publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.80.013706 |
SSID | ssj0007793 |
Score | 2.2881844 |
Snippet | Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 220 |
SubjectTerms | Algorithms Central processing units FFLO FORTRAN Free energy Mathematical models NVIDIA CUDA PGI CUDA Fortran Pnictides Solid state physics Summaries Superconductivity Superconductors |
Title | GPU-based acceleration of free energy calculations in solid state physics |
URI | https://dx.doi.org/10.1016/j.cpc.2015.02.012 https://www.proquest.com/docview/1770337326 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfAiPvFNBE9CtW3SpD2KqKuLIuKit9CkE1iR7uKuV3-7kzYVFPTgqc-UMpN835DMfAE4MrbMS-tM5GK0kUDkUSGcjCQ3eVqhkch97fDtnewPxc1z9jwH510tjE-rDNjfYnqD1uHOabDm6WQ08jW-fn2SGN9r-stCzcNCSmyf92Dh7HrQv_sCZKWC9i5Bjm_QLW42aV524oUMk6xR7kzS3-jpB1A37HO5AsshbGRn7Z-twhzWa7DYpG_a6TpcX90PI09IFSutJSZp_crGjrk3RIZNhR8jf9iwXdeUjWpG_W5UsaamiLVTHNMNGF5ePJ73o7BJQmSFlLPIWeQ0phzRrjSJrIqCTtEqtDnygh5SSIUUBYrYlFlcSuM16kzslELhylLxTejV4xq3gFFs5rhS5Lk0FpXMi4yjFWg5d4XJMr4NcWcbbYOCuN_I4lV3qWIvmsypvTl1nGoy5zYcfzWZtPIZf70sOoPrb31AE7z_1eywc46mseEXPMoax-9TnSjCM64oQt3536d3Yclftem5e9Cbvb3jPgUhM3MA8ycfyUHoav44eHgafAIu_Nz2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mhuiL-InfRvBJKHZLmqyPMtTNj-HDBnsLTXqBiXTDzf_fS5sOFPTBt9I0pdxdfnf07n4HcGVs1s2sM5GL0UYCkUepcDKS3HQ7ORqJ3PcOvwxlfyweJ8mkAb26F8aXVQbsrzC9ROtw5yZI82Y-nfoeX5-fJI_vOf1lqtagJfxQ6ya0bgdP_eEKkJUK3LsEOX5Dndwsy7zs3BMZtpOSubPd-c09_QDq0vvcb8NWCBvZbfVlO9DAYhfWy_JNu9iDwcPrOPIOKWeZteRJKr2ymWPuA5Fh2eHHSB82jOtasGnByO6mOSt7ilj1i2OxD-P7u1GvH4UhCZEVUi4jZ5HTmXLkdqVpyzxN6RKtQttFntIihVRIUaCITZbEmTSeo87ETikULssUP4BmMSvwEBjFZo4rRZrrxCKX3TThaAVazl1qkoQfQVzLRtvAIO4HWbzrulTsTZM4tRenjjuaxHkE16st84o-46-HRS1w_c0GNMH7X9sua-VoOhs-4ZEVOPtc6LYiPOOKItTj_736Ajb6o5dn_TwYPp3Apl-pSnVPobn8-MQzCkiW5jwY3Bd8xN05 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU-based+acceleration+of+free+energy+calculations+in+solid+state+physics&rft.jtitle=Computer+physics+communications&rft.au=Januszewski%2C+Micha%C5%82&rft.au=Ptok%2C+Andrzej&rft.au=Crivelli%2C+Dawid&rft.au=Gardas%2C+Bart%C5%82omiej&rft.date=2015-07-01&rft.issn=0010-4655&rft.volume=192&rft.spage=220&rft.epage=227&rft_id=info:doi/10.1016%2Fj.cpc.2015.02.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2015_02_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |