On the Sequential Quadratically Constrained Quadratic Programming Methods
An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class a...
Saved in:
| Published in | Mathematics of operations research Vol. 29; no. 1; pp. 64 - 79 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Linthicum
INFORMS
01.02.2004
Institute for Operations Research and the Management Sciences |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0364-765X 1526-5471 |
| DOI | 10.1287/moor.1030.0069 |
Cover
| Abstract | An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions. |
|---|---|
| AbstractList | An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions. An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions.[Publication Abstract] |
| Audience | Academic |
| Author | Solodov, M. V |
| Author_xml | – sequence: 1 fullname: Solodov, M. V |
| BookMark | eNqFkc9rFDEUx4O04Lb16k0YPAgeZs3vzBzLUutCpWoreAvZJDObZSapSRbtf98Mo10KFckhkPf5vrz3_Z6AIx-8BeA1gkuEG_FhDCEuESRwCSFvX4AFYpjXjAp0BBaQcFoLzn68BCcp7SBETCC6AOtrX-WtrW7sz7312amh-rpXJqrstBqG-2oVfMpROW_NoVJ9iaGPahyd76vPNm-DSWfguFNDsq_-3Kfg-8eL29Wn-ur6cr06v6o15TzX1jBCkRBI8zKEpRAatkHGINsIo0TTGIUFx13Xaqwa1rVNSznbGN0auukwJKfg7dz3LoYyc8pyF_bRly8lRpgLAdsJqmeoV4OVzneh7KB7621UQ7Gtc-X5HCFKMMNYFH75DF-OsaPTzwrePxEUJtvfuVf7lOT65ttTls6sjiGlaDupXS42FkkxdpAIyilAOQUopwDlFOBhpkfZXXSjivf_FryZBbuUS-EvTSAkjBN8MGXaL47p__3ezfzW9dtfLs7GTMJRlcijxK1EklPyAFtexKE |
| CODEN | MOREDQ |
| CitedBy_id | crossref_primary_10_1007_s10898_023_01272_1 crossref_primary_10_1137_130912190 crossref_primary_10_1080_02331934_2011_611514 crossref_primary_10_1109_TNNLS_2020_3009201 crossref_primary_10_1287_moor_2015_0735 crossref_primary_10_1137_S1052623403427264 crossref_primary_10_1007_s10107_012_0582_3 crossref_primary_10_1016_j_cam_2007_09_024 crossref_primary_10_1137_090776664 crossref_primary_10_1007_s10957_012_0145_z crossref_primary_10_1137_18M1182152 crossref_primary_10_1080_02331934_2020_1818744 crossref_primary_10_1007_s10589_009_9265_2 crossref_primary_10_55937_sut_1358951199 crossref_primary_10_1007_s10589_009_9285_y crossref_primary_10_1016_j_cam_2011_09_002 crossref_primary_10_1080_10556780500474915 crossref_primary_10_1007_s11071_013_0768_0 crossref_primary_10_1007_s10957_014_0580_0 crossref_primary_10_1016_j_isatra_2017_09_014 crossref_primary_10_1287_moor_2020_1079 crossref_primary_10_1016_j_ejor_2009_01_052 crossref_primary_10_1016_j_cam_2020_113368 crossref_primary_10_1287_moor_2021_0258 crossref_primary_10_1137_090758015 crossref_primary_10_1007_s10957_013_0339_z crossref_primary_10_1007_s10114_007_4465_0 crossref_primary_10_1016_j_jmaa_2009_08_046 crossref_primary_10_1007_s10589_007_9064_6 crossref_primary_10_1080_0305215X_2018_1437154 crossref_primary_10_1007_s10898_019_00835_5 crossref_primary_10_1007_s10898_022_01218_z |
| Cites_doi | 10.1007/s101070100252 10.1016/0041-5553(79)90069-7 10.1017/S0962492900002518 10.1007/BFb0120947 10.1007/978-3-662-05078-1 10.1007/BF01371083 10.1137/0327033 10.1007/BF01580879 10.1007/PL00011378 10.1007/978-3-642-68874-4_12 10.1137/S1052623401398120 10.1016/S0024-3795(98)10032-0 10.1016/0041-5553(81)90007-0 10.1137/S1052623499365309 10.1080/10556789908805750 10.1007/978-1-4615-4381-7_20 |
| ContentType | Journal Article |
| Copyright | Copyright 2004 INFORMS COPYRIGHT 2004 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Feb 2004 |
| Copyright_xml | – notice: Copyright 2004 INFORMS – notice: COPYRIGHT 2004 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Feb 2004 |
| DBID | AAYXX CITATION ISR 3V. 7WY 7WZ 7XB 87Z 8AL 8AO 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M0N M2O M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1287/moor.1030.0069 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1526-5471 |
| EndPage | 79 |
| ExternalDocumentID | 583303951 A114325227 10_1287_moor_1030_0069 30035632 moor.1030.0069 mathor_29_1_64 |
| Genre | Research Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 08R 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ADCOW ADGDI ADMHP ADODI AEILP AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HQ6 HVGLF IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XHC XI7 ZL0 1AW 1OL ACYGS AELPN BES HGD H~9 P-O XFK Y99 ZY4 -~X .DC 18M 2AX 8H~ AAOAC AAWIL AAWTO ABAWQ ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACDIW ACGFO ACHJO ACMTB ACTMH ACUHF ACVFL ACXJH ADULT AEGXH AELLO AEMOZ AFVYC AGLNM AHAJD AHQJS AIAGR AIHAF AKBRZ ALRMG AMVHM APTMU ASMEE BAAKF CCPQU IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA WHG AADHG AAYXX CITATION PQGLB PUEGO XOL 7XB 8FK JQ2 L.- PKEHL Q9U |
| ID | FETCH-LOGICAL-c466t-ed5341771c6001e400d5b1dd1e87da788da2762ff9c2a85f989465bdc9d4bf203 |
| IEDL.DBID | BENPR |
| ISSN | 0364-765X |
| IngestDate | Sat Aug 23 14:27:33 EDT 2025 Fri Jun 13 00:50:14 EDT 2025 Mon Oct 20 17:20:41 EDT 2025 Thu Oct 16 14:52:49 EDT 2025 Wed Oct 01 02:52:10 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Thu Jun 19 15:26:13 EDT 2025 Wed Jan 06 02:47:57 EST 2021 Fri Jan 15 03:34:58 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-ed5341771c6001e400d5b1dd1e87da788da2762ff9c2a85f989465bdc9d4bf203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 212677090 |
| PQPubID | 37790 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1287_moor_1030_0069 proquest_journals_212677090 jstor_primary_30035632 crossref_primary_10_1287_moor_1030_0069 informs_primary_10_1287_moor_1030_0069 highwire_informs_mathor_29_1_64 gale_infotracgeneralonefile_A114325227 gale_infotracacademiconefile_A114325227 gale_incontextgauss_ISR_A114325227 |
| ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20040201 20040200 2004-02-00 |
| PublicationDateYYYYMMDD | 2004-02-01 |
| PublicationDate_xml | – month: 02 year: 2004 text: 20040201 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | Mathematics of operations research |
| PublicationYear | 2004 |
| Publisher | INFORMS Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
| References | B20 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Mangasarian O. L. (B11) 1969 Nesterov Y. E. (B15) 1993 Bertsekas D. P. (B3) 1995 |
| References_xml | – ident: B8 – ident: B12 – ident: B9 – ident: B11 – ident: B13 – ident: B14 – ident: B10 – ident: B3 – ident: B2 – ident: B20 – ident: B1 – ident: B4 – ident: B7 – ident: B5 – ident: B6 – ident: B17 – ident: B18 – ident: B16 – ident: B15 – ident: B19 – ident: B1 doi: 10.1007/s101070100252 – ident: B16 doi: 10.1016/0041-5553(79)90069-7 – ident: B4 doi: 10.1017/S0962492900002518 – volume-title: Nonlinear Programming year: 1995 ident: B3 – ident: B13 doi: 10.1007/BFb0120947 – ident: B6 doi: 10.1007/978-3-662-05078-1 – volume-title: Nonlinear Programming year: 1969 ident: B11 – ident: B20 doi: 10.1007/BF01371083 – ident: B5 doi: 10.1137/0327033 – ident: B7 doi: 10.1007/BF01580879 – ident: B14 doi: 10.1007/PL00011378 – ident: B18 doi: 10.1007/978-3-642-68874-4_12 – ident: B8 doi: 10.1137/S1052623401398120 – ident: B10 doi: 10.1016/S0024-3795(98)10032-0 – ident: B17 doi: 10.1016/0041-5553(81)90007-0 – ident: B2 doi: 10.1137/S1052623499365309 – volume-title: Interior Point Polynomial Methods in Convex Programming: Theory and Applications year: 1993 ident: B15 – ident: B19 doi: 10.1080/10556789908805750 – ident: B9 doi: 10.1007/978-1-4615-4381-7_20 |
| SSID | ssj0015714 |
| Score | 1.8541737 |
| Snippet | An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective... |
| SourceID | proquest gale crossref jstor informs highwire |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 64 |
| SubjectTerms | Algorithms Analysis Approximation Convexity Integers Management science Maratos effect Mathematical models Mathematical programming Mathematical theorems Nonlinear programming nonsmooth penalty function Operations research Penalty function Perceptron convergence procedure Quadratic programming quadratically constrained quadratic programming |
| Title | On the Sequential Quadratically Constrained Quadratic Programming Methods |
| URI | http://mor.journal.informs.org/cgi/content/abstract/29/1/64 https://www.jstor.org/stable/30035632 https://www.proquest.com/docview/212677090 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1526-5471 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: AMVHM dateStart: 19760201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1526-5471 dateEnd: 20091130 omitProxy: true ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: BENPR dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: true ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: 8FG dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB61WwnBocBCxbZQIoTgZDXJxnZyQKigLi3SltJSaW-WYzvlsE1Ks3vg3zOT2AsrXmePHCfz8Ez8-RuAl3FsSl0VgiV5VbLM5RUrDRfMOa0d2k8ZWyoUp6fi-DL7OOOzDZiGuzAEqwwxsQvUtjH0j_wAQ6yQMi7itzffGDWNosPV0EFD-84K9k3HMLYJWykRYw1g693R6dn56liBy8TzSWVMCj7zLI5YNRxcN80t3UDvkF7F2i4VYnUgEO4uPlFK2QYQ42-BvNudJg9g26eV0WFvBw9hw9VDuBNQ7UO4H7o3RN6Zh3DvFyrCR3DyqY4wF4wuOmg1uv08-rzUluwDtTj_HlFnz66fhLM_R6KzHt51jXNE064ZdfsYLidHX94fM99mgZlMiAVzluNWJmViKPlx6NSWl4m1icul1VgiW51iyKyqwqQ65xVRtgteWlPYrKzSeLwDg7qp3ROIYiMy4YwQOW79Li4oneOWJ1oaTA3yZAQsfFZlPAc5LX2uqBZBNShSgyI1KFLDCF6v5G969o2_Sr4gLSmitKgJM3Oll22rTi7O1SGWfOMU80yJ03mhqsHHGu2vIODiiQVrTfLVmuRVzwH-J8HnwSyUNwqFpcZXXFtaqESJDKcKA_97hZ3OmFZiYzrmFeN0BHvBupSPMK1a-cPuP0f34G6PNSIAzlMYLG6X7hmmUYtyHzbzyYd97yI_APhcGw0 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwE98FhasRSohXicrOZlJzlUqECrXdpdSh_S3oxjO-WwTdpmV6g_jv_GTNZeWPE69ezRxMmM5xHPfEPIyyDQhSpzwcKsLFhis5IVmgtmrVIW9KcIDCaKg6HonSYfR3y0RL77Xhgsq_Q2sTXUptb4j3wLTKxI0yAP3l5cMhwahZerfoKGcpMVzHaLMOb6Ovbt9TfI4Jrt_gcQ96so2ts9ed9jbsgA04kQE2YNB0OepqFG129BpQ0vQmNCm6VGQYJoVAQGoyxzHamMlwhYLnhhdG6SooyCGPjeIitJnOSQ-6282x0eHs2vMXgaOvyqhKWCjxxqJGQpW-d1fYUd721lWb7gFb1v8IDFbaMVhrCNL5r8zXG03nDvAbnnwli6M9O7h2TJVh1y21fRd8h9Py2COuPRIau_QB8-Iv1PFYXYkx63pdxgZsb081QZ1EfQmvE1xUmi7fwKa36u0MNZOdk58KCDdvh1s0ZOb-SLr5Plqq7sY0IDLRJhtRAZhBo2yDF85IaHKtUQimRhlzD_WaV2mOe49bHE3AfEIFEMEsUgUQxd8mZOfzFD-_gr5QuUkkQIjQprdM7UtGlk__hI7kCKGUcQ16bAzhGVNTxWK9fyAJtH1K0FytcLlGczzPE_EW56tZBOKSSkNl9hb1EuQykSYOUX_vcK660yzclivFYWcdQlG167pLNojZyfvyf_XN0kd3ongwN50B_ub5C7szonLP55SpYnV1P7DEK4SfHcHRRKvtz02fwBD_9W_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+sequential+quadratically+constrained+quadratic+programming+methods&rft.jtitle=Mathematics+of+operations+research&rft.au=Solodov%2C+M.V&rft.date=2004-02-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=29&rft.issue=1&rft.spage=64&rft_id=info:doi/10.1287%2Fmoor.1030.0069&rft.externalDocID=A114325227 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |