On the Sequential Quadratically Constrained Quadratic Programming Methods

An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class a...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 29; no. 1; pp. 64 - 79
Main Author Solodov, M. V
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.02.2004
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0364-765X
1526-5471
DOI10.1287/moor.1030.0069

Cover

Abstract An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions.
AbstractList An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions.
An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective function subject to quadratic approximation of the constraints, followed by a line search in the obtained direction. Methods of this class are receiving attention due to the development of efficient interior point techniques for solving subproblems with this structure, via formulating them as second-order cone programs. Recently, Fukushima et al. (2003) proposed a SQCQP method for convex minimization with twice continuously differentiable data. Their method possesses global and locally quadratic convergence, and it is free of the Maratos effect. The feasibility of subproblems in their method is enforced by switching between the linear and quadratic approximations of the constraints. This strategy requires computing a strictly feasible point, as well as choosing some further parameters. We propose a SQCQP method where feasibility of subproblems is ensured by introducing a slack variable and, hence, is automatic. In addition, we do not assume convexity of the objective function or twice differentiability of the problem data. While our method has all the desirable convergence properties, it is easier to implement. Among other things, it does not require computing a strictly feasible point, which is a nontrivial task. In addition, its global convergence requires weaker assumptions.[Publication Abstract]
Audience Academic
Author Solodov, M. V
Author_xml – sequence: 1
  fullname: Solodov, M. V
BookMark eNqFkc9rFDEUx4O04Lb16k0YPAgeZs3vzBzLUutCpWoreAvZJDObZSapSRbtf98Mo10KFckhkPf5vrz3_Z6AIx-8BeA1gkuEG_FhDCEuESRwCSFvX4AFYpjXjAp0BBaQcFoLzn68BCcp7SBETCC6AOtrX-WtrW7sz7312amh-rpXJqrstBqG-2oVfMpROW_NoVJ9iaGPahyd76vPNm-DSWfguFNDsq_-3Kfg-8eL29Wn-ur6cr06v6o15TzX1jBCkRBI8zKEpRAatkHGINsIo0TTGIUFx13Xaqwa1rVNSznbGN0auukwJKfg7dz3LoYyc8pyF_bRly8lRpgLAdsJqmeoV4OVzneh7KB7621UQ7Gtc-X5HCFKMMNYFH75DF-OsaPTzwrePxEUJtvfuVf7lOT65ttTls6sjiGlaDupXS42FkkxdpAIyilAOQUopwDlFOBhpkfZXXSjivf_FryZBbuUS-EvTSAkjBN8MGXaL47p__3ezfzW9dtfLs7GTMJRlcijxK1EklPyAFtexKE
CODEN MOREDQ
CitedBy_id crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1137_130912190
crossref_primary_10_1080_02331934_2011_611514
crossref_primary_10_1109_TNNLS_2020_3009201
crossref_primary_10_1287_moor_2015_0735
crossref_primary_10_1137_S1052623403427264
crossref_primary_10_1007_s10107_012_0582_3
crossref_primary_10_1016_j_cam_2007_09_024
crossref_primary_10_1137_090776664
crossref_primary_10_1007_s10957_012_0145_z
crossref_primary_10_1137_18M1182152
crossref_primary_10_1080_02331934_2020_1818744
crossref_primary_10_1007_s10589_009_9265_2
crossref_primary_10_55937_sut_1358951199
crossref_primary_10_1007_s10589_009_9285_y
crossref_primary_10_1016_j_cam_2011_09_002
crossref_primary_10_1080_10556780500474915
crossref_primary_10_1007_s11071_013_0768_0
crossref_primary_10_1007_s10957_014_0580_0
crossref_primary_10_1016_j_isatra_2017_09_014
crossref_primary_10_1287_moor_2020_1079
crossref_primary_10_1016_j_ejor_2009_01_052
crossref_primary_10_1016_j_cam_2020_113368
crossref_primary_10_1287_moor_2021_0258
crossref_primary_10_1137_090758015
crossref_primary_10_1007_s10957_013_0339_z
crossref_primary_10_1007_s10114_007_4465_0
crossref_primary_10_1016_j_jmaa_2009_08_046
crossref_primary_10_1007_s10589_007_9064_6
crossref_primary_10_1080_0305215X_2018_1437154
crossref_primary_10_1007_s10898_019_00835_5
crossref_primary_10_1007_s10898_022_01218_z
Cites_doi 10.1007/s101070100252
10.1016/0041-5553(79)90069-7
10.1017/S0962492900002518
10.1007/BFb0120947
10.1007/978-3-662-05078-1
10.1007/BF01371083
10.1137/0327033
10.1007/BF01580879
10.1007/PL00011378
10.1007/978-3-642-68874-4_12
10.1137/S1052623401398120
10.1016/S0024-3795(98)10032-0
10.1016/0041-5553(81)90007-0
10.1137/S1052623499365309
10.1080/10556789908805750
10.1007/978-1-4615-4381-7_20
ContentType Journal Article
Copyright Copyright 2004 INFORMS
COPYRIGHT 2004 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Feb 2004
Copyright_xml – notice: Copyright 2004 INFORMS
– notice: COPYRIGHT 2004 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Feb 2004
DBID AAYXX
CITATION
ISR
3V.
7WY
7WZ
7XB
87Z
8AL
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1287/moor.1030.0069
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
EndPage 79
ExternalDocumentID 583303951
A114325227
10_1287_moor_1030_0069
30035632
moor.1030.0069
mathor_29_1_64
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8H
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
F20
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HQ6
HVGLF
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RNS
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XHC
XI7
ZL0
1AW
1OL
ACYGS
AELPN
BES
HGD
H~9
P-O
XFK
Y99
ZY4
-~X
.DC
18M
2AX
8H~
AAOAC
AAWIL
AAWTO
ABAWQ
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ACUHF
ACVFL
ACXJH
ADULT
AEGXH
AELLO
AEMOZ
AFVYC
AGLNM
AHAJD
AHQJS
AIAGR
AIHAF
AKBRZ
ALRMG
AMVHM
APTMU
ASMEE
BAAKF
CCPQU
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
WHG
AADHG
AAYXX
CITATION
PQGLB
PUEGO
XOL
7XB
8FK
JQ2
L.-
PKEHL
Q9U
ID FETCH-LOGICAL-c466t-ed5341771c6001e400d5b1dd1e87da788da2762ff9c2a85f989465bdc9d4bf203
IEDL.DBID BENPR
ISSN 0364-765X
IngestDate Sat Aug 23 14:27:33 EDT 2025
Fri Jun 13 00:50:14 EDT 2025
Mon Oct 20 17:20:41 EDT 2025
Thu Oct 16 14:52:49 EDT 2025
Wed Oct 01 02:52:10 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Thu Jun 19 15:26:13 EDT 2025
Wed Jan 06 02:47:57 EST 2021
Fri Jan 15 03:34:58 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-ed5341771c6001e400d5b1dd1e87da788da2762ff9c2a85f989465bdc9d4bf203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 212677090
PQPubID 37790
PageCount 16
ParticipantIDs crossref_citationtrail_10_1287_moor_1030_0069
proquest_journals_212677090
jstor_primary_30035632
crossref_primary_10_1287_moor_1030_0069
informs_primary_10_1287_moor_1030_0069
highwire_informs_mathor_29_1_64
gale_infotracgeneralonefile_A114325227
gale_infotracacademiconefile_A114325227
gale_incontextgauss_ISR_A114325227
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20040201
20040200
2004-02-00
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: 20040201
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2004
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Mangasarian O. L. (B11) 1969
Nesterov Y. E. (B15) 1993
Bertsekas D. P. (B3) 1995
References_xml – ident: B8
– ident: B12
– ident: B9
– ident: B11
– ident: B13
– ident: B14
– ident: B10
– ident: B3
– ident: B2
– ident: B20
– ident: B1
– ident: B4
– ident: B7
– ident: B5
– ident: B6
– ident: B17
– ident: B18
– ident: B16
– ident: B15
– ident: B19
– ident: B1
  doi: 10.1007/s101070100252
– ident: B16
  doi: 10.1016/0041-5553(79)90069-7
– ident: B4
  doi: 10.1017/S0962492900002518
– volume-title: Nonlinear Programming
  year: 1995
  ident: B3
– ident: B13
  doi: 10.1007/BFb0120947
– ident: B6
  doi: 10.1007/978-3-662-05078-1
– volume-title: Nonlinear Programming
  year: 1969
  ident: B11
– ident: B20
  doi: 10.1007/BF01371083
– ident: B5
  doi: 10.1137/0327033
– ident: B7
  doi: 10.1007/BF01580879
– ident: B14
  doi: 10.1007/PL00011378
– ident: B18
  doi: 10.1007/978-3-642-68874-4_12
– ident: B8
  doi: 10.1137/S1052623401398120
– ident: B10
  doi: 10.1016/S0024-3795(98)10032-0
– ident: B17
  doi: 10.1016/0041-5553(81)90007-0
– ident: B2
  doi: 10.1137/S1052623499365309
– volume-title: Interior Point Polynomial Methods in Convex Programming: Theory and Applications
  year: 1993
  ident: B15
– ident: B19
  doi: 10.1080/10556789908805750
– ident: B9
  doi: 10.1007/978-1-4615-4381-7_20
SSID ssj0015714
Score 1.8541737
Snippet An iteration of the sequential quadratically constrained quadratic programming method (SQCQP) consists of minimizing a quadratic approximation of the objective...
SourceID proquest
gale
crossref
jstor
informs
highwire
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Algorithms
Analysis
Approximation
Convexity
Integers
Management science
Maratos effect
Mathematical models
Mathematical programming
Mathematical theorems
Nonlinear programming
nonsmooth penalty function
Operations research
Penalty function
Perceptron convergence procedure
Quadratic programming
quadratically constrained quadratic programming
Title On the Sequential Quadratically Constrained Quadratic Programming Methods
URI http://mor.journal.informs.org/cgi/content/abstract/29/1/64
https://www.jstor.org/stable/30035632
https://www.proquest.com/docview/212677090
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: AMVHM
  dateStart: 19760201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: true
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 20091130
  omitProxy: true
  ssIdentifier: ssj0015714
  issn: 0364-765X
  databaseCode: 8FG
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB61WwnBocBCxbZQIoTgZDXJxnZyQKigLi3SltJSaW-WYzvlsE1Ks3vg3zOT2AsrXmePHCfz8Ez8-RuAl3FsSl0VgiV5VbLM5RUrDRfMOa0d2k8ZWyoUp6fi-DL7OOOzDZiGuzAEqwwxsQvUtjH0j_wAQ6yQMi7itzffGDWNosPV0EFD-84K9k3HMLYJWykRYw1g693R6dn56liBy8TzSWVMCj7zLI5YNRxcN80t3UDvkF7F2i4VYnUgEO4uPlFK2QYQ42-BvNudJg9g26eV0WFvBw9hw9VDuBNQ7UO4H7o3RN6Zh3DvFyrCR3DyqY4wF4wuOmg1uv08-rzUluwDtTj_HlFnz66fhLM_R6KzHt51jXNE064ZdfsYLidHX94fM99mgZlMiAVzluNWJmViKPlx6NSWl4m1icul1VgiW51iyKyqwqQ65xVRtgteWlPYrKzSeLwDg7qp3ROIYiMy4YwQOW79Li4oneOWJ1oaTA3yZAQsfFZlPAc5LX2uqBZBNShSgyI1KFLDCF6v5G969o2_Sr4gLSmitKgJM3Oll22rTi7O1SGWfOMU80yJ03mhqsHHGu2vIODiiQVrTfLVmuRVzwH-J8HnwSyUNwqFpcZXXFtaqESJDKcKA_97hZ3OmFZiYzrmFeN0BHvBupSPMK1a-cPuP0f34G6PNSIAzlMYLG6X7hmmUYtyHzbzyYd97yI_APhcGw0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwE98FhasRSohXicrOZlJzlUqECrXdpdSh_S3oxjO-WwTdpmV6g_jv_GTNZeWPE69ezRxMmM5xHPfEPIyyDQhSpzwcKsLFhis5IVmgtmrVIW9KcIDCaKg6HonSYfR3y0RL77Xhgsq_Q2sTXUptb4j3wLTKxI0yAP3l5cMhwahZerfoKGcpMVzHaLMOb6Ovbt9TfI4Jrt_gcQ96so2ts9ed9jbsgA04kQE2YNB0OepqFG129BpQ0vQmNCm6VGQYJoVAQGoyxzHamMlwhYLnhhdG6SooyCGPjeIitJnOSQ-6282x0eHs2vMXgaOvyqhKWCjxxqJGQpW-d1fYUd721lWb7gFb1v8IDFbaMVhrCNL5r8zXG03nDvAbnnwli6M9O7h2TJVh1y21fRd8h9Py2COuPRIau_QB8-Iv1PFYXYkx63pdxgZsb081QZ1EfQmvE1xUmi7fwKa36u0MNZOdk58KCDdvh1s0ZOb-SLr5Plqq7sY0IDLRJhtRAZhBo2yDF85IaHKtUQimRhlzD_WaV2mOe49bHE3AfEIFEMEsUgUQxd8mZOfzFD-_gr5QuUkkQIjQprdM7UtGlk__hI7kCKGUcQ16bAzhGVNTxWK9fyAJtH1K0FytcLlGczzPE_EW56tZBOKSSkNl9hb1EuQykSYOUX_vcK660yzclivFYWcdQlG167pLNojZyfvyf_XN0kd3ongwN50B_ub5C7szonLP55SpYnV1P7DEK4SfHcHRRKvtz02fwBD_9W_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+sequential+quadratically+constrained+quadratic+programming+methods&rft.jtitle=Mathematics+of+operations+research&rft.au=Solodov%2C+M.V&rft.date=2004-02-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=29&rft.issue=1&rft.spage=64&rft_id=info:doi/10.1287%2Fmoor.1030.0069&rft.externalDocID=A114325227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon