OpenFL: the open federated learning library
Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL)...
Saved in:
| Published in | Physics in medicine & biology Vol. 67; no. 21; pp. 214001 - 214011 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
19.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/1361-6560/ac97d9 |
Cover
| Abstract | Objective.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.
Approach.
Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.
Main results.
In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.
Significance.
The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL’s initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced at
github.com/intel/openfl
. |
|---|---|
| AbstractList | Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.
Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.
In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.
The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl. Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Approach.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.Main results.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.Significance.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Approach.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.Main results.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.Significance.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl. Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks. Main results. In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases. Significance. The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL’s initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced at github.com/intel/openfl . |
| Author | Edwards, Brandon Narayana Moorthy, Prakash Wang, Shih-han Mirhaji, Parsa Riviera, Walter Martin, Jason Foley, Patrick Bakas, Spyridon Pati, Sarthak Sheller, Micah J Shah, Prashant Sharma, Mansi |
| AuthorAffiliation | 1 Intel Corporation, Santa Clara, CA 95052, United States of America 4 Equal first authors 2 University of Pennsylvania, 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America 3 Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America |
| AuthorAffiliation_xml | – name: 1 Intel Corporation, Santa Clara, CA 95052, United States of America – name: 3 Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America – name: 2 University of Pennsylvania, 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America – name: 4 Equal first authors |
| Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0001-9401-3088 surname: Foley fullname: Foley, Patrick organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 2 givenname: Micah J orcidid: 0000-0002-6571-0850 surname: Sheller fullname: Sheller, Micah J organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 3 givenname: Brandon orcidid: 0000-0002-0957-9149 surname: Edwards fullname: Edwards, Brandon organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 4 givenname: Sarthak orcidid: 0000-0003-2243-8487 surname: Pati fullname: Pati, Sarthak organization: University of Pennsylvania , 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America – sequence: 5 givenname: Walter orcidid: 0000-0001-5292-7594 surname: Riviera fullname: Riviera, Walter organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 6 givenname: Mansi orcidid: 0000-0002-1859-8261 surname: Sharma fullname: Sharma, Mansi organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 7 givenname: Prakash orcidid: 0000-0003-2064-8018 surname: Narayana Moorthy fullname: Narayana Moorthy, Prakash organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 8 givenname: Shih-han orcidid: 0000-0001-9713-3878 surname: Wang fullname: Wang, Shih-han organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 9 givenname: Jason surname: Martin fullname: Martin, Jason organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 10 givenname: Parsa orcidid: 0000-0003-1093-5793 surname: Mirhaji fullname: Mirhaji, Parsa organization: Albert Einstein College of Medicine , 1300 Morris Park Ave, Bronx, NY 10461, United States of America – sequence: 11 givenname: Prashant orcidid: 0000-0003-1055-574X surname: Shah fullname: Shah, Prashant organization: Intel Corporation , Santa Clara, CA 95052, United States of America – sequence: 12 givenname: Spyridon orcidid: 0000-0001-8734-6482 surname: Bakas fullname: Bakas, Spyridon organization: University of Pennsylvania , 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36198326$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktr3DAUhUVJaCaPfVfFy0DrRC_LoywKJXTawEA2yVrI0lWi4JEc2U6Zf19NPc2jhBAQSEjnu_ccSftoJ8QACH0i-ITg-fyUMEFKUQl8qo2srfyAZo9bO2iGMSOlJFW1h_b7_g5jQuaUf0R7WSPnjIoZ-nLZQVgsz4rhFoqY14UDC0kPYIsWdAo-3BStb5JO60O063Tbw9F2PkDXix9X57_K5eXPi_Pvy9JwIYYSDDZgpSG1BEc5tRo0cDCUN9ZRKTi4ytYNBUaNlU47TCSzxHHbVK7ikh0gMtUdQ6fXv3Xbqi75VXagCFab4GqTUm1Sqil4Zr5NTDc2K7AGwpD0Exe1Vy9Pgr9VN_FByZpUjNe5wPG2QIr3I_SDWvneQNvqAHHsFa0pZYSyv_4-P-_12OTfrWYBngQmxb5P4N7jX_yHGD_owceNW9--BX6dQB87dRfHFPLTvCU_fkXerRolakVJHjx_E9VZx_4Axi-3YA |
| CODEN | PHMBA7 |
| CitedBy_id | crossref_primary_10_1016_j_future_2024_107646 crossref_primary_10_1016_j_inffus_2024_102792 crossref_primary_10_1007_s10916_023_01994_5 crossref_primary_10_1016_j_procs_2024_07_003 crossref_primary_10_1038_s41467_022_33407_5 crossref_primary_10_1109_TMI_2023_3278528 crossref_primary_10_1016_S1470_2045_24_00315_2 crossref_primary_10_1007_s13042_024_02453_4 crossref_primary_10_1038_s42256_023_00652_2 crossref_primary_10_1038_s44172_023_00066_3 crossref_primary_10_1016_j_patter_2024_101031 crossref_primary_10_3390_app13095472 crossref_primary_10_1109_ACCESS_2024_3508030 crossref_primary_10_1145_3704807 crossref_primary_10_1093_jamia_ocad235 crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_2196_55496 crossref_primary_10_1145_3687124 crossref_primary_10_1016_j_future_2024_07_035 crossref_primary_10_1093_bioinformatics_btad531 crossref_primary_10_1016_j_csbj_2024_12_001 crossref_primary_10_32604_cmes_2024_053462 crossref_primary_10_1016_j_patter_2024_100945 crossref_primary_10_1016_j_media_2025_103497 crossref_primary_10_1016_j_softx_2024_101841 crossref_primary_10_1186_s13059_023_03039_z crossref_primary_10_1016_j_iot_2023_101036 crossref_primary_10_1016_j_patter_2024_101006 crossref_primary_10_1016_j_softx_2023_101505 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_1007_s00521_024_10956_y crossref_primary_10_1016_j_xpro_2023_102812 crossref_primary_10_3390_iot5020012 crossref_primary_10_1109_ACCESS_2024_3369915 |
| Cites_doi | 10.1145/3298981 10.1371/journal.pmed.1002683 10.21437/Interspeech.2021-1775 10.1056/NEJMlim035027 10.17487/rfc5246 10.1561/2200000083 10.1016/j.patter.2021.100336 10.1073/pnas.1919012117 10.1088/1361-6560/ac9449 10.1038/s41598-020-69250-1 10.1145/155870.155881 10.1038/sdata.2017.117 10.1145/3306618.3314236 10.5555/3454287.3455008 10.1007/978-3-030-11723-8_9 10.1109/TMI.2014.2377694 10.1016/j.media.2020.101714 10.1093/neuonc/noab196.532 10.17487/RFC2246 10.5281/zenodo.4724125 10.4236/jis.2015.61004 10.1038/s41746-020-00323-1 10.1038/s41467-022-33407-5 10.1038/s41586-021-03583-3 10.1007/978-3-030-69544-6_23 |
| ContentType | Journal Article |
| Copyright | Intel Corporation, University of Pennsylvania, Albert Einstein College of Medicine Creative Commons Attribution license. |
| Copyright_xml | – notice: Intel Corporation, University of Pennsylvania, Albert Einstein College of Medicine – notice: Creative Commons Attribution license. |
| DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1088/1361-6560/ac97d9 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| ExternalDocumentID | 10.1088/1361-6560/ac97d9 PMC9715347 36198326 10_1088_1361_6560_ac97d9 pmbac97d9 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Cancer Institute grantid: U01CA242871 funderid: https://doi.org/10.13039/100000054 – fundername: NIH HHS grantid: S10 OD023495 – fundername: NCI NIH HHS grantid: U01 CA242871 |
| GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA UCJ W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM .GJ .HR 02O 1WK 29O 3O- 53G 5ZI 9BW AAGCF AALHV ABUFD ACARI ACWPO ADTOC AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF H~9 J5H JCGBZ NT- NT. Q02 RKQ S3P T37 UNPAY X7L ZGI ZMT ZXP ZY4 |
| ID | FETCH-LOGICAL-c466t-ec0ced9c179ef242daeae4ec24bdf2964ef5d7b2e32cd9faf0193d1f4db5f5493 |
| IEDL.DBID | UNPAY |
| ISSN | 0031-9155 1361-6560 |
| IngestDate | Sun Oct 26 04:14:20 EDT 2025 Thu Aug 21 18:38:57 EDT 2025 Thu Sep 04 18:38:41 EDT 2025 Wed Feb 19 02:24:54 EST 2025 Wed Oct 01 00:30:42 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Wed Aug 21 03:34:57 EDT 2024 Wed Jun 07 11:18:59 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | deep learning privacy security open-source machine learning federated learning |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-ec0ced9c179ef242daeae4ec24bdf2964ef5d7b2e32cd9faf0193d1f4db5f5493 |
| Notes | PMB-113494.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9401-3088 0000-0001-5292-7594 0000-0002-1859-8261 0000-0001-9713-3878 0000-0003-1093-5793 0000-0002-0957-9149 0000-0002-6571-0850 0000-0003-2243-8487 0000-0001-8734-6482 0000-0003-1055-574X 0000-0003-2064-8018 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ac97d9 |
| PMID | 36198326 |
| PQID | 2722312349 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1088_1361_6560_ac97d9 proquest_miscellaneous_2722312349 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9715347 iop_journals_10_1088_1361_6560_ac97d9 crossref_primary_10_1088_1361_6560_ac97d9 crossref_citationtrail_10_1088_1361_6560_ac97d9 pubmed_primary_36198326 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221019 |
| PublicationDateYYYYMMDD | 2022-10-19 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221019 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAbbrev | PMB |
| PublicationTitleAlternate | Phys. Med. Biol |
| PublicationYear | 2022 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Annas (pmbac97d9bib3) 2003; 348 Coston (pmbac97d9bib13) 2019 Pati (pmbac97d9bib24) 2021 Pati (pmbac97d9bib27) 2022a Voigt (pmbac97d9bib34) 2017; vol 10 Zech (pmbac97d9bib42) 2018; 15 Larrazabal (pmbac97d9bib18) 2020; 117 Yang (pmbac97d9bib39) 2019; 10 McMahan (pmbac97d9bib20) 2017 Rieke (pmbac97d9bib29) 2020; 3 Baevski (pmbac97d9bib5) 2020 Suzumura (pmbac97d9bib32) 2019 Wolf (pmbac97d9bib38) 2019 Arjovsky (pmbac97d9bib4) 2019 Bakas (pmbac97d9bib9) 2018 Baid (pmbac97d9bib7) 2022 Sheller (pmbac97d9bib31) 2020; 10 Bonawitz (pmbac97d9bib10) 2019 Yi (pmbac97d9bib41) 2020 Paullada (pmbac97d9bib28) 2021; 2 Pati (pmbac97d9bib26) 2021b Pati (pmbac97d9bib25) 2021a Abadi (pmbac97d9bib1) 2016; 16 Bakas (pmbac97d9bib8) 2017; 4 Baid (pmbac97d9bib6) 2021; 23 Tsai (pmbac97d9bib33) 2017 Wang (pmbac97d9bib35) 1993; 27 O’Donoghue (pmbac97d9bib22) 2021 Albarqi (pmbac97d9bib2) 2015; 6 Pati (pmbac97d9bib43) 2022b; 67 Wei (pmbac97d9bib37) 2022 Buolamwini (pmbac97d9bib11) 2018 Warnat-Herresthal (pmbac97d9bib36) 2021; 594 Chen (pmbac97d9bib12) 2015 Mårtensson (pmbac97d9bib19) 2020; 66 Sheller (pmbac97d9bib30) 2019; 11383 Dierks (pmbac97d9bib15) 1999; 1 Kaushal (pmbac97d9bib17) 2020; 11 Menze (pmbac97d9bib21) 2014; 34 Dierks (pmbac97d9bib14) 2008 Paszke (pmbac97d9bib23) 2019 Kairouz (pmbac97d9bib16) 2019; 14 Yang (pmbac97d9bib40) 2021 |
| References_xml | – year: 2021b ident: pmbac97d9bib26 article-title: GaNDLF: a generally nuanced deep learning framework for scalable end-to-end clinical workflows in medical imaging – volume: 10 start-page: 1 year: 2019 ident: pmbac97d9bib39 article-title: Federated Machine Learning: concept and Applications publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) doi: 10.1145/3298981 – volume: 15 year: 2018 ident: pmbac97d9bib42 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – volume: vol 10 start-page: 3152676 year: 2017 ident: pmbac97d9bib34 article-title: The eu general data protection regulation (gdpr) – start-page: 77 year: 2018 ident: pmbac97d9bib11 article-title: Gender shades: intersectional accuracy disparities in commercial gender classification – year: 2022 ident: pmbac97d9bib37 article-title: Vertical federated learning: challenges, methodologies and experiments – year: 2019 ident: pmbac97d9bib38 article-title: Huggingface’s transformers: state-of-the-art natural language processing – year: 2021 ident: pmbac97d9bib40 article-title: Superb: speech processing universal performance benchmark doi: 10.21437/Interspeech.2021-1775 – volume: 348 start-page: 1486 year: 2003 ident: pmbac97d9bib3 article-title: HIPAA regulations-a new era of medical-record privacy? publication-title: New Engl. J. Med. doi: 10.1056/NEJMlim035027 – year: 2008 ident: pmbac97d9bib14 article-title: The Transport Layer Security (TLS) protocol version 1.2 doi: 10.17487/rfc5246 – volume: 14 start-page: 1 year: 2019 ident: pmbac97d9bib16 article-title: Advances and open problems in federated learning publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000083 – year: 2018 ident: pmbac97d9bib9 article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge – volume: 2 start-page: 100336 year: 2021 ident: pmbac97d9bib28 article-title: Data and its (dis) contents: a survey of dataset development and use in machine learning research publication-title: Patterns doi: 10.1016/j.patter.2021.100336 – year: 2019 ident: pmbac97d9bib32 article-title: Towards federated graph learning for collaborative financial crimes detection – year: 2021 ident: pmbac97d9bib22 article-title: Invariant risk minimisation for cross-organism inference: substituting mouse data for human data in human risk factor discovery – volume: 117 start-page: 12592 year: 2020 ident: pmbac97d9bib18 article-title: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1919012117 – volume: 67 year: 2022b ident: pmbac97d9bib43 article-title: The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research publication-title: Phys Med Biol doi: 10.1088/1361-6560/ac9449 – year: 2015 ident: pmbac97d9bib12 article-title: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems CoRR – volume: 10 start-page: 12598 year: 2020 ident: pmbac97d9bib31 article-title: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data publication-title: Sci Rep. doi: 10.1038/s41598-020-69250-1 – volume: 27 start-page: 75 year: 1993 ident: pmbac97d9bib35 article-title: GRPC: A communication cooperation mechanism in distributed systems publication-title: ACM SIGOPS Oper. Syst. Rev. doi: 10.1145/155870.155881 – year: 2019 ident: pmbac97d9bib4 article-title: Invariant risk minimization – volume: 4 start-page: 1 year: 2017 ident: pmbac97d9bib8 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – start-page: 91–8 year: 2019 ident: pmbac97d9bib13 article-title: Fair transfer learning with missing protected attributes doi: 10.1145/3306618.3314236 – start-page: 1273 year: 2017 ident: pmbac97d9bib20 article-title: Communication-efficient learning of deep networks from decentralized data – year: 2021 ident: pmbac97d9bib24 – start-page: 8026 year: 2019 ident: pmbac97d9bib23 article-title: Pytorch: An imperative style, high-performance deep learning library doi: 10.5555/3454287.3455008 – start-page: 645 year: 2017 ident: pmbac97d9bib33 article-title: Graphene-SGX: a practical library os for unmodified applications on SGX – volume: 11383 start-page: 92 year: 2019 ident: pmbac97d9bib30 article-title: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation publication-title: Brainlesion doi: 10.1007/978-3-030-11723-8_9 – volume: 11 start-page: 17 year: 2020 ident: pmbac97d9bib17 article-title: Health care AI systems are biased publication-title: Scientific American – volume: 34 start-page: 1993 year: 2014 ident: pmbac97d9bib21 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – year: 2022 ident: pmbac97d9bib7 article-title: Federated learning for the classification of tumor infiltrating lymphocytes – volume: 66 year: 2020 ident: pmbac97d9bib19 article-title: The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101714 – volume: 23 start-page: vi135 year: 2021 ident: pmbac97d9bib6 article-title: NIMG-32. the federated tumor segmentation (fets) initiative: the first real-world large-scale data-private collaboration focusing on neuro-oncology publication-title: Neuro-Oncology doi: 10.1093/neuonc/noab196.532 – volume: 1 start-page: 0-0 year: 1999 ident: pmbac97d9bib15 publication-title: TLS Protocol Version doi: 10.17487/RFC2246 – volume: 16 start-page: 265 year: 2016 ident: pmbac97d9bib1 article-title: Tensorflow: a system for large-scale machine learning 12th USENIX doi: 10.5281/zenodo.4724125 – volume: 6 start-page: 31 year: 2015 ident: pmbac97d9bib2 article-title: Public key infrastructure: a survey publication-title: J. Inf. Secur. doi: 10.4236/jis.2015.61004 – year: 2019 ident: pmbac97d9bib10 article-title: Towards federated learning at scale: System design – year: 2021a ident: pmbac97d9bib25 article-title: The federated tumor segmentation (fets) challenge – volume: 3 start-page: 1-7 year: 2020 ident: pmbac97d9bib29 article-title: The future of digital health with federated learning publication-title: Npj Digit. Med. doi: 10.1038/s41746-020-00323-1 – year: 2022a ident: pmbac97d9bib27 article-title: Federated learning enables big data for rare cancer boundary detection doi: 10.1038/s41467-022-33407-5 – volume: 594 start-page: 265 year: 2021 ident: pmbac97d9bib36 article-title: Swarm learning for decentralized and confidential clinical machine learning publication-title: Nature doi: 10.1038/s41586-021-03583-3 – year: 2020 ident: pmbac97d9bib41 article-title: Patch svdd: patch-level svdd for anomaly detection and segmentation doi: 10.1007/978-3-030-69544-6_23 – year: 2020 ident: pmbac97d9bib5 article-title: wav2vec 2.0: a framework for self-supervised learning of speech representations |
| SSID | ssj0011824 |
| Score | 2.6579404 |
| Snippet | Objective.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL)... Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without... Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL)... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 214001 |
| SubjectTerms | Algorithms deep learning federated learning Humans Machine Learning open-source privacy security |
| SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQUuPMqjy0tBoodSZZc4jhPDCaGuKkRbDlTqAcnyYwyIJRt1d4XaX9_xxhuxpSqoUg5RMokzE9vzJTP-BuAVszQxaoMp-fo85SiK1GS5TX2FKG1uvfchort_IPaO-Mfj4ngF3nVrYcZNnPr7tNsSBbcmjAlx1SDLRZYGzpiBtrJ0chVu5BUB47B67_BzF0Ig4MxjXPKyq5b80Cq1dRnE_DtT8tasbvTpbz0a_eGGhnfh60KBNvvkZ382NX17doHb8Zoa3oM7EZ4m71vR-7CC9QastwUrTzfg5n4MxdPBee6onTyAnZCUMvz0NiEsmYRqXIkPDBUEYl0Si1J8S-LfoodwNNz98mEvjTUYUsuFmKZo31h00tK4RU_u3GnUyNEybpwPIVv0hSsNw5xZJ732BBlzl3nuTOHp2zN_BGv1uMZNSAIzmjDIsJAYYItBLxAzVjqhBeNFDwaLN6JsJCgPdTJGah4oryoV7KKCXVRrlx5sd1c0LTnHFbJbZG4VR-jkCrmXS3LNL6NEqVhGG813mWqcJ5lFV1E0GkOIRdc4nk0UKwluERjgdJ_HbdfpnowakjR_ih6US52qEwhM38tn6h_f54zfsiTHxMsevO663z8VfvKfCj-F2yws6QhZOvIZrE1PZvicgNbUvJgPqHP72SD1 priority: 102 providerName: IOP Publishing |
| Title | OpenFL: the open federated learning library |
| URI | https://iopscience.iop.org/article/10.1088/1361-6560/ac97d9 https://www.ncbi.nlm.nih.gov/pubmed/36198326 https://www.proquest.com/docview/2722312349 https://pubmed.ncbi.nlm.nih.gov/PMC9715347 https://doi.org/10.1088/1361-6560/ac97d9 |
| UnpaywallVersion | publishedVersion |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6xW0G58Civ5VEFCQ6A3BLHcdbcKsSqIPo4sKKcLD_GtGLJRuyuUPn1jDfuikBVQIpySCZO7Iw9nz3jbwCecEcDo7HIyNYXTKAsmc0Lx8IQUbnChRCiR3dvX-6Oxbuj8iitd8S9MB3_PU3O8kLmLBLEbBunKq96sCZLQt19WBvvH-58alkXcxZpztstVq148kieV0THAvVOps154PLPGMn1Rd2Y0-9mMvnFAI2ut2xIsyVvYYw7-bK1mNst9-M3Vsd_qdsNuJZQaLbTqs1NuIT1Blxu81KebsCVveRxp4vLEFE3uwUvYuzJ6P2rjCBjFpNuZSESURBW9VnKPfE5S4tCt2E8evPh9S5LqRaYE1LOGbqXDr1y1D0xkNX2Bg0KdFxYH6JnFkPpK8ux4M6rYAIhw8LnQXhbBppiFnegX09rvAdZJECTFjmWCiM6sRgkYs4rL43kohzA9lnza5d4yGM6jIle-sOHQx3bRcd20W27DODZ6omm5eC4QPYp_VGdOuLsArnHHbnmq9Wy0jyng4a1XDc-kMyZXmjqdNGTYmqcLmaaV4SqyOYLKuduqyerL6MXKRom5QCqjgatBCKhd_dOfXK8JPZWFdkfUQ3g-UrX_lrh-_8j_ACu8rh9I0bkqIfQn39b4CMCVXO7Cb23B4d0Pig-bqa-9RNmGxhb |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlouPAqU5RkkOFCU3cZxnDU3BKwKtKUHKvVm_BgXxJKNuruqyq9nnHgjFqqChJRDlIzjePyYL5nxNwBPmaWFURtMydbnKUdRpCbLbeqHiNLm1nsfPLp7-2LnkL8_Ko5intNmL8ykjkt_n05bouBWhTEgbjjIcpGlgTNmoK0snRzUzq_A5YanJOzg-3jQuREIPPPomzyv5JItWqH6zoOZf0ZLrs-rWp-d6vH4F1M0ug6fF41oI1C-9ecz07c_fuN3_I9W3oBrEaYmr1rxm3AJqw240iauPNuAtb3okqeLTQypnd6CFyE4ZbT7MiFMmYSsXIkPTBUEZl0Sk1McJ_Gv0W04HL399HonjbkYUsuFmKVoty06aWn-oiez7jRq5GgZN84H1y36wpWGYc6sk157go65yzx3pvD0DZrfgdVqUuFdSAJDmjDIsJAY4ItBLxAzVjqhBeNFDwaLXlE2EpWHfBlj1TjMh0MVdKOCblSrmx4870rULUnHBbLPSOUqztTpBXJPluTq70aJUrGMDlr3MkX9QTKL4aJoVgZXi65wMp8qVhLsIlDA6Tmb7fDp3owqkrSOih6USwOrEwiM38t3qq9fGuZvWZKB4mUPtroh-NcG3_vHBj-GtYM3I7X7bv_DfbjKwi6PELgjH8Dq7GSODwl7zcyjZn79BOe1JlY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVjwuPAqF5aUgwQGQW-I4zppbhVhViFYcWKmcLD_GUHXJRuyuUPn1zKzdFYGqgJRTMnl4MvZ89oy_Yeyp8DgwWgccfX3FJaiau7LyPI4AtK98jJEiugeHan8i3x3VR3m9g_bC9OL3ODkrK1VyIojZtV43QW-wTVUj6h6wzcnhh71PiXWx5ERznrZYJfEckTzvET0PtHE8684Dl3_mSF5dtp09_W6n018c0PhGYkOar3gLKe_kZGe5cDv-x2-sjv_StpvsekahxV4ym1vsErRb7HKqS3m6xa4c5Ig7nlyliPr5bfaSck_G718XCBkLKrpVRCKiQKwailx74nORF4XusMn47cc3-zyXWuBeKrXg4F95CNpj94SIXjtYsCDBC-lCpMgsxDo0TkAlfNDRRkSGVSijDK6OOMWsttmgnbVwjxVEgKYcCKg1EDpxEBVAKZqgrBKyHrLdM_Ubn3nIqRzG1Kzi4aORIb0Y0otJehmy5-s7usTBcYHsM_yjJnfE-QVyT3py3VdnVGNEiQcOa6XpQkSZM7sw2OkokmJbmC3nRjSIqtDnS3zO3WQn6y_DF2kcJtWQNT0LWgsQoXf_Snv8ZUXsrRv0P7IZshdrW_trg-__j_ADdk3Q9g3KyNEP2WDxbQmPEFQt3OPcn34CUusWWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenFL%3A+the+open+federated+learning+library&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Foley%2C+Patrick&rft.au=Sheller%2C+Micah+J&rft.au=Edwards%2C+Brandon&rft.au=Pati%2C+Sarthak&rft.date=2022-10-19&rft.eissn=1361-6560&rft.volume=67&rft.issue=21&rft_id=info:doi/10.1088%2F1361-6560%2Fac97d9&rft_id=info%3Apmid%2F36198326&rft.externalDocID=36198326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |