OpenFL: the open federated learning library

Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL)...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 67; no. 21; pp. 214001 - 214011
Main Authors Foley, Patrick, Sheller, Micah J, Edwards, Brandon, Pati, Sarthak, Riviera, Walter, Sharma, Mansi, Narayana Moorthy, Prakash, Wang, Shih-han, Martin, Jason, Mirhaji, Parsa, Shah, Prashant, Bakas, Spyridon
Format Journal Article
LanguageEnglish
Published England IOP Publishing 19.10.2022
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ac97d9

Cover

Abstract Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks. Main results. In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases. Significance. The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL’s initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced at github.com/intel/openfl .
AbstractList Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks. In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases. The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.
Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Approach.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.Main results.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.Significance.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Approach.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.Main results.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.Significance.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.
Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets. Approach. Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks. Main results. In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases. Significance. The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL’s initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced at github.com/intel/openfl .
Author Edwards, Brandon
Narayana Moorthy, Prakash
Wang, Shih-han
Mirhaji, Parsa
Riviera, Walter
Martin, Jason
Foley, Patrick
Bakas, Spyridon
Pati, Sarthak
Sheller, Micah J
Shah, Prashant
Sharma, Mansi
AuthorAffiliation 1 Intel Corporation, Santa Clara, CA 95052, United States of America
4 Equal first authors
2 University of Pennsylvania, 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America
3 Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
AuthorAffiliation_xml – name: 1 Intel Corporation, Santa Clara, CA 95052, United States of America
– name: 3 Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
– name: 2 University of Pennsylvania, 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America
– name: 4 Equal first authors
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0001-9401-3088
  surname: Foley
  fullname: Foley, Patrick
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 2
  givenname: Micah J
  orcidid: 0000-0002-6571-0850
  surname: Sheller
  fullname: Sheller, Micah J
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 3
  givenname: Brandon
  orcidid: 0000-0002-0957-9149
  surname: Edwards
  fullname: Edwards, Brandon
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 4
  givenname: Sarthak
  orcidid: 0000-0003-2243-8487
  surname: Pati
  fullname: Pati, Sarthak
  organization: University of Pennsylvania , 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America
– sequence: 5
  givenname: Walter
  orcidid: 0000-0001-5292-7594
  surname: Riviera
  fullname: Riviera, Walter
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 6
  givenname: Mansi
  orcidid: 0000-0002-1859-8261
  surname: Sharma
  fullname: Sharma, Mansi
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 7
  givenname: Prakash
  orcidid: 0000-0003-2064-8018
  surname: Narayana Moorthy
  fullname: Narayana Moorthy, Prakash
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 8
  givenname: Shih-han
  orcidid: 0000-0001-9713-3878
  surname: Wang
  fullname: Wang, Shih-han
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 9
  givenname: Jason
  surname: Martin
  fullname: Martin, Jason
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 10
  givenname: Parsa
  orcidid: 0000-0003-1093-5793
  surname: Mirhaji
  fullname: Mirhaji, Parsa
  organization: Albert Einstein College of Medicine , 1300 Morris Park Ave, Bronx, NY 10461, United States of America
– sequence: 11
  givenname: Prashant
  orcidid: 0000-0003-1055-574X
  surname: Shah
  fullname: Shah, Prashant
  organization: Intel Corporation , Santa Clara, CA 95052, United States of America
– sequence: 12
  givenname: Spyridon
  orcidid: 0000-0001-8734-6482
  surname: Bakas
  fullname: Bakas, Spyridon
  organization: University of Pennsylvania , 3700 Hamilton Walk, Richards Medical Research Laboratories (7th Fl), Philadelphia, PA 19104, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36198326$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3DAUhUVJaCaPfVfFy0DrRC_LoywKJXTawEA2yVrI0lWi4JEc2U6Zf19NPc2jhBAQSEjnu_ccSftoJ8QACH0i-ITg-fyUMEFKUQl8qo2srfyAZo9bO2iGMSOlJFW1h_b7_g5jQuaUf0R7WSPnjIoZ-nLZQVgsz4rhFoqY14UDC0kPYIsWdAo-3BStb5JO60O063Tbw9F2PkDXix9X57_K5eXPi_Pvy9JwIYYSDDZgpSG1BEc5tRo0cDCUN9ZRKTi4ytYNBUaNlU47TCSzxHHbVK7ikh0gMtUdQ6fXv3Xbqi75VXagCFab4GqTUm1Sqil4Zr5NTDc2K7AGwpD0Exe1Vy9Pgr9VN_FByZpUjNe5wPG2QIr3I_SDWvneQNvqAHHsFa0pZYSyv_4-P-_12OTfrWYBngQmxb5P4N7jX_yHGD_owceNW9--BX6dQB87dRfHFPLTvCU_fkXerRolakVJHjx_E9VZx_4Axi-3YA
CODEN PHMBA7
CitedBy_id crossref_primary_10_1016_j_future_2024_107646
crossref_primary_10_1016_j_inffus_2024_102792
crossref_primary_10_1007_s10916_023_01994_5
crossref_primary_10_1016_j_procs_2024_07_003
crossref_primary_10_1038_s41467_022_33407_5
crossref_primary_10_1109_TMI_2023_3278528
crossref_primary_10_1016_S1470_2045_24_00315_2
crossref_primary_10_1007_s13042_024_02453_4
crossref_primary_10_1038_s42256_023_00652_2
crossref_primary_10_1038_s44172_023_00066_3
crossref_primary_10_1016_j_patter_2024_101031
crossref_primary_10_3390_app13095472
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1145_3704807
crossref_primary_10_1093_jamia_ocad235
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_2196_55496
crossref_primary_10_1145_3687124
crossref_primary_10_1016_j_future_2024_07_035
crossref_primary_10_1093_bioinformatics_btad531
crossref_primary_10_1016_j_csbj_2024_12_001
crossref_primary_10_32604_cmes_2024_053462
crossref_primary_10_1016_j_patter_2024_100945
crossref_primary_10_1016_j_media_2025_103497
crossref_primary_10_1016_j_softx_2024_101841
crossref_primary_10_1186_s13059_023_03039_z
crossref_primary_10_1016_j_iot_2023_101036
crossref_primary_10_1016_j_patter_2024_101006
crossref_primary_10_1016_j_softx_2023_101505
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_1007_s00521_024_10956_y
crossref_primary_10_1016_j_xpro_2023_102812
crossref_primary_10_3390_iot5020012
crossref_primary_10_1109_ACCESS_2024_3369915
Cites_doi 10.1145/3298981
10.1371/journal.pmed.1002683
10.21437/Interspeech.2021-1775
10.1056/NEJMlim035027
10.17487/rfc5246
10.1561/2200000083
10.1016/j.patter.2021.100336
10.1073/pnas.1919012117
10.1088/1361-6560/ac9449
10.1038/s41598-020-69250-1
10.1145/155870.155881
10.1038/sdata.2017.117
10.1145/3306618.3314236
10.5555/3454287.3455008
10.1007/978-3-030-11723-8_9
10.1109/TMI.2014.2377694
10.1016/j.media.2020.101714
10.1093/neuonc/noab196.532
10.17487/RFC2246
10.5281/zenodo.4724125
10.4236/jis.2015.61004
10.1038/s41746-020-00323-1
10.1038/s41467-022-33407-5
10.1038/s41586-021-03583-3
10.1007/978-3-030-69544-6_23
ContentType Journal Article
Copyright Intel Corporation, University of Pennsylvania, Albert Einstein College of Medicine
Creative Commons Attribution license.
Copyright_xml – notice: Intel Corporation, University of Pennsylvania, Albert Einstein College of Medicine
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1361-6560/ac97d9
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 10.1088/1361-6560/ac97d9
PMC9715347
36198326
10_1088_1361_6560_ac97d9
pmbac97d9
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  grantid: U01CA242871
  funderid: https://doi.org/10.13039/100000054
– fundername: NIH HHS
  grantid: S10 OD023495
– fundername: NCI NIH HHS
  grantid: U01 CA242871
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.GJ
.HR
02O
1WK
29O
3O-
53G
5ZI
9BW
AAGCF
AALHV
ABUFD
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
H~9
J5H
JCGBZ
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
X7L
ZGI
ZMT
ZXP
ZY4
ID FETCH-LOGICAL-c466t-ec0ced9c179ef242daeae4ec24bdf2964ef5d7b2e32cd9faf0193d1f4db5f5493
IEDL.DBID UNPAY
ISSN 0031-9155
1361-6560
IngestDate Sun Oct 26 04:14:20 EDT 2025
Thu Aug 21 18:38:57 EDT 2025
Thu Sep 04 18:38:41 EDT 2025
Wed Feb 19 02:24:54 EST 2025
Wed Oct 01 00:30:42 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Wed Aug 21 03:34:57 EDT 2024
Wed Jun 07 11:18:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords deep learning
privacy
security
open-source
machine learning
federated learning
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-ec0ced9c179ef242daeae4ec24bdf2964ef5d7b2e32cd9faf0193d1f4db5f5493
Notes PMB-113494.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9401-3088
0000-0001-5292-7594
0000-0002-1859-8261
0000-0001-9713-3878
0000-0003-1093-5793
0000-0002-0957-9149
0000-0002-6571-0850
0000-0003-2243-8487
0000-0001-8734-6482
0000-0003-1055-574X
0000-0003-2064-8018
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ac97d9
PMID 36198326
PQID 2722312349
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1088_1361_6560_ac97d9
proquest_miscellaneous_2722312349
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9715347
iop_journals_10_1088_1361_6560_ac97d9
crossref_primary_10_1088_1361_6560_ac97d9
crossref_citationtrail_10_1088_1361_6560_ac97d9
pubmed_primary_36198326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221019
PublicationDateYYYYMMDD 2022-10-19
PublicationDate_xml – month: 10
  year: 2022
  text: 20221019
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Annas (pmbac97d9bib3) 2003; 348
Coston (pmbac97d9bib13) 2019
Pati (pmbac97d9bib24) 2021
Pati (pmbac97d9bib27) 2022a
Voigt (pmbac97d9bib34) 2017; vol 10
Zech (pmbac97d9bib42) 2018; 15
Larrazabal (pmbac97d9bib18) 2020; 117
Yang (pmbac97d9bib39) 2019; 10
McMahan (pmbac97d9bib20) 2017
Rieke (pmbac97d9bib29) 2020; 3
Baevski (pmbac97d9bib5) 2020
Suzumura (pmbac97d9bib32) 2019
Wolf (pmbac97d9bib38) 2019
Arjovsky (pmbac97d9bib4) 2019
Bakas (pmbac97d9bib9) 2018
Baid (pmbac97d9bib7) 2022
Sheller (pmbac97d9bib31) 2020; 10
Bonawitz (pmbac97d9bib10) 2019
Yi (pmbac97d9bib41) 2020
Paullada (pmbac97d9bib28) 2021; 2
Pati (pmbac97d9bib26) 2021b
Pati (pmbac97d9bib25) 2021a
Abadi (pmbac97d9bib1) 2016; 16
Bakas (pmbac97d9bib8) 2017; 4
Baid (pmbac97d9bib6) 2021; 23
Tsai (pmbac97d9bib33) 2017
Wang (pmbac97d9bib35) 1993; 27
O’Donoghue (pmbac97d9bib22) 2021
Albarqi (pmbac97d9bib2) 2015; 6
Pati (pmbac97d9bib43) 2022b; 67
Wei (pmbac97d9bib37) 2022
Buolamwini (pmbac97d9bib11) 2018
Warnat-Herresthal (pmbac97d9bib36) 2021; 594
Chen (pmbac97d9bib12) 2015
Mårtensson (pmbac97d9bib19) 2020; 66
Sheller (pmbac97d9bib30) 2019; 11383
Dierks (pmbac97d9bib15) 1999; 1
Kaushal (pmbac97d9bib17) 2020; 11
Menze (pmbac97d9bib21) 2014; 34
Dierks (pmbac97d9bib14) 2008
Paszke (pmbac97d9bib23) 2019
Kairouz (pmbac97d9bib16) 2019; 14
Yang (pmbac97d9bib40) 2021
References_xml – year: 2021b
  ident: pmbac97d9bib26
  article-title: GaNDLF: a generally nuanced deep learning framework for scalable end-to-end clinical workflows in medical imaging
– volume: 10
  start-page: 1
  year: 2019
  ident: pmbac97d9bib39
  article-title: Federated Machine Learning: concept and Applications
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  doi: 10.1145/3298981
– volume: 15
  year: 2018
  ident: pmbac97d9bib42
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002683
– volume: vol 10
  start-page: 3152676
  year: 2017
  ident: pmbac97d9bib34
  article-title: The eu general data protection regulation (gdpr)
– start-page: 77
  year: 2018
  ident: pmbac97d9bib11
  article-title: Gender shades: intersectional accuracy disparities in commercial gender classification
– year: 2022
  ident: pmbac97d9bib37
  article-title: Vertical federated learning: challenges, methodologies and experiments
– year: 2019
  ident: pmbac97d9bib38
  article-title: Huggingface’s transformers: state-of-the-art natural language processing
– year: 2021
  ident: pmbac97d9bib40
  article-title: Superb: speech processing universal performance benchmark
  doi: 10.21437/Interspeech.2021-1775
– volume: 348
  start-page: 1486
  year: 2003
  ident: pmbac97d9bib3
  article-title: HIPAA regulations-a new era of medical-record privacy?
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMlim035027
– year: 2008
  ident: pmbac97d9bib14
  article-title: The Transport Layer Security (TLS) protocol version 1.2
  doi: 10.17487/rfc5246
– volume: 14
  start-page: 1
  year: 2019
  ident: pmbac97d9bib16
  article-title: Advances and open problems in federated learning
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000083
– year: 2018
  ident: pmbac97d9bib9
  article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
– volume: 2
  start-page: 100336
  year: 2021
  ident: pmbac97d9bib28
  article-title: Data and its (dis) contents: a survey of dataset development and use in machine learning research
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100336
– year: 2019
  ident: pmbac97d9bib32
  article-title: Towards federated graph learning for collaborative financial crimes detection
– year: 2021
  ident: pmbac97d9bib22
  article-title: Invariant risk minimisation for cross-organism inference: substituting mouse data for human data in human risk factor discovery
– volume: 117
  start-page: 12592
  year: 2020
  ident: pmbac97d9bib18
  article-title: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1919012117
– volume: 67
  year: 2022b
  ident: pmbac97d9bib43
  article-title: The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ac9449
– year: 2015
  ident: pmbac97d9bib12
  article-title: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems CoRR
– volume: 10
  start-page: 12598
  year: 2020
  ident: pmbac97d9bib31
  article-title: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data
  publication-title: Sci Rep.
  doi: 10.1038/s41598-020-69250-1
– volume: 27
  start-page: 75
  year: 1993
  ident: pmbac97d9bib35
  article-title: GRPC: A communication cooperation mechanism in distributed systems
  publication-title: ACM SIGOPS Oper. Syst. Rev.
  doi: 10.1145/155870.155881
– year: 2019
  ident: pmbac97d9bib4
  article-title: Invariant risk minimization
– volume: 4
  start-page: 1
  year: 2017
  ident: pmbac97d9bib8
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– start-page: 91–8
  year: 2019
  ident: pmbac97d9bib13
  article-title: Fair transfer learning with missing protected attributes
  doi: 10.1145/3306618.3314236
– start-page: 1273
  year: 2017
  ident: pmbac97d9bib20
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2021
  ident: pmbac97d9bib24
– start-page: 8026
  year: 2019
  ident: pmbac97d9bib23
  article-title: Pytorch: An imperative style, high-performance deep learning library
  doi: 10.5555/3454287.3455008
– start-page: 645
  year: 2017
  ident: pmbac97d9bib33
  article-title: Graphene-SGX: a practical library os for unmodified applications on SGX
– volume: 11383
  start-page: 92
  year: 2019
  ident: pmbac97d9bib30
  article-title: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation
  publication-title: Brainlesion
  doi: 10.1007/978-3-030-11723-8_9
– volume: 11
  start-page: 17
  year: 2020
  ident: pmbac97d9bib17
  article-title: Health care AI systems are biased
  publication-title: Scientific American
– volume: 34
  start-page: 1993
  year: 2014
  ident: pmbac97d9bib21
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– year: 2022
  ident: pmbac97d9bib7
  article-title: Federated learning for the classification of tumor infiltrating lymphocytes
– volume: 66
  year: 2020
  ident: pmbac97d9bib19
  article-title: The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101714
– volume: 23
  start-page: vi135
  year: 2021
  ident: pmbac97d9bib6
  article-title: NIMG-32. the federated tumor segmentation (fets) initiative: the first real-world large-scale data-private collaboration focusing on neuro-oncology
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noab196.532
– volume: 1
  start-page: 0-0
  year: 1999
  ident: pmbac97d9bib15
  publication-title: TLS Protocol Version
  doi: 10.17487/RFC2246
– volume: 16
  start-page: 265
  year: 2016
  ident: pmbac97d9bib1
  article-title: Tensorflow: a system for large-scale machine learning 12th USENIX
  doi: 10.5281/zenodo.4724125
– volume: 6
  start-page: 31
  year: 2015
  ident: pmbac97d9bib2
  article-title: Public key infrastructure: a survey
  publication-title: J. Inf. Secur.
  doi: 10.4236/jis.2015.61004
– year: 2019
  ident: pmbac97d9bib10
  article-title: Towards federated learning at scale: System design
– year: 2021a
  ident: pmbac97d9bib25
  article-title: The federated tumor segmentation (fets) challenge
– volume: 3
  start-page: 1-7
  year: 2020
  ident: pmbac97d9bib29
  article-title: The future of digital health with federated learning
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-020-00323-1
– year: 2022a
  ident: pmbac97d9bib27
  article-title: Federated learning enables big data for rare cancer boundary detection
  doi: 10.1038/s41467-022-33407-5
– volume: 594
  start-page: 265
  year: 2021
  ident: pmbac97d9bib36
  article-title: Swarm learning for decentralized and confidential clinical machine learning
  publication-title: Nature
  doi: 10.1038/s41586-021-03583-3
– year: 2020
  ident: pmbac97d9bib41
  article-title: Patch svdd: patch-level svdd for anomaly detection and segmentation
  doi: 10.1007/978-3-030-69544-6_23
– year: 2020
  ident: pmbac97d9bib5
  article-title: wav2vec 2.0: a framework for self-supervised learning of speech representations
SSID ssj0011824
Score 2.6579404
Snippet Objective. Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL)...
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without...
Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL)...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214001
SubjectTerms Algorithms
deep learning
federated learning
Humans
Machine Learning
open-source
privacy
security
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQUuPMqjy0tBoodSZZc4jhPDCaGuKkRbDlTqAcnyYwyIJRt1d4XaX9_xxhuxpSqoUg5RMokzE9vzJTP-BuAVszQxaoMp-fo85SiK1GS5TX2FKG1uvfchort_IPaO-Mfj4ngF3nVrYcZNnPr7tNsSBbcmjAlx1SDLRZYGzpiBtrJ0chVu5BUB47B67_BzF0Ig4MxjXPKyq5b80Cq1dRnE_DtT8tasbvTpbz0a_eGGhnfh60KBNvvkZ382NX17doHb8Zoa3oM7EZ4m71vR-7CC9QastwUrTzfg5n4MxdPBee6onTyAnZCUMvz0NiEsmYRqXIkPDBUEYl0Si1J8S-LfoodwNNz98mEvjTUYUsuFmKZo31h00tK4RU_u3GnUyNEybpwPIVv0hSsNw5xZJ732BBlzl3nuTOHp2zN_BGv1uMZNSAIzmjDIsJAYYItBLxAzVjqhBeNFDwaLN6JsJCgPdTJGah4oryoV7KKCXVRrlx5sd1c0LTnHFbJbZG4VR-jkCrmXS3LNL6NEqVhGG813mWqcJ5lFV1E0GkOIRdc4nk0UKwluERjgdJ_HbdfpnowakjR_ih6US52qEwhM38tn6h_f54zfsiTHxMsevO663z8VfvKfCj-F2yws6QhZOvIZrE1PZvicgNbUvJgPqHP72SD1
  priority: 102
  providerName: IOP Publishing
Title OpenFL: the open federated learning library
URI https://iopscience.iop.org/article/10.1088/1361-6560/ac97d9
https://www.ncbi.nlm.nih.gov/pubmed/36198326
https://www.proquest.com/docview/2722312349
https://pubmed.ncbi.nlm.nih.gov/PMC9715347
https://doi.org/10.1088/1361-6560/ac97d9
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6xW0G58Civ5VEFCQ6A3BLHcdbcKsSqIPo4sKKcLD_GtGLJRuyuUPn1jDfuikBVQIpySCZO7Iw9nz3jbwCecEcDo7HIyNYXTKAsmc0Lx8IQUbnChRCiR3dvX-6Oxbuj8iitd8S9MB3_PU3O8kLmLBLEbBunKq96sCZLQt19WBvvH-58alkXcxZpztstVq148kieV0THAvVOps154PLPGMn1Rd2Y0-9mMvnFAI2ut2xIsyVvYYw7-bK1mNst9-M3Vsd_qdsNuJZQaLbTqs1NuIT1Blxu81KebsCVveRxp4vLEFE3uwUvYuzJ6P2rjCBjFpNuZSESURBW9VnKPfE5S4tCt2E8evPh9S5LqRaYE1LOGbqXDr1y1D0xkNX2Bg0KdFxYH6JnFkPpK8ux4M6rYAIhw8LnQXhbBppiFnegX09rvAdZJECTFjmWCiM6sRgkYs4rL43kohzA9lnza5d4yGM6jIle-sOHQx3bRcd20W27DODZ6omm5eC4QPYp_VGdOuLsArnHHbnmq9Wy0jyng4a1XDc-kMyZXmjqdNGTYmqcLmaaV4SqyOYLKuduqyerL6MXKRom5QCqjgatBCKhd_dOfXK8JPZWFdkfUQ3g-UrX_lrh-_8j_ACu8rh9I0bkqIfQn39b4CMCVXO7Cb23B4d0Pig-bqa-9RNmGxhb
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlouPAqU5RkkOFCU3cZxnDU3BKwKtKUHKvVm_BgXxJKNuruqyq9nnHgjFqqChJRDlIzjePyYL5nxNwBPmaWFURtMydbnKUdRpCbLbeqHiNLm1nsfPLp7-2LnkL8_Ko5intNmL8ykjkt_n05bouBWhTEgbjjIcpGlgTNmoK0snRzUzq_A5YanJOzg-3jQuREIPPPomzyv5JItWqH6zoOZf0ZLrs-rWp-d6vH4F1M0ug6fF41oI1C-9ecz07c_fuN3_I9W3oBrEaYmr1rxm3AJqw240iauPNuAtb3okqeLTQypnd6CFyE4ZbT7MiFMmYSsXIkPTBUEZl0Sk1McJ_Gv0W04HL399HonjbkYUsuFmKVoty06aWn-oiez7jRq5GgZN84H1y36wpWGYc6sk157go65yzx3pvD0DZrfgdVqUuFdSAJDmjDIsJAY4ItBLxAzVjqhBeNFDwaLXlE2EpWHfBlj1TjMh0MVdKOCblSrmx4870rULUnHBbLPSOUqztTpBXJPluTq70aJUrGMDlr3MkX9QTKL4aJoVgZXi65wMp8qVhLsIlDA6Tmb7fDp3owqkrSOih6USwOrEwiM38t3qq9fGuZvWZKB4mUPtroh-NcG3_vHBj-GtYM3I7X7bv_DfbjKwi6PELgjH8Dq7GSODwl7zcyjZn79BOe1JlY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboVjwuPAqF5aUgwQGQW-I4zppbhVhViFYcWKmcLD_GUHXJRuyuUPn1zKzdFYGqgJRTMnl4MvZ89oy_Yeyp8DgwWgccfX3FJaiau7LyPI4AtK98jJEiugeHan8i3x3VR3m9g_bC9OL3ODkrK1VyIojZtV43QW-wTVUj6h6wzcnhh71PiXWx5ERznrZYJfEckTzvET0PtHE8684Dl3_mSF5dtp09_W6n018c0PhGYkOar3gLKe_kZGe5cDv-x2-sjv_StpvsekahxV4ym1vsErRb7HKqS3m6xa4c5Ig7nlyliPr5bfaSck_G718XCBkLKrpVRCKiQKwailx74nORF4XusMn47cc3-zyXWuBeKrXg4F95CNpj94SIXjtYsCDBC-lCpMgsxDo0TkAlfNDRRkSGVSijDK6OOMWsttmgnbVwjxVEgKYcCKg1EDpxEBVAKZqgrBKyHrLdM_Ubn3nIqRzG1Kzi4aORIb0Y0otJehmy5-s7usTBcYHsM_yjJnfE-QVyT3py3VdnVGNEiQcOa6XpQkSZM7sw2OkokmJbmC3nRjSIqtDnS3zO3WQn6y_DF2kcJtWQNT0LWgsQoXf_Snv8ZUXsrRv0P7IZshdrW_trg-__j_ADdk3Q9g3KyNEP2WDxbQmPEFQt3OPcn34CUusWWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenFL%3A+the+open+federated+learning+library&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Foley%2C+Patrick&rft.au=Sheller%2C+Micah+J&rft.au=Edwards%2C+Brandon&rft.au=Pati%2C+Sarthak&rft.date=2022-10-19&rft.eissn=1361-6560&rft.volume=67&rft.issue=21&rft_id=info:doi/10.1088%2F1361-6560%2Fac97d9&rft_id=info%3Apmid%2F36198326&rft.externalDocID=36198326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon