The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity

The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial in...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 15; no. 3; pp. 329 - 338
Main Authors Li, Lei, Li, Meng, Yu, Liping, Zhou, Zhaoyang, Liang, Xiangxiu, Liu, Zixu, Cai, Gaihong, Gao, Liyan, Zhang, Xiaojuan, Wang, Yingchun, Chen, She, Zhou, Jian-Min
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.03.2014
Subjects
Online AccessGet full text
ISSN1931-3128
1934-6069
1934-6069
DOI10.1016/j.chom.2014.02.009

Cover

Abstract The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense. [Display omitted] •The NADPH oxidase RbohD directly interacts with the FLS2 immune receptor complex•BIK1 directly phosphorylates RbohD at specific sites•BIK1 is required for flg22-induced stomatal closure•RbohD phosphorylation contributes to the BIK1-regulated stomatal defense The FLS2 receptor complex detects bacterial flagellin to activate plant immune responses. Li et al. show that BIK1 kinase, an FLS2 complex component, directly phosphorylates an NADPH oxidase to promote the production of reactive oxygen species. This signals stomatal closure and prevents bacterial entry into plant tissues.
AbstractList The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense.
The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense. [Display omitted] •The NADPH oxidase RbohD directly interacts with the FLS2 immune receptor complex•BIK1 directly phosphorylates RbohD at specific sites•BIK1 is required for flg22-induced stomatal closure•RbohD phosphorylation contributes to the BIK1-regulated stomatal defense The FLS2 receptor complex detects bacterial flagellin to activate plant immune responses. Li et al. show that BIK1 kinase, an FLS2 complex component, directly phosphorylates an NADPH oxidase to promote the production of reactive oxygen species. This signals stomatal closure and prevents bacterial entry into plant tissues.
The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense.The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense.
Author Liu, Zixu
Zhang, Xiaojuan
Zhou, Jian-Min
Li, Meng
Cai, Gaihong
Chen, She
Yu, Liping
Zhou, Zhaoyang
Gao, Liyan
Li, Lei
Liang, Xiangxiu
Wang, Yingchun
Author_xml – sequence: 1
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Liping
  surname: Yu
  fullname: Yu, Liping
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 4
  givenname: Zhaoyang
  surname: Zhou
  fullname: Zhou, Zhaoyang
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Xiangxiu
  surname: Liang
  fullname: Liang, Xiangxiu
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 6
  givenname: Zixu
  surname: Liu
  fullname: Liu, Zixu
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 7
  givenname: Gaihong
  surname: Cai
  fullname: Cai, Gaihong
  organization: National Institute of Biological Sciences, Beijing 102206, China
– sequence: 8
  givenname: Liyan
  surname: Gao
  fullname: Gao, Liyan
  organization: Center for Molecular Systems Biology and State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 9
  givenname: Xiaojuan
  surname: Zhang
  fullname: Zhang, Xiaojuan
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 10
  givenname: Yingchun
  surname: Wang
  fullname: Wang, Yingchun
  organization: Center for Molecular Systems Biology and State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 11
  givenname: She
  surname: Chen
  fullname: Chen, She
  organization: National Institute of Biological Sciences, Beijing 102206, China
– sequence: 12
  givenname: Jian-Min
  surname: Zhou
  fullname: Zhou, Jian-Min
  email: jmzhou@genetics.ac.cn
  organization: Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24629339$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv2yAYhtHUam3T_YEdJo672OMDjGNplyxZ16hRG23dGWGMZSLbZECm5d8PN90OPfQESM_zfeh9r9DZ6EaD0HsgORAQn3a57tyQUwI8JzQnpHqDLqFiPBNEVGdPd8gY0PkFugphR0hRkBLeogvKBa0Yqy6RfewMvtn8oNkiBKetiqbBd3ZUweAv6zvAK-uNjv0RbzsX9p3zxz4xAcfk3S9W21v88Mc2E_69dt0KR4eXboze9XjbqzHi9TAcRhuP1-i8VX0w757PGfp58_VxeZttHr6tl4tNprkQMWt0Ca2oKeNMG1VqXut5oSgVVIkSaAFMAK84pQwKzXhtVAtN2fKG1XV6t2yGPp7m7r37dTAhysEGbfr0GeMOQUJB5pxCmRbM0Idn9FAPppF7bwflj_JfPAmgJ0B7F4I37X8EiJw6kDs5dSCnDiShMnWQpPkLSduoop1SUbZ_Xf18Uk0K6Lc1XgZtzahN89SCbJx9Tf8L1M6gOA
CitedBy_id crossref_primary_10_1093_plcell_koad265
crossref_primary_10_3389_fpls_2024_1374194
crossref_primary_10_1016_j_envexpbot_2021_104744
crossref_primary_10_1093_pcp_pcab079
crossref_primary_10_1360_TB_2023_0788
crossref_primary_10_3389_fpls_2024_1473944
crossref_primary_10_1093_plcell_koad262
crossref_primary_10_3389_fpls_2022_1046181
crossref_primary_10_3390_encyclopedia4010026
crossref_primary_10_3390_ijms23158455
crossref_primary_10_1093_hr_uhae176
crossref_primary_10_1073_pnas_1815425116
crossref_primary_10_1016_j_pmpp_2023_101982
crossref_primary_10_3389_fpls_2016_00794
crossref_primary_10_3389_fpls_2017_00083
crossref_primary_10_1111_nph_17573
crossref_primary_10_3389_fpls_2019_01480
crossref_primary_10_1016_j_bbrc_2021_11_094
crossref_primary_10_1016_j_freeradbiomed_2017_12_024
crossref_primary_10_1093_femsre_fuaa035
crossref_primary_10_3389_fpls_2023_1191449
crossref_primary_10_1016_j_celrep_2023_112938
crossref_primary_10_1007_s11427_016_5112_8
crossref_primary_10_3389_fmicb_2016_00664
crossref_primary_10_1098_rsob_160028
crossref_primary_10_1111_tpj_16417
crossref_primary_10_1016_j_tplants_2024_03_012
crossref_primary_10_1104_pp_114_250985
crossref_primary_10_1016_j_devcel_2021_02_027
crossref_primary_10_1007_s12374_022_09362_5
crossref_primary_10_1111_pce_14686
crossref_primary_10_3390_ijms19020629
crossref_primary_10_1186_s12870_018_1378_2
crossref_primary_10_1016_j_celrep_2019_07_054
crossref_primary_10_1111_nph_17218
crossref_primary_10_3390_ijms23063090
crossref_primary_10_1042_EBC20220067
crossref_primary_10_1093_pcp_pcae123
crossref_primary_10_1093_plcell_koac033
crossref_primary_10_1111_nph_19502
crossref_primary_10_1128_spectrum_02940_24
crossref_primary_10_1038_s41477_022_01195_x
crossref_primary_10_1093_plphys_kiad253
crossref_primary_10_2139_ssrn_3155959
crossref_primary_10_1111_ppl_12639
crossref_primary_10_1126_sciadv_adk3126
crossref_primary_10_1071_FP15090
crossref_primary_10_1038_s41467_021_25580_w
crossref_primary_10_1186_s12870_018_1609_6
crossref_primary_10_1071_FP18243
crossref_primary_10_1016_j_celrep_2024_114384
crossref_primary_10_1007_s12374_022_09374_1
crossref_primary_10_1186_s42483_024_00265_6
crossref_primary_10_1002_pei3_10101
crossref_primary_10_3390_ijms20225523
crossref_primary_10_1371_journal_ppat_1008481
crossref_primary_10_1098_rstb_2018_0310
crossref_primary_10_3389_fpls_2021_829645
crossref_primary_10_15252_embj_2022110741
crossref_primary_10_1111_nph_15497
crossref_primary_10_7554_eLife_92110_4
crossref_primary_10_1016_j_cell_2020_04_028
crossref_primary_10_3390_life10090176
crossref_primary_10_1002_advs_202407787
crossref_primary_10_1093_plcell_koac041
crossref_primary_10_1016_j_chom_2022_09_012
crossref_primary_10_1038_s41477_024_01856_z
crossref_primary_10_1094_MPMI_03_23_0024_R
crossref_primary_10_32615_ps_2022_015
crossref_primary_10_3390_ijms17060805
crossref_primary_10_15252_embj_2020107257
crossref_primary_10_1007_s11427_016_0118_x
crossref_primary_10_1016_j_jare_2022_06_014
crossref_primary_10_15446_abc_v24n1_70821
crossref_primary_10_1111_pbi_14310
crossref_primary_10_1111_tpj_14212
crossref_primary_10_3389_fpls_2016_01851
crossref_primary_10_3390_ijms23010343
crossref_primary_10_1093_hr_uhae149
crossref_primary_10_1073_pnas_2108242118
crossref_primary_10_1111_tpj_13480
crossref_primary_10_1038_s41477_020_0724_1
crossref_primary_10_1094_MPMI_02_23_0018_R
crossref_primary_10_3390_ijms241210395
crossref_primary_10_1111_nph_18596
crossref_primary_10_1093_jxb_erac411
crossref_primary_10_1038_nplants_2016_113
crossref_primary_10_1038_d41586_020_02504_0
crossref_primary_10_1111_tpj_16968
crossref_primary_10_3390_ijms19123896
crossref_primary_10_1093_plcell_koae153
crossref_primary_10_1111_pce_14634
crossref_primary_10_1080_15592324_2015_1018497
crossref_primary_10_1042_EBC20210088
crossref_primary_10_1094_MPMI_34_5
crossref_primary_10_1038_s41586_020_2702_1
crossref_primary_10_1016_j_molp_2014_12_022
crossref_primary_10_1094_MPMI_34_6
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1094_MPMI_34_2
crossref_primary_10_3390_ijms231810427
crossref_primary_10_1016_j_chom_2018_08_007
crossref_primary_10_1111_pbi_13512
crossref_primary_10_1016_j_pbi_2021_102051
crossref_primary_10_1111_febs_16171
crossref_primary_10_1111_pbi_12782
crossref_primary_10_1094_MPMI_07_20_0173_CR
crossref_primary_10_1111_pce_13429
crossref_primary_10_7554_eLife_25114
crossref_primary_10_3389_fmicb_2014_00320
crossref_primary_10_3390_ijms21082737
crossref_primary_10_1105_tpc_15_00024
crossref_primary_10_3390_ijms222313041
crossref_primary_10_3389_fpls_2019_00069
crossref_primary_10_3389_fpls_2016_00583
crossref_primary_10_1016_j_jbc_2023_105018
crossref_primary_10_1016_j_pbi_2021_102044
crossref_primary_10_1073_pnas_1907799117
crossref_primary_10_3389_fmicb_2020_01298
crossref_primary_10_1093_jxb_eraa255
crossref_primary_10_1021_acs_chemrestox_9b00028
crossref_primary_10_1146_annurev_arplant_050213_040012
crossref_primary_10_3389_fpls_2025_1462694
crossref_primary_10_1111_nph_19302
crossref_primary_10_1007_s00425_022_03994_0
crossref_primary_10_1093_jxb_erv558
crossref_primary_10_1071_FP17192
crossref_primary_10_1111_tpj_13798
crossref_primary_10_1093_pcp_pcx042
crossref_primary_10_3390_cells12010127
crossref_primary_10_1111_nph_12916
crossref_primary_10_1021_acschembio_2c00777
crossref_primary_10_1080_15548627_2018_1531198
crossref_primary_10_1093_mp_ssu092
crossref_primary_10_1089_ars_2017_7455
crossref_primary_10_1007_s44154_023_00093_2
crossref_primary_10_1093_plcell_koae267
crossref_primary_10_1186_s13104_018_3628_7
crossref_primary_10_1016_j_pbi_2021_102030
crossref_primary_10_1016_j_devcel_2022_03_010
crossref_primary_10_1093_plcell_koac082
crossref_primary_10_3390_biom11081122
crossref_primary_10_15252_embr_201947965
crossref_primary_10_1007_s11427_024_2684_8
crossref_primary_10_1042_EBC20210076
crossref_primary_10_1094_MPMI_06_14_0187_R
crossref_primary_10_1186_s42483_020_0046_2
crossref_primary_10_1042_EBC20210071
crossref_primary_10_1360_SSV_2022_0170
crossref_primary_10_1016_j_chom_2014_02_012
crossref_primary_10_1016_j_xplc_2023_100559
crossref_primary_10_1073_pnas_1614468114
crossref_primary_10_1186_s12870_021_03031_4
crossref_primary_10_14348_molcells_2023_2158
crossref_primary_10_1094_PHYTO_04_21_0136_R
crossref_primary_10_1111_nph_20231
crossref_primary_10_1016_j_jplph_2023_154041
crossref_primary_10_1093_bbb_zbac007
crossref_primary_10_1111_nph_19484
crossref_primary_10_3389_fpls_2017_01687
crossref_primary_10_1016_j_chom_2016_09_007
crossref_primary_10_3389_fpls_2018_00688
crossref_primary_10_1111_mpp_70052
crossref_primary_10_1016_j_molp_2021_06_010
crossref_primary_10_1038_nri_2016_77
crossref_primary_10_1002_jmr_2754
crossref_primary_10_1016_j_molp_2019_01_018
crossref_primary_10_1007_s13562_020_00604_6
crossref_primary_10_1016_j_chom_2014_10_018
crossref_primary_10_1093_bfgp_elv004
crossref_primary_10_1094_MPMI_08_20_0239_IA
crossref_primary_10_7554_eLife_87912_3
crossref_primary_10_1094_MPMI_05_20_0118_TA
crossref_primary_10_1016_j_cell_2024_03_045
crossref_primary_10_1016_j_cpb_2023_100315
crossref_primary_10_1186_s12870_016_0841_1
crossref_primary_10_1111_pbi_12748
crossref_primary_10_1016_j_chom_2022_07_001
crossref_primary_10_1016_j_ncrops_2024_100027
crossref_primary_10_1016_j_pbi_2017_05_004
crossref_primary_10_1016_j_ygeno_2023_110626
crossref_primary_10_3390_ijms23031080
crossref_primary_10_1080_15592324_2017_1361076
crossref_primary_10_3389_fpls_2022_1001427
crossref_primary_10_3389_fpls_2024_1387321
crossref_primary_10_1038_s41467_023_40364_0
crossref_primary_10_1016_j_xplc_2023_100785
crossref_primary_10_1186_s12864_021_08133_9
crossref_primary_10_1089_ars_2017_7402
crossref_primary_10_3389_fpls_2024_1305599
crossref_primary_10_1016_j_envexpbot_2014_06_011
crossref_primary_10_1093_plphys_kiad098
crossref_primary_10_1038_s41586_021_03315_7
crossref_primary_10_1111_pce_14925
crossref_primary_10_1631_jzus_B1900105
crossref_primary_10_1016_j_bbrc_2023_04_091
crossref_primary_10_1016_j_tplants_2020_09_007
crossref_primary_10_1093_plcell_koad088
crossref_primary_10_1016_j_cub_2023_01_050
crossref_primary_10_1038_s41467_018_03884_8
crossref_primary_10_1111_jipb_13391
crossref_primary_10_1080_15592324_2017_1356970
crossref_primary_10_1016_j_pbi_2015_10_010
crossref_primary_10_1371_journal_pgen_1004936
crossref_primary_10_1111_nph_16069
crossref_primary_10_3389_fpls_2016_00359
crossref_primary_10_1016_j_chom_2020_03_004
crossref_primary_10_1038_s41477_021_00903_3
crossref_primary_10_1002_cppb_20020
crossref_primary_10_1080_10715762_2018_1473572
crossref_primary_10_3390_ijms20174135
crossref_primary_10_3390_ijms23062937
crossref_primary_10_3390_ijms21228631
crossref_primary_10_1094_MPMI_11_20_0318_FI
crossref_primary_10_3390_ijms20112807
crossref_primary_10_7554_eLife_03766
crossref_primary_10_1016_j_peptides_2021_170599
crossref_primary_10_1111_mpp_13369
crossref_primary_10_1111_pbi_13979
crossref_primary_10_1111_tpj_12557
crossref_primary_10_1073_pnas_1807297116
crossref_primary_10_1016_j_redox_2016_12_009
crossref_primary_10_3390_ijms20051211
crossref_primary_10_3390_ijms23094860
crossref_primary_10_7554_eLife_13568
crossref_primary_10_1016_j_molp_2021_07_019
crossref_primary_10_1016_j_plantsci_2024_112033
crossref_primary_10_1016_j_xpro_2021_100558
crossref_primary_10_1007_s10725_024_01248_5
crossref_primary_10_1038_s41598_019_54944_y
crossref_primary_10_1038_s41422_023_00915_y
crossref_primary_10_15252_embr_201642704
crossref_primary_10_1016_j_molp_2014_10_012
crossref_primary_10_1038_s41586_024_07100_0
crossref_primary_10_1038_s41467_024_48313_1
crossref_primary_10_3390_agronomy13092405
crossref_primary_10_1038_s41564_021_00929_5
crossref_primary_10_1242_jcs_246728
crossref_primary_10_1038_s41477_024_01793_x
crossref_primary_10_1073_pnas_2101366118
crossref_primary_10_1105_tpc_114_125682
crossref_primary_10_3389_fpls_2015_00387
crossref_primary_10_1016_j_pbi_2017_06_003
crossref_primary_10_1093_pcp_pcae033
crossref_primary_10_1111_jipb_13449
crossref_primary_10_3389_fpls_2023_1248648
crossref_primary_10_1038_s41588_023_01644_z
crossref_primary_10_1111_ppl_13403
crossref_primary_10_1002_1873_3468_13850
crossref_primary_10_3390_plants11010014
crossref_primary_10_1016_j_plantsci_2024_112071
crossref_primary_10_1093_jxb_ery426
crossref_primary_10_1021_acs_jafc_0c02146
crossref_primary_10_1146_annurev_arplant_043015_112130
crossref_primary_10_1007_s12374_023_09386_5
crossref_primary_10_1038_s41598_018_26838_y
crossref_primary_10_3389_fpls_2021_765003
crossref_primary_10_1242_jcs_209353
crossref_primary_10_7554_eLife_44474
crossref_primary_10_1094_PHYTO_11_21_0471_R
crossref_primary_10_1111_mpp_13270
crossref_primary_10_1016_j_tplants_2015_02_005
crossref_primary_10_1016_j_pbi_2018_07_008
crossref_primary_10_1111_nph_20367
crossref_primary_10_1146_annurev_arplant_042817_040322
crossref_primary_10_1016_j_celrep_2024_114910
crossref_primary_10_1111_nph_19139
crossref_primary_10_1038_s41598_019_39051_2
crossref_primary_10_1104_pp_114_255216
crossref_primary_10_1007_s11356_023_31641_y
crossref_primary_10_1016_j_jprot_2018_04_011
crossref_primary_10_1094_MPMI_08_18_0217_FI
crossref_primary_10_1073_pnas_2312415121
crossref_primary_10_1111_pce_12952
crossref_primary_10_1111_mpp_70021
crossref_primary_10_3389_fpls_2020_01029
crossref_primary_10_15252_embj_201488698
crossref_primary_10_1016_j_chom_2014_10_007
crossref_primary_10_1186_s12284_023_00678_5
crossref_primary_10_1111_jipb_13344
crossref_primary_10_1093_jxb_erae358
crossref_primary_10_1111_nph_20198
crossref_primary_10_1146_annurev_arplant_042817_040557
crossref_primary_10_3390_ijms221910341
crossref_primary_10_1016_j_molp_2023_04_003
crossref_primary_10_1111_mpp_12447
crossref_primary_10_1111_tpj_13808
crossref_primary_10_1007_s44154_022_00045_2
crossref_primary_10_1093_plphys_kiab419
crossref_primary_10_1016_j_pmpp_2016_03_004
crossref_primary_10_1016_j_cub_2023_05_018
crossref_primary_10_1590_1519_6984_173709
crossref_primary_10_1128_spectrum_02477_22
crossref_primary_10_1146_annurev_arplant_042817_040540
crossref_primary_10_1111_pce_13907
crossref_primary_10_1111_nph_13893
crossref_primary_10_1002_aoc_4652
crossref_primary_10_1111_mpp_13306
crossref_primary_10_1016_j_jplph_2021_153585
crossref_primary_10_3389_fpls_2017_01856
crossref_primary_10_3390_ijms25010183
crossref_primary_10_1111_plb_13241
crossref_primary_10_1093_femsre_fuw026
crossref_primary_10_15252_embj_2019103894
crossref_primary_10_1038_s41467_017_02340_3
crossref_primary_10_1038_s41477_022_01134_w
crossref_primary_10_1371_journal_ppat_1004578
crossref_primary_10_1146_annurev_phyto_020620_114826
crossref_primary_10_1016_j_tplants_2014_09_003
crossref_primary_10_1111_jipb_13885
crossref_primary_10_1038_s41477_022_01252_5
crossref_primary_10_1111_nph_13777
crossref_primary_10_3389_fpls_2022_978586
crossref_primary_10_1111_ppl_14135
crossref_primary_10_1016_j_xinn_2025_100800
crossref_primary_10_1146_annurev_arplant_042817_040413
crossref_primary_10_1146_annurev_arplant_050718_100231
crossref_primary_10_1016_j_chom_2024_01_011
crossref_primary_10_1016_j_pmpp_2024_102415
crossref_primary_10_1016_j_chom_2018_03_003
crossref_primary_10_1186_s12870_014_0374_4
crossref_primary_10_1007_s11105_021_01299_2
crossref_primary_10_1111_nph_14733
crossref_primary_10_1007_s11295_020_01481_9
crossref_primary_10_1094_MPMI_07_15_0145_R
crossref_primary_10_1093_plphys_kiac603
crossref_primary_10_1111_jipb_13551
crossref_primary_10_3390_antiox13050549
crossref_primary_10_1016_j_tplants_2021_10_002
crossref_primary_10_3390_ijms20010143
crossref_primary_10_3390_ijms232112974
crossref_primary_10_1016_j_chom_2018_03_010
crossref_primary_10_1016_j_tplants_2014_10_002
crossref_primary_10_1080_09168451_2018_1543012
crossref_primary_10_1186_s12915_016_0280_3
crossref_primary_10_3389_fpls_2024_1334189
crossref_primary_10_3390_ijms19092675
crossref_primary_10_1016_j_cub_2021_11_063
crossref_primary_10_1080_09168451_2017_1325710
crossref_primary_10_1146_annurev_arplant_070623_091552
crossref_primary_10_1016_j_pmpp_2023_102000
crossref_primary_10_1016_j_cub_2024_06_001
crossref_primary_10_1111_jipb_13783
crossref_primary_10_1111_jipb_12529
crossref_primary_10_1016_j_tplants_2023_04_007
crossref_primary_10_1016_S2095_3119_20_63160_4
crossref_primary_10_1007_s11427_016_5106_6
crossref_primary_10_1038_s41586_021_03316_6
crossref_primary_10_1042_BCJ20220372
crossref_primary_10_1089_ars_2021_0281
crossref_primary_10_1199_tab_0183
crossref_primary_10_1016_j_pmpp_2022_101944
crossref_primary_10_3389_fgene_2020_00788
crossref_primary_10_3390_plants13162176
crossref_primary_10_1199_tab_0180
crossref_primary_10_1111_nph_15523
crossref_primary_10_1111_nph_13345
crossref_primary_10_1242_dev_165688
crossref_primary_10_1111_pce_14192
crossref_primary_10_1016_j_cell_2022_06_037
crossref_primary_10_1146_annurev_phyto_080615_100204
crossref_primary_10_1093_nar_gkae019
crossref_primary_10_1371_journal_pone_0159107
crossref_primary_10_1186_s42483_023_00196_8
crossref_primary_10_15252_embr_201540806
crossref_primary_10_1186_s12870_023_04713_x
crossref_primary_10_3390_ijms25063505
crossref_primary_10_1007_s11427_016_0048_4
crossref_primary_10_1016_j_molp_2018_10_008
crossref_primary_10_1111_ppl_14456
crossref_primary_10_1111_mpp_12340
crossref_primary_10_1016_j_plantsci_2019_03_004
crossref_primary_10_1007_s42994_021_00053_2
crossref_primary_10_1016_j_molp_2022_11_011
crossref_primary_10_3389_fmicb_2016_02139
crossref_primary_10_1016_j_molcel_2017_12_026
crossref_primary_10_3389_fpls_2020_539460
crossref_primary_10_1080_15592324_2015_1073874
crossref_primary_10_1094_MPMI_10_20_0271_R
crossref_primary_10_1016_j_pbi_2017_04_022
crossref_primary_10_1111_nph_17922
crossref_primary_10_1093_plphys_kiab312
crossref_primary_10_1111_tpj_16380
crossref_primary_10_1007_s10725_023_00964_8
crossref_primary_10_1111_ppl_14101
crossref_primary_10_1007_s10886_014_0468_3
crossref_primary_10_1007_s12374_018_0075_x
crossref_primary_10_1016_j_cell_2021_09_009
crossref_primary_10_1111_tpj_15068
crossref_primary_10_1093_jxb_erz006
crossref_primary_10_1111_jipb_12898
crossref_primary_10_1002_cppb_20066
crossref_primary_10_1186_s12870_016_0718_3
crossref_primary_10_1016_j_molcel_2021_07_029
crossref_primary_10_1371_journal_ppat_1007900
crossref_primary_10_15252_embj_201694248
crossref_primary_10_7554_eLife_92110
crossref_primary_10_1016_j_pmpp_2018_08_005
crossref_primary_10_1111_mpp_13447
crossref_primary_10_1094_MPMI_07_18_0212_FI
crossref_primary_10_1111_pce_15155
crossref_primary_10_1042_BCJ20210202
crossref_primary_10_1111_pce_14186
crossref_primary_10_1111_ppl_14594
crossref_primary_10_1016_j_tplants_2020_08_001
crossref_primary_10_1111_jipb_12654
crossref_primary_10_1111_nph_13435
crossref_primary_10_1093_hr_uhac207
crossref_primary_10_1093_plcell_koab242
crossref_primary_10_1016_j_cub_2020_09_020
crossref_primary_10_1016_j_cois_2015_04_002
crossref_primary_10_1016_j_chom_2014_09_004
crossref_primary_10_1094_MPMI_06_22_0132_CR
crossref_primary_10_1186_s12870_024_05077_6
crossref_primary_10_1094_MPMI_09_18_0267_FI
crossref_primary_10_1038_s42003_022_03439_0
crossref_primary_10_1038_s41586_020_2210_3
crossref_primary_10_15252_embj_2019102856
crossref_primary_10_1105_tpc_114_134809
crossref_primary_10_1016_j_chom_2022_03_009
crossref_primary_10_3389_fphys_2016_00026
crossref_primary_10_1093_jxb_eraa384
crossref_primary_10_3389_fpls_2016_00812
crossref_primary_10_1093_jxb_erac442
crossref_primary_10_1016_j_coi_2019_12_007
crossref_primary_10_1093_plcell_koac106
crossref_primary_10_7554_eLife_87912
crossref_primary_10_1016_j_cub_2020_09_016
crossref_primary_10_1016_j_jplph_2020_153128
crossref_primary_10_1094_MPMI_09_19_0262_R
crossref_primary_10_1038_s41422_019_0219_7
crossref_primary_10_1016_j_bbrc_2018_01_072
crossref_primary_10_1093_hr_uhad238
crossref_primary_10_1016_j_xplc_2024_101135
crossref_primary_10_1093_plphys_kiac577
crossref_primary_10_3390_ijms21134590
crossref_primary_10_1111_nph_18829
crossref_primary_10_3390_ijms23052447
crossref_primary_10_1146_annurev_phyto_080516_035632
crossref_primary_10_1073_pnas_1609626113
crossref_primary_10_1093_plphys_kiab007
crossref_primary_10_1016_j_cj_2023_07_004
crossref_primary_10_1093_plcell_koab221
crossref_primary_10_1042_BCJ20190299
crossref_primary_10_1093_jxb_erad449
crossref_primary_10_3389_fpls_2022_938876
crossref_primary_10_3390_agronomy13051242
crossref_primary_10_1016_j_jplph_2018_06_010
crossref_primary_10_1508_cytologia_83_289
crossref_primary_10_1111_nph_15543
crossref_primary_10_1016_j_chom_2017_12_005
crossref_primary_10_15252_embr_201642486
crossref_primary_10_3390_ijms21218163
crossref_primary_10_1016_j_tplants_2023_03_028
crossref_primary_10_1038_s41467_020_15601_5
crossref_primary_10_1111_nph_70077
crossref_primary_10_1038_s41598_017_05904_x
crossref_primary_10_1038_nature22009
crossref_primary_10_1016_j_tplants_2019_10_004
crossref_primary_10_1371_journal_ppat_1004602
crossref_primary_10_1371_journal_ppat_1005811
crossref_primary_10_3390_plants11192660
crossref_primary_10_3390_cells11152275
crossref_primary_10_1016_j_tibs_2014_06_006
crossref_primary_10_1093_pcp_pcac105
crossref_primary_10_1093_pcp_pcv063
crossref_primary_10_1074_jbc_REV120_010852
crossref_primary_10_1016_j_cell_2023_05_023
crossref_primary_10_1093_jxb_erab011
crossref_primary_10_1093_plcell_koac203
crossref_primary_10_14348_molcells_2016_0094
crossref_primary_10_1093_plphys_kiac551
crossref_primary_10_3390_ijms252212187
crossref_primary_10_1007_s00299_016_1950_x
crossref_primary_10_1016_j_jplph_2020_153143
crossref_primary_10_1139_cjb_2021_0175
crossref_primary_10_1038_s41467_021_26827_2
crossref_primary_10_1093_jxb_eraa040
crossref_primary_10_1186_s12864_018_5343_0
crossref_primary_10_1270_jsbbs_15157
crossref_primary_10_3389_fpls_2021_724144
crossref_primary_10_1016_j_plantsci_2023_111686
crossref_primary_10_1071_FP19188
crossref_primary_10_3390_cells9020437
crossref_primary_10_1111_jipb_12973
crossref_primary_10_1111_tpj_13086
crossref_primary_10_1016_j_envexpbot_2022_105134
crossref_primary_10_1016_j_plantsci_2022_111381
crossref_primary_10_1111_tpj_15593
crossref_primary_10_1093_plcell_koae311
crossref_primary_10_1111_tpj_16200
crossref_primary_10_1007_s13258_019_00801_1
crossref_primary_10_1093_plphys_kiad472
crossref_primary_10_1111_nph_15488
crossref_primary_10_1071_FP22045
crossref_primary_10_1111_mpp_12769
crossref_primary_10_1016_j_jare_2024_02_025
crossref_primary_10_1007_s11427_016_0115_2
crossref_primary_10_1007_s00018_022_04156_x
crossref_primary_10_1016_j_it_2014_07_007
crossref_primary_10_1093_jxb_erad460
crossref_primary_10_1111_mpp_12522
crossref_primary_10_1016_j_cell_2023_12_030
crossref_primary_10_1016_j_cub_2021_04_080
crossref_primary_10_1126_sciadv_adt9804
crossref_primary_10_1371_journal_pone_0171854
crossref_primary_10_1016_j_chom_2024_12_003
crossref_primary_10_1111_tpj_13057
crossref_primary_10_1111_tpj_13299
crossref_primary_10_1016_j_tplants_2021_08_012
crossref_primary_10_1016_j_molp_2022_03_003
crossref_primary_10_1094_MPMI_03_17_0056_R
crossref_primary_10_3389_fpls_2022_1004184
crossref_primary_10_1186_s12864_021_07571_9
crossref_primary_10_1186_s12870_023_04559_3
crossref_primary_10_1093_plcell_koae321
crossref_primary_10_3390_plants8010009
crossref_primary_10_1094_MPMI_06_17_0145_CR
crossref_primary_10_1093_plcell_koac027
crossref_primary_10_1111_ppl_14293
crossref_primary_10_1038_s41477_024_01621_2
crossref_primary_10_1093_bib_bbac015
crossref_primary_10_1007_s11427_017_9064_5
crossref_primary_10_1016_j_peptides_2021_170611
crossref_primary_10_1038_s41422_024_01058_4
crossref_primary_10_1111_mpp_12776
crossref_primary_10_1016_j_molp_2020_09_007
crossref_primary_10_1016_j_tplants_2024_04_006
crossref_primary_10_1073_pnas_1610212114
crossref_primary_10_1016_j_tplants_2019_04_009
crossref_primary_10_7717_peerj_2446
crossref_primary_10_1016_j_envexpbot_2023_105614
crossref_primary_10_1093_jxb_erad126
crossref_primary_10_1016_j_plantsci_2016_06_019
crossref_primary_10_1038_s41586_019_1413_y
crossref_primary_10_26508_lsa_202000720
crossref_primary_10_15252_embr_202050442
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_1038_s41422_018_0027_5
crossref_primary_10_1038_s41467_021_20932_y
crossref_primary_10_1016_j_jprot_2022_104687
crossref_primary_10_1146_annurev_phyto_080516_035649
crossref_primary_10_1002_1873_3468_13187
crossref_primary_10_1146_annurev_arplant_043014_114707
crossref_primary_10_3389_fpls_2014_00735
crossref_primary_10_1007_s00425_020_03474_3
crossref_primary_10_1093_pcp_pcw232
crossref_primary_10_1042_BCJ20160633
crossref_primary_10_1038_s41477_021_00887_0
crossref_primary_10_1093_plcell_koac001
crossref_primary_10_1111_nph_13031
crossref_primary_10_3390_ijms24076438
crossref_primary_10_1093_jxb_erac384
crossref_primary_10_1007_s00425_018_3001_z
crossref_primary_10_3390_plants13121597
crossref_primary_10_1016_j_envexpbot_2018_07_015
crossref_primary_10_1016_j_stress_2023_100327
crossref_primary_10_1038_ncomms10159
crossref_primary_10_3389_fpls_2022_1050132
crossref_primary_10_1111_febs_16549
crossref_primary_10_1016_j_chom_2018_06_006
crossref_primary_10_1093_plphys_kiac354
crossref_primary_10_3390_ijms22158354
Cites_doi 10.1105/tpc.105.036574
10.1016/j.cell.2006.03.037
10.1105/tpc.105.035576
10.1105/tpc.109.068874
10.1105/tpc.8.3.489
10.1038/nature08794
10.1073/pnas.1112862108
10.1073/pnas.1221294110
10.1016/j.chom.2007.03.006
10.1074/jbc.M708106200
10.1074/mcp.M600429-MCP200
10.1105/tpc.107.056754
10.1074/jbc.275.11.7521
10.1073/pnas.0508882103
10.1146/annurev.arplant.57.032905.105346
10.1038/nature10962
10.1104/pp.112.199810
10.1111/j.1365-313X.2011.04671.x
10.1104/pp.110.171249
10.1105/tpc.111.087122
10.1371/journal.pbio.1001513
10.1074/jbc.M109.096842
10.1016/j.cell.2006.06.054
10.1105/tpc.12.8.1425
10.1073/pnas.0705147104
10.1105/tpc.005579
10.1038/nature05999
10.1104/pp.111.192575
10.1074/jbc.M109.097394
10.1105/tpc.106.048884
10.1104/pp.110.157016
10.1104/pp.107.111740
10.1073/pnas.0909705107
10.1371/journal.ppat.1002291
10.1042/BJ20111112
10.1126/science.1243825
10.1104/pp.113.226068
10.1038/nrg2812
10.1073/pnas.1215543110
10.1016/j.pbi.2012.05.006
10.1371/journal.ppat.1003127
10.1371/journal.pbio.1000139
10.1111/j.1365-313X.2007.03192.x
10.1073/pnas.0905831106
10.1038/nprot.2006.468
10.1104/pp.110.154567
10.1073/pnas.0705306104
10.1038/nri3141
10.1016/j.chom.2010.03.007
10.1073/pnas.1000675107
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.chom.2014.02.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 338
ExternalDocumentID 24629339
10_1016_j_chom_2014_02_009
S1931312814000675
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c466t-dc71f6b2343cea7c4bc85a2262a67125136149422315c34beaf1d7f4d3bbc34f3
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Sat Sep 27 19:44:15 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Tue Jul 01 02:44:16 EDT 2025
Fri Feb 23 02:31:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-dc71f6b2343cea7c4bc85a2262a67125136149422315c34beaf1d7f4d3bbc34f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312814000675
PMID 24629339
PQID 1508421734
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1508421734
pubmed_primary_24629339
crossref_primary_10_1016_j_chom_2014_02_009
crossref_citationtrail_10_1016_j_chom_2014_02_009
elsevier_sciencedirect_doi_10_1016_j_chom_2014_02_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-12
PublicationDateYYYYMMDD 2014-03-12
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dodds, Rathjen (bib9) 2010; 11
Nühse, Peck, Hirt, Boller (bib33) 2000; 275
Willmann, Lajunen, Erbs, Newman, Kolb, Tsuda, Katagiri, Fliegmann, Bono, Cullimore (bib44) 2011; 108
Chen, Zou, Shang, Lin, Wang, Cai, Tang, Zhou (bib6) 2008; 146
Liu, Wu, Yang, Zhang, Chen, Xie, Tian, Zhou (bib23) 2013; 110
Mersmann, Bourdais, Rietz, Robatzek (bib29) 2010; 154
Blume, Nürnberger, Nass, Scheel (bib2) 2000; 12
Dubiella, Seybold, Durian, Komander, Lassig, Witte, Schulze, Romeis (bib10) 2013; 110
Laluk, Luo, Chai, Dhawan, Lai, Mengiste (bib20) 2011; 23
Gao, Chen, Lin, Chen, Lu, Niu, Li, Cheng, McCormack, Sheen (bib13) 2013; 9
Kaku, Nishizawa, Ishii-Minami, Akimoto-Tomiyama, Dohmae, Takio, Minami, Shibuya (bib15) 2006; 103
Shevchenko, Tomas, Havlis, Olsen, Mann (bib39) 2006; 1
Yamaguchi, Huffaker, Bryan, Tax, Ryan (bib45) 2010; 22
Brutus, Sicilia, Macone, Cervone, De Lorenzo (bib5) 2010; 107
Chinchilla, Zipfel, Robatzek, Kemmerling, Nürnberger, Jones, Felix, Boller (bib8) 2007; 448
Boudsocq, Willmann, McCormack, Lee, Shan, He, Bush, Cheng, Sheen (bib4) 2010; 464
Wan, Zhang, Neece, Ramonell, Clough, Kim, Stacey, Stacey (bib43) 2008; 20
Ogasawara, Kaya, Hiraoka, Yumoto, Kimura, Kadota, Hishinuma, Senzaki, Yamagoe, Nagata (bib35) 2008; 283
Benschop, Mohammed, O’Flaherty, Heck, Slijper, Menke (bib1) 2007; 6
Sun, Li, Macho, Han, Hu, Zipfel, Zhou, Chai (bib41) 2013; 342
Melotto, Underwood, Koczan, Nomura, He (bib28) 2006; 126
Monaghan, Zipfel (bib31) 2012; 15
Ma, Zhao, Walker, Berkowitz (bib26) 2013; 163
Knight, Trewavas, Knight (bib16) 1996; 8
Spoel, Dong (bib40) 2012; 12
Boller, Felix (bib3) 2009; 60
Zeng, He (bib46) 2010; 153
Liu, Elmore, Fuglsang, Palmgren, Staskawicz, Coaker (bib22) 2009; 7
Ranf, Eschen-Lippold, Pecher, Lee, Scheel (bib36) 2011; 68
Lu, Wu, Gao, Zhang, Shan, He (bib24) 2010; 107
Segonzac, Feike, Gimenez-Ibanez, Hann, Zipfel, Rathjen (bib38) 2011; 156
Lecourieux, Mazars, Pauly, Ranjeva, Pugin (bib21) 2002; 14
Miya, Albert, Shinya, Desaki, Ichimura, Shirasu, Narusaka, Kawakami, Kaku, Shibuya (bib30) 2007; 104
Feng, Yang, Rong, Wu, Zhang, Chen, He, Zhou (bib11) 2012; 485
Zhang, Shao, Li, Cui, Chen, Li, Zou, Long, Lan, Chai (bib48) 2007; 1
Nühse, Bottrill, Jones, Peck (bib34) 2007; 51
Kobayashi, Ohura, Kawakita, Yokota, Fujiwara, Shimamoto, Doke, Yoshioka (bib17) 2007; 19
Macho, Boutrot, Rathjen, Zipfel (bib27) 2012; 159
Zipfel, Kunze, Chinchilla, Caniard, Jones, Boller, Felix (bib50) 2006; 125
Frei dit Frey, Mbengue, Kwaataal, Nitsch, Altenbach, Häweke, Lozano-Duran, Njo, Beeckman, Huettel (bib12) 2012; 159
Zhang, Li, Xiang, Liu, Laluk, Ding, Zou, Gao, Zhang, Chen (bib49) 2010; 7
Heese, Hann, Gimenez-Ibanez, Jones, He, Li, Schroeder, Peck, Rathjen (bib14) 2007; 104
Ma, Qi, Smigel, Walker, Verma, Berkowitz (bib25) 2009; 106
Schulze, Mentzel, Jehle, Mueller, Beeler, Boller, Felix, Chinchilla (bib37) 2010; 285
Chinchilla, Bauer, Regenass, Boller, Felix (bib7) 2006; 18
Kwaaitaal, Huisman, Maintz, Reinstädler, Panstruga (bib19) 2011; 440
Krol, Mentzel, Chinchilla, Boller, Felix, Kemmerling, Postel, Arents, Jeworutzki, Al-Rasheid (bib18) 2010; 285
Zeng, Brutus, Kremer, Withers, Gao, Jones, He (bib47) 2011; 7
Montillet, Leonhardt, Mondy, Tranchimand, Rumeau, Boudsocq, Garcia, Douki, Bigeard, Laurière (bib32) 2013; 11
Veronese, Nakagami, Bluhm, Abuqamar, Chen, Salmeron, Dietrich, Hirt, Mengiste (bib42) 2006; 18
Frei dit Frey (10.1016/j.chom.2014.02.009_bib12) 2012; 159
Mersmann (10.1016/j.chom.2014.02.009_bib29) 2010; 154
Schulze (10.1016/j.chom.2014.02.009_bib37) 2010; 285
Liu (10.1016/j.chom.2014.02.009_bib23) 2013; 110
Ma (10.1016/j.chom.2014.02.009_bib25) 2009; 106
Chinchilla (10.1016/j.chom.2014.02.009_bib7) 2006; 18
Krol (10.1016/j.chom.2014.02.009_bib18) 2010; 285
Shevchenko (10.1016/j.chom.2014.02.009_bib39) 2006; 1
Monaghan (10.1016/j.chom.2014.02.009_bib31) 2012; 15
Nühse (10.1016/j.chom.2014.02.009_bib34) 2007; 51
Macho (10.1016/j.chom.2014.02.009_bib27) 2012; 159
Chinchilla (10.1016/j.chom.2014.02.009_bib8) 2007; 448
Boller (10.1016/j.chom.2014.02.009_bib3) 2009; 60
Gao (10.1016/j.chom.2014.02.009_bib13) 2013; 9
Zhang (10.1016/j.chom.2014.02.009_bib49) 2010; 7
Zeng (10.1016/j.chom.2014.02.009_bib46) 2010; 153
Nühse (10.1016/j.chom.2014.02.009_bib33) 2000; 275
Ranf (10.1016/j.chom.2014.02.009_bib36) 2011; 68
Boudsocq (10.1016/j.chom.2014.02.009_bib4) 2010; 464
Wan (10.1016/j.chom.2014.02.009_bib43) 2008; 20
Benschop (10.1016/j.chom.2014.02.009_bib1) 2007; 6
Ma (10.1016/j.chom.2014.02.009_bib26) 2013; 163
Lu (10.1016/j.chom.2014.02.009_bib24) 2010; 107
Heese (10.1016/j.chom.2014.02.009_bib14) 2007; 104
Laluk (10.1016/j.chom.2014.02.009_bib20) 2011; 23
Sun (10.1016/j.chom.2014.02.009_bib41) 2013; 342
Miya (10.1016/j.chom.2014.02.009_bib30) 2007; 104
Ogasawara (10.1016/j.chom.2014.02.009_bib35) 2008; 283
Kwaaitaal (10.1016/j.chom.2014.02.009_bib19) 2011; 440
Knight (10.1016/j.chom.2014.02.009_bib16) 1996; 8
Kaku (10.1016/j.chom.2014.02.009_bib15) 2006; 103
Melotto (10.1016/j.chom.2014.02.009_bib28) 2006; 126
Yamaguchi (10.1016/j.chom.2014.02.009_bib45) 2010; 22
Dubiella (10.1016/j.chom.2014.02.009_bib10) 2013; 110
Zipfel (10.1016/j.chom.2014.02.009_bib50) 2006; 125
Dodds (10.1016/j.chom.2014.02.009_bib9) 2010; 11
Feng (10.1016/j.chom.2014.02.009_bib11) 2012; 485
Zeng (10.1016/j.chom.2014.02.009_bib47) 2011; 7
Spoel (10.1016/j.chom.2014.02.009_bib40) 2012; 12
Zhang (10.1016/j.chom.2014.02.009_bib48) 2007; 1
Chen (10.1016/j.chom.2014.02.009_bib6) 2008; 146
Segonzac (10.1016/j.chom.2014.02.009_bib38) 2011; 156
Blume (10.1016/j.chom.2014.02.009_bib2) 2000; 12
Lecourieux (10.1016/j.chom.2014.02.009_bib21) 2002; 14
Kobayashi (10.1016/j.chom.2014.02.009_bib17) 2007; 19
Liu (10.1016/j.chom.2014.02.009_bib22) 2009; 7
Veronese (10.1016/j.chom.2014.02.009_bib42) 2006; 18
Brutus (10.1016/j.chom.2014.02.009_bib5) 2010; 107
Willmann (10.1016/j.chom.2014.02.009_bib44) 2011; 108
Montillet (10.1016/j.chom.2014.02.009_bib32) 2013; 11
24629331 - Cell Host Microbe. 2014 Mar 12;15(3):253-4
References_xml – volume: 11
  start-page: 539
  year: 2010
  end-page: 548
  ident: bib9
  article-title: Plant immunity: towards an integrated view of plant-pathogen interactions
  publication-title: Nat. Rev. Genet.
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  ident: bib50
  article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation
  publication-title: Cell
– volume: 154
  start-page: 391
  year: 2010
  end-page: 400
  ident: bib29
  article-title: Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity
  publication-title: Plant Physiol.
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  ident: bib3
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
  publication-title: Annu. Rev. Plant Biol.
– volume: 156
  start-page: 687
  year: 2011
  end-page: 699
  ident: bib38
  article-title: Hierarchy and roles of pathogen-associated molecular pattern-induced responses in
  publication-title: Plant Physiol.
– volume: 1
  start-page: 175
  year: 2007
  end-page: 185
  ident: bib48
  article-title: A
  publication-title: Cell Host Microbe
– volume: 8
  start-page: 489
  year: 1996
  end-page: 503
  ident: bib16
  article-title: Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation
  publication-title: Plant Cell
– volume: 104
  start-page: 12217
  year: 2007
  end-page: 12222
  ident: bib14
  article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 1065
  year: 2007
  end-page: 1080
  ident: bib17
  article-title: Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase
  publication-title: Plant Cell
– volume: 18
  start-page: 465
  year: 2006
  end-page: 476
  ident: bib7
  article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception
  publication-title: Plant Cell
– volume: 7
  start-page: e1002291
  year: 2011
  ident: bib47
  article-title: A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against
  publication-title: PLoS Pathog.
– volume: 283
  start-page: 8885
  year: 2008
  end-page: 8892
  ident: bib35
  article-title: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 13471
  year: 2010
  end-page: 13479
  ident: bib18
  article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 11086
  year: 2006
  end-page: 11091
  ident: bib15
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 349
  year: 2012
  end-page: 357
  ident: bib31
  article-title: Plant pattern recognition receptor complexes at the plasma membrane
  publication-title: Curr. Opin. Plant Biol.
– volume: 11
  start-page: e1001513
  year: 2013
  ident: bib32
  article-title: An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis
  publication-title: PLoS Biol.
– volume: 6
  start-page: 1198
  year: 2007
  end-page: 1214
  ident: bib1
  article-title: Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis
  publication-title: Mol. Cell. Proteomics
– volume: 107
  start-page: 496
  year: 2010
  end-page: 501
  ident: bib24
  article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 931
  year: 2007
  end-page: 940
  ident: bib34
  article-title: Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses
  publication-title: Plant J.
– volume: 440
  start-page: 355
  year: 2011
  end-page: 365
  ident: bib19
  article-title: Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in
  publication-title: Biochem. J.
– volume: 126
  start-page: 969
  year: 2006
  end-page: 980
  ident: bib28
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
– volume: 285
  start-page: 9444
  year: 2010
  end-page: 9451
  ident: bib37
  article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1
  publication-title: J. Biol. Chem.
– volume: 153
  start-page: 1188
  year: 2010
  end-page: 1198
  ident: bib46
  article-title: A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to
  publication-title: Plant Physiol.
– volume: 163
  start-page: 1459
  year: 2013
  end-page: 1471
  ident: bib26
  article-title: Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca
  publication-title: Plant Physiol.
– volume: 448
  start-page: 497
  year: 2007
  end-page: 500
  ident: bib8
  article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 110
  start-page: 6205
  year: 2013
  end-page: 6210
  ident: bib23
  article-title: BIK1 interacts with PEPRs to mediate ethylene-induced immunity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 89
  year: 2012
  end-page: 100
  ident: bib40
  article-title: How do plants achieve immunity? Defence without specialized immune cells
  publication-title: Nat. Rev. Immunol.
– volume: 7
  start-page: e1000139
  year: 2009
  ident: bib22
  article-title: RIN4 functions with plasma membrane H
  publication-title: PLoS Biol.
– volume: 159
  start-page: 1845
  year: 2012
  end-page: 1856
  ident: bib27
  article-title: Aspartate oxidase plays an important role in Arabidopsis stomatal immunity
  publication-title: Plant Physiol.
– volume: 107
  start-page: 9452
  year: 2010
  end-page: 9457
  ident: bib5
  article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 508
  year: 2010
  end-page: 522
  ident: bib45
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
– volume: 1
  start-page: 2856
  year: 2006
  end-page: 2860
  ident: bib39
  article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat. Protoc.
– volume: 23
  start-page: 2831
  year: 2011
  end-page: 2849
  ident: bib20
  article-title: Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in
  publication-title: Plant Cell
– volume: 342
  start-page: 624
  year: 2013
  end-page: 628
  ident: bib41
  article-title: Structural basis for flg22-induced activation of the
  publication-title: Science
– volume: 20
  start-page: 471
  year: 2008
  end-page: 481
  ident: bib43
  article-title: A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
– volume: 146
  start-page: 368
  year: 2008
  end-page: 376
  ident: bib6
  article-title: Firefly luciferase complementation imaging assay for protein-protein interactions in plants
  publication-title: Plant Physiol.
– volume: 110
  start-page: 8744
  year: 2013
  end-page: 8749
  ident: bib10
  article-title: Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 159
  start-page: 798
  year: 2012
  end-page: 809
  ident: bib12
  article-title: Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development
  publication-title: Plant Physiol.
– volume: 7
  start-page: 290
  year: 2010
  end-page: 301
  ident: bib49
  article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a
  publication-title: Cell Host Microbe
– volume: 275
  start-page: 7521
  year: 2000
  end-page: 7526
  ident: bib33
  article-title: Microbial elicitors induce activation and dual phosphorylation of the
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 20995
  year: 2009
  end-page: 21000
  ident: bib25
  article-title: Ca
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 257
  year: 2006
  end-page: 273
  ident: bib42
  article-title: The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in
  publication-title: Plant Cell
– volume: 108
  start-page: 19824
  year: 2011
  end-page: 19829
  ident: bib44
  article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 68
  start-page: 100
  year: 2011
  end-page: 113
  ident: bib36
  article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns
  publication-title: Plant J.
– volume: 464
  start-page: 418
  year: 2010
  end-page: 422
  ident: bib4
  article-title: Differential innate immune signalling via Ca(2+) sensor protein kinases
  publication-title: Nature
– volume: 9
  start-page: e1003127
  year: 2013
  ident: bib13
  article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca
  publication-title: PLoS Pathog.
– volume: 485
  start-page: 114
  year: 2012
  end-page: 118
  ident: bib11
  article-title: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases
  publication-title: Nature
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  ident: bib30
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1425
  year: 2000
  end-page: 1440
  ident: bib2
  article-title: Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley
  publication-title: Plant Cell
– volume: 14
  start-page: 2627
  year: 2002
  end-page: 2641
  ident: bib21
  article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells
  publication-title: Plant Cell
– volume: 18
  start-page: 465
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib7
  article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.036574
– volume: 125
  start-page: 749
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib50
  article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.037
– volume: 18
  start-page: 257
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib42
  article-title: The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035576
– volume: 22
  start-page: 508
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib45
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068874
– volume: 8
  start-page: 489
  year: 1996
  ident: 10.1016/j.chom.2014.02.009_bib16
  article-title: Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation
  publication-title: Plant Cell
  doi: 10.1105/tpc.8.3.489
– volume: 464
  start-page: 418
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib4
  article-title: Differential innate immune signalling via Ca(2+) sensor protein kinases
  publication-title: Nature
  doi: 10.1038/nature08794
– volume: 108
  start-page: 19824
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib44
  article-title: Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112862108
– volume: 110
  start-page: 8744
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib10
  article-title: Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1221294110
– volume: 1
  start-page: 175
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib48
  article-title: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.03.006
– volume: 283
  start-page: 8885
  year: 2008
  ident: 10.1016/j.chom.2014.02.009_bib35
  article-title: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M708106200
– volume: 6
  start-page: 1198
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib1
  article-title: Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M600429-MCP200
– volume: 20
  start-page: 471
  year: 2008
  ident: 10.1016/j.chom.2014.02.009_bib43
  article-title: A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.056754
– volume: 275
  start-page: 7521
  year: 2000
  ident: 10.1016/j.chom.2014.02.009_bib33
  article-title: Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.11.7521
– volume: 103
  start-page: 11086
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib15
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508882103
– volume: 60
  start-page: 379
  year: 2009
  ident: 10.1016/j.chom.2014.02.009_bib3
  article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105346
– volume: 485
  start-page: 114
  year: 2012
  ident: 10.1016/j.chom.2014.02.009_bib11
  article-title: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases
  publication-title: Nature
  doi: 10.1038/nature10962
– volume: 159
  start-page: 1845
  year: 2012
  ident: 10.1016/j.chom.2014.02.009_bib27
  article-title: Aspartate oxidase plays an important role in Arabidopsis stomatal immunity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.199810
– volume: 68
  start-page: 100
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib36
  article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04671.x
– volume: 156
  start-page: 687
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib38
  article-title: Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.171249
– volume: 23
  start-page: 2831
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib20
  article-title: Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.087122
– volume: 11
  start-page: e1001513
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib32
  article-title: An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001513
– volume: 285
  start-page: 9444
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib37
  article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.096842
– volume: 126
  start-page: 969
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib28
  article-title: Plant stomata function in innate immunity against bacterial invasion
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.054
– volume: 12
  start-page: 1425
  year: 2000
  ident: 10.1016/j.chom.2014.02.009_bib2
  article-title: Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.8.1425
– volume: 104
  start-page: 19613
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib30
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705147104
– volume: 14
  start-page: 2627
  year: 2002
  ident: 10.1016/j.chom.2014.02.009_bib21
  article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.005579
– volume: 448
  start-page: 497
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib8
  article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
  doi: 10.1038/nature05999
– volume: 159
  start-page: 798
  year: 2012
  ident: 10.1016/j.chom.2014.02.009_bib12
  article-title: Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.192575
– volume: 285
  start-page: 13471
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib18
  article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.097394
– volume: 19
  start-page: 1065
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib17
  article-title: Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048884
– volume: 153
  start-page: 1188
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib46
  article-title: A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.157016
– volume: 146
  start-page: 368
  year: 2008
  ident: 10.1016/j.chom.2014.02.009_bib6
  article-title: Firefly luciferase complementation imaging assay for protein-protein interactions in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.111740
– volume: 107
  start-page: 496
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib24
  article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909705107
– volume: 7
  start-page: e1002291
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib47
  article-title: A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002291
– volume: 440
  start-page: 355
  year: 2011
  ident: 10.1016/j.chom.2014.02.009_bib19
  article-title: Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111112
– volume: 342
  start-page: 624
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib41
  article-title: Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex
  publication-title: Science
  doi: 10.1126/science.1243825
– volume: 163
  start-page: 1459
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib26
  article-title: Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.226068
– volume: 11
  start-page: 539
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib9
  article-title: Plant immunity: towards an integrated view of plant-pathogen interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2812
– volume: 110
  start-page: 6205
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib23
  article-title: BIK1 interacts with PEPRs to mediate ethylene-induced immunity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1215543110
– volume: 15
  start-page: 349
  year: 2012
  ident: 10.1016/j.chom.2014.02.009_bib31
  article-title: Plant pattern recognition receptor complexes at the plasma membrane
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2012.05.006
– volume: 9
  start-page: e1003127
  year: 2013
  ident: 10.1016/j.chom.2014.02.009_bib13
  article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003127
– volume: 7
  start-page: e1000139
  year: 2009
  ident: 10.1016/j.chom.2014.02.009_bib22
  article-title: RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000139
– volume: 51
  start-page: 931
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib34
  article-title: Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03192.x
– volume: 106
  start-page: 20995
  year: 2009
  ident: 10.1016/j.chom.2014.02.009_bib25
  article-title: Ca2+, cAMP, and transduction of non-self perception during plant immune responses
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905831106
– volume: 1
  start-page: 2856
  year: 2006
  ident: 10.1016/j.chom.2014.02.009_bib39
  article-title: In-gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.468
– volume: 154
  start-page: 391
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib29
  article-title: Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.154567
– volume: 104
  start-page: 12217
  year: 2007
  ident: 10.1016/j.chom.2014.02.009_bib14
  article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705306104
– volume: 12
  start-page: 89
  year: 2012
  ident: 10.1016/j.chom.2014.02.009_bib40
  article-title: How do plants achieve immunity? Defence without specialized immune cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3141
– volume: 7
  start-page: 290
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib49
  article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.03.007
– volume: 107
  start-page: 9452
  year: 2010
  ident: 10.1016/j.chom.2014.02.009_bib5
  article-title: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1000675107
– reference: 24629331 - Cell Host Microbe. 2014 Mar 12;15(3):253-4
SSID ssj0055071
Score 2.6116967
Snippet The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Arabidopsis - immunology
Arabidopsis Proteins - metabolism
NADPH Oxidases - metabolism
Phosphorylation
Protein Kinases - metabolism
Protein Processing, Post-Translational
Protein-Serine-Threonine Kinases - metabolism
Reactive Oxygen Species - metabolism
Title The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity
URI https://dx.doi.org/10.1016/j.chom.2014.02.009
https://www.ncbi.nlm.nih.gov/pubmed/24629339
https://www.proquest.com/docview/1508421734
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1934-6069
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0055071
  issn: 1931-3128
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1934-6069
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0055071
  issn: 1931-3128
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1934-6069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055071
  issn: 1931-3128
  databaseCode: AKRWK
  dateStart: 20070315
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBchUOjL2Lpuy9YVFfpWRCLrbCePbdqQNG1X1gXyJizJJh7BDq0LzX-_O8su9KF52JtlTkjcyXc_674YO3UICtzASEG1rAQoCwLNsBKGwPMQwMr66uL2Lpou4HoZLjts3ObCUFhlo_u9Tq-1dfOm33Czv8nz_gOuIhU5gqDWuZRoriCuk_iWF602pnJd0nuWpSDqJnHGx3hRPxIK7wJft3P0nnF6D3zWRmjykX1o0CM_9xv8xDppccD2fD_J7WeWo9D55OYhEC3XU8fneYGWil_M5pJ7Bbfe8vtV-bRZlY_bNWFNjiiQ351f3k_5r5fcEflvU64ueVXysY9l59TdqOKzOp2k2h6yxeTqz3gqml4KwkIUVcLZWGaRCRSKI01iC8YOwwSxV5BEMYEchXZ6BAgWZGgVmDTJpIszcMoYHGfqC-sWZZF-Y9yN1NCkcQShDUHFdfujLMzcAB-CQRj0mGyZqG1TaJz6Xax1G1H2VxPjNTFeDwKNjO-xs9c5G19mYyd12MpGvzksGu3AznknrSA1fkXkGkmKtHx-0lQVH_DvTEGPffUSft1HABFiIjX6_p-r_mD7NKLANRkcsW71-Jz-RCRTmWPE8LP5cX1g_wH2lO4X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6DsN2GfZe9tSA3QYhliXZybFNFyRLmhVrC-QmWJKNeAjsoHWB5d-PtOwCO7SH3fyQIIGUyU_mJxLgq0dQ4CMrOOWy4ko6xdENS24JPI-UcqL9dXG6SmaX6sdarw9g0p-FIVplZ_uDTW-tdfdk2ElzuCvL4TmOIiQFglRrc_UDeIhoICJe13x93JtjytclQmhZcGrenZwJJC8qSEL8LhUSd47v8k53oc_WC02fwdMOPrKjMMPncJBXL-BRKCi5fwklap1Nl-cx78Wee7YoK3RV7Hi-ECxYuO2enW3q692mvtpvCWwyhIFsdXRyNmM__5Semv-y9eaENTWbBDI7o_JGDZu350ma_Su4nH6_mMx4V0yBO5UkDfcuFUViY4n6yLPUKetGOkPwFWdJSihHoqMeK0QLQjupbJ4VwqeF8tJavC_kazis6ip_C8yP5cjmaaK000qmbf2jQhc-wos40vEARC9E47pM41TwYmt6StlvQ4I3JHgTxQYFP4Bvt312Ic_Gva11rxvzz2ox6Aju7felV6TBz4hiI1mV1zfXhtLiK9yeSTWAN0HDt_OIVYKgSI7f_eeon-Hx7OJ0aZbz1eI9PKE3xGIT8Qc4bK5u8o8Iaxr7qV22fwFd6fA_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+FLS2-associated+kinase+BIK1+directly+phosphorylates+the+NADPH+oxidase+RbohD+to+control+plant+immunity&rft.jtitle=Cell+host+%26+microbe&rft.au=Li%2C+Lei&rft.au=Li%2C+Meng&rft.au=Yu%2C+Liping&rft.au=Zhou%2C+Zhaoyang&rft.date=2014-03-12&rft.issn=1934-6069&rft.eissn=1934-6069&rft.volume=15&rft.issue=3&rft.spage=329&rft_id=info:doi/10.1016%2Fj.chom.2014.02.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon