Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam
Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with the...
Saved in:
| Published in | International Journal of Remote Sensing Vol. 42; no. 18; pp. 6866 - 6890 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Taylor & Francis
17.09.2021
Informa UK Limited Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0143-1161 1366-5901 1366-5901 |
| DOI | 10.1080/01431161.2021.1945158 |
Cover
| Abstract | Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha
−1
(average = 68.76 Mg ha
−1
) with satisfactory accuracy (coefficient of determination (R
2
) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha
−1
). We also compared the proposed model's capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation. |
|---|---|
| AbstractList | Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha
−1
(average = 68.76 Mg ha
−1
) with satisfactory accuracy (coefficient of determination (R
2
) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha
−1
). We also compared the proposed model's capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation. Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha⁻¹ (average = 68.76 Mg ha⁻¹) with satisfactory accuracy (coefficient of determination (R ²) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha⁻¹). We also compared the proposed model’s capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation. Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha−1 (average = 68.76 Mg ha−1) with satisfactory accuracy (coefficient of determination (R2) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha−1). We also compared the proposed model’s capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation. |
| Author | Nguyen, Thi Thu Trang Tran, Thi Dang Thuy Le, Nga Nhu Yokoya, Naoto Pham, Tien Dat Pham, Tien Duc Ha, Nam Thang |
| Author_xml | – sequence: 1 givenname: Nga Nhu orcidid: 0000-0001-5845-5233 surname: Le fullname: Le, Nga Nhu organization: Institute of Mechanics, Vietnam Academy of Science and Technology (VAST) – sequence: 2 givenname: Tien Dat orcidid: 0000-0002-6422-2847 surname: Pham fullname: Pham, Tien Dat email: dat6784@gmail.com, tienducpham@hus.edu.vn organization: Florida International University – sequence: 3 givenname: Naoto orcidid: 0000-0002-7321-4590 surname: Yokoya fullname: Yokoya, Naoto organization: Graduate School of Frontier Sciences, the University of Tokyo – sequence: 4 givenname: Nam Thang orcidid: 0000-0002-4661-8602 surname: Ha fullname: Ha, Nam Thang organization: University of Agriculture and Forestry, Hue University – sequence: 5 givenname: Thi Thu Trang orcidid: 0000-0002-4394-5130 surname: Nguyen fullname: Nguyen, Thi Thu Trang organization: University of Science, Vietnam National University – sequence: 6 givenname: Thi Dang Thuy surname: Tran fullname: Tran, Thi Dang Thuy organization: University of Science, Vietnam National University – sequence: 7 givenname: Tien Duc orcidid: 0000-0002-9087-7417 surname: Pham fullname: Pham, Tien Duc organization: University of Science, Vietnam National University |
| BackLink | https://cir.nii.ac.jp/crid/1870302167570112000$$DView record in CiNii |
| BookMark | eNqFkc1u1TAQhS1UJG4Lj4BkCRZscvEk8U_EBlTxJ12JDbC1Jo59cZXYxfZt1QfgvXFI2XQBG1u2v3NmPOecnIUYLCHPge2BKfaaQd8BCNi3rIU9DD0Hrh6RHXRCNHxgcEZ2K9Os0BNynvMVY0xILnfk18FiCj4cqUtxoctpLn6JE84Uw7Qdsw05Jlq58oPGMdt0g8XHQCcsmG2hrr765TrFm9XH5uqAxWYaHV0wHOu9pTn6mcZ0xOANNZjGqveBfve2BFyekscO52yf3e8X5NuH918vPzWHLx8_X747NKYXojQTCJRTO0jXDWi70dlhZApaJbDjk6qfchZQOQNdRfsRW9E7M8gJpWjVJLsL8mrzrc3-PNVO9eKzsfOMwcZT1q2oI-OKK1XRFw_Qq3hKoXanWy57riTI1fDNRpkUc07WaePLn-mUhH7WwPQakf4bkV4j0vcRVTV_oL5OdXbp7r-6l5sueF8LrisoybrKrKkygLbOomJvN8yHGtGCtzHNky54N8fkEgbjs-7-Xek3L3q2MQ |
| CitedBy_id | crossref_primary_10_1007_s11356_022_22216_4 crossref_primary_10_3390_w15050854 crossref_primary_10_1007_s11270_024_07259_2 crossref_primary_10_3390_rs17030400 crossref_primary_10_1016_j_scitotenv_2021_150187 crossref_primary_10_18172_cig_5767 crossref_primary_10_1016_j_earscirev_2023_104501 crossref_primary_10_1080_10106049_2022_2160832 crossref_primary_10_3390_su16062473 crossref_primary_10_3389_fenvs_2023_1240106 crossref_primary_10_1016_j_jag_2022_103058 crossref_primary_10_1016_j_scitotenv_2024_173270 crossref_primary_10_1109_JSTARS_2023_3281732 crossref_primary_10_1016_j_envpol_2022_120931 crossref_primary_10_1080_10106049_2022_2102226 crossref_primary_10_1080_2150704X_2023_2282401 crossref_primary_10_1016_j_scitotenv_2022_156852 |
| Cites_doi | 10.3390/rs11010077 10.2136/sssaj1995.03615995005900020014x 10.1007/s13157-015-0660-4 10.21105/joss.00433 10.1038/s41467-019-11693-w 10.1109/ICNN.1995.488968 10.1016/j.jenvman.2013.11.037 10.3390/rs12081334 10.1080/15481603.2020.1731108 10.1080/01431161.2018.1471544 10.1016/0034-4257(79)90013-0 10.1002/ep.12888 10.1016/j.rse.2011.11.026 10.1016/j.rse.2018.09.015 10.3232/sjss.2019.v9.n2.02 10.3390/rs12071095 10.3390/rs12142228 10.1016/j.ecss.2018.12.021 10.1098/rsbl.2018.0781 10.1016/j.geoderma.2019.113972 10.1016/j.ocecoaman.2018.03.022 10.1088/1748-9326/aabe1c 10.1145/2939672.2939785 10.1016/S0167-9473(01)00065-2 10.1038/s41558-018-0090-4 10.1038/s41467-019-14120-2 10.1016/j.jag.2019.101986 10.1016/0034-4257(88)90106-X 10.1016/j.isprsjprs.2018.11.026 10.1016/j.seares.2011.10.006 10.1016/j.quaint.2005.05.008 10.1016/j.asoc.2018.10.036 10.3390/rs9040293 10.3390/rs11030230 10.1016/j.isprsjprs.2013.04.007 10.3390/ECRS-3-06201 10.3390/rs9121299 10.1016/S0034-4257(96)00072-7 10.1080/15481603.2016.1269869 10.1038/ngeo1123 10.1016/S0034-4257(96)00120-4 10.3390/rs11141683 10.1016/j.marpol.2016.01.011 10.1016/j.ecss.2018.12.007 10.1023/A:1010933404324 10.1016/j.foreco.2017.06.057 10.3390/rs12050777 10.1016/j.catena.2016.05.023 10.1016/S0034-4257(00)00113-9 10.1073/pnas.1510272113 10.1146/annurev-environ-101718-033302 10.3390/rs11060676 10.1109/JSTARS.2021.3063507 10.3390/rs10020172 10.1126/science.aba2656 10.1016/j.apgeog.2018.05.011 10.3390/f12020216 10.3390/rs12030393 10.1016/S0034-4257(98)00030-3 10.3390/s110707063 10.3390/rs11182143 10.1080/10106049.2017.1381179 10.1214/aos/1013203451 10.1016/j.rse.2008.06.006 10.1016/j.ecolind.2014.12.028 10.1016/j.scitotenv.2020.137142 10.1109/LGRS.2020.3038771 10.1111/gcb.14774 10.1016/j.ecss.2018.08.006 10.1016/j.scitotenv.2017.03.204 10.3390/rs12071115 10.1016/0273-1177(89)90481-X 10.1016/j.isprsjprs.2010.11.001 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 2021 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | RYH AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2021.1945158 |
| DatabaseName | CiNii Complete CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 6890 |
| ExternalDocumentID | 10_1080_01431161_2021_1945158 1945158 |
| Genre | Research Article |
| GeographicLocations | Vietnam |
| GeographicLocations_xml | – name: Vietnam |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ ADYSH AMPGV RYH AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c466t-d16a7d297f39ae3bfe9b081286a35d8000fe1a8fc13d164ba264fc97da7628d73 |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:29:10 EDT 2025 Wed Aug 13 04:26:30 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Wed Oct 01 04:43:52 EDT 2025 Fri Jun 27 00:47:38 EDT 2025 Mon Oct 20 23:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c466t-d16a7d297f39ae3bfe9b081286a35d8000fe1a8fc13d164ba264fc97da7628d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5845-5233 0000-0002-7321-4590 0000-0002-4661-8602 0000-0002-9087-7417 0000-0002-4394-5130 0000-0002-6422-2847 |
| PQID | 2574587177 |
| PQPubID | 2045515 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1080_01431161_2021_1945158 crossref_primary_10_1080_01431161_2021_1945158 nii_cinii_1870302167570112000 proquest_journals_2574587177 informaworld_taylorfrancis_310_1080_01431161_2021_1945158 proquest_miscellaneous_2636658588 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-17 |
| PublicationDateYYYYMMDD | 2021-09-17 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International Journal of Remote Sensing |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Informa UK Limited Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Informa UK Limited – name: Taylor & Francis Ltd |
| References | cit0033 cit0077 cit0034 cit0032 Ouyang X. (cit0055) 2020; 11 cit0076 cit0073 cit0030 cit0071 Donato D. C. (cit0012) 2011 cit0070 Tien Dat P. (cit0078) 2016; 24 cit0039 cit0037 cit0038 cit0035 cit0079 cit0022 cit0023 cit0067 cit0020 Escadafal R. (cit0015) 1989; 9 cit0021 cit0065 Vapnik V. (cit0082) 2013 cit0062 cit0063 Samat A. (cit0072) 2020 cit0061 Pham T. D. (cit0064) 2017; 2017 Dorogush A. V. (cit0013) 2018; 1810 Navarro J. A. (cit0051) 2019; 11 Prokhorenkova L. (cit0066) 2018 Yu C. (cit0089) 2020; 717 cit0028 cit0029 Tue N. T. (cit0080) 2012; 67 Kauffman J. B. (cit0036) 2012 cit0024 cit0068 cit0069 cit0011 Nielsen D. (cit0052) 2016 cit0056 cit0053 cit0010 cit0054 cit0050 Pedregosa F. (cit0057) 2011; 12 Pham T. D. (cit0060) 2020 Louis J. (cit0043) 2016 Sasmito S. D. (cit0075) 2019; 25 cit0019 cit0017 Sanderman J. (cit0074) 2018; 13 cit0018 cit0059 cit0016 Miranda L. J. (cit0048) 2018; 3 cit0014 cit0058 cit0088 cit0001 cit0045 Hong P. N. (cit0031) 1993 cit0042 cit0086 cit0087 cit0040 cit0084 Ha T. H. (cit0027) 2018; 407 cit0041 cit0085 Lovelock C. E. (cit0044) 2019; 15 cit0083 cit0081 Ha N. T. (cit0026) 2021; 42 Grellier S. (cit0025) 2017; 593 Macreadie P. I. (cit0046) 2019; 10 Zhang Y. (cit0090) 2019; 11 cit0008 cit0009 cit0006 cit0007 cit0004 cit0005 cit0049 cit0002 cit0003 cit0047 |
| References_xml | – volume: 11 start-page: 1 issue: 1 year: 2019 ident: cit0051 publication-title: Remote Sensing doi: 10.3390/rs11010077 – ident: cit0003 doi: 10.2136/sssaj1995.03615995005900020014x – ident: cit0056 doi: 10.1007/s13157-015-0660-4 – volume: 3 start-page: 433 issue: 21 year: 2018 ident: cit0048 publication-title: Journal of Open Source Software doi: 10.21105/joss.00433 – volume: 10 start-page: 3998 issue: 1 year: 2019 ident: cit0046 publication-title: Nature Communications doi: 10.1038/s41467-019-11693-w – ident: cit0037 doi: 10.1109/ICNN.1995.488968 – ident: cit0041 doi: 10.1016/j.jenvman.2013.11.037 – ident: cit0061 doi: 10.3390/rs12081334 – volume: 24 start-page: 4 year: 2016 ident: cit0078 publication-title: Tropics – ident: cit0053 doi: 10.1080/15481603.2020.1731108 – ident: cit0063 doi: 10.1080/01431161.2018.1471544 – ident: cit0079 doi: 10.1016/0034-4257(79)90013-0 – ident: cit0035 doi: 10.1002/ep.12888 – ident: cit0014 doi: 10.1016/j.rse.2011.11.026 – ident: cit0022 doi: 10.1016/j.rse.2018.09.015 – ident: cit0067 doi: 10.3232/sjss.2019.v9.n2.02 – ident: cit0077 doi: 10.3390/rs12071095 – ident: cit0054 doi: 10.3390/rs12142228 – ident: cit0084 doi: 10.1016/j.ecss.2018.12.021 – volume: 15 start-page: 20180781 issue: 3 year: 2019 ident: cit0044 publication-title: Biology Letters doi: 10.1098/rsbl.2018.0781 – ident: cit0021 doi: 10.1016/j.geoderma.2019.113972 – ident: cit0039 doi: 10.1016/j.ocecoaman.2018.03.022 – volume: 13 start-page: 055002 issue: 5 year: 2018 ident: cit0074 publication-title: Environmental Research Letters doi: 10.1088/1748-9326/aabe1c – ident: cit0008 doi: 10.1145/2939672.2939785 – ident: cit0019 doi: 10.1016/S0167-9473(01)00065-2 – ident: cit0028 doi: 10.1038/s41558-018-0090-4 – volume: 11 start-page: 317 issue: 1 year: 2020 ident: cit0055 publication-title: Nature Communications doi: 10.1038/s41467-019-14120-2 – ident: cit0085 doi: 10.1016/j.jag.2019.101986 – ident: cit0032 doi: 10.1016/0034-4257(88)90106-X – volume-title: The Nature of Statistical Learning Theory year: 2013 ident: cit0082 – ident: cit0076 – ident: cit0007 doi: 10.1016/j.isprsjprs.2018.11.026 – ident: cit0030 – volume: 67 start-page: 69 issue: 1 year: 2012 ident: cit0080 publication-title: Journal of Sea Research doi: 10.1016/j.seares.2011.10.006 – ident: cit0040 doi: 10.1016/j.quaint.2005.05.008 – ident: cit0068 doi: 10.1016/j.asoc.2018.10.036 – ident: cit0065 doi: 10.3390/rs9040293 – ident: cit0059 doi: 10.3390/rs11030230 – ident: cit0017 doi: 10.1016/j.isprsjprs.2013.04.007 – ident: cit0016 doi: 10.3390/ECRS-3-06201 – ident: cit0042 doi: 10.3390/rs9121299 – volume-title: Tree Boosting with XGBoost-Why Does XGBoost Win” Every” Machine Learning Competition? year: 2016 ident: cit0052 – ident: cit0024 doi: 10.1016/S0034-4257(96)00072-7 – ident: cit0062 doi: 10.1080/15481603.2016.1269869 – ident: cit0011 doi: 10.1038/ngeo1123 – ident: cit0004 doi: 10.1016/S0034-4257(96)00120-4 – volume: 11 start-page: 1683 issue: 14 year: 2019 ident: cit0090 publication-title: Remote Sensing doi: 10.3390/rs11141683 – volume: 12 start-page: 2825 year: 2011 ident: cit0057 publication-title: Journal of Machine Learning Research – start-page: 4 year: 2011 ident: cit0012 publication-title: Nature Geoscience – ident: cit0001 doi: 10.1016/j.marpol.2016.01.011 – ident: cit0038 doi: 10.1016/j.ecss.2018.12.007 – ident: cit0006 doi: 10.1023/A:1010933404324 – volume: 407 start-page: 191 year: 2018 ident: cit0027 publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2017.06.057 – ident: cit0058 doi: 10.3390/rs12050777 – ident: cit0049 doi: 10.1016/j.catena.2016.05.023 – ident: cit0009 doi: 10.1016/S0034-4257(00)00113-9 – ident: cit0069 doi: 10.1073/pnas.1510272113 – ident: cit0020 doi: 10.1146/annurev-environ-101718-033302 – ident: cit0002 doi: 10.3390/rs11060676 – volume: 42 issue: 12 year: 2021 ident: cit0026 publication-title: International Journal of Remote Sensing – ident: cit0073 doi: 10.1109/JSTARS.2021.3063507 – ident: cit0081 doi: 10.3390/rs10020172 – ident: cit0071 doi: 10.1126/science.aba2656 – ident: cit0023 doi: 10.1016/j.apgeog.2018.05.011 – volume: 2017 start-page: 10 year: 2017 ident: cit0064 publication-title: Journal of Chemistry – volume-title: Paper presented at the Proceedings of the Living Planet Symposium year: 2016 ident: cit0043 – ident: cit0033 – ident: cit0045 doi: 10.3390/f12020216 – ident: cit0086 doi: 10.3390/rs12030393 – volume-title: Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass, and Carbon Stocks in Mangrove Forests year: 2012 ident: cit0036 – ident: cit0047 doi: 10.1016/S0034-4257(98)00030-3 – ident: cit0010 doi: 10.3390/s110707063 – volume: 1810 year: 2018 ident: cit0013 publication-title: arXiv Preprint – ident: cit0083 doi: 10.3390/rs11182143 – ident: cit0005 doi: 10.1080/10106049.2017.1381179 – ident: cit0018 doi: 10.1214/aos/1013203451 – ident: cit0034 doi: 10.1016/j.rse.2008.06.006 – ident: cit0088 doi: 10.1016/j.ecolind.2014.12.028 – volume: 717 start-page: 137142 year: 2020 ident: cit0089 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.137142 – year: 2020 ident: cit0060 publication-title: GIScience & Remote Sensing – start-page: 1 year: 2020 ident: cit0072 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2020.3038771 – volume: 25 start-page: 4291 issue: 12 year: 2019 ident: cit0075 publication-title: Global Change Biology doi: 10.1111/gcb.14774 – start-page: 173 volume-title: IUCN year: 1993 ident: cit0031 – ident: cit0070 – ident: cit0029 doi: 10.1016/j.ecss.2018.08.006 – volume: 593 start-page: 654 year: 2017 ident: cit0025 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2017.03.204 – ident: cit0087 doi: 10.3390/rs12071115 – volume: 9 start-page: 159 issue: 1 year: 1989 ident: cit0015 publication-title: Advances in Space Research doi: 10.1016/0273-1177(89)90481-X – ident: cit0050 doi: 10.1016/j.isprsjprs.2010.11.001 – volume-title: Paper presented at the Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada year: 2018 ident: cit0066 |
| SSID | ssj0006757 |
| Score | 2.4601145 |
| Snippet | Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas... |
| SourceID | proquest crossref nii informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6866 |
| SubjectTerms | Algorithms Artificial intelligence Blue carbon Carbon Carbon cycle carbon markets Carbon offsets computer software Conservation Cost analysis data collection Datasets Emissions control Estimates global carbon budget Greenhouse gases Machine learning Mangrove conservation mangrove soils Mangroves Modelling Organic carbon Particle swarm optimization Regression regression analysis Remote sensing river deltas Root-mean-square errors sample size SAR (radar) Soil soil organic carbon Soils Source code Support vector machines Surveying surveys Swarm intelligence Synthetic aperture radar Vietnam Water depth |
| Title | Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1945158 https://cir.nii.ac.jp/crid/1870302167570112000 https://www.proquest.com/docview/2574587177 https://www.proquest.com/docview/2636658588 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QEuiE-x0CIjcVsl2iSO4xwrCqwQ9LSFiktkJ06J6Caomz3AnZ_Hf2ImdhIvrSjlEu06ieNknj3P45kxIS9ZHgNtEKVXMJV40BNLTyoRe2lcxhpmQSnrbLofjvnyhL07jU8nk1-O19K2VX7-48q4kv-RKpSBXDFK9gaSHSqFAvgN8oUjSBiO_yTj971dowsS6XwD101ho_-7vxuYpWJOb4mrM40aTLBz9Azd6LbzMqwGwwKm3Fgj--yW3WV9BuV6vmmqc7v9U46prJVxj_xY6baWa5fe7toXnawUFxogATWhu7zVlZ0XUAfGMzk__rId1ycMRle4AcGRbMdx6WvzXRqN0LTNOHSaovV8hbZv14oRBuhyYYI2B8Nm5AWBSczuazMYR5x7GBvrjtYsdFEpnLGXC84dPc6F2Yf0ko6wTpXwQHyej63xg5QBsROjUuwdAf7QlYMHY9CnVrXVZFhNZqu5RfZCUDKLKdk7XB59_jRQA5idmfh9-7J9SBkme7-qPTtkaSeVLlChuqouEYiOFa3ukbt2OkMPDTbvk4muH5Dbb7VNhP6Q_OwxShGjdMQoBYxSB6O0wyh1MEotRim0hw4YpQNGaVPSHqMUMUotRqnBKK1qajH6iJy8eb16tfTs1h9ezjhvvSLgMinCNCmjVOpIlTpVQF5DwWUUFzDJWZQ6kKLMgwguZUoCry_zNCkkfHdRJNFjMq2bWj8hNNaMCcUStlAlS6I8TYtIyzhlMlnkwN5nhPXfOMttXnzcnuU8-6uMZ8QfbvtmEsNcd0PqCjBrO4tcabbPyaJr7j0AaUPz8BgI1NJhgGAC7YyxdjOy3-Mgs317k4EyZrFIggRe8cVwGrQHLgnKWjdbuIZDH4tFLMTTm77PM3Jn7Mj7ZNpebPUBEPRWPbew_w0tL923 |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHMqFNyJ9gJG4bohje20fEaIK0ObUot4s22u3K5pdlGwO7b3_uzP7iFoQ6qGXSMl6smtnPP5mMvMNIZ9EkAAbdMoK4VUGOzFlzmuZGZlkBC_IiDamezTPZyfix6k8vVULg2mV6EOnjiiitdW4uTEYPaTEfUZOOgZQBdy7KRuDGw6Hsn5MnkgA-9jFgE_mG2sMgLgrmUYqTpAZqnj-9zV3zqc77KVw-lRl-Y_Nbg-ig-ckDFPo8k9-j9eNH4erv9gdHzbHF-RZj1Ppl06xXpJHsXpFtvuW6eeXr8l1z8x6RrFChbaJiYu6ABm4Z_d2BS5yvaQwrjmntd_Efymmpa5iQ2HWtByiGhT5PhYIfWmd6MJVZ_B5pKu6vKBd76lAg1t6kC8r-quMTeUWb8jJwbfjr7Os7-mQBZHnTVaw3KlialTixkXuUzQeUMlU547LAtDrJEXmdAqMw1DhHQC2FIwqHFhtXSj-lmxVdRXfESojuJZeKDHxSSgejCl4dNIIpyYBYNmIiOGXtKEnPMe-GxeWDbyo_RpbXGPbr_GIjDdifzrGj_sEzG01sU0bakldXxTL75HdB52Cx8NXptH8ThmqLJhdLKIakb1B22xvXFYWrKyQ4OgqmOLHzWUwC_hfj6tivYYxOc8BXEqtdx7weB_I9uz46NAefp__3CVP8RLmyjC1R7aa5TruAyBr_Pt2x90Aai8kgg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSMCF8hSBFozEdUM2ttf2EbWNyiviQBE3y892RbNbZTcHuPO_mdlHREGoh15WytqTrJ3x-BvvzDeEvOZeAGxQKQvcyQxWYsqsUyLTIokIXpDm3Znup2VxfMLffxNjNGEzhFWiD516oojOVuPivghpjIh7g5R0OSAV8O7m-RS8cNiT1U1yq8C3YpjFMVtujTHg4T5jGpk4QWZM4vnf11zani6Rl8LmU5XlPya724cWu8SNI-jDT75PN62b-p9_kTtea4j3yb0BpdK3vVo9IDdi9ZDcGQqmn_14RH4NvKynFPNTaBeWuKoDyMBP9h8bcJDrNYV-7Rmt3fb0l2JQahNbCoOm5XimQZHtY4XAl9aJrmx1CvcjberynPaVpzz1du1Avqzo1zK2lV09JieLoy8Hx9lQ0SHzvCjaLOSFlWGuZWLaRuZS1A4wyVwVlokA2HWWYm5V8jmDrtxZgGvJaxks2GwVJHtCdqq6ik8JFREcS8cln7nEJfNaBxat0NzKmQdQNiF8_CONH-jOserGuclHVtRhjg3OsRnmeEKmW7GLnu_jKgH9p5aYtjtoSX1VFMOukN0HlYLHw2uu0PjOc9RYMLqYQjUhe6OymcG0NAZsLBfg5koY4qttMxgFfNNjq1hvoE_BCoCWQqln13i8l-T258OF-fhu-eE5uYstGCiTyz2y0643cR_QWOtedOvtN6J4IyY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+multimodal+and+multisensor+earth+observation+dataset+for+improving+estimates+of+mangrove+soil+organic+carbon+in+Vietnam&rft.jtitle=International+journal+of+remote+sensing&rft.au=Le%2C+Nga+Nhu&rft.au=Pham%2C+Tien+Dat&rft.au=Yokoya%2C+Naoto&rft.au=Ha%2C+Nam+Thang&rft.date=2021-09-17&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=42&rft.issue=18&rft.spage=6866&rft.epage=6890&rft_id=info:doi/10.1080%2F01431161.2021.1945158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2021_1945158 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |