Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam

Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with the...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Remote Sensing Vol. 42; no. 18; pp. 6866 - 6890
Main Authors Le, Nga Nhu, Pham, Tien Dat, Yokoya, Naoto, Ha, Nam Thang, Nguyen, Thi Thu Trang, Tran, Thi Dang Thuy, Pham, Tien Duc
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 17.09.2021
Informa UK Limited
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0143-1161
1366-5901
1366-5901
DOI10.1080/01431161.2021.1945158

Cover

Abstract Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha −1 (average = 68.76 Mg ha −1 ) with satisfactory accuracy (coefficient of determination (R 2 ) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha −1 ). We also compared the proposed model's capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation.
AbstractList Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha −1 (average = 68.76 Mg ha −1 ) with satisfactory accuracy (coefficient of determination (R 2 ) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha −1 ). We also compared the proposed model's capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation.
Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha⁻¹ (average = 68.76 Mg ha⁻¹) with satisfactory accuracy (coefficient of determination (R ²) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha⁻¹). We also compared the proposed model’s capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation.
Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas emissions. However, it is challenging to have a large sample size in soil carbon measurements and analysis due to the high costs associated with them. In the current research, we propose a novel hybridized artificial intelligence model based on the categorical boosting regression (CBR) and the particle swarm optimization (PSO) algorithm for feature selection, namely, the CBR-PSO model for estimating mangrove SOC. We integrated multisensor optical (Sentinel-2) and synthetic aperture radar (Sentinel-1 and ALOS-2 PALSAR-2) remote sensing data to construct and verify the proposed model, drawing upon a survey in 85 soil cores at 100 cm depth in the Red River Delta, Vietnam. The CBR-PSO model estimated the mangrove SOC ranging from 44.74 to 91.92 Mg ha−1 (average = 68.76 Mg ha−1) with satisfactory accuracy (coefficient of determination (R2) = 0.809 and root-mean-square error (RMSE) = 9.30 Mg ha−1). We also compared the proposed model’s capability with four machine learning techniques, i.e. support vector regression (SVR), random forest regression (RFR), extreme gradient boosting regression (XGBR), and XGBR-PSO models. We show that multimodal and multisensor earth observation dataset combined with the CBR-PSO model can significantly improve the estimates of mangrove SOC. Our findings contribute novel and advanced machine learning approaches for robustness of SOC estimation using open-source software. Our novel framework, which is automated, fast, and reliable, developed in this study can be easily applicable to other mangrove ecosystems across the world, thus providing insights for a voluntary blue carbon offset marketplace for sustainable mangrove conservation.
Author Nguyen, Thi Thu Trang
Tran, Thi Dang Thuy
Le, Nga Nhu
Yokoya, Naoto
Pham, Tien Dat
Pham, Tien Duc
Ha, Nam Thang
Author_xml – sequence: 1
  givenname: Nga Nhu
  orcidid: 0000-0001-5845-5233
  surname: Le
  fullname: Le, Nga Nhu
  organization: Institute of Mechanics, Vietnam Academy of Science and Technology (VAST)
– sequence: 2
  givenname: Tien Dat
  orcidid: 0000-0002-6422-2847
  surname: Pham
  fullname: Pham, Tien Dat
  email: dat6784@gmail.com, tienducpham@hus.edu.vn
  organization: Florida International University
– sequence: 3
  givenname: Naoto
  orcidid: 0000-0002-7321-4590
  surname: Yokoya
  fullname: Yokoya, Naoto
  organization: Graduate School of Frontier Sciences, the University of Tokyo
– sequence: 4
  givenname: Nam Thang
  orcidid: 0000-0002-4661-8602
  surname: Ha
  fullname: Ha, Nam Thang
  organization: University of Agriculture and Forestry, Hue University
– sequence: 5
  givenname: Thi Thu Trang
  orcidid: 0000-0002-4394-5130
  surname: Nguyen
  fullname: Nguyen, Thi Thu Trang
  organization: University of Science, Vietnam National University
– sequence: 6
  givenname: Thi Dang Thuy
  surname: Tran
  fullname: Tran, Thi Dang Thuy
  organization: University of Science, Vietnam National University
– sequence: 7
  givenname: Tien Duc
  orcidid: 0000-0002-9087-7417
  surname: Pham
  fullname: Pham, Tien Duc
  organization: University of Science, Vietnam National University
BackLink https://cir.nii.ac.jp/crid/1870302167570112000$$DView record in CiNii
BookMark eNqFkc1u1TAQhS1UJG4Lj4BkCRZscvEk8U_EBlTxJ12JDbC1Jo59cZXYxfZt1QfgvXFI2XQBG1u2v3NmPOecnIUYLCHPge2BKfaaQd8BCNi3rIU9DD0Hrh6RHXRCNHxgcEZ2K9Os0BNynvMVY0xILnfk18FiCj4cqUtxoctpLn6JE84Uw7Qdsw05Jlq58oPGMdt0g8XHQCcsmG2hrr765TrFm9XH5uqAxWYaHV0wHOu9pTn6mcZ0xOANNZjGqveBfve2BFyekscO52yf3e8X5NuH918vPzWHLx8_X747NKYXojQTCJRTO0jXDWi70dlhZApaJbDjk6qfchZQOQNdRfsRW9E7M8gJpWjVJLsL8mrzrc3-PNVO9eKzsfOMwcZT1q2oI-OKK1XRFw_Qq3hKoXanWy57riTI1fDNRpkUc07WaePLn-mUhH7WwPQakf4bkV4j0vcRVTV_oL5OdXbp7r-6l5sueF8LrisoybrKrKkygLbOomJvN8yHGtGCtzHNky54N8fkEgbjs-7-Xek3L3q2MQ
CitedBy_id crossref_primary_10_1007_s11356_022_22216_4
crossref_primary_10_3390_w15050854
crossref_primary_10_1007_s11270_024_07259_2
crossref_primary_10_3390_rs17030400
crossref_primary_10_1016_j_scitotenv_2021_150187
crossref_primary_10_18172_cig_5767
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_1080_10106049_2022_2160832
crossref_primary_10_3390_su16062473
crossref_primary_10_3389_fenvs_2023_1240106
crossref_primary_10_1016_j_jag_2022_103058
crossref_primary_10_1016_j_scitotenv_2024_173270
crossref_primary_10_1109_JSTARS_2023_3281732
crossref_primary_10_1016_j_envpol_2022_120931
crossref_primary_10_1080_10106049_2022_2102226
crossref_primary_10_1080_2150704X_2023_2282401
crossref_primary_10_1016_j_scitotenv_2022_156852
Cites_doi 10.3390/rs11010077
10.2136/sssaj1995.03615995005900020014x
10.1007/s13157-015-0660-4
10.21105/joss.00433
10.1038/s41467-019-11693-w
10.1109/ICNN.1995.488968
10.1016/j.jenvman.2013.11.037
10.3390/rs12081334
10.1080/15481603.2020.1731108
10.1080/01431161.2018.1471544
10.1016/0034-4257(79)90013-0
10.1002/ep.12888
10.1016/j.rse.2011.11.026
10.1016/j.rse.2018.09.015
10.3232/sjss.2019.v9.n2.02
10.3390/rs12071095
10.3390/rs12142228
10.1016/j.ecss.2018.12.021
10.1098/rsbl.2018.0781
10.1016/j.geoderma.2019.113972
10.1016/j.ocecoaman.2018.03.022
10.1088/1748-9326/aabe1c
10.1145/2939672.2939785
10.1016/S0167-9473(01)00065-2
10.1038/s41558-018-0090-4
10.1038/s41467-019-14120-2
10.1016/j.jag.2019.101986
10.1016/0034-4257(88)90106-X
10.1016/j.isprsjprs.2018.11.026
10.1016/j.seares.2011.10.006
10.1016/j.quaint.2005.05.008
10.1016/j.asoc.2018.10.036
10.3390/rs9040293
10.3390/rs11030230
10.1016/j.isprsjprs.2013.04.007
10.3390/ECRS-3-06201
10.3390/rs9121299
10.1016/S0034-4257(96)00072-7
10.1080/15481603.2016.1269869
10.1038/ngeo1123
10.1016/S0034-4257(96)00120-4
10.3390/rs11141683
10.1016/j.marpol.2016.01.011
10.1016/j.ecss.2018.12.007
10.1023/A:1010933404324
10.1016/j.foreco.2017.06.057
10.3390/rs12050777
10.1016/j.catena.2016.05.023
10.1016/S0034-4257(00)00113-9
10.1073/pnas.1510272113
10.1146/annurev-environ-101718-033302
10.3390/rs11060676
10.1109/JSTARS.2021.3063507
10.3390/rs10020172
10.1126/science.aba2656
10.1016/j.apgeog.2018.05.011
10.3390/f12020216
10.3390/rs12030393
10.1016/S0034-4257(98)00030-3
10.3390/s110707063
10.3390/rs11182143
10.1080/10106049.2017.1381179
10.1214/aos/1013203451
10.1016/j.rse.2008.06.006
10.1016/j.ecolind.2014.12.028
10.1016/j.scitotenv.2020.137142
10.1109/LGRS.2020.3038771
10.1111/gcb.14774
10.1016/j.ecss.2018.08.006
10.1016/j.scitotenv.2017.03.204
10.3390/rs12071115
10.1016/0273-1177(89)90481-X
10.1016/j.isprsjprs.2010.11.001
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID RYH
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2021.1945158
DatabaseName CiNii Complete
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 6890
ExternalDocumentID 10_1080_01431161_2021_1945158
1945158
Genre Research Article
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
ADYSH
AMPGV
RYH
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c466t-d16a7d297f39ae3bfe9b081286a35d8000fe1a8fc13d164ba264fc97da7628d73
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:29:10 EDT 2025
Wed Aug 13 04:26:30 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Wed Oct 01 04:43:52 EDT 2025
Fri Jun 27 00:47:38 EDT 2025
Mon Oct 20 23:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c466t-d16a7d297f39ae3bfe9b081286a35d8000fe1a8fc13d164ba264fc97da7628d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5845-5233
0000-0002-7321-4590
0000-0002-4661-8602
0000-0002-9087-7417
0000-0002-4394-5130
0000-0002-6422-2847
PQID 2574587177
PQPubID 2045515
PageCount 25
ParticipantIDs crossref_citationtrail_10_1080_01431161_2021_1945158
crossref_primary_10_1080_01431161_2021_1945158
nii_cinii_1870302167570112000
proquest_journals_2574587177
informaworld_taylorfrancis_310_1080_01431161_2021_1945158
proquest_miscellaneous_2636658588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-17
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International Journal of Remote Sensing
PublicationYear 2021
Publisher Taylor & Francis
Informa UK Limited
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
– name: Taylor & Francis Ltd
References cit0033
cit0077
cit0034
cit0032
Ouyang X. (cit0055) 2020; 11
cit0076
cit0073
cit0030
cit0071
Donato D. C. (cit0012) 2011
cit0070
Tien Dat P. (cit0078) 2016; 24
cit0039
cit0037
cit0038
cit0035
cit0079
cit0022
cit0023
cit0067
cit0020
Escadafal R. (cit0015) 1989; 9
cit0021
cit0065
Vapnik V. (cit0082) 2013
cit0062
cit0063
Samat A. (cit0072) 2020
cit0061
Pham T. D. (cit0064) 2017; 2017
Dorogush A. V. (cit0013) 2018; 1810
Navarro J. A. (cit0051) 2019; 11
Prokhorenkova L. (cit0066) 2018
Yu C. (cit0089) 2020; 717
cit0028
cit0029
Tue N. T. (cit0080) 2012; 67
Kauffman J. B. (cit0036) 2012
cit0024
cit0068
cit0069
cit0011
Nielsen D. (cit0052) 2016
cit0056
cit0053
cit0010
cit0054
cit0050
Pedregosa F. (cit0057) 2011; 12
Pham T. D. (cit0060) 2020
Louis J. (cit0043) 2016
Sasmito S. D. (cit0075) 2019; 25
cit0019
cit0017
Sanderman J. (cit0074) 2018; 13
cit0018
cit0059
cit0016
Miranda L. J. (cit0048) 2018; 3
cit0014
cit0058
cit0088
cit0001
cit0045
Hong P. N. (cit0031) 1993
cit0042
cit0086
cit0087
cit0040
cit0084
Ha T. H. (cit0027) 2018; 407
cit0041
cit0085
Lovelock C. E. (cit0044) 2019; 15
cit0083
cit0081
Ha N. T. (cit0026) 2021; 42
Grellier S. (cit0025) 2017; 593
Macreadie P. I. (cit0046) 2019; 10
Zhang Y. (cit0090) 2019; 11
cit0008
cit0009
cit0006
cit0007
cit0004
cit0005
cit0049
cit0002
cit0003
cit0047
References_xml – volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: cit0051
  publication-title: Remote Sensing
  doi: 10.3390/rs11010077
– ident: cit0003
  doi: 10.2136/sssaj1995.03615995005900020014x
– ident: cit0056
  doi: 10.1007/s13157-015-0660-4
– volume: 3
  start-page: 433
  issue: 21
  year: 2018
  ident: cit0048
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.00433
– volume: 10
  start-page: 3998
  issue: 1
  year: 2019
  ident: cit0046
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11693-w
– ident: cit0037
  doi: 10.1109/ICNN.1995.488968
– ident: cit0041
  doi: 10.1016/j.jenvman.2013.11.037
– ident: cit0061
  doi: 10.3390/rs12081334
– volume: 24
  start-page: 4
  year: 2016
  ident: cit0078
  publication-title: Tropics
– ident: cit0053
  doi: 10.1080/15481603.2020.1731108
– ident: cit0063
  doi: 10.1080/01431161.2018.1471544
– ident: cit0079
  doi: 10.1016/0034-4257(79)90013-0
– ident: cit0035
  doi: 10.1002/ep.12888
– ident: cit0014
  doi: 10.1016/j.rse.2011.11.026
– ident: cit0022
  doi: 10.1016/j.rse.2018.09.015
– ident: cit0067
  doi: 10.3232/sjss.2019.v9.n2.02
– ident: cit0077
  doi: 10.3390/rs12071095
– ident: cit0054
  doi: 10.3390/rs12142228
– ident: cit0084
  doi: 10.1016/j.ecss.2018.12.021
– volume: 15
  start-page: 20180781
  issue: 3
  year: 2019
  ident: cit0044
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2018.0781
– ident: cit0021
  doi: 10.1016/j.geoderma.2019.113972
– ident: cit0039
  doi: 10.1016/j.ocecoaman.2018.03.022
– volume: 13
  start-page: 055002
  issue: 5
  year: 2018
  ident: cit0074
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/aabe1c
– ident: cit0008
  doi: 10.1145/2939672.2939785
– ident: cit0019
  doi: 10.1016/S0167-9473(01)00065-2
– ident: cit0028
  doi: 10.1038/s41558-018-0090-4
– volume: 11
  start-page: 317
  issue: 1
  year: 2020
  ident: cit0055
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-14120-2
– ident: cit0085
  doi: 10.1016/j.jag.2019.101986
– ident: cit0032
  doi: 10.1016/0034-4257(88)90106-X
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: cit0082
– ident: cit0076
– ident: cit0007
  doi: 10.1016/j.isprsjprs.2018.11.026
– ident: cit0030
– volume: 67
  start-page: 69
  issue: 1
  year: 2012
  ident: cit0080
  publication-title: Journal of Sea Research
  doi: 10.1016/j.seares.2011.10.006
– ident: cit0040
  doi: 10.1016/j.quaint.2005.05.008
– ident: cit0068
  doi: 10.1016/j.asoc.2018.10.036
– ident: cit0065
  doi: 10.3390/rs9040293
– ident: cit0059
  doi: 10.3390/rs11030230
– ident: cit0017
  doi: 10.1016/j.isprsjprs.2013.04.007
– ident: cit0016
  doi: 10.3390/ECRS-3-06201
– ident: cit0042
  doi: 10.3390/rs9121299
– volume-title: Tree Boosting with XGBoost-Why Does XGBoost Win” Every” Machine Learning Competition?
  year: 2016
  ident: cit0052
– ident: cit0024
  doi: 10.1016/S0034-4257(96)00072-7
– ident: cit0062
  doi: 10.1080/15481603.2016.1269869
– ident: cit0011
  doi: 10.1038/ngeo1123
– ident: cit0004
  doi: 10.1016/S0034-4257(96)00120-4
– volume: 11
  start-page: 1683
  issue: 14
  year: 2019
  ident: cit0090
  publication-title: Remote Sensing
  doi: 10.3390/rs11141683
– volume: 12
  start-page: 2825
  year: 2011
  ident: cit0057
  publication-title: Journal of Machine Learning Research
– start-page: 4
  year: 2011
  ident: cit0012
  publication-title: Nature Geoscience
– ident: cit0001
  doi: 10.1016/j.marpol.2016.01.011
– ident: cit0038
  doi: 10.1016/j.ecss.2018.12.007
– ident: cit0006
  doi: 10.1023/A:1010933404324
– volume: 407
  start-page: 191
  year: 2018
  ident: cit0027
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2017.06.057
– ident: cit0058
  doi: 10.3390/rs12050777
– ident: cit0049
  doi: 10.1016/j.catena.2016.05.023
– ident: cit0009
  doi: 10.1016/S0034-4257(00)00113-9
– ident: cit0069
  doi: 10.1073/pnas.1510272113
– ident: cit0020
  doi: 10.1146/annurev-environ-101718-033302
– ident: cit0002
  doi: 10.3390/rs11060676
– volume: 42
  issue: 12
  year: 2021
  ident: cit0026
  publication-title: International Journal of Remote Sensing
– ident: cit0073
  doi: 10.1109/JSTARS.2021.3063507
– ident: cit0081
  doi: 10.3390/rs10020172
– ident: cit0071
  doi: 10.1126/science.aba2656
– ident: cit0023
  doi: 10.1016/j.apgeog.2018.05.011
– volume: 2017
  start-page: 10
  year: 2017
  ident: cit0064
  publication-title: Journal of Chemistry
– volume-title: Paper presented at the Proceedings of the Living Planet Symposium
  year: 2016
  ident: cit0043
– ident: cit0033
– ident: cit0045
  doi: 10.3390/f12020216
– ident: cit0086
  doi: 10.3390/rs12030393
– volume-title: Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass, and Carbon Stocks in Mangrove Forests
  year: 2012
  ident: cit0036
– ident: cit0047
  doi: 10.1016/S0034-4257(98)00030-3
– ident: cit0010
  doi: 10.3390/s110707063
– volume: 1810
  year: 2018
  ident: cit0013
  publication-title: arXiv Preprint
– ident: cit0083
  doi: 10.3390/rs11182143
– ident: cit0005
  doi: 10.1080/10106049.2017.1381179
– ident: cit0018
  doi: 10.1214/aos/1013203451
– ident: cit0034
  doi: 10.1016/j.rse.2008.06.006
– ident: cit0088
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 717
  start-page: 137142
  year: 2020
  ident: cit0089
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.137142
– year: 2020
  ident: cit0060
  publication-title: GIScience & Remote Sensing
– start-page: 1
  year: 2020
  ident: cit0072
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2020.3038771
– volume: 25
  start-page: 4291
  issue: 12
  year: 2019
  ident: cit0075
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14774
– start-page: 173
  volume-title: IUCN
  year: 1993
  ident: cit0031
– ident: cit0070
– ident: cit0029
  doi: 10.1016/j.ecss.2018.08.006
– volume: 593
  start-page: 654
  year: 2017
  ident: cit0025
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2017.03.204
– ident: cit0087
  doi: 10.3390/rs12071115
– volume: 9
  start-page: 159
  issue: 1
  year: 1989
  ident: cit0015
  publication-title: Advances in Space Research
  doi: 10.1016/0273-1177(89)90481-X
– ident: cit0050
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume-title: Paper presented at the Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada
  year: 2018
  ident: cit0066
SSID ssj0006757
Score 2.4601145
Snippet Quantifying mangrove soil organic carbon (SOC) is key to better understanding the global carbon cycle, a critical phenomenon in reducing greenhouse gas...
SourceID proquest
crossref
nii
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6866
SubjectTerms Algorithms
Artificial intelligence
Blue carbon
Carbon
Carbon cycle
carbon markets
Carbon offsets
computer software
Conservation
Cost analysis
data collection
Datasets
Emissions control
Estimates
global carbon budget
Greenhouse gases
Machine learning
Mangrove conservation
mangrove soils
Mangroves
Modelling
Organic carbon
Particle swarm optimization
Regression
regression analysis
Remote sensing
river deltas
Root-mean-square errors
sample size
SAR (radar)
Soil
soil organic carbon
Soils
Source code
Support vector machines
Surveying
surveys
Swarm intelligence
Synthetic aperture radar
Vietnam
Water depth
Title Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1945158
https://cir.nii.ac.jp/crid/1870302167570112000
https://www.proquest.com/docview/2574587177
https://www.proquest.com/docview/2636658588
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QEuiE-x0CIjcVsl2iSO4xwrCqwQ9LSFiktkJ06J6Caomz3AnZ_Hf2ImdhIvrSjlEu06ieNknj3P45kxIS9ZHgNtEKVXMJV40BNLTyoRe2lcxhpmQSnrbLofjvnyhL07jU8nk1-O19K2VX7-48q4kv-RKpSBXDFK9gaSHSqFAvgN8oUjSBiO_yTj971dowsS6XwD101ho_-7vxuYpWJOb4mrM40aTLBz9Azd6LbzMqwGwwKm3Fgj--yW3WV9BuV6vmmqc7v9U46prJVxj_xY6baWa5fe7toXnawUFxogATWhu7zVlZ0XUAfGMzk__rId1ycMRle4AcGRbMdx6WvzXRqN0LTNOHSaovV8hbZv14oRBuhyYYI2B8Nm5AWBSczuazMYR5x7GBvrjtYsdFEpnLGXC84dPc6F2Yf0ko6wTpXwQHyej63xg5QBsROjUuwdAf7QlYMHY9CnVrXVZFhNZqu5RfZCUDKLKdk7XB59_jRQA5idmfh9-7J9SBkme7-qPTtkaSeVLlChuqouEYiOFa3ukbt2OkMPDTbvk4muH5Dbb7VNhP6Q_OwxShGjdMQoBYxSB6O0wyh1MEotRim0hw4YpQNGaVPSHqMUMUotRqnBKK1qajH6iJy8eb16tfTs1h9ezjhvvSLgMinCNCmjVOpIlTpVQF5DwWUUFzDJWZQ6kKLMgwguZUoCry_zNCkkfHdRJNFjMq2bWj8hNNaMCcUStlAlS6I8TYtIyzhlMlnkwN5nhPXfOMttXnzcnuU8-6uMZ8QfbvtmEsNcd0PqCjBrO4tcabbPyaJr7j0AaUPz8BgI1NJhgGAC7YyxdjOy3-Mgs317k4EyZrFIggRe8cVwGrQHLgnKWjdbuIZDH4tFLMTTm77PM3Jn7Mj7ZNpebPUBEPRWPbew_w0tL923
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagHMqFNyJ9gJG4bohje20fEaIK0ObUot4s22u3K5pdlGwO7b3_uzP7iFoQ6qGXSMl6smtnPP5mMvMNIZ9EkAAbdMoK4VUGOzFlzmuZGZlkBC_IiDamezTPZyfix6k8vVULg2mV6EOnjiiitdW4uTEYPaTEfUZOOgZQBdy7KRuDGw6Hsn5MnkgA-9jFgE_mG2sMgLgrmUYqTpAZqnj-9zV3zqc77KVw-lRl-Y_Nbg-ig-ckDFPo8k9-j9eNH4erv9gdHzbHF-RZj1Ppl06xXpJHsXpFtvuW6eeXr8l1z8x6RrFChbaJiYu6ABm4Z_d2BS5yvaQwrjmntd_Efymmpa5iQ2HWtByiGhT5PhYIfWmd6MJVZ_B5pKu6vKBd76lAg1t6kC8r-quMTeUWb8jJwbfjr7Os7-mQBZHnTVaw3KlialTixkXuUzQeUMlU547LAtDrJEXmdAqMw1DhHQC2FIwqHFhtXSj-lmxVdRXfESojuJZeKDHxSSgejCl4dNIIpyYBYNmIiOGXtKEnPMe-GxeWDbyo_RpbXGPbr_GIjDdifzrGj_sEzG01sU0bakldXxTL75HdB52Cx8NXptH8ThmqLJhdLKIakb1B22xvXFYWrKyQ4OgqmOLHzWUwC_hfj6tivYYxOc8BXEqtdx7weB_I9uz46NAefp__3CVP8RLmyjC1R7aa5TruAyBr_Pt2x90Aai8kgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSMCF8hSBFozEdUM2ttf2EbWNyiviQBE3y892RbNbZTcHuPO_mdlHREGoh15WytqTrJ3x-BvvzDeEvOZeAGxQKQvcyQxWYsqsUyLTIokIXpDm3Znup2VxfMLffxNjNGEzhFWiD516oojOVuPivghpjIh7g5R0OSAV8O7m-RS8cNiT1U1yq8C3YpjFMVtujTHg4T5jGpk4QWZM4vnf11zani6Rl8LmU5XlPya724cWu8SNI-jDT75PN62b-p9_kTtea4j3yb0BpdK3vVo9IDdi9ZDcGQqmn_14RH4NvKynFPNTaBeWuKoDyMBP9h8bcJDrNYV-7Rmt3fb0l2JQahNbCoOm5XimQZHtY4XAl9aJrmx1CvcjberynPaVpzz1du1Avqzo1zK2lV09JieLoy8Hx9lQ0SHzvCjaLOSFlWGuZWLaRuZS1A4wyVwVlokA2HWWYm5V8jmDrtxZgGvJaxks2GwVJHtCdqq6ik8JFREcS8cln7nEJfNaBxat0NzKmQdQNiF8_CONH-jOserGuclHVtRhjg3OsRnmeEKmW7GLnu_jKgH9p5aYtjtoSX1VFMOukN0HlYLHw2uu0PjOc9RYMLqYQjUhe6OymcG0NAZsLBfg5koY4qttMxgFfNNjq1hvoE_BCoCWQqln13i8l-T258OF-fhu-eE5uYstGCiTyz2y0643cR_QWOtedOvtN6J4IyY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+multimodal+and+multisensor+earth+observation+dataset+for+improving+estimates+of+mangrove+soil+organic+carbon+in+Vietnam&rft.jtitle=International+journal+of+remote+sensing&rft.au=Le%2C+Nga+Nhu&rft.au=Pham%2C+Tien+Dat&rft.au=Yokoya%2C+Naoto&rft.au=Ha%2C+Nam+Thang&rft.date=2021-09-17&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=42&rft.issue=18&rft.spage=6866&rft.epage=6890&rft_id=info:doi/10.1080%2F01431161.2021.1945158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2021_1945158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon