The adaptive bases algorithm for intensity-based nonrigid image registration

Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been propos...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 22; no. 11; pp. 1470 - 1479
Main Authors Rohde, G.K., Aldroubi, A., Dawant, B.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2003.819299

Cover

Abstract Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (Ml)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.
AbstractList Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (Ml)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.
To develop this method, we introduce several novelties: 1 we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2 we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3 we partition the global registration problem into several smaller ones; and 4 we introduce a new constraint scheme that allows us to produce transformations that are topologically correct.
Author Rohde, G.K.
Aldroubi, A.
Dawant, B.M.
Author_xml – sequence: 1
  givenname: G.K.
  surname: Rohde
  fullname: Rohde, G.K.
  organization: Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 2
  givenname: A.
  surname: Aldroubi
  fullname: Aldroubi, A.
– sequence: 3
  givenname: B.M.
  surname: Dawant
  fullname: Dawant, B.M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15252040$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14606680$$D View this record in MEDLINE/PubMed
BookMark eNqFks9rFDEcxYO02O3q2YMgg1DtZbbf_E6OUqoWVrys4C1kMpltyuzMmmSF_vdm3NVCoe0lOeTzvrx83ztFR8M4eITeYFhgDPpi9e16QQDoQmFNtH6BZphzVRPOfh6hGRCpagBBTtBpSrcAmHHQL9EJZgKEUDBDy9WNr2xrtzn89lVjk0-V7ddjDPlmU3VjrMKQ_ZBCvqun17YqDmJYh7YKG7v2VfTrkHK0OYzDK3Tc2T7514d7jn58vlpdfq2X379cX35a1o4JkcspHVAmLOPS6kZxyikrfoT1bUMsaRrbcCE6CZpyoNo5a1vXUSjf6gjFdI4-7udu4_hr51M2m5Cc73s7-HGXjFIUqKREFvLDk6TElBGQ4lmQKCGkLlbn6PxJEIsyEySXk833D9DbcReHspnikBHFGSYFeneAds3Gt2Yby17jnfkXUQHODoBNzvZdtIML6Z7jhBNgE8f3nItjStF3xoX8N5aSTugNBjNVxpTKmKkyZl-Zort4oPs_-lHF270ieO_vacIIZZr-Af08yHY
CODEN ITMID4
CitedBy_id crossref_primary_10_1186_1475_925X_3_13
crossref_primary_10_1002_jmri_22186
crossref_primary_10_1118_1_4870966
crossref_primary_10_1002_hbm_20780
crossref_primary_10_1117_1_JMI_7_3_031506
crossref_primary_10_1016_j_mri_2013_01_002
crossref_primary_10_1002_jmri_20688
crossref_primary_10_1109_TMI_2014_2344911
crossref_primary_10_1088_0031_9155_51_2_012
crossref_primary_10_1016_j_neurobiolaging_2010_04_027
crossref_primary_10_1155_2009_281615
crossref_primary_10_1016_j_media_2010_07_009
crossref_primary_10_1109_TGRS_2013_2285814
crossref_primary_10_1016_j_neuroimage_2010_04_258
crossref_primary_10_3174_ajnr_A2105
crossref_primary_10_1016_j_inffus_2023_102061
crossref_primary_10_1097_MAO_0b013e3182a1a7e6
crossref_primary_10_1016_j_neuroimage_2013_07_060
crossref_primary_10_4304_jmm_9_6_822_828
crossref_primary_10_1117_1_JMI_4_2_025002
crossref_primary_10_4304_jmm_9_1_145_151
crossref_primary_10_1016_j_media_2015_09_005
crossref_primary_10_1155_2016_7419307
crossref_primary_10_1016_j_mri_2011_02_022
crossref_primary_10_1118_1_4756932
crossref_primary_10_1016_j_neuroimage_2008_03_021
crossref_primary_10_1016_j_mri_2011_09_010
crossref_primary_10_1134_S1054661817010114
crossref_primary_10_1109_TBME_2010_2093576
crossref_primary_10_1093_ons_opx029
crossref_primary_10_1111_j_1460_9568_2010_07445_x
crossref_primary_10_1109_TBME_2014_2308299
crossref_primary_10_1016_j_mri_2005_04_007
crossref_primary_10_1016_j_mri_2013_08_008
crossref_primary_10_1016_j_parkreldis_2014_09_004
crossref_primary_10_1016_j_nic_2008_06_006
crossref_primary_10_1177_1352458516689147
crossref_primary_10_1016_j_mri_2019_09_004
crossref_primary_10_1088_0031_9155_57_1_93
crossref_primary_10_1016_j_mri_2013_01_013
crossref_primary_10_1371_journal_pone_0172432
crossref_primary_10_1016_j_media_2011_05_001
crossref_primary_10_1002_hbm_23936
crossref_primary_10_1109_TVCG_2012_162
crossref_primary_10_1016_j_media_2019_05_005
crossref_primary_10_1371_journal_pone_0199190
crossref_primary_10_1007_s11307_016_0988_z
crossref_primary_10_1002_acn3_51304
crossref_primary_10_1118_1_3634048
crossref_primary_10_1016_j_mri_2012_02_005
crossref_primary_10_4304_jnw_9_5_1295_1300
crossref_primary_10_1002_jmri_21450
crossref_primary_10_1159_000504856
crossref_primary_10_1007_s11517_024_03092_1
crossref_primary_10_1002_hbm_20978
crossref_primary_10_1109_MPUL_2011_2181023
crossref_primary_10_2337_dc11_2250
crossref_primary_10_1016_j_biopsych_2008_12_029
crossref_primary_10_1118_1_3414035
crossref_primary_10_1109_TMI_2005_856752
crossref_primary_10_1016_j_media_2015_06_012
crossref_primary_10_1016_j_mri_2018_09_004
crossref_primary_10_1016_j_neuroimage_2017_02_048
crossref_primary_10_1016_j_parkreldis_2012_10_015
crossref_primary_10_1117_1_JMI_10_4_044003
crossref_primary_10_1016_j_media_2016_10_005
crossref_primary_10_1109_TMI_2007_901987
crossref_primary_10_1118_1_2740467
crossref_primary_10_1002_mrm_21346
crossref_primary_10_1523_JNEUROSCI_2423_08_2008
crossref_primary_10_1007_s10796_009_9151_6
crossref_primary_10_1117_1_JMI_11_6_064001
crossref_primary_10_1016_j_compmedimag_2024_102331
crossref_primary_10_3724_SP_J_1016_2008_01224
crossref_primary_10_1111_ner_12061
crossref_primary_10_1227_NEU_0000000000000714
crossref_primary_10_1109_TMI_2009_2035616
crossref_primary_10_1117_1_JMI_4_3_035003
crossref_primary_10_1088_0031_9155_50_21_014
crossref_primary_10_1016_j_media_2008_04_003
crossref_primary_10_1016_j_aeue_2014_11_003
crossref_primary_10_1109_TMI_2007_892508
crossref_primary_10_1109_TMI_2007_893283
crossref_primary_10_1016_j_neuroimage_2010_02_006
crossref_primary_10_1002_mrm_21916
crossref_primary_10_1118_1_3609416
crossref_primary_10_1007_s12204_014_1576_5
crossref_primary_10_1016_j_media_2018_02_004
crossref_primary_10_1016_j_mri_2011_01_002
crossref_primary_10_1002_hbm_20504
crossref_primary_10_1117_1_JMI_4_4_044007
crossref_primary_10_1117_1_JMI_4_4_044005
crossref_primary_10_1038_sj_npp_1300916
crossref_primary_10_1109_JTEHM_2014_2327628
crossref_primary_10_1109_TBME_2011_2146782
crossref_primary_10_1016_j_jneumeth_2007_10_007
crossref_primary_10_1109_TMI_2015_2481609
crossref_primary_10_1109_TVCG_2010_39
crossref_primary_10_1016_j_neuroimage_2018_04_074
crossref_primary_10_1007_s11548_009_0391_1
crossref_primary_10_1016_j_cviu_2007_12_003
crossref_primary_10_1109_TBME_2011_2160262
crossref_primary_10_1007_s10439_015_1433_1
crossref_primary_10_1016_j_patrec_2011_03_004
crossref_primary_10_1007_s11263_006_0011_2
crossref_primary_10_1148_radiol_10091742
crossref_primary_10_1002_mp_12197
crossref_primary_10_1007_s11760_020_01650_2
crossref_primary_10_1109_TMI_2008_2010434
crossref_primary_10_1148_radiol_11110315
crossref_primary_10_1038_s41531_021_00268_6
crossref_primary_10_1109_TBME_2020_2974102
crossref_primary_10_1109_TMI_2005_848373
crossref_primary_10_1007_s00701_007_1270_6
crossref_primary_10_1364_BOE_5_002196
crossref_primary_10_1016_j_mri_2004_01_078
crossref_primary_10_1523_JNEUROSCI_6459_11_2012
crossref_primary_10_1109_TMI_2009_2021063
crossref_primary_10_1002_hbm_22309
crossref_primary_10_1016_j_patrec_2006_07_005
crossref_primary_10_1109_TBME_2014_2322776
crossref_primary_10_1016_j_acra_2008_09_003
crossref_primary_10_1109_ACCESS_2021_3074124
crossref_primary_10_1093_braincomms_fcae111
crossref_primary_10_1016_j_media_2020_101820
crossref_primary_10_1212_NXI_0000000000000436
crossref_primary_10_3390_app9132700
crossref_primary_10_1118_1_3515459
crossref_primary_10_1007_s11548_016_1449_5
crossref_primary_10_1002_mrm_24324
crossref_primary_10_1088_0031_9155_58_12_4071
crossref_primary_10_1109_TBME_2010_2043675
crossref_primary_10_1155_2010_919620
crossref_primary_10_1212_WNL_0000000000001257
crossref_primary_10_3233_ICA_160533
crossref_primary_10_1186_1748_717X_9_169
crossref_primary_10_1016_j_mri_2011_07_012
crossref_primary_10_2174_1573405614666180905094032
crossref_primary_10_1016_j_biopsych_2007_03_022
crossref_primary_10_1016_j_jalz_2011_05_2111
crossref_primary_10_1109_JBHI_2015_2428672
crossref_primary_10_1371_journal_pone_0075065
crossref_primary_10_1109_JSTSP_2008_2011104
crossref_primary_10_1016_j_mri_2008_07_016
crossref_primary_10_1088_0031_9155_55_21_001
crossref_primary_10_1007_s11263_013_0642_z
crossref_primary_10_1007_s11760_020_01784_3
crossref_primary_10_1109_LRA_2018_2806439
crossref_primary_10_4304_jnw_9_4_1033_1039
crossref_primary_10_1093_texcom_tgaa083
crossref_primary_10_1016_j_media_2016_09_008
crossref_primary_10_1016_j_imavis_2011_03_003
crossref_primary_10_1016_j_neuroimage_2018_10_029
crossref_primary_10_1212_01_wnl_0000295504_92020_ca
crossref_primary_10_1088_0031_9155_56_17_018
crossref_primary_10_1364_BOE_5_002843
crossref_primary_10_1109_JSTSP_2008_2011116
crossref_primary_10_1002_nbm_4090
crossref_primary_10_1118_1_2889758
crossref_primary_10_1007_s10439_009_9840_9
crossref_primary_10_1097_MLG_0b013e31816b309e
crossref_primary_10_1109_TMI_2013_2282126
crossref_primary_10_1118_1_3005479
crossref_primary_10_1109_TMI_2012_2190992
crossref_primary_10_1016_j_neuroimage_2016_01_022
crossref_primary_10_1016_j_media_2004_03_001
crossref_primary_10_1002_hbm_20692
crossref_primary_10_1016_j_media_2015_08_006
crossref_primary_10_1007_s12021_012_9159_9
crossref_primary_10_1118_1_1895795
crossref_primary_10_1212_WNL_0b013e31828154c5
crossref_primary_10_1002_nbm_1810
crossref_primary_10_1002_rcs_330
crossref_primary_10_1177_20552173221132170
crossref_primary_10_1007_s11265_008_0185_7
crossref_primary_10_3390_math11010069
crossref_primary_10_1016_j_media_2012_10_002
crossref_primary_10_1109_TIP_2011_2162738
crossref_primary_10_1177_1352458512456614
crossref_primary_10_1016_j_mri_2016_08_015
crossref_primary_10_1088_0031_9155_56_14_021
crossref_primary_10_1097_MAO_0b013e31819e61ed
crossref_primary_10_1016_j_media_2008_06_008
crossref_primary_10_1109_TMI_2013_2286192
crossref_primary_10_1002_hbm_20362
crossref_primary_10_1177_1352458513485146
crossref_primary_10_1016_j_neuroimage_2011_03_045
crossref_primary_10_1109_TMI_2013_2265603
crossref_primary_10_1186_2191_219X_2_62
crossref_primary_10_1109_TMI_2014_2308894
crossref_primary_10_1016_j_compmedimag_2007_04_002
crossref_primary_10_1593_tlo_13748
crossref_primary_10_1016_j_mri_2008_03_004
crossref_primary_10_1016_j_mri_2009_05_007
crossref_primary_10_1016_j_media_2014_02_001
crossref_primary_10_1177_1352458512457842
crossref_primary_10_1016_j_neuroimage_2017_10_046
crossref_primary_10_1177_1352458520923970
crossref_primary_10_1007_s11548_015_1189_y
Cites_doi 10.1016/s0734-189x(89)80014-3
10.1097/00004728-199303000-00011
10.1109/42.925292
10.1109/42.896788
10.1109/42.363096
10.1007/bfb0046964
10.1117/12.431130
10.1093/oso/9780198534396.003.0003
10.1016/s1361-8415(97)85010-4
10.1016/s1361-8415(98)80001-7
10.1117/12.431043
10.1016/s1361-8415(98)80022-4
10.1109/42.563664
10.1007/BF01893414
10.1097/00004728-199403000-00005
10.1109/42.796284
10.1016/S0031-3203(98)00091-0
10.1016/s1361-8415(96)80004-1
10.1109/42.836368
10.1088/0031-9155/39/3/022
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2003.819299
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Technology Research Database
MEDLINE
Materials Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1479
ExternalDocumentID 2429377811
14606680
15252040
10_1109_TMI_2003_819299
1242349
Genre orig-research
Validation Studies
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c466t-c47c0346a457a9b8535340666aedb2a2bbab566f70935039ccaadcf30254f2313
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Tue Oct 07 10:02:58 EDT 2025
Sat Sep 27 20:02:24 EDT 2025
Thu Oct 02 12:06:37 EDT 2025
Thu Oct 02 06:44:43 EDT 2025
Mon Jun 30 03:15:42 EDT 2025
Wed Feb 19 01:51:02 EST 2025
Mon Jul 21 09:13:16 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Wed Oct 01 06:36:09 EDT 2025
Tue Aug 26 16:38:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-c47c0346a457a9b8535340666aedb2a2bbab566f70935039ccaadcf30254f2313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 14606680
PQID 884285412
PQPubID 23500
PageCount 10
ParticipantIDs proquest_journals_884285412
proquest_miscellaneous_71342076
pubmed_primary_14606680
proquest_miscellaneous_883037327
proquest_miscellaneous_28667985
proquest_miscellaneous_1671307571
pascalfrancis_primary_15252040
ieee_primary_1242349
crossref_citationtrail_10_1109_TMI_2003_819299
crossref_primary_10_1109_TMI_2003_819299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2003
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
Rohde (ref23) 2001
Studholme (ref16) 1999; 32
Rohlfing (ref15); 4319
Rohde (ref25); 4322
Schnabel (ref20); 2208
Schaback (ref17) 1995
ref26
Powel (ref18) 1992
ref22
Micchelli (ref19) 1986; 2
Dinsenbacher (ref24) 2000; 4119
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Rohlfing (ref21); 2208
References_xml – ident: ref3
  doi: 10.1016/s0734-189x(89)80014-3
– start-page: 447
  volume-title: Mathematical Models for Curves and Surfaces
  year: 1995
  ident: ref17
  article-title: Creating surfaces from scattered data using radial basis functions
– ident: ref4
  doi: 10.1097/00004728-199303000-00011
– ident: ref26
  doi: 10.1109/42.925292
– ident: ref12
  doi: 10.1109/42.896788
– ident: ref22
  doi: 10.1109/42.363096
– ident: ref6
  doi: 10.1007/bfb0046964
– volume: 2208
  start-page: 111
  volume-title: Proceedings of MICCAI 2001
  ident: ref21
  article-title: Intensity-based nonrigid registration using adaptive multilevel free-form deformation with an incompressibility constraint
– ident: ref13
  doi: 10.1117/12.431130
– start-page: 105
  volume-title: Advances in Numerical Analsysis II: Wavelets, Subdivision, and Radial Basis Functions
  year: 1992
  ident: ref18
  article-title: The theory of radial basis functions in 1990
  doi: 10.1093/oso/9780198534396.003.0003
– ident: ref10
  doi: 10.1016/s1361-8415(97)85010-4
– ident: ref1
  doi: 10.1016/s1361-8415(98)80001-7
– volume-title: The Adaptive grid registration algorithm: A new spline modeling approach for automatic intensity-based nonrigid registration, masters thesis
  year: 2001
  ident: ref23
– volume: 4322
  start-page: 1578
  volume-title: Proc. SPIE (Medical Imaging 2001: Image Processing)
  ident: ref25
  article-title: Adaptive free-form deformation for inter-patient medical image registration
  doi: 10.1117/12.431043
– volume: 4119
  start-page: 1076
  year: 2000
  ident: ref24
  article-title: Multiscale nonrigid data registration using adaptive basis functions
  publication-title: SPIE-Wavelet Applications in Signal and Image Processing VIII
– ident: ref7
  doi: 10.1016/s1361-8415(98)80022-4
– ident: ref8
  doi: 10.1109/42.563664
– volume: 2
  start-page: 11
  year: 1986
  ident: ref19
  article-title: Interpolation of scattered data: Distance matrices and conditionally positive definite functions
  publication-title: Constr. Approx.
  doi: 10.1007/BF01893414
– ident: ref2
  doi: 10.1097/00004728-199403000-00005
– ident: ref11
  doi: 10.1109/42.796284
– volume: 32
  start-page: 71
  issue: 1
  year: 1999
  ident: ref16
  article-title: An overlap invariant entropy measure of 3D medical image alignment
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(98)00091-0
– volume: 2208
  start-page: 573
  volume-title: Proceedings of MICCAI 2001
  ident: ref20
  article-title: A generic framework for nonrigid registration based on nonuniform multi-level free form deformation
– volume: 4319
  start-page: 337
  volume-title: Proc. SPIE (Medical Imaging 2001: Image Processing)
  ident: ref15
  article-title: Modeling liver motion and deformation during the respiratory cycle using intensity-based free-form registration of gated MR images
– ident: ref9
  doi: 10.1016/s1361-8415(96)80004-1
– ident: ref14
  doi: 10.1109/42.836368
– ident: ref5
  doi: 10.1088/0031-9155/39/3/022
SSID ssj0014509
Score 2.3045194
Snippet Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or...
To develop this method, we introduce several novelties: 1 we rely on radially symmetric basis functions rather than B-splines traditionally used to model the...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1470
SubjectTerms Adaptation
Algorithms
Biological and medical sciences
Biomedical imaging
Brain - anatomy & histology
Computational complexity
Convergence
Deformable models
Feedback
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image registration
Image segmentation
Imaging, Three-Dimensional
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Mathematical models
Medical
Medical sciences
Motion
Mutual information
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Registers
Reproducibility of Results
Segmentation
Sensitivity and Specificity
Spline
Studies
Subtraction Technique
Technology. Biomaterials. Equipments. Material. Instrumentation
Transformations
Title The adaptive bases algorithm for intensity-based nonrigid image registration
URI https://ieeexplore.ieee.org/document/1242349
https://www.ncbi.nlm.nih.gov/pubmed/14606680
https://www.proquest.com/docview/884285412
https://www.proquest.com/docview/1671307571
https://www.proquest.com/docview/28667985
https://www.proquest.com/docview/71342076
https://www.proquest.com/docview/883037327
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGh5pKXFSBw4kDTxMzki1KogllMr9Rb5FVjR7lbd7AF-PR47u1sQkZCiVVaeVdb22PM5M_MNwFumXOd8J3PeMZ1zbmluhK5y43wAGFo3IiYKT77K80v--UpcbcH7dS6M9z4Gn_kCb6Mv383tEl-VnVRo_HmzDduqlilXa-0x4CKFc1BkjC0lHWh8qrI5uZh8isSfBZJ_NZEnlCNuRyrIe8YoVlfB2Ei9CMPTpboW48AzGqCzXZis_nqKO_lRLHtT2F9_sTr-b9-ewOMBiZIPSXWewpaf7cGje_yEe_BgMnje9-FL0Ceinb7F7ZGg7VsQff1tfjftv9-QgHzJNAXD9z9zbHVkNp9h0S1HpjdhzyJYAWLF0fsMLs9OLz6e50MlhtxyKfvwqWzJuNRcKN2YYOIF43jy0d4Zqqkx2gRc2Cl0q5asCWqhne0Yptp3AUGy57ATnupfAhGC2tp6xaRpuDJM28oz_BauuvRdBsVqSlo70JRjtYzrNh5XyqYN04nFM1mbpjODd-sf3CaGjnHRfRz4jVga8wyO_5jzTbuggoZdLoPDlRK0wxJftHXNMfu0ohm8WbeGtYkOFz3z8-WiraQKEEEJVWXwekSG1hIdYWJcArN9aalkBmREoq4DEFGMqgxeJBXddGHQ9IN_d_0QHqboRHyn9Ap2-rulPwooqzfHcXn9BkgsIXY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIfHxwMc2IAw2I_HAA8kSfyaPE2LqoNlTJ-0tsh0Hqm3ttKYP8Nfji9N2Q0RCiqpUviq1ffb9nLv7HcBHpuqmdo2MecN0zLmlsRE6i03tPMDQuhBdonB5Jkfn_NuFuNiCz-tcGOdcF3zmErztfPn13C7xVdlRhsafFw_goeCci5CttfYZcBECOihyxqaS9kQ-WVocTcrTjvozQfqvomMK5YjckQzyjjnq6qtgdKRe-AFqQmWLYejZmaCT51Cu_nyIPLlMlq1J7O-_eB3_t3cv4FmPRclxUJ6XsOVmO_D0DkPhDjwqe9_7Loy9RhFd6xvcIAlavwXRVz_mt9P25zXx2JdMQzh8-yvG1prM5jMsu1WT6bXftQjWgFix9O7B-cnXyZdR3NdiiC2XsvWfyqaMS82F0oXxRl4wjmcf7WpDNTVGG48MG4WO1ZQVXjF0bRuGyfaNx5DsFWz7p7o3QISgNrdOMWkKrgzTNnMMv_krT10TQbKaksr2ROVYL-Oq6g4saVH56cTymawK0xnBp_UPbgJHx7DoLg78RiyMeQQH9-Z80y6ooH6fi2B_pQRVv8gXVZ5zzD_NaAQf1q1-daLLRc_cfLmoMqk8SFBCZREcDsjQXKIrTAxLYL4vTZWMgAxI5LmHIopRFcHroKKbLvSa_vbfXT-Ex6NJOa7Gp2ff9-FJiFXEN0zvYLu9Xbr3HnO15qBban8AiuUkww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+bases+algorithm+for+intensity-based+nonrigid+image+registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Rohde%2C+G+K&rft.au=Aldroubi%2C+A&rft.au=Dawant%2C+B+M&rft.date=2003-11-01&rft.issn=0278-0062&rft.volume=22&rft.issue=11&rft.spage=1470&rft.epage=1479&rft_id=info:doi/10.1109%2FTMI.2003.819299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon