The adaptive bases algorithm for intensity-based nonrigid image registration
Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been propos...
        Saved in:
      
    
          | Published in | IEEE transactions on medical imaging Vol. 22; no. 11; pp. 1470 - 1479 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.11.2003
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0062 1558-254X  | 
| DOI | 10.1109/TMI.2003.819299 | 
Cover
| Abstract | Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (Ml)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use. | 
    
|---|---|
| AbstractList | Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use.Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use. Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (IMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (Ml)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use. Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or geometric correction of functional magnetic resonance imaging (fMRI) images to name a few. In recent years, a number of methods have been proposed to solve this problem, one class of which involves maximizing a mutual information (MI)-based objective function over a regular grid of splines. This approach has produced good results but its computational complexity is proportional to the compliance of the transformation required to register the smallest structures in the image. Here, we propose a method that permits the spatial adaptation of the transformation's compliance. This spatial adaptation allows us to reduce the number of degrees of freedom in the overall transformation, thus speeding up the process and improving its convergence properties. To develop this method, we introduce several novelties: 1) we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2) we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3) we partition the global registration problem into several smaller ones; and 4) we introduce a new constraint scheme that allows us to produce transformations that are topologically correct. We compare the approach we propose to more traditional ones and show that our new algorithm compares favorably to those in current use. To develop this method, we introduce several novelties: 1 we rely on radially symmetric basis functions rather than B-splines traditionally used to model the deformation field; 2 we propose a metric to identify regions that are poorly registered and over which the transformation needs to be improved; 3 we partition the global registration problem into several smaller ones; and 4 we introduce a new constraint scheme that allows us to produce transformations that are topologically correct.  | 
    
| Author | Rohde, G.K. Aldroubi, A. Dawant, B.M.  | 
    
| Author_xml | – sequence: 1 givenname: G.K. surname: Rohde fullname: Rohde, G.K. organization: Nat. Inst. of Health, Bethesda, MD, USA – sequence: 2 givenname: A. surname: Aldroubi fullname: Aldroubi, A. – sequence: 3 givenname: B.M. surname: Dawant fullname: Dawant, B.M.  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15252040$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14606680$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqFks9rFDEcxYO02O3q2YMgg1DtZbbf_E6OUqoWVrys4C1kMpltyuzMmmSF_vdm3NVCoe0lOeTzvrx83ztFR8M4eITeYFhgDPpi9e16QQDoQmFNtH6BZphzVRPOfh6hGRCpagBBTtBpSrcAmHHQL9EJZgKEUDBDy9WNr2xrtzn89lVjk0-V7ddjDPlmU3VjrMKQ_ZBCvqun17YqDmJYh7YKG7v2VfTrkHK0OYzDK3Tc2T7514d7jn58vlpdfq2X379cX35a1o4JkcspHVAmLOPS6kZxyikrfoT1bUMsaRrbcCE6CZpyoNo5a1vXUSjf6gjFdI4-7udu4_hr51M2m5Cc73s7-HGXjFIUqKREFvLDk6TElBGQ4lmQKCGkLlbn6PxJEIsyEySXk833D9DbcReHspnikBHFGSYFeneAds3Gt2Yby17jnfkXUQHODoBNzvZdtIML6Z7jhBNgE8f3nItjStF3xoX8N5aSTugNBjNVxpTKmKkyZl-Zort4oPs_-lHF270ieO_vacIIZZr-Af08yHY | 
    
| CODEN | ITMID4 | 
    
| CitedBy_id | crossref_primary_10_1186_1475_925X_3_13 crossref_primary_10_1002_jmri_22186 crossref_primary_10_1118_1_4870966 crossref_primary_10_1002_hbm_20780 crossref_primary_10_1117_1_JMI_7_3_031506 crossref_primary_10_1016_j_mri_2013_01_002 crossref_primary_10_1002_jmri_20688 crossref_primary_10_1109_TMI_2014_2344911 crossref_primary_10_1088_0031_9155_51_2_012 crossref_primary_10_1016_j_neurobiolaging_2010_04_027 crossref_primary_10_1155_2009_281615 crossref_primary_10_1016_j_media_2010_07_009 crossref_primary_10_1109_TGRS_2013_2285814 crossref_primary_10_1016_j_neuroimage_2010_04_258 crossref_primary_10_3174_ajnr_A2105 crossref_primary_10_1016_j_inffus_2023_102061 crossref_primary_10_1097_MAO_0b013e3182a1a7e6 crossref_primary_10_1016_j_neuroimage_2013_07_060 crossref_primary_10_4304_jmm_9_6_822_828 crossref_primary_10_1117_1_JMI_4_2_025002 crossref_primary_10_4304_jmm_9_1_145_151 crossref_primary_10_1016_j_media_2015_09_005 crossref_primary_10_1155_2016_7419307 crossref_primary_10_1016_j_mri_2011_02_022 crossref_primary_10_1118_1_4756932 crossref_primary_10_1016_j_neuroimage_2008_03_021 crossref_primary_10_1016_j_mri_2011_09_010 crossref_primary_10_1134_S1054661817010114 crossref_primary_10_1109_TBME_2010_2093576 crossref_primary_10_1093_ons_opx029 crossref_primary_10_1111_j_1460_9568_2010_07445_x crossref_primary_10_1109_TBME_2014_2308299 crossref_primary_10_1016_j_mri_2005_04_007 crossref_primary_10_1016_j_mri_2013_08_008 crossref_primary_10_1016_j_parkreldis_2014_09_004 crossref_primary_10_1016_j_nic_2008_06_006 crossref_primary_10_1177_1352458516689147 crossref_primary_10_1016_j_mri_2019_09_004 crossref_primary_10_1088_0031_9155_57_1_93 crossref_primary_10_1016_j_mri_2013_01_013 crossref_primary_10_1371_journal_pone_0172432 crossref_primary_10_1016_j_media_2011_05_001 crossref_primary_10_1002_hbm_23936 crossref_primary_10_1109_TVCG_2012_162 crossref_primary_10_1016_j_media_2019_05_005 crossref_primary_10_1371_journal_pone_0199190 crossref_primary_10_1007_s11307_016_0988_z crossref_primary_10_1002_acn3_51304 crossref_primary_10_1118_1_3634048 crossref_primary_10_1016_j_mri_2012_02_005 crossref_primary_10_4304_jnw_9_5_1295_1300 crossref_primary_10_1002_jmri_21450 crossref_primary_10_1159_000504856 crossref_primary_10_1007_s11517_024_03092_1 crossref_primary_10_1002_hbm_20978 crossref_primary_10_1109_MPUL_2011_2181023 crossref_primary_10_2337_dc11_2250 crossref_primary_10_1016_j_biopsych_2008_12_029 crossref_primary_10_1118_1_3414035 crossref_primary_10_1109_TMI_2005_856752 crossref_primary_10_1016_j_media_2015_06_012 crossref_primary_10_1016_j_mri_2018_09_004 crossref_primary_10_1016_j_neuroimage_2017_02_048 crossref_primary_10_1016_j_parkreldis_2012_10_015 crossref_primary_10_1117_1_JMI_10_4_044003 crossref_primary_10_1016_j_media_2016_10_005 crossref_primary_10_1109_TMI_2007_901987 crossref_primary_10_1118_1_2740467 crossref_primary_10_1002_mrm_21346 crossref_primary_10_1523_JNEUROSCI_2423_08_2008 crossref_primary_10_1007_s10796_009_9151_6 crossref_primary_10_1117_1_JMI_11_6_064001 crossref_primary_10_1016_j_compmedimag_2024_102331 crossref_primary_10_3724_SP_J_1016_2008_01224 crossref_primary_10_1111_ner_12061 crossref_primary_10_1227_NEU_0000000000000714 crossref_primary_10_1109_TMI_2009_2035616 crossref_primary_10_1117_1_JMI_4_3_035003 crossref_primary_10_1088_0031_9155_50_21_014 crossref_primary_10_1016_j_media_2008_04_003 crossref_primary_10_1016_j_aeue_2014_11_003 crossref_primary_10_1109_TMI_2007_892508 crossref_primary_10_1109_TMI_2007_893283 crossref_primary_10_1016_j_neuroimage_2010_02_006 crossref_primary_10_1002_mrm_21916 crossref_primary_10_1118_1_3609416 crossref_primary_10_1007_s12204_014_1576_5 crossref_primary_10_1016_j_media_2018_02_004 crossref_primary_10_1016_j_mri_2011_01_002 crossref_primary_10_1002_hbm_20504 crossref_primary_10_1117_1_JMI_4_4_044007 crossref_primary_10_1117_1_JMI_4_4_044005 crossref_primary_10_1038_sj_npp_1300916 crossref_primary_10_1109_JTEHM_2014_2327628 crossref_primary_10_1109_TBME_2011_2146782 crossref_primary_10_1016_j_jneumeth_2007_10_007 crossref_primary_10_1109_TMI_2015_2481609 crossref_primary_10_1109_TVCG_2010_39 crossref_primary_10_1016_j_neuroimage_2018_04_074 crossref_primary_10_1007_s11548_009_0391_1 crossref_primary_10_1016_j_cviu_2007_12_003 crossref_primary_10_1109_TBME_2011_2160262 crossref_primary_10_1007_s10439_015_1433_1 crossref_primary_10_1016_j_patrec_2011_03_004 crossref_primary_10_1007_s11263_006_0011_2 crossref_primary_10_1148_radiol_10091742 crossref_primary_10_1002_mp_12197 crossref_primary_10_1007_s11760_020_01650_2 crossref_primary_10_1109_TMI_2008_2010434 crossref_primary_10_1148_radiol_11110315 crossref_primary_10_1038_s41531_021_00268_6 crossref_primary_10_1109_TBME_2020_2974102 crossref_primary_10_1109_TMI_2005_848373 crossref_primary_10_1007_s00701_007_1270_6 crossref_primary_10_1364_BOE_5_002196 crossref_primary_10_1016_j_mri_2004_01_078 crossref_primary_10_1523_JNEUROSCI_6459_11_2012 crossref_primary_10_1109_TMI_2009_2021063 crossref_primary_10_1002_hbm_22309 crossref_primary_10_1016_j_patrec_2006_07_005 crossref_primary_10_1109_TBME_2014_2322776 crossref_primary_10_1016_j_acra_2008_09_003 crossref_primary_10_1109_ACCESS_2021_3074124 crossref_primary_10_1093_braincomms_fcae111 crossref_primary_10_1016_j_media_2020_101820 crossref_primary_10_1212_NXI_0000000000000436 crossref_primary_10_3390_app9132700 crossref_primary_10_1118_1_3515459 crossref_primary_10_1007_s11548_016_1449_5 crossref_primary_10_1002_mrm_24324 crossref_primary_10_1088_0031_9155_58_12_4071 crossref_primary_10_1109_TBME_2010_2043675 crossref_primary_10_1155_2010_919620 crossref_primary_10_1212_WNL_0000000000001257 crossref_primary_10_3233_ICA_160533 crossref_primary_10_1186_1748_717X_9_169 crossref_primary_10_1016_j_mri_2011_07_012 crossref_primary_10_2174_1573405614666180905094032 crossref_primary_10_1016_j_biopsych_2007_03_022 crossref_primary_10_1016_j_jalz_2011_05_2111 crossref_primary_10_1109_JBHI_2015_2428672 crossref_primary_10_1371_journal_pone_0075065 crossref_primary_10_1109_JSTSP_2008_2011104 crossref_primary_10_1016_j_mri_2008_07_016 crossref_primary_10_1088_0031_9155_55_21_001 crossref_primary_10_1007_s11263_013_0642_z crossref_primary_10_1007_s11760_020_01784_3 crossref_primary_10_1109_LRA_2018_2806439 crossref_primary_10_4304_jnw_9_4_1033_1039 crossref_primary_10_1093_texcom_tgaa083 crossref_primary_10_1016_j_media_2016_09_008 crossref_primary_10_1016_j_imavis_2011_03_003 crossref_primary_10_1016_j_neuroimage_2018_10_029 crossref_primary_10_1212_01_wnl_0000295504_92020_ca crossref_primary_10_1088_0031_9155_56_17_018 crossref_primary_10_1364_BOE_5_002843 crossref_primary_10_1109_JSTSP_2008_2011116 crossref_primary_10_1002_nbm_4090 crossref_primary_10_1118_1_2889758 crossref_primary_10_1007_s10439_009_9840_9 crossref_primary_10_1097_MLG_0b013e31816b309e crossref_primary_10_1109_TMI_2013_2282126 crossref_primary_10_1118_1_3005479 crossref_primary_10_1109_TMI_2012_2190992 crossref_primary_10_1016_j_neuroimage_2016_01_022 crossref_primary_10_1016_j_media_2004_03_001 crossref_primary_10_1002_hbm_20692 crossref_primary_10_1016_j_media_2015_08_006 crossref_primary_10_1007_s12021_012_9159_9 crossref_primary_10_1118_1_1895795 crossref_primary_10_1212_WNL_0b013e31828154c5 crossref_primary_10_1002_nbm_1810 crossref_primary_10_1002_rcs_330 crossref_primary_10_1177_20552173221132170 crossref_primary_10_1007_s11265_008_0185_7 crossref_primary_10_3390_math11010069 crossref_primary_10_1016_j_media_2012_10_002 crossref_primary_10_1109_TIP_2011_2162738 crossref_primary_10_1177_1352458512456614 crossref_primary_10_1016_j_mri_2016_08_015 crossref_primary_10_1088_0031_9155_56_14_021 crossref_primary_10_1097_MAO_0b013e31819e61ed crossref_primary_10_1016_j_media_2008_06_008 crossref_primary_10_1109_TMI_2013_2286192 crossref_primary_10_1002_hbm_20362 crossref_primary_10_1177_1352458513485146 crossref_primary_10_1016_j_neuroimage_2011_03_045 crossref_primary_10_1109_TMI_2013_2265603 crossref_primary_10_1186_2191_219X_2_62 crossref_primary_10_1109_TMI_2014_2308894 crossref_primary_10_1016_j_compmedimag_2007_04_002 crossref_primary_10_1593_tlo_13748 crossref_primary_10_1016_j_mri_2008_03_004 crossref_primary_10_1016_j_mri_2009_05_007 crossref_primary_10_1016_j_media_2014_02_001 crossref_primary_10_1177_1352458512457842 crossref_primary_10_1016_j_neuroimage_2017_10_046 crossref_primary_10_1177_1352458520923970 crossref_primary_10_1007_s11548_015_1189_y  | 
    
| Cites_doi | 10.1016/s0734-189x(89)80014-3 10.1097/00004728-199303000-00011 10.1109/42.925292 10.1109/42.896788 10.1109/42.363096 10.1007/bfb0046964 10.1117/12.431130 10.1093/oso/9780198534396.003.0003 10.1016/s1361-8415(97)85010-4 10.1016/s1361-8415(98)80001-7 10.1117/12.431043 10.1016/s1361-8415(98)80022-4 10.1109/42.563664 10.1007/BF01893414 10.1097/00004728-199403000-00005 10.1109/42.796284 10.1016/S0031-3203(98)00091-0 10.1016/s1361-8415(96)80004-1 10.1109/42.836368 10.1088/0031-9155/39/3/022  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2004 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003  | 
    
| Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003  | 
    
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| DOI | 10.1109/TMI.2003.819299 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Technology Research Database MEDLINE Materials Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering  | 
    
| EISSN | 1558-254X | 
    
| EndPage | 1479 | 
    
| ExternalDocumentID | 2429377811 14606680 15252040 10_1109_TMI_2003_819299 1242349  | 
    
| Genre | orig-research Validation Studies Research Support, U.S. Gov't, Non-P.H.S Comparative Study Evaluation Studies Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8  | 
    
| ID | FETCH-LOGICAL-c466t-c47c0346a457a9b8535340666aedb2a2bbab566f70935039ccaadcf30254f2313 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0062 | 
    
| IngestDate | Tue Oct 07 10:02:58 EDT 2025 Sat Sep 27 20:02:24 EDT 2025 Thu Oct 02 12:06:37 EDT 2025 Thu Oct 02 06:44:43 EDT 2025 Mon Jun 30 03:15:42 EDT 2025 Wed Feb 19 01:51:02 EST 2025 Mon Jul 21 09:13:16 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Wed Oct 01 06:36:09 EDT 2025 Tue Aug 26 16:38:18 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Biomedical engineering | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c466t-c47c0346a457a9b8535340666aedb2a2bbab566f70935039ccaadcf30254f2313 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 14606680 | 
    
| PQID | 884285412 | 
    
| PQPubID | 23500 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_884285412 proquest_miscellaneous_71342076 pubmed_primary_14606680 proquest_miscellaneous_883037327 proquest_miscellaneous_28667985 proquest_miscellaneous_1671307571 pascalfrancis_primary_15252040 ieee_primary_1242349 crossref_citationtrail_10_1109_TMI_2003_819299 crossref_primary_10_1109_TMI_2003_819299  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2003-11-01 | 
    
| PublicationDateYYYYMMDD | 2003-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on medical imaging | 
    
| PublicationTitleAbbrev | TMI | 
    
| PublicationTitleAlternate | IEEE Trans Med Imaging | 
    
| PublicationYear | 2003 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 Rohde (ref23) 2001 Studholme (ref16) 1999; 32 Rohlfing (ref15); 4319 Rohde (ref25); 4322 Schnabel (ref20); 2208 Schaback (ref17) 1995 ref26 Powel (ref18) 1992 ref22 Micchelli (ref19) 1986; 2 Dinsenbacher (ref24) 2000; 4119 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Rohlfing (ref21); 2208  | 
    
| References_xml | – ident: ref3 doi: 10.1016/s0734-189x(89)80014-3 – start-page: 447 volume-title: Mathematical Models for Curves and Surfaces year: 1995 ident: ref17 article-title: Creating surfaces from scattered data using radial basis functions – ident: ref4 doi: 10.1097/00004728-199303000-00011 – ident: ref26 doi: 10.1109/42.925292 – ident: ref12 doi: 10.1109/42.896788 – ident: ref22 doi: 10.1109/42.363096 – ident: ref6 doi: 10.1007/bfb0046964 – volume: 2208 start-page: 111 volume-title: Proceedings of MICCAI 2001 ident: ref21 article-title: Intensity-based nonrigid registration using adaptive multilevel free-form deformation with an incompressibility constraint – ident: ref13 doi: 10.1117/12.431130 – start-page: 105 volume-title: Advances in Numerical Analsysis II: Wavelets, Subdivision, and Radial Basis Functions year: 1992 ident: ref18 article-title: The theory of radial basis functions in 1990 doi: 10.1093/oso/9780198534396.003.0003 – ident: ref10 doi: 10.1016/s1361-8415(97)85010-4 – ident: ref1 doi: 10.1016/s1361-8415(98)80001-7 – volume-title: The Adaptive grid registration algorithm: A new spline modeling approach for automatic intensity-based nonrigid registration, masters thesis year: 2001 ident: ref23 – volume: 4322 start-page: 1578 volume-title: Proc. SPIE (Medical Imaging 2001: Image Processing) ident: ref25 article-title: Adaptive free-form deformation for inter-patient medical image registration doi: 10.1117/12.431043 – volume: 4119 start-page: 1076 year: 2000 ident: ref24 article-title: Multiscale nonrigid data registration using adaptive basis functions publication-title: SPIE-Wavelet Applications in Signal and Image Processing VIII – ident: ref7 doi: 10.1016/s1361-8415(98)80022-4 – ident: ref8 doi: 10.1109/42.563664 – volume: 2 start-page: 11 year: 1986 ident: ref19 article-title: Interpolation of scattered data: Distance matrices and conditionally positive definite functions publication-title: Constr. Approx. doi: 10.1007/BF01893414 – ident: ref2 doi: 10.1097/00004728-199403000-00005 – ident: ref11 doi: 10.1109/42.796284 – volume: 32 start-page: 71 issue: 1 year: 1999 ident: ref16 article-title: An overlap invariant entropy measure of 3D medical image alignment publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(98)00091-0 – volume: 2208 start-page: 573 volume-title: Proceedings of MICCAI 2001 ident: ref20 article-title: A generic framework for nonrigid registration based on nonuniform multi-level free form deformation – volume: 4319 start-page: 337 volume-title: Proc. SPIE (Medical Imaging 2001: Image Processing) ident: ref15 article-title: Modeling liver motion and deformation during the respiratory cycle using intensity-based free-form registration of gated MR images – ident: ref9 doi: 10.1016/s1361-8415(96)80004-1 – ident: ref14 doi: 10.1109/42.836368 – ident: ref5 doi: 10.1088/0031-9155/39/3/022  | 
    
| SSID | ssj0014509 | 
    
| Score | 2.3045194 | 
    
| Snippet | Nonrigid registration of medical images is important for a number of applications such as the creation of population averages, atlas-based segmentation, or... To develop this method, we introduce several novelties: 1 we rely on radially symmetric basis functions rather than B-splines traditionally used to model the...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1470 | 
    
| SubjectTerms | Adaptation Algorithms Biological and medical sciences Biomedical imaging Brain - anatomy & histology Computational complexity Convergence Deformable models Feedback Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image registration Image segmentation Imaging, Three-Dimensional Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Mathematical models Medical Medical sciences Motion Mutual information Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Registers Reproducibility of Results Segmentation Sensitivity and Specificity Spline Studies Subtraction Technique Technology. Biomaterials. Equipments. Material. Instrumentation Transformations  | 
    
| Title | The adaptive bases algorithm for intensity-based nonrigid image registration | 
    
| URI | https://ieeexplore.ieee.org/document/1242349 https://www.ncbi.nlm.nih.gov/pubmed/14606680 https://www.proquest.com/docview/884285412 https://www.proquest.com/docview/1671307571 https://www.proquest.com/docview/28667985 https://www.proquest.com/docview/71342076 https://www.proquest.com/docview/883037327  | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4UGh5pKXFSBw4kDTxMzki1KogllMr9Rb5FVjR7lbd7AF-PR47u1sQkZCiVVaeVdb22PM5M_MNwFumXOd8J3PeMZ1zbmluhK5y43wAGFo3IiYKT77K80v--UpcbcH7dS6M9z4Gn_kCb6Mv383tEl-VnVRo_HmzDduqlilXa-0x4CKFc1BkjC0lHWh8qrI5uZh8isSfBZJ_NZEnlCNuRyrIe8YoVlfB2Ei9CMPTpboW48AzGqCzXZis_nqKO_lRLHtT2F9_sTr-b9-ewOMBiZIPSXWewpaf7cGje_yEe_BgMnje9-FL0Ceinb7F7ZGg7VsQff1tfjftv9-QgHzJNAXD9z9zbHVkNp9h0S1HpjdhzyJYAWLF0fsMLs9OLz6e50MlhtxyKfvwqWzJuNRcKN2YYOIF43jy0d4Zqqkx2gRc2Cl0q5asCWqhne0Yptp3AUGy57ATnupfAhGC2tp6xaRpuDJM28oz_BauuvRdBsVqSlo70JRjtYzrNh5XyqYN04nFM1mbpjODd-sf3CaGjnHRfRz4jVga8wyO_5jzTbuggoZdLoPDlRK0wxJftHXNMfu0ohm8WbeGtYkOFz3z8-WiraQKEEEJVWXwekSG1hIdYWJcArN9aalkBmREoq4DEFGMqgxeJBXddGHQ9IN_d_0QHqboRHyn9Ap2-rulPwooqzfHcXn9BkgsIXY | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIfHxwMc2IAw2I_HAA8kSfyaPE2LqoNlTJ-0tsh0Hqm3ttKYP8Nfji9N2Q0RCiqpUviq1ffb9nLv7HcBHpuqmdo2MecN0zLmlsRE6i03tPMDQuhBdonB5Jkfn_NuFuNiCz-tcGOdcF3zmErztfPn13C7xVdlRhsafFw_goeCci5CttfYZcBECOihyxqaS9kQ-WVocTcrTjvozQfqvomMK5YjckQzyjjnq6qtgdKRe-AFqQmWLYejZmaCT51Cu_nyIPLlMlq1J7O-_eB3_t3cv4FmPRclxUJ6XsOVmO_D0DkPhDjwqe9_7Loy9RhFd6xvcIAlavwXRVz_mt9P25zXx2JdMQzh8-yvG1prM5jMsu1WT6bXftQjWgFix9O7B-cnXyZdR3NdiiC2XsvWfyqaMS82F0oXxRl4wjmcf7WpDNTVGG48MG4WO1ZQVXjF0bRuGyfaNx5DsFWz7p7o3QISgNrdOMWkKrgzTNnMMv_krT10TQbKaksr2ROVYL-Oq6g4saVH56cTymawK0xnBp_UPbgJHx7DoLg78RiyMeQQH9-Z80y6ooH6fi2B_pQRVv8gXVZ5zzD_NaAQf1q1-daLLRc_cfLmoMqk8SFBCZREcDsjQXKIrTAxLYL4vTZWMgAxI5LmHIopRFcHroKKbLvSa_vbfXT-Ex6NJOa7Gp2ff9-FJiFXEN0zvYLu9Xbr3HnO15qBban8AiuUkww | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+bases+algorithm+for+intensity-based+nonrigid+image+registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Rohde%2C+G+K&rft.au=Aldroubi%2C+A&rft.au=Dawant%2C+B+M&rft.date=2003-11-01&rft.issn=0278-0062&rft.volume=22&rft.issue=11&rft.spage=1470&rft.epage=1479&rft_id=info:doi/10.1109%2FTMI.2003.819299&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |