In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration

Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural te...

Full description

Saved in:
Bibliographic Details
Published inRegenerative biomaterials Vol. 6; no. 6; pp. 311 - 323
Main Authors Rohman, Géraldine, Changotade, Sylvie, Frasca, Sophie, Ramtani, Salah, Consalus, Anne, Langueh, Credson, Collombet, Jean-Marc, Lutomski, Didier
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2019
Subjects
Online AccessGet full text
ISSN2056-3418
2056-3426
DOI10.1093/rb/rbz020

Cover

Abstract Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.
AbstractList Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.
Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.
Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.
Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.
Author Collombet, Jean-Marc
Lutomski, Didier
Changotade, Sylvie
Langueh, Credson
Ramtani, Salah
Frasca, Sophie
Rohman, Géraldine
Consalus, Anne
AuthorAffiliation 3 Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément , 93430 Villetaneuse, France
2 Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA) , 91223 Brétigny-sur-Orge Cedex, France
1 Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin , 93000 Bobigny, France
AuthorAffiliation_xml – name: 1 Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin , 93000 Bobigny, France
– name: 3 Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément , 93430 Villetaneuse, France
– name: 2 Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA) , 91223 Brétigny-sur-Orge Cedex, France
Author_xml – sequence: 1
  givenname: Géraldine
  orcidid: 0000-0003-3176-3476
  surname: Rohman
  fullname: Rohman, Géraldine
  email: geraldine.rohman@univ-paris13.fr
  organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France
– sequence: 2
  givenname: Sylvie
  surname: Changotade
  fullname: Changotade, Sylvie
  organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France
– sequence: 3
  givenname: Sophie
  orcidid: 0000-0002-1304-952X
  surname: Frasca
  fullname: Frasca, Sophie
  organization: Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge Cedex, France
– sequence: 4
  givenname: Salah
  surname: Ramtani
  fullname: Ramtani, Salah
  organization: Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
– sequence: 5
  givenname: Anne
  surname: Consalus
  fullname: Consalus, Anne
  organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France
– sequence: 6
  givenname: Credson
  surname: Langueh
  fullname: Langueh, Credson
  organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France
– sequence: 7
  givenname: Jean-Marc
  surname: Collombet
  fullname: Collombet, Jean-Marc
  organization: Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge Cedex, France
– sequence: 8
  givenname: Didier
  surname: Lutomski
  fullname: Lutomski, Didier
  organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31827885$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1u1DAQjlARLaUHXgBZgkN7CLXjxJtckFBVoFIlLnC2xvZk1yWxg-2stDwXD4iz21aAEJIlz3i-H3s8z4sj5x0WxUtG3zLa8cug8vpBK_qkOKloI0peV-LoMWbtcXEW4x2llNUrIVjzrDjmrK1WbducFD9vHNnaFDwBZ4hdkq0nU_BbjMT3RHuncUqk94GkDZI54nIMRG9wtBqGYUd08DGWg3Xf0JDJD7tzjAlDOQdMG3C4BHBBooa-94MhELMZQYg7kssmE9cEB4jJjxisJsr6EbKAhWHvq_KDScA1OgyQrHcviqc9DBHP7vfT4uuH6y9Xn8rbzx9vrt7flroWIpWqa1WPXINgNaiGV4IbY1BVpmtqhQC809Biqyu1YrTRFLnpBNQd5UIo1fHT4t1Bd5rViEajSwEGOQU7QthJD1b-WXF2I9d-K0XbrThfBF7fCwT_fc5dkXd-Di7fWXK2Yg0VtKsz6tXvNo_6D7-UAZcHwL7TAXupbdp3IrvaQTIql1GQQcnDKGTGxV-MB9F_Yd8csH6e_gP7BRIqxsk
CitedBy_id crossref_primary_10_1002_adhm_202303765
crossref_primary_10_3390_polym11061016
crossref_primary_10_1039_D3CS00923H
crossref_primary_10_1016_j_polymdegradstab_2020_109454
Cites_doi 10.1016/j.biomaterials.2006.01.031
10.1073/pnas.94.25.13661
10.1021/bm401911p
10.1007/BF01752281
10.1533/9780857096517.2.164
10.1016/S0020-1383(08)70003-2
10.1038/emm.2013.118
10.1039/b803718n
10.1016/j.injury.2005.07.029
10.1002/jbm.a.30834
10.1371/journal.pone.0067649
10.1634/stemcells.2008-0432
10.1016/0969-806X(94)00134-6
10.1016/j.progpolymsci.2010.04.002
10.1111/j.1582-4934.2010.01224.x
10.1007/s10856-015-5509-0
10.1023/B:ABME.0000017544.36001.8e
10.2174/1874325000802010103
10.1002/adma.200802106
10.1021/ma0501390
10.1002/jbm.b.30118
10.1177/10454411010120010501
10.1055/s-0029-1224777
10.1016/j.biomaterials.2005.05.106
10.1006/jcis.1993.1044
10.1016/j.progpolymsci.2012.05.003
10.1002/jbm.a.10148
10.1016/j.polymdegradstab.2012.04.008
10.3171/2010.9.FOCUS10201
10.1016/B978-0-444-88654-5.50009-1
10.1155/2015/283796
10.1007/978-1-84628-366-6_7
10.1007/s00264-010-1189-z
10.1016/j.biomaterials.2008.06.021
10.1002/term.1753
10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P
10.1016/j.actbio.2010.06.012
10.1016/S0006-3495(00)76279-5
10.1055/s-0034-1393724
10.1529/biophysj.105.070144
10.1016/S0020-1383(08)70011-1
10.1016/j.biomaterials.2005.05.079
10.1016/j.bone.2009.09.031
10.1016/j.actbio.2014.07.020
10.22203/eCM.v005a03
10.1016/j.bpj.2010.12.3744
10.1016/j.gendis.2015.09.004
10.1002/jbm.a.30669
10.1016/j.jcms.2015.09.004
10.1038/boneres.2017.14
10.1038/srep05188
10.1039/b811392k
10.1021/bp970120j
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2019
The Author(s) 2019. Published by Oxford University Press.
The Author(s) 2019. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2019
– notice: The Author(s) 2019. Published by Oxford University Press.
– notice: The Author(s) 2019. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
5PM
DOI 10.1093/rb/rbz020
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList PubMed
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2056-3426
EndPage 323
ExternalDocumentID PMC6897339
31827885
10_1093_rb_rbz020
10.1093/rb/rbz020
Genre Journal Article
GrantInformation_xml – fundername: French Fondation des Gueules Cassées
– fundername: French Ministry of Defense and the Interdisciplinary Institute of Experimental Sciences
– fundername: DGA
  funderid: 10.13039/100005445
– fundername: Délégation Générale pour l’Armement
– fundername: ;
– fundername: ; ;
GroupedDBID 0R~
5VS
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFS
ADBBV
ADHZD
ADRAZ
AENZO
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
AVWKF
BAYMD
BCNDV
BTTYL
CIDKT
EBS
EJD
EMOBN
GROUPED_DOAJ
H13
HYE
IAO
IHR
ITC
KQ8
KSI
M48
ML0
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROX
RPM
RXO
TOX
AAYXX
ABJCF
ADMLS
AFKRA
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
PDBOC
PHGZM
PHGZT
PIMPY
CQIGP
NPM
8FE
8FG
8FH
ABUWG
AZQEC
D1I
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
5PM
ID FETCH-LOGICAL-c466t-b98bfe3ca614ab53263dddeb2d954beaa39ca8e8c2b7105c0e3d96a490366bb93
IEDL.DBID M48
ISSN 2056-3418
IngestDate Thu Aug 21 13:53:22 EDT 2025
Sat Sep 20 13:41:39 EDT 2025
Thu Jan 02 22:59:30 EST 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 01:05:11 EDT 2025
Tue Jan 28 07:47:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords PEUU
bone regeneration
elastomer
PCLU
scaffold
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-b98bfe3ca614ab53263dddeb2d954beaa39ca8e8c2b7105c0e3d96a490366bb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3176-3476
0000-0002-1304-952X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/rb/rbz020
PMID 31827885
PQID 3171506094
PQPubID 7121339
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6897339
proquest_journals_3171506094
pubmed_primary_31827885
crossref_citationtrail_10_1093_rb_rbz020
crossref_primary_10_1093_rb_rbz020
oup_primary_10_1093_rb_rbz020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Regenerative biomaterials
PublicationTitleAlternate Regen Biomater
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Guo (2019120611330723400_rbz020-B51) 2006; 90
Eglin (2019120611330723400_rbz020-B20) 2009; 5
Bertoldi (2019120611330723400_rbz020-B36) 2015; 26
Yang (2019120611330723400_rbz020-B28) 2006; 27
Liu (2019120611330723400_rbz020-B21) 2014; 15
Adhikari (2019120611330723400_rbz020-B38) 2008; 29
Mastrogiacomo (2019120611330723400_rbz020-B47) 2006; 27
Tamada (2019120611330723400_rbz020-B46) 1993; 155
Brannon-Peppas (2019120611330723400_rbz020-B25) 1990; 8
Zhang (2019120611330723400_rbz020-B56) 2013; 8
Pryor (2019120611330723400_rbz020-B5) 2009; 2
Rohman (2019120611330723400_rbz020-B27) 2005; 38
Changotade (2019120611330723400_rbz020-B24) 2015; 2015
Giannoudis (2019120611330723400_rbz020-B7) 2007; 38
Liu (2019120611330723400_rbz020-B14) 2017; 5
Ruiz (2019120611330723400_rbz020-B32) 2008; 26
Barlkani (2019120611330723400_rbz020-B26) 1992; 1
Gorna (2019120611330723400_rbz020-B23) 2003; 67A
Tollemar (2019120611330723400_rbz020-B4) 2016; 3
Zhang (2019120611330723400_rbz020-B17) 2014; 10
Woodruff (2019120611330723400_rbz020-B40) 2010; 35
Le Guehennec (2019120611330723400_rbz020-B52) 2005; 72B
Vunjak-Novakovic (2019120611330723400_rbz020-B44) 1998; 14
Alsberg (2019120611330723400_rbz020-B1) 2001; 12
Tao (2019120611330723400_rbz020-B55) 2015; 43
Arvidson (2019120611330723400_rbz020-B8) 2011; 15
Tee (2019120611330723400_rbz020-B34) 2011; 100
Szpalski (2019120611330723400_rbz020-B6) 2010; 29
Lo (2019120611330723400_rbz020-B49) 2000; 79
Santerre (2019120611330723400_rbz020-B39) 2005; 26
Giannoudis (2019120611330723400_rbz020-B3) 2005; 36
Lee (2019120611330723400_rbz020-B33) 2014; 4
Hirata (2019120611330723400_rbz020-B35) 1995; 46
Gogolewski (2019120611330723400_rbz020-B18) 2006; 77
Ko (2019120611330723400_rbz020-B42) 2013; 45
Drosse (2019120611330723400_rbz020-B11) 2008; 39
Brugmans (2019120611330723400_rbz020-B43) 2015; 9
Tabatabaei (2019120611330723400_rbz020-B10) 2012; 30
Chen (2019120611330723400_rbz020-B22) 2013; 38
Burkhardt (2019120611330723400_rbz020-B30) 1966; 44
Breuls (2019120611330723400_rbz020-B48) 2008; 2
Melchels (2019120611330723400_rbz020-B45) 2010; 6
Cooper (2019120611330723400_rbz020-B37) 2016
Knabe (2019120611330723400_rbz020-B54) 2000; 52
Migliaresi (2019120611330723400_rbz020-B15) 2007
Liu (2019120611330723400_rbz020-B13) 2004; 32
Slaughter (2019120611330723400_rbz020-B16) 2009; 21
Cao (2019120611330723400_rbz020-B53) 2010; 46
Sachlos (2019120611330723400_rbz020-B9) 2003; 5
Place (2019120611330723400_rbz020-B31) 2009; 38
Pelham (2019120611330723400_rbz020-B50) 1997; 94
Gogolewski (2019120611330723400_rbz020-B19) 2007; 80
Mondal (2019120611330723400_rbz020-B41) 2012; 97
Mahomed (2019120611330723400_rbz020-B29) 2012
Cox (2019120611330723400_rbz020-B2) 2011; 35
Fishero (2019120611330723400_rbz020-B12) 2014; 08
References_xml – volume: 27
  start-page: 3230
  year: 2006
  ident: 2019120611330723400_rbz020-B47
  article-title: Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.031
– volume: 94
  start-page: 13661
  year: 1997
  ident: 2019120611330723400_rbz020-B50
  article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.25.13661
– volume: 15
  start-page: 1019
  year: 2014
  ident: 2019120611330723400_rbz020-B21
  article-title: Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect
  publication-title: Biomacromolecules
  doi: 10.1021/bm401911p
– volume: 44
  start-page: 326
  year: 1966
  ident: 2019120611330723400_rbz020-B30
  article-title: Technische verbesserungen und anwendungsbereich der histo-biopsie von knochenmark und knochen
  publication-title: Klin Wochenschr
  doi: 10.1007/BF01752281
– start-page: 164
  volume-title: Durability and Reliability of Medical Polymers
  year: 2012
  ident: 2019120611330723400_rbz020-B29
  doi: 10.1533/9780857096517.2.164
– volume: 38
  start-page: S3
  year: 2007
  ident: 2019120611330723400_rbz020-B7
  article-title: Fracture healing: the diamond concept
  publication-title: Injury
  doi: 10.1016/S0020-1383(08)70003-2
– volume: 45
  start-page: e57.
  year: 2013
  ident: 2019120611330723400_rbz020-B42
  article-title: In situ tissue regeneration through host stem cell recruitment
  publication-title: Exp Mol Med
  doi: 10.1038/emm.2013.118
– volume: 5
  start-page: 938
  year: 2009
  ident: 2019120611330723400_rbz020-B20
  article-title: Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs
  publication-title: Soft Matter
  doi: 10.1039/b803718n
– volume: 36
  start-page: S20
  year: 2005
  ident: 2019120611330723400_rbz020-B3
  article-title: Bone substitutes: an update
  publication-title: Injury
  doi: 10.1016/j.injury.2005.07.029
– volume: 80
  start-page: 94
  year: 2007
  ident: 2019120611330723400_rbz020-B19
  article-title: Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30834
– volume: 8
  start-page: e67649.
  year: 2013
  ident: 2019120611330723400_rbz020-B56
  article-title: Acceleration of bone repair in NOD/SCID mice by human monoosteophils, novel LL-37-activated monocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067649
– volume: 26
  start-page: 2921
  year: 2008
  ident: 2019120611330723400_rbz020-B32
  article-title: Emergence of patterned stem cell differentiation within multicellular structures
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0432
– volume: 46
  start-page: 377
  year: 1995
  ident: 2019120611330723400_rbz020-B35
  article-title: Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane
  publication-title: Radiat Phys Chem
  doi: 10.1016/0969-806X(94)00134-6
– volume: 35
  start-page: 1217
  year: 2010
  ident: 2019120611330723400_rbz020-B40
  article-title: The return of a forgotten polymer - polycaprolactone in the 21st century
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2010.04.002
– volume: 15
  start-page: 718
  year: 2011
  ident: 2019120611330723400_rbz020-B8
  article-title: Bone regeneration and stem cells
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2010.01224.x
– volume: 26
  start-page: 182.
  year: 2015
  ident: 2019120611330723400_rbz020-B36
  article-title: Exploiting novel sterilization techniques for porous polyurethane scaffolds
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-015-5509-0
– volume: 32
  start-page: 477
  year: 2004
  ident: 2019120611330723400_rbz020-B13
  article-title: Polymeric scaffolds for bone tissue engineering
  publication-title: Ann Biomed Eng
  doi: 10.1023/B:ABME.0000017544.36001.8e
– volume: 2
  start-page: 103
  year: 2008
  ident: 2019120611330723400_rbz020-B48
  article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering
  publication-title: Open Orthop J
  doi: 10.2174/1874325000802010103
– volume: 21
  start-page: 3307
  year: 2009
  ident: 2019120611330723400_rbz020-B16
  article-title: Hydrogels in regenerative medicine
  publication-title: Adv Mater
  doi: 10.1002/adma.200802106
– volume: 38
  start-page: 7274
  year: 2005
  ident: 2019120611330723400_rbz020-B27
  article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems
  publication-title: Macromolecules
  doi: 10.1021/ma0501390
– volume: 72B
  start-page: 69
  year: 2005
  ident: 2019120611330723400_rbz020-B52
  article-title: Small-animal models for testing macroporous ceramic bone substitutes
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.b.30118
– volume: 12
  start-page: 64
  year: 2001
  ident: 2019120611330723400_rbz020-B1
  article-title: Craniofacial tissue engineering
  publication-title: Crit Rev Oral Biol Med
  doi: 10.1177/10454411010120010501
– volume: 2
  start-page: 151
  year: 2009
  ident: 2019120611330723400_rbz020-B5
  article-title: Review of bone substitutes
  publication-title: Craniomaxillofac Trauma Reconstr
  doi: 10.1055/s-0029-1224777
– volume: 27
  start-page: 1889
  year: 2006
  ident: 2019120611330723400_rbz020-B28
  article-title: Synthesis and evaluation of poly(diol citrate) biodegradable elastomers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.106
– volume: 1
  start-page: 1
  year: 1992
  ident: 2019120611330723400_rbz020-B26
  article-title: Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4-cyclohexane diisocyanate and para-phenylene diisocyanate
  publication-title: Iran J Polym Sci Technol
– volume: 155
  start-page: 334
  year: 1993
  ident: 2019120611330723400_rbz020-B46
  article-title: Effect of preadsorbed proteins on cell adhesion to polymer surfaces
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.1993.1044
– volume: 38
  start-page: 584
  year: 2013
  ident: 2019120611330723400_rbz020-B22
  article-title: Elastomeric biomaterials for tissue engineering
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2012.05.003
– volume: 67A
  start-page: 813
  year: 2003
  ident: 2019120611330723400_rbz020-B23
  article-title: Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.10148
– volume: 97
  start-page: 1553
  year: 2012
  ident: 2019120611330723400_rbz020-B41
  article-title: Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2012.04.008
– volume: 29
  start-page: E8.
  year: 2010
  ident: 2019120611330723400_rbz020-B6
  article-title: Cranial bone defects: current and future strategies
  publication-title: Neurosurg Focus
  doi: 10.3171/2010.9.FOCUS10201
– volume: 8
  start-page: 67
  year: 1990
  ident: 2019120611330723400_rbz020-B25
  article-title: The equilibrium swelling behavior of porous and non-porous hydrogels
  publication-title: Stud Polym Sci
  doi: 10.1016/B978-0-444-88654-5.50009-1
– volume: 2015
  start-page: 283796
  year: 2015
  ident: 2019120611330723400_rbz020-B24
  article-title: Preliminary in vitro assessment of stem cell compatibility with cross-linked poly(ε-caprolactone urethane) scaffolds designed through high internal phase emulsions
  publication-title: Stem Cells Int
  doi: 10.1155/2015/283796
– start-page: 95
  volume-title: Engineering of Functional Skeletal Tissues. Topics in Bone Biology
  year: 2007
  ident: 2019120611330723400_rbz020-B15
  doi: 10.1007/978-1-84628-366-6_7
– volume: 35
  start-page: 951
  year: 2011
  ident: 2019120611330723400_rbz020-B2
  article-title: Reamer-irrigator-aspirator indications and clinical results: a systematic review
  publication-title: Int Orthop
  doi: 10.1007/s00264-010-1189-z
– volume: 29
  start-page: 3762
  year: 2008
  ident: 2019120611330723400_rbz020-B38
  article-title: Biodegradable injectable polyurethanes: synthesis and evaluation for orthopaedic applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.06.021
– volume: 9
  start-page: E289
  year: 2015
  ident: 2019120611330723400_rbz020-B43
  article-title: Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.1753
– volume: 52
  start-page: 498
  year: 2000
  ident: 2019120611330723400_rbz020-B54
  article-title: Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P
– volume: 6
  start-page: 4208
  year: 2010
  ident: 2019120611330723400_rbz020-B45
  article-title: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.06.012
– volume: 79
  start-page: 144
  year: 2000
  ident: 2019120611330723400_rbz020-B49
  article-title: Cell movement is guided by the rigidity of the substrate
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76279-5
– volume: 08
  start-page: 023
  year: 2014
  ident: 2019120611330723400_rbz020-B12
  article-title: Current concepts of bone tissue engineering for craniofacial bone defect repair
  publication-title: Craniomaxillofac Trauma Reconstr
  doi: 10.1055/s-0034-1393724
– volume: 90
  start-page: 2213
  year: 2006
  ident: 2019120611330723400_rbz020-B51
  article-title: Substrate rigidity regulates the formation and maintenance of tissues
  publication-title: Biophys J
  doi: 10.1529/biophysj.105.070144
– volume: 39
  start-page: S9
  year: 2008
  ident: 2019120611330723400_rbz020-B11
  article-title: Tissue engineering for bone defect healing: an update on a multi-component approach
  publication-title: Injury
  doi: 10.1016/S0020-1383(08)70011-1
– volume: 26
  start-page: 7457
  year: 2005
  ident: 2019120611330723400_rbz020-B39
  article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.079
– volume: 46
  start-page: 386
  year: 2010
  ident: 2019120611330723400_rbz020-B53
  article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
  publication-title: Bone
  doi: 10.1016/j.bone.2009.09.031
– volume: 10
  start-page: 4597
  year: 2014
  ident: 2019120611330723400_rbz020-B17
  article-title: A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2014.07.020
– volume: 5
  start-page: 29
  year: 2003
  ident: 2019120611330723400_rbz020-B9
  article-title: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
  publication-title: Eur Cell Mater
  doi: 10.22203/eCM.v005a03
– volume: 100
  start-page: L25
  year: 2011
  ident: 2019120611330723400_rbz020-B34
  article-title: Cell shape and substrate rigidity both regulate cell stiffness
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.12.3744
– volume: 3
  start-page: 56
  year: 2016
  ident: 2019120611330723400_rbz020-B4
  article-title: Stem cells, growth factors and scaffolds in craniofacial regenerative medicine
  publication-title: Genes Dis
  doi: 10.1016/j.gendis.2015.09.004
– volume: 77
  start-page: 802
  year: 2006
  ident: 2019120611330723400_rbz020-B18
  article-title: Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30669
– volume: 43
  start-page: 2136
  year: 2015
  ident: 2019120611330723400_rbz020-B55
  article-title: Treatment study of distal femur for parathyroid hormone (1–34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats
  publication-title: J Craniomaxillofac Surg
  doi: 10.1016/j.jcms.2015.09.004
– volume-title: Advances in Polyurethane Biomaterials
  year: 2016
  ident: 2019120611330723400_rbz020-B37
– volume: 30
  start-page: 115
  year: 2012
  ident: 2019120611330723400_rbz020-B10
  article-title: Craniomaxillofacial bone engineering by scaffolds loaded with stem cells: a systematic review
  publication-title: J Dent Sch
– volume: 5
  start-page: 17014.
  year: 2017
  ident: 2019120611330723400_rbz020-B14
  article-title: Injectable hydrogels for cartilage and bone tissue engineering
  publication-title: Bone Res
  doi: 10.1038/boneres.2017.14
– volume: 4
  start-page: 5188.
  year: 2014
  ident: 2019120611330723400_rbz020-B33
  article-title: Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment
  publication-title: Sci Rep
  doi: 10.1038/srep05188
– volume: 38
  start-page: 1139
  year: 2009
  ident: 2019120611330723400_rbz020-B31
  article-title: Synthetic polymer scaffolds for tissue engineering
  publication-title: Chem Soc Rev
  doi: 10.1039/b811392k
– volume: 14
  start-page: 193
  year: 1998
  ident: 2019120611330723400_rbz020-B44
  article-title: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering
  publication-title: Biotechnol Prog
  doi: 10.1021/bp970120j
SSID ssj0001476615
ssib048324864
Score 2.121758
Snippet Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss...
Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms Biomedical materials
Bone biomaterials
Bone growth
Bone healing
Bone loss
Bones
Cell adhesion & migration
Cell migration
Cell proliferation
Crosslinking
Cytotoxicity
Defects
Differentiation (biology)
Elastomers
Ethyl carbamate
Histology
Mechanical properties
Microtomography
Protein seeding
Quality of life
Regeneration
Regeneration (physiology)
Scaffolds
Skin & tissue grafts
Stem cells
Substitutes
Surgery
Tissue engineering
Trauma
Urea
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BucChonw10KIR4lAOqybe9dp7QggRChKcqNSbtR9jiBTZqe1UCr-LH8js2g4Jqirl4Ngrr6UZz3ue3XnD2NuZcuVM-ymXvlRc0icDzxPheIpokODTuVjh_e27uriUX6_SqyHh1g7bKseYGAO1r13IkZ8TzkUxPC3fr6556BoVVleHFhr32YNZQlgbKsXnn0d_kuStclQfjzkXmREchV2NCeE-pwCej2JDWpw3ln6_p6Hz9w5E7ZW97bDP_zdR7qDS_DE7HOgkfOjtf8TuYfWEPdoRGXzK_nyp4GbRNTWYysMi_LmpIaQSsIW6BNcXLgKxVyA2COsWw2kDbtASWG4gPigPi73oYVUvN2dRYIGvGwypdwwH5h20zpRlvfRgWpoM0LQbiDIO9CCAxNO7Oi4QQSj6N110_jivrSuEBn9GDezgKs_Y5fzTj48XfOjVwMmYquNW57ZE4QzBvbEpkULhKXLaxOtUWjRGaGdyzF1iidOkborCa2WkJgRV1mrxnB1UNNcxA4oi2qnQBaVUMs2E8Rl9AjiFbjorc-kn7Gw0T-EGIfPQT2NZ9Avqomhs0Vtywt5sh6569Y7bBp2Sje-6fjJavxhe8Lb4544T9qJ3hO0dKEwmWZ6nE5btuch2QJD03r9SLX5FaW-V60wI_fLuKV-xh8TbdL-r5oQddM0aT4kbdfZ1fAH-AlrTEko
  priority: 102
  providerName: ProQuest
Title In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/31827885
https://www.proquest.com/docview/3171506094
https://pubmed.ncbi.nlm.nih.gov/PMC6897339
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2kdB4mLiOwlYdIR7Gg6GNnTR-QAjQygCtDLRKfYt8C1SKkpGk08rv4gdy7CSlRRMPSJGVxI5t5Rz7fL59h5Bnw0inQ2EGlJs0ohyHDDQOmKahtdKi-dTan_A-m0SnU_5xFs62SOdjs_2B1Y1DO-dPalpmL65_LF9jg3_VkiG9LBVePxH3bJNdv0zkdvD9QfkclZZ3JOR-6oWP0Cq5zY0Bmn-K_XjccQ6t57ZHbqHCBzhGDDeM1sZBuDU8-ve2yjU7Nb5D9luACW8ajbhLtmx-j9xeox28T359yOFqXpcFyNzA3D1cFeAmF2wFRQq6OcoIiGcB8SEsKuteS9Atu0C2BF9R6pZ_rYHLIlsee8oFuiitm4y37kY-h0rLNC0yA7LCwsDKagme2AErAhaRe134JSNwNACy9s3Bl6uK3EJpv3lWbKc8D8h0fHLx7pS23hsoijeqqRKxSi3TEgGAVCHCRGawL1WBESFXVkomtIxtrAOFKCfUA8uMiCQXaFMjpQR7SHZyLOsRAexXhI6cX5Q04uGISTPCQYGOrB4M05ibHjnuxJPoltrcedjIkmaJnSWlShqh9sjTVdLLhs_jpkRHKON_xR920k86jU0QiHm2RsF75KBRhFUOnR71yGhDRVYJHMn3Zkw-_-7JvqNYjBgTj__7yydkD0GeaLbgHJKdulzYIwRSteqT7Xj8vk92355Mzr_2_XQEhp--xH3fgDCcnJ9hePF59hsarSiI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4EWhghkMph1cS7fuyhQjxaJbSNEGql3sy-DJEiO9hOUfhdnPltzK7tkCDUW6UcEnuVXWke3-zszjeEvBxGOhsKM6DcZBHluGWgScA0Da2VFuFTa1_hfTqJRuf840V4sUV-d7Uw7lpl5xO9ozaFdjnyfcQ5T4Yn-Jv5d-q6RrnT1a6FhmxbK5gDTzHWFnYc2-UP3MJVB-MPKO9XQXB0ePZ-RNsuAxSXEdVUiURllmmJQCVViOEMM2jzKjAi5MpKyYSWiU10oBCNQz2wzIhIcoG-P1LKkTEhBGxzl0Dpke13h5NPnzuN5mgvvOM_91kfHiMgunuVAUYeFCEk6eiOBNsvFX5-Dlzv8TWQ3Ci8W4t__73GuYaLR3fI7TaghbeNBt4lWza_R26t0RzeJ7_GOVxO67IAmRuYuh-XBbhkhq2gyEA3pZOA8TNgPAqLyrrHEnTLZjBbgl8odcfN1sC8mC33PMUDXZTWJf-t-yJfQ6VllhUzA7LCycDKagmeSAIXAhZ3CnXhj6jA0Q7I2pufn1cVuYXSfvUs3E5ZH5Dza5HjQ9LLca7HBNCPCR25PixZxMOYSRPjJkRHVg-GWcJNn-x14kl1S6XuOnrM0uZIn6WlShtJ9smL1dB5wx_yv0G7KOOr3u900k9bF1Olfw2iTx41irD6B3TUQZwkYZ_EGyqyGuBIxTff5NNvnlw8SkTMmHhy9ZTPyY3R2elJejKeHD8lNzGKFM0dnx3Sq8uF3cVIrVbPWnMA8uW6LfAPDbtXXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+and+in+vivo+proves+of+concept+for+the+use+of+a+chemically+cross-linked+poly%28ester-urethane-urea%29+scaffold+as+an+easy+handling+elastomeric+biomaterial+for+bone+regeneration&rft.jtitle=Regenerative+biomaterials&rft.au=Rohman%2C+G%C3%A9raldine&rft.au=Changotade%2C+Sylvie&rft.au=Frasca%2C+Sophie&rft.au=Ramtani%2C+Salah&rft.date=2019-12-01&rft.pub=Oxford+University+Press&rft.issn=2056-3418&rft.eissn=2056-3426&rft.volume=6&rft.issue=6&rft.spage=311&rft.epage=323&rft_id=info:doi/10.1093%2Frb%2Frbz020&rft_id=info%3Apmid%2F31827885&rft.externalDocID=PMC6897339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-3418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-3418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-3418&client=summon