In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration
Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural te...
Saved in:
Published in | Regenerative biomaterials Vol. 6; no. 6; pp. 311 - 323 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2056-3418 2056-3426 |
DOI | 10.1093/rb/rbz020 |
Cover
Abstract | Abstract
Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects. |
---|---|
AbstractList | Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration.
assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction.
results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects. Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects. Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects. Abstract Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects. |
Author | Collombet, Jean-Marc Lutomski, Didier Changotade, Sylvie Langueh, Credson Ramtani, Salah Frasca, Sophie Rohman, Géraldine Consalus, Anne |
AuthorAffiliation | 3 Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément , 93430 Villetaneuse, France 2 Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA) , 91223 Brétigny-sur-Orge Cedex, France 1 Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin , 93000 Bobigny, France |
AuthorAffiliation_xml | – name: 1 Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin , 93000 Bobigny, France – name: 3 Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément , 93430 Villetaneuse, France – name: 2 Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA) , 91223 Brétigny-sur-Orge Cedex, France |
Author_xml | – sequence: 1 givenname: Géraldine orcidid: 0000-0003-3176-3476 surname: Rohman fullname: Rohman, Géraldine email: geraldine.rohman@univ-paris13.fr organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France – sequence: 2 givenname: Sylvie surname: Changotade fullname: Changotade, Sylvie organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France – sequence: 3 givenname: Sophie orcidid: 0000-0002-1304-952X surname: Frasca fullname: Frasca, Sophie organization: Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge Cedex, France – sequence: 4 givenname: Salah surname: Ramtani fullname: Ramtani, Salah organization: Université Paris 13, Sorbonne Paris Cité, LBPS Team, CSPBAT, UMR CNRS 7244, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France – sequence: 5 givenname: Anne surname: Consalus fullname: Consalus, Anne organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France – sequence: 6 givenname: Credson surname: Langueh fullname: Langueh, Credson organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France – sequence: 7 givenname: Jean-Marc surname: Collombet fullname: Collombet, Jean-Marc organization: Département Soutien Médico-Chirurgical des Forces (SMCF), BP73, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge Cedex, France – sequence: 8 givenname: Didier surname: Lutomski fullname: Lutomski, Didier organization: Université Paris 13, Sorbonne Paris Cité, Tissue Engineering and Proteomics (TIP) Team, CSPBAT, UMR CNRS 7244, 74 rue Marcel Cachin, 93000 Bobigny, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31827885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1u1DAQjlARLaUHXgBZgkN7CLXjxJtckFBVoFIlLnC2xvZk1yWxg-2stDwXD4iz21aAEJIlz3i-H3s8z4sj5x0WxUtG3zLa8cug8vpBK_qkOKloI0peV-LoMWbtcXEW4x2llNUrIVjzrDjmrK1WbducFD9vHNnaFDwBZ4hdkq0nU_BbjMT3RHuncUqk94GkDZI54nIMRG9wtBqGYUd08DGWg3Xf0JDJD7tzjAlDOQdMG3C4BHBBooa-94MhELMZQYg7kssmE9cEB4jJjxisJsr6EbKAhWHvq_KDScA1OgyQrHcviqc9DBHP7vfT4uuH6y9Xn8rbzx9vrt7flroWIpWqa1WPXINgNaiGV4IbY1BVpmtqhQC809Biqyu1YrTRFLnpBNQd5UIo1fHT4t1Bd5rViEajSwEGOQU7QthJD1b-WXF2I9d-K0XbrThfBF7fCwT_fc5dkXd-Di7fWXK2Yg0VtKsz6tXvNo_6D7-UAZcHwL7TAXupbdp3IrvaQTIql1GQQcnDKGTGxV-MB9F_Yd8csH6e_gP7BRIqxsk |
CitedBy_id | crossref_primary_10_1002_adhm_202303765 crossref_primary_10_3390_polym11061016 crossref_primary_10_1039_D3CS00923H crossref_primary_10_1016_j_polymdegradstab_2020_109454 |
Cites_doi | 10.1016/j.biomaterials.2006.01.031 10.1073/pnas.94.25.13661 10.1021/bm401911p 10.1007/BF01752281 10.1533/9780857096517.2.164 10.1016/S0020-1383(08)70003-2 10.1038/emm.2013.118 10.1039/b803718n 10.1016/j.injury.2005.07.029 10.1002/jbm.a.30834 10.1371/journal.pone.0067649 10.1634/stemcells.2008-0432 10.1016/0969-806X(94)00134-6 10.1016/j.progpolymsci.2010.04.002 10.1111/j.1582-4934.2010.01224.x 10.1007/s10856-015-5509-0 10.1023/B:ABME.0000017544.36001.8e 10.2174/1874325000802010103 10.1002/adma.200802106 10.1021/ma0501390 10.1002/jbm.b.30118 10.1177/10454411010120010501 10.1055/s-0029-1224777 10.1016/j.biomaterials.2005.05.106 10.1006/jcis.1993.1044 10.1016/j.progpolymsci.2012.05.003 10.1002/jbm.a.10148 10.1016/j.polymdegradstab.2012.04.008 10.3171/2010.9.FOCUS10201 10.1016/B978-0-444-88654-5.50009-1 10.1155/2015/283796 10.1007/978-1-84628-366-6_7 10.1007/s00264-010-1189-z 10.1016/j.biomaterials.2008.06.021 10.1002/term.1753 10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P 10.1016/j.actbio.2010.06.012 10.1016/S0006-3495(00)76279-5 10.1055/s-0034-1393724 10.1529/biophysj.105.070144 10.1016/S0020-1383(08)70011-1 10.1016/j.biomaterials.2005.05.079 10.1016/j.bone.2009.09.031 10.1016/j.actbio.2014.07.020 10.22203/eCM.v005a03 10.1016/j.bpj.2010.12.3744 10.1016/j.gendis.2015.09.004 10.1002/jbm.a.30669 10.1016/j.jcms.2015.09.004 10.1038/boneres.2017.14 10.1038/srep05188 10.1039/b811392k 10.1021/bp970120j |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. 2019 The Author(s) 2019. Published by Oxford University Press. The Author(s) 2019. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. 2019 – notice: The Author(s) 2019. Published by Oxford University Press. – notice: The Author(s) 2019. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 5PM |
DOI | 10.1093/rb/rbz020 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2056-3426 |
EndPage | 323 |
ExternalDocumentID | PMC6897339 31827885 10_1093_rb_rbz020 10.1093/rb/rbz020 |
Genre | Journal Article |
GrantInformation_xml | – fundername: French Fondation des Gueules Cassées – fundername: French Ministry of Defense and the Interdisciplinary Institute of Experimental Sciences – fundername: DGA funderid: 10.13039/100005445 – fundername: Délégation Générale pour l’Armement – fundername: ; – fundername: ; ; |
GroupedDBID | 0R~ 5VS AAFWJ AAMVS AAOGV AAPPN AAPXW AAVAP ABEJV ABGNP ABPTD ABQLI ABXVV ACGFS ADBBV ADHZD ADRAZ AENZO AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS AVWKF BAYMD BCNDV BTTYL CIDKT EBS EJD EMOBN GROUPED_DOAJ H13 HYE IAO IHR ITC KQ8 KSI M48 ML0 M~E O9- OAWHX OJQWA OK1 PEELM RHF ROX RPM RXO TOX AAYXX ABJCF ADMLS AFKRA BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P PDBOC PHGZM PHGZT PIMPY CQIGP NPM 8FE 8FG 8FH ABUWG AZQEC D1I DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 5PM |
ID | FETCH-LOGICAL-c466t-b98bfe3ca614ab53263dddeb2d954beaa39ca8e8c2b7105c0e3d96a490366bb93 |
IEDL.DBID | M48 |
ISSN | 2056-3418 |
IngestDate | Thu Aug 21 13:53:22 EDT 2025 Sat Sep 20 13:41:39 EDT 2025 Thu Jan 02 22:59:30 EST 2025 Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 01:05:11 EDT 2025 Tue Jan 28 07:47:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | PEUU bone regeneration elastomer PCLU scaffold |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-b98bfe3ca614ab53263dddeb2d954beaa39ca8e8c2b7105c0e3d96a490366bb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3176-3476 0000-0002-1304-952X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1093/rb/rbz020 |
PMID | 31827885 |
PQID | 3171506094 |
PQPubID | 7121339 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6897339 proquest_journals_3171506094 pubmed_primary_31827885 crossref_citationtrail_10_1093_rb_rbz020 crossref_primary_10_1093_rb_rbz020 oup_primary_10_1093_rb_rbz020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Regenerative biomaterials |
PublicationTitleAlternate | Regen Biomater |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Guo (2019120611330723400_rbz020-B51) 2006; 90 Eglin (2019120611330723400_rbz020-B20) 2009; 5 Bertoldi (2019120611330723400_rbz020-B36) 2015; 26 Yang (2019120611330723400_rbz020-B28) 2006; 27 Liu (2019120611330723400_rbz020-B21) 2014; 15 Adhikari (2019120611330723400_rbz020-B38) 2008; 29 Mastrogiacomo (2019120611330723400_rbz020-B47) 2006; 27 Tamada (2019120611330723400_rbz020-B46) 1993; 155 Brannon-Peppas (2019120611330723400_rbz020-B25) 1990; 8 Zhang (2019120611330723400_rbz020-B56) 2013; 8 Pryor (2019120611330723400_rbz020-B5) 2009; 2 Rohman (2019120611330723400_rbz020-B27) 2005; 38 Changotade (2019120611330723400_rbz020-B24) 2015; 2015 Giannoudis (2019120611330723400_rbz020-B7) 2007; 38 Liu (2019120611330723400_rbz020-B14) 2017; 5 Ruiz (2019120611330723400_rbz020-B32) 2008; 26 Barlkani (2019120611330723400_rbz020-B26) 1992; 1 Gorna (2019120611330723400_rbz020-B23) 2003; 67A Tollemar (2019120611330723400_rbz020-B4) 2016; 3 Zhang (2019120611330723400_rbz020-B17) 2014; 10 Woodruff (2019120611330723400_rbz020-B40) 2010; 35 Le Guehennec (2019120611330723400_rbz020-B52) 2005; 72B Vunjak-Novakovic (2019120611330723400_rbz020-B44) 1998; 14 Alsberg (2019120611330723400_rbz020-B1) 2001; 12 Tao (2019120611330723400_rbz020-B55) 2015; 43 Arvidson (2019120611330723400_rbz020-B8) 2011; 15 Tee (2019120611330723400_rbz020-B34) 2011; 100 Szpalski (2019120611330723400_rbz020-B6) 2010; 29 Lo (2019120611330723400_rbz020-B49) 2000; 79 Santerre (2019120611330723400_rbz020-B39) 2005; 26 Giannoudis (2019120611330723400_rbz020-B3) 2005; 36 Lee (2019120611330723400_rbz020-B33) 2014; 4 Hirata (2019120611330723400_rbz020-B35) 1995; 46 Gogolewski (2019120611330723400_rbz020-B18) 2006; 77 Ko (2019120611330723400_rbz020-B42) 2013; 45 Drosse (2019120611330723400_rbz020-B11) 2008; 39 Brugmans (2019120611330723400_rbz020-B43) 2015; 9 Tabatabaei (2019120611330723400_rbz020-B10) 2012; 30 Chen (2019120611330723400_rbz020-B22) 2013; 38 Burkhardt (2019120611330723400_rbz020-B30) 1966; 44 Breuls (2019120611330723400_rbz020-B48) 2008; 2 Melchels (2019120611330723400_rbz020-B45) 2010; 6 Cooper (2019120611330723400_rbz020-B37) 2016 Knabe (2019120611330723400_rbz020-B54) 2000; 52 Migliaresi (2019120611330723400_rbz020-B15) 2007 Liu (2019120611330723400_rbz020-B13) 2004; 32 Slaughter (2019120611330723400_rbz020-B16) 2009; 21 Cao (2019120611330723400_rbz020-B53) 2010; 46 Sachlos (2019120611330723400_rbz020-B9) 2003; 5 Place (2019120611330723400_rbz020-B31) 2009; 38 Pelham (2019120611330723400_rbz020-B50) 1997; 94 Gogolewski (2019120611330723400_rbz020-B19) 2007; 80 Mondal (2019120611330723400_rbz020-B41) 2012; 97 Mahomed (2019120611330723400_rbz020-B29) 2012 Cox (2019120611330723400_rbz020-B2) 2011; 35 Fishero (2019120611330723400_rbz020-B12) 2014; 08 |
References_xml | – volume: 27 start-page: 3230 year: 2006 ident: 2019120611330723400_rbz020-B47 article-title: Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.031 – volume: 94 start-page: 13661 year: 1997 ident: 2019120611330723400_rbz020-B50 article-title: Cell locomotion and focal adhesions are regulated by substrate flexibility publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.25.13661 – volume: 15 start-page: 1019 year: 2014 ident: 2019120611330723400_rbz020-B21 article-title: Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect publication-title: Biomacromolecules doi: 10.1021/bm401911p – volume: 44 start-page: 326 year: 1966 ident: 2019120611330723400_rbz020-B30 article-title: Technische verbesserungen und anwendungsbereich der histo-biopsie von knochenmark und knochen publication-title: Klin Wochenschr doi: 10.1007/BF01752281 – start-page: 164 volume-title: Durability and Reliability of Medical Polymers year: 2012 ident: 2019120611330723400_rbz020-B29 doi: 10.1533/9780857096517.2.164 – volume: 38 start-page: S3 year: 2007 ident: 2019120611330723400_rbz020-B7 article-title: Fracture healing: the diamond concept publication-title: Injury doi: 10.1016/S0020-1383(08)70003-2 – volume: 45 start-page: e57. year: 2013 ident: 2019120611330723400_rbz020-B42 article-title: In situ tissue regeneration through host stem cell recruitment publication-title: Exp Mol Med doi: 10.1038/emm.2013.118 – volume: 5 start-page: 938 year: 2009 ident: 2019120611330723400_rbz020-B20 article-title: Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs publication-title: Soft Matter doi: 10.1039/b803718n – volume: 36 start-page: S20 year: 2005 ident: 2019120611330723400_rbz020-B3 article-title: Bone substitutes: an update publication-title: Injury doi: 10.1016/j.injury.2005.07.029 – volume: 80 start-page: 94 year: 2007 ident: 2019120611330723400_rbz020-B19 article-title: Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30834 – volume: 8 start-page: e67649. year: 2013 ident: 2019120611330723400_rbz020-B56 article-title: Acceleration of bone repair in NOD/SCID mice by human monoosteophils, novel LL-37-activated monocytes publication-title: PLoS One doi: 10.1371/journal.pone.0067649 – volume: 26 start-page: 2921 year: 2008 ident: 2019120611330723400_rbz020-B32 article-title: Emergence of patterned stem cell differentiation within multicellular structures publication-title: Stem Cells doi: 10.1634/stemcells.2008-0432 – volume: 46 start-page: 377 year: 1995 ident: 2019120611330723400_rbz020-B35 article-title: Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane publication-title: Radiat Phys Chem doi: 10.1016/0969-806X(94)00134-6 – volume: 35 start-page: 1217 year: 2010 ident: 2019120611330723400_rbz020-B40 article-title: The return of a forgotten polymer - polycaprolactone in the 21st century publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2010.04.002 – volume: 15 start-page: 718 year: 2011 ident: 2019120611330723400_rbz020-B8 article-title: Bone regeneration and stem cells publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2010.01224.x – volume: 26 start-page: 182. year: 2015 ident: 2019120611330723400_rbz020-B36 article-title: Exploiting novel sterilization techniques for porous polyurethane scaffolds publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-015-5509-0 – volume: 32 start-page: 477 year: 2004 ident: 2019120611330723400_rbz020-B13 article-title: Polymeric scaffolds for bone tissue engineering publication-title: Ann Biomed Eng doi: 10.1023/B:ABME.0000017544.36001.8e – volume: 2 start-page: 103 year: 2008 ident: 2019120611330723400_rbz020-B48 article-title: Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering publication-title: Open Orthop J doi: 10.2174/1874325000802010103 – volume: 21 start-page: 3307 year: 2009 ident: 2019120611330723400_rbz020-B16 article-title: Hydrogels in regenerative medicine publication-title: Adv Mater doi: 10.1002/adma.200802106 – volume: 38 start-page: 7274 year: 2005 ident: 2019120611330723400_rbz020-B27 article-title: Design of porous polymeric materials from interpenetrating polymer networks (IPNs): poly(dl-lactide)/poly(methyl methacrylate)-based semi-IPN systems publication-title: Macromolecules doi: 10.1021/ma0501390 – volume: 72B start-page: 69 year: 2005 ident: 2019120611330723400_rbz020-B52 article-title: Small-animal models for testing macroporous ceramic bone substitutes publication-title: J Biomed Mater Res doi: 10.1002/jbm.b.30118 – volume: 12 start-page: 64 year: 2001 ident: 2019120611330723400_rbz020-B1 article-title: Craniofacial tissue engineering publication-title: Crit Rev Oral Biol Med doi: 10.1177/10454411010120010501 – volume: 2 start-page: 151 year: 2009 ident: 2019120611330723400_rbz020-B5 article-title: Review of bone substitutes publication-title: Craniomaxillofac Trauma Reconstr doi: 10.1055/s-0029-1224777 – volume: 27 start-page: 1889 year: 2006 ident: 2019120611330723400_rbz020-B28 article-title: Synthesis and evaluation of poly(diol citrate) biodegradable elastomers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.106 – volume: 1 start-page: 1 year: 1992 ident: 2019120611330723400_rbz020-B26 article-title: Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4-cyclohexane diisocyanate and para-phenylene diisocyanate publication-title: Iran J Polym Sci Technol – volume: 155 start-page: 334 year: 1993 ident: 2019120611330723400_rbz020-B46 article-title: Effect of preadsorbed proteins on cell adhesion to polymer surfaces publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1993.1044 – volume: 38 start-page: 584 year: 2013 ident: 2019120611330723400_rbz020-B22 article-title: Elastomeric biomaterials for tissue engineering publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2012.05.003 – volume: 67A start-page: 813 year: 2003 ident: 2019120611330723400_rbz020-B23 article-title: Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.10148 – volume: 97 start-page: 1553 year: 2012 ident: 2019120611330723400_rbz020-B41 article-title: Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2012.04.008 – volume: 29 start-page: E8. year: 2010 ident: 2019120611330723400_rbz020-B6 article-title: Cranial bone defects: current and future strategies publication-title: Neurosurg Focus doi: 10.3171/2010.9.FOCUS10201 – volume: 8 start-page: 67 year: 1990 ident: 2019120611330723400_rbz020-B25 article-title: The equilibrium swelling behavior of porous and non-porous hydrogels publication-title: Stud Polym Sci doi: 10.1016/B978-0-444-88654-5.50009-1 – volume: 2015 start-page: 283796 year: 2015 ident: 2019120611330723400_rbz020-B24 article-title: Preliminary in vitro assessment of stem cell compatibility with cross-linked poly(ε-caprolactone urethane) scaffolds designed through high internal phase emulsions publication-title: Stem Cells Int doi: 10.1155/2015/283796 – start-page: 95 volume-title: Engineering of Functional Skeletal Tissues. Topics in Bone Biology year: 2007 ident: 2019120611330723400_rbz020-B15 doi: 10.1007/978-1-84628-366-6_7 – volume: 35 start-page: 951 year: 2011 ident: 2019120611330723400_rbz020-B2 article-title: Reamer-irrigator-aspirator indications and clinical results: a systematic review publication-title: Int Orthop doi: 10.1007/s00264-010-1189-z – volume: 29 start-page: 3762 year: 2008 ident: 2019120611330723400_rbz020-B38 article-title: Biodegradable injectable polyurethanes: synthesis and evaluation for orthopaedic applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.06.021 – volume: 9 start-page: E289 year: 2015 ident: 2019120611330723400_rbz020-B43 article-title: Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation publication-title: J Tissue Eng Regen Med doi: 10.1002/term.1753 – volume: 52 start-page: 498 year: 2000 ident: 2019120611330723400_rbz020-B54 article-title: Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P – volume: 6 start-page: 4208 year: 2010 ident: 2019120611330723400_rbz020-B45 article-title: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.06.012 – volume: 79 start-page: 144 year: 2000 ident: 2019120611330723400_rbz020-B49 article-title: Cell movement is guided by the rigidity of the substrate publication-title: Biophys J doi: 10.1016/S0006-3495(00)76279-5 – volume: 08 start-page: 023 year: 2014 ident: 2019120611330723400_rbz020-B12 article-title: Current concepts of bone tissue engineering for craniofacial bone defect repair publication-title: Craniomaxillofac Trauma Reconstr doi: 10.1055/s-0034-1393724 – volume: 90 start-page: 2213 year: 2006 ident: 2019120611330723400_rbz020-B51 article-title: Substrate rigidity regulates the formation and maintenance of tissues publication-title: Biophys J doi: 10.1529/biophysj.105.070144 – volume: 39 start-page: S9 year: 2008 ident: 2019120611330723400_rbz020-B11 article-title: Tissue engineering for bone defect healing: an update on a multi-component approach publication-title: Injury doi: 10.1016/S0020-1383(08)70011-1 – volume: 26 start-page: 7457 year: 2005 ident: 2019120611330723400_rbz020-B39 article-title: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.079 – volume: 46 start-page: 386 year: 2010 ident: 2019120611330723400_rbz020-B53 article-title: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering publication-title: Bone doi: 10.1016/j.bone.2009.09.031 – volume: 10 start-page: 4597 year: 2014 ident: 2019120611330723400_rbz020-B17 article-title: A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects publication-title: Acta Biomater doi: 10.1016/j.actbio.2014.07.020 – volume: 5 start-page: 29 year: 2003 ident: 2019120611330723400_rbz020-B9 article-title: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds publication-title: Eur Cell Mater doi: 10.22203/eCM.v005a03 – volume: 100 start-page: L25 year: 2011 ident: 2019120611330723400_rbz020-B34 article-title: Cell shape and substrate rigidity both regulate cell stiffness publication-title: Biophys J doi: 10.1016/j.bpj.2010.12.3744 – volume: 3 start-page: 56 year: 2016 ident: 2019120611330723400_rbz020-B4 article-title: Stem cells, growth factors and scaffolds in craniofacial regenerative medicine publication-title: Genes Dis doi: 10.1016/j.gendis.2015.09.004 – volume: 77 start-page: 802 year: 2006 ident: 2019120611330723400_rbz020-B18 article-title: Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30669 – volume: 43 start-page: 2136 year: 2015 ident: 2019120611330723400_rbz020-B55 article-title: Treatment study of distal femur for parathyroid hormone (1–34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats publication-title: J Craniomaxillofac Surg doi: 10.1016/j.jcms.2015.09.004 – volume-title: Advances in Polyurethane Biomaterials year: 2016 ident: 2019120611330723400_rbz020-B37 – volume: 30 start-page: 115 year: 2012 ident: 2019120611330723400_rbz020-B10 article-title: Craniomaxillofacial bone engineering by scaffolds loaded with stem cells: a systematic review publication-title: J Dent Sch – volume: 5 start-page: 17014. year: 2017 ident: 2019120611330723400_rbz020-B14 article-title: Injectable hydrogels for cartilage and bone tissue engineering publication-title: Bone Res doi: 10.1038/boneres.2017.14 – volume: 4 start-page: 5188. year: 2014 ident: 2019120611330723400_rbz020-B33 article-title: Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment publication-title: Sci Rep doi: 10.1038/srep05188 – volume: 38 start-page: 1139 year: 2009 ident: 2019120611330723400_rbz020-B31 article-title: Synthetic polymer scaffolds for tissue engineering publication-title: Chem Soc Rev doi: 10.1039/b811392k – volume: 14 start-page: 193 year: 1998 ident: 2019120611330723400_rbz020-B44 article-title: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering publication-title: Biotechnol Prog doi: 10.1021/bp970120j |
SSID | ssj0001476615 ssib048324864 |
Score | 2.121758 |
Snippet | Abstract
Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss... Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 311 |
SubjectTerms | Biomedical materials Bone biomaterials Bone growth Bone healing Bone loss Bones Cell adhesion & migration Cell migration Cell proliferation Crosslinking Cytotoxicity Defects Differentiation (biology) Elastomers Ethyl carbamate Histology Mechanical properties Microtomography Protein seeding Quality of life Regeneration Regeneration (physiology) Scaffolds Skin & tissue grafts Stem cells Substitutes Surgery Tissue engineering Trauma Urea |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BucChonw10KIR4lAOqybe9dp7QggRChKcqNSbtR9jiBTZqe1UCr-LH8js2g4Jqirl4Ngrr6UZz3ue3XnD2NuZcuVM-ymXvlRc0icDzxPheIpokODTuVjh_e27uriUX6_SqyHh1g7bKseYGAO1r13IkZ8TzkUxPC3fr6556BoVVleHFhr32YNZQlgbKsXnn0d_kuStclQfjzkXmREchV2NCeE-pwCej2JDWpw3ln6_p6Hz9w5E7ZW97bDP_zdR7qDS_DE7HOgkfOjtf8TuYfWEPdoRGXzK_nyp4GbRNTWYysMi_LmpIaQSsIW6BNcXLgKxVyA2COsWw2kDbtASWG4gPigPi73oYVUvN2dRYIGvGwypdwwH5h20zpRlvfRgWpoM0LQbiDIO9CCAxNO7Oi4QQSj6N110_jivrSuEBn9GDezgKs_Y5fzTj48XfOjVwMmYquNW57ZE4QzBvbEpkULhKXLaxOtUWjRGaGdyzF1iidOkborCa2WkJgRV1mrxnB1UNNcxA4oi2qnQBaVUMs2E8Rl9AjiFbjorc-kn7Gw0T-EGIfPQT2NZ9Avqomhs0Vtywt5sh6569Y7bBp2Sje-6fjJavxhe8Lb4544T9qJ3hO0dKEwmWZ6nE5btuch2QJD03r9SLX5FaW-V60wI_fLuKV-xh8TbdL-r5oQddM0aT4kbdfZ1fAH-AlrTEko priority: 102 providerName: ProQuest |
Title | In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31827885 https://www.proquest.com/docview/3171506094 https://pubmed.ncbi.nlm.nih.gov/PMC6897339 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2kdB4mLiOwlYdIR7Gg6GNnTR-QAjQygCtDLRKfYt8C1SKkpGk08rv4gdy7CSlRRMPSJGVxI5t5Rz7fL59h5Bnw0inQ2EGlJs0ohyHDDQOmKahtdKi-dTan_A-m0SnU_5xFs62SOdjs_2B1Y1DO-dPalpmL65_LF9jg3_VkiG9LBVePxH3bJNdv0zkdvD9QfkclZZ3JOR-6oWP0Cq5zY0Bmn-K_XjccQ6t57ZHbqHCBzhGDDeM1sZBuDU8-ve2yjU7Nb5D9luACW8ajbhLtmx-j9xeox28T359yOFqXpcFyNzA3D1cFeAmF2wFRQq6OcoIiGcB8SEsKuteS9Atu0C2BF9R6pZ_rYHLIlsee8oFuiitm4y37kY-h0rLNC0yA7LCwsDKagme2AErAhaRe134JSNwNACy9s3Bl6uK3EJpv3lWbKc8D8h0fHLx7pS23hsoijeqqRKxSi3TEgGAVCHCRGawL1WBESFXVkomtIxtrAOFKCfUA8uMiCQXaFMjpQR7SHZyLOsRAexXhI6cX5Q04uGISTPCQYGOrB4M05ibHjnuxJPoltrcedjIkmaJnSWlShqh9sjTVdLLhs_jpkRHKON_xR920k86jU0QiHm2RsF75KBRhFUOnR71yGhDRVYJHMn3Zkw-_-7JvqNYjBgTj__7yydkD0GeaLbgHJKdulzYIwRSteqT7Xj8vk92355Mzr_2_XQEhp--xH3fgDCcnJ9hePF59hsarSiI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4EWhghkMph1cS7fuyhQjxaJbSNEGql3sy-DJEiO9hOUfhdnPltzK7tkCDUW6UcEnuVXWke3-zszjeEvBxGOhsKM6DcZBHluGWgScA0Da2VFuFTa1_hfTqJRuf840V4sUV-d7Uw7lpl5xO9ozaFdjnyfcQ5T4Yn-Jv5d-q6RrnT1a6FhmxbK5gDTzHWFnYc2-UP3MJVB-MPKO9XQXB0ePZ-RNsuAxSXEdVUiURllmmJQCVViOEMM2jzKjAi5MpKyYSWiU10oBCNQz2wzIhIcoG-P1LKkTEhBGxzl0Dpke13h5NPnzuN5mgvvOM_91kfHiMgunuVAUYeFCEk6eiOBNsvFX5-Dlzv8TWQ3Ci8W4t__73GuYaLR3fI7TaghbeNBt4lWza_R26t0RzeJ7_GOVxO67IAmRuYuh-XBbhkhq2gyEA3pZOA8TNgPAqLyrrHEnTLZjBbgl8odcfN1sC8mC33PMUDXZTWJf-t-yJfQ6VllhUzA7LCycDKagmeSAIXAhZ3CnXhj6jA0Q7I2pufn1cVuYXSfvUs3E5ZH5Dza5HjQ9LLca7HBNCPCR25PixZxMOYSRPjJkRHVg-GWcJNn-x14kl1S6XuOnrM0uZIn6WlShtJ9smL1dB5wx_yv0G7KOOr3u900k9bF1Olfw2iTx41irD6B3TUQZwkYZ_EGyqyGuBIxTff5NNvnlw8SkTMmHhy9ZTPyY3R2elJejKeHD8lNzGKFM0dnx3Sq8uF3cVIrVbPWnMA8uW6LfAPDbtXXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+and+in+vivo+proves+of+concept+for+the+use+of+a+chemically+cross-linked+poly%28ester-urethane-urea%29+scaffold+as+an+easy+handling+elastomeric+biomaterial+for+bone+regeneration&rft.jtitle=Regenerative+biomaterials&rft.au=Rohman%2C+G%C3%A9raldine&rft.au=Changotade%2C+Sylvie&rft.au=Frasca%2C+Sophie&rft.au=Ramtani%2C+Salah&rft.date=2019-12-01&rft.pub=Oxford+University+Press&rft.issn=2056-3418&rft.eissn=2056-3426&rft.volume=6&rft.issue=6&rft.spage=311&rft.epage=323&rft_id=info:doi/10.1093%2Frb%2Frbz020&rft_id=info%3Apmid%2F31827885&rft.externalDocID=PMC6897339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-3418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-3418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-3418&client=summon |