Blocking cancer-fibroblast mutualism inhibits proliferation of endocrine therapy resistant breast cancer

In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but re...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 21; no. 7; pp. 825 - 855
Main Authors Griffiths, Jason I, Chi, Feng, Farmaki, Elena, Medina, Eric F, Cosgrove, Patrick A, Karimi, Kimya L, Chen, Jinfeng, Grolmusz, Vince K, Adler, Frederick R, Khan, Qamar J, Nath, Aritro, Chang, Jeffrey T, Bild, Andrea H
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2025
Springer Nature
Subjects
Online AccessGet full text
ISSN1744-4292
1744-4292
DOI10.1038/s44320-025-00104-6

Cover

Abstract In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells. Synopsis Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drive proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells. A shift to ERBB growth factor mediated proliferation away from estrogen signaling is observed in resistant cancer cells in most tumors during treatment, partially facilitated by ERBB receptor upregulation. Fibroblasts are stimulated by cancer cells exposed to endocrine therapy to differentiate and secrete ERBB ligands, which in turn crosstalk with ERBB receptors on cancer cells to drive growth. Mutualistic cancer-fibroblast crosstalk mechanisms, identified from patient samples, were verified across in vitro model systems, showing that ERBB growth factor-enrichment bypasses estrogen dependence. This cancer-fibroblast communication is blocked by pan-ERBB inhibitors, targeting an acquired sensitivity to overcome endocrine resistance. Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drives proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells.
AbstractList In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF $$\beta$$ β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells. Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drive proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells. A shift to ERBB growth factor mediated proliferation away from estrogen signaling is observed in resistant cancer cells in most tumors during treatment, partially facilitated by ERBB receptor upregulation. Fibroblasts are stimulated by cancer cells exposed to endocrine therapy to differentiate and secrete ERBB ligands, which in turn crosstalk with ERBB receptors on cancer cells to drive growth. Mutualistic cancer-fibroblast crosstalk mechanisms, identified from patient samples, were verified across in vitro model systems, showing that ERBB growth factor-enrichment bypasses estrogen dependence. This cancer-fibroblast communication is blocked by pan-ERBB inhibitors, targeting an acquired sensitivity to overcome endocrine resistance. Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drives proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells.
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells. Synopsis Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drive proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells. A shift to ERBB growth factor mediated proliferation away from estrogen signaling is observed in resistant cancer cells in most tumors during treatment, partially facilitated by ERBB receptor upregulation. Fibroblasts are stimulated by cancer cells exposed to endocrine therapy to differentiate and secrete ERBB ligands, which in turn crosstalk with ERBB receptors on cancer cells to drive growth. Mutualistic cancer-fibroblast crosstalk mechanisms, identified from patient samples, were verified across in vitro model systems, showing that ERBB growth factor-enrichment bypasses estrogen dependence. This cancer-fibroblast communication is blocked by pan-ERBB inhibitors, targeting an acquired sensitivity to overcome endocrine resistance. Serial single-cell RNA sequencing of estrogen receptor-positive (ER + ) breast tumors from multiple patient cohorts, combined with experimental analyses, uncovers molecular mechanisms of compensatory growth signaling that drives proliferation in endocrine +/- CDK4/6 inhibitor-resistant cancer cells.
Abstract In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF $$\beta$$ β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
Author Adler, Frederick R
Khan, Qamar J
Bild, Andrea H
Farmaki, Elena
Chang, Jeffrey T
Karimi, Kimya L
Nath, Aritro
Cosgrove, Patrick A
Medina, Eric F
Chen, Jinfeng
Chi, Feng
Grolmusz, Vince K
Griffiths, Jason I
Author_xml – sequence: 1
  givenname: Jason I
  orcidid: 0000-0002-1667-8233
  surname: Griffiths
  fullname: Griffiths, Jason I
  email: jasonigriff@gmail.com, jgriffiths@coh.org
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, Department of Mathematics, University of Utah 155 South 1400 East
– sequence: 2
  givenname: Feng
  surname: Chi
  fullname: Chi, Feng
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 3
  givenname: Elena
  surname: Farmaki
  fullname: Farmaki, Elena
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 4
  givenname: Eric F
  surname: Medina
  fullname: Medina, Eric F
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 5
  givenname: Patrick A
  orcidid: 0000-0001-7784-7785
  surname: Cosgrove
  fullname: Cosgrove, Patrick A
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 6
  givenname: Kimya L
  orcidid: 0000-0003-0070-2224
  surname: Karimi
  fullname: Karimi, Kimya L
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 7
  givenname: Jinfeng
  surname: Chen
  fullname: Chen, Jinfeng
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 8
  givenname: Vince K
  orcidid: 0000-0002-5677-895X
  surname: Grolmusz
  fullname: Grolmusz, Vince K
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 9
  givenname: Frederick R
  surname: Adler
  fullname: Adler, Frederick R
  organization: Department of Mathematics, University of Utah 155 South 1400 East, School of Biological Sciences, University of Utah 257 South 1400 East
– sequence: 10
  givenname: Qamar J
  surname: Khan
  fullname: Khan, Qamar J
  organization: Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center
– sequence: 11
  givenname: Aritro
  surname: Nath
  fullname: Nath, Aritro
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
– sequence: 12
  givenname: Jeffrey T
  orcidid: 0000-0002-4578-5636
  surname: Chang
  fullname: Chang, Jeffrey T
  organization: Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Science Center at Houston
– sequence: 13
  givenname: Andrea H
  orcidid: 0000-0003-4850-0453
  surname: Bild
  fullname: Bild, Andrea H
  email: abild@coh.org
  organization: Department of Medical Oncology & Therapeutics, City of Hope National Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40341770$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUhVGVqHn1D3RRsezGDS8be1W1UdtEitRNskaALzNMbZgCrpR_XyZOo2RThASCc74LuucMHYUYAKH3lHyihPeXWQjOSENY2xBCiWi6N-iUSiEawQZ29GJ_gs5y3pFqoj17i04E4YJKSU7R9usU7S8fNtjqYCE1zpsUzaRzwfNSFj35PGMftt74kvE-xck7SLr4GHB0GMIYbfIBcNnW4_0DTpB9LjoUbBIcMCv4Ah07PWV497Seo_vv3-6urpvbnz9urr7cNlZ0XWnMwA3ruKSDlK7ToiWauK6VLdPcMkGc6Q0dtHBy6IDZkY_1j4QyKugoadfzc3Szcseod2qf_KzTg4raq8eDmDZKp-LtBAq4BGmtMcLWKc0wgBWcAnWjEZVaWZ9X1n4xM4wWQkl6egV9fRP8Vm3iH0VZHXI4vObjEyHF3wvkomafLUyTDhCXrGr_GB9k3x6kH14We67yr1dVwFaBTTHnBO5ZQok6BEKtgVA1EOoxEKqrJr6achWHDSS1i0sKtQP_c_0FGLm6RQ
Cites_doi 10.1016/j.celrep.2018.10.047
10.1038/nbt.4314
10.1016/j.ccell.2020.06.005
10.1038/s41590-018-0276-y
10.1002/lsm.1900080106
10.1016/j.semcancer.2013.12.008
10.1038/nrc1477
10.17504/protocols.io.t3aeqie
10.3389/fimmu.2022.1026954
10.1038/cddis.2017.42
10.1093/bioinformatics/btr260
10.1074/jbc.M111.226563
10.1186/s13059-018-1593-z
10.1038/nm.1951
10.3390/cancers12103029
10.4049/jimmunol.0802703
10.1172/JCI30740
10.3390/cancers14163906
10.1007/s10549-012-2289-9
10.3390/cancers9050052
10.3389/fonc.2019.00718
10.1038/s41467-018-08188-5
10.18637/jss.v067.i01
10.1016/S0140-6736(05)66544-0
10.1186/1471-2105-14-7
10.1038/nmeth.3137
10.1038/s43018-021-00215-7
10.18637/jss.v082.i13
10.1038/s41467-017-02554-5
10.1038/s41698-017-0017-y
10.1093/bib/bbab039
10.1038/s41467-020-14766-3
10.1038/s41467-023-39242-6
10.1016/j.ccell.2020.03.009
10.1158/1055-9965.EPI-18-0863
10.1016/j.isci.2019.07.034
10.1056/NEJM199811263392207
10.1186/s12943-015-0291-7
10.1038/ncomms8866
10.3390/cancers11020189
10.1038/s41388-021-01719-3
10.1038/s41392-021-00641-0
10.1042/CS20220472
10.1038/sdata.2017.166
10.1200/JCO.20.03639
10.1093/jnci/djx131
10.3390/cancers14153570
10.1530/JME-15-0310
10.2307/2530044
10.1200/JCO.2020.38.15_suppl.505
10.1073/pnas.1910420116
10.1038/mt.2008.6
10.1056/NEJMoa2203690
10.3390/biom10121666
10.1186/s12935-020-01337-1
10.1038/srep05853
10.1038/s41467-025-56279-x
10.1186/s13058-022-01510-6
10.1016/0169-5347(94)90088-4
10.1016/j.bioorg.2017.02.011
10.15252/embj.2019104063
10.1042/BST20160387
10.5061/dryad.03n60
10.3389/fendo.2019.00245
10.1111/jvs.12123
10.2353/ajpath.2010.090802
10.1200/JCO.20.02514
10.1074/jbc.M113.451336
10.3390/ijms21176400
10.1038/s41576-020-00292-x
10.3390/cancers12051232
10.1093/bioinformatics/btt656
10.18632/oncotarget.12207
10.1016/S1470-2045(20)30642-2
10.1038/s41598-019-53549-9
10.1016/j.tree.2008.10.008
10.1186/bcr42
10.3390/ijms21062011
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1038/s44320-025-00104-6
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1744-4292
EndPage 855
ExternalDocumentID oai_doaj_org_article_e37e7ccbb4cb4c7b99ec431e1fdb4440
PMC12222798
40341770
10_1038_s44320_025_00104_6
Genre Journal Article
GrantInformation_xml – fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: U54CA209978; U01CA264620; P30CA042014
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: Jayne Koskinas Ted Giovanis Foundation for Health and Policy (JKTG)
  funderid: http://dx.doi.org/10.13039/100016460
– fundername: Cancer Prevention and Research Institute of Texas (CPRIT)
  grantid: RP170668
  funderid: http://dx.doi.org/10.13039/100004917
– fundername: Cancer Prevention and Research Institute of Texas (CPRIT)
  grantid: RP170668
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P30CA042014
– fundername: NCI NIH HHS
  grantid: P30 CA042014
– fundername: NCI NIH HHS
  grantid: U01 CA264620
– fundername: NCI NIH HHS
  grantid: U54 CA209978
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: U01CA264620
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: U54CA209978
GroupedDBID ---
0R~
123
1OC
24P
29M
2WC
39C
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IGS
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M7P
ML0
M~E
NAO
O5R
O5S
O9-
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
M48
-Q-
4.4
8R4
8R5
AAMMB
ACCMX
ADRAZ
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CGR
COF
CUY
CVF
ECM
EIF
EJD
GODZA
H13
NPM
Q2X
7X8
PUEGO
WIN
5PM
ID FETCH-LOGICAL-c466t-b93b26371977f6a450a0f65752a3c240fb8b19a4f796e2cd3d744012141d71683
IEDL.DBID DOA
ISSN 1744-4292
IngestDate Wed Aug 27 01:31:19 EDT 2025
Thu Aug 21 18:32:28 EDT 2025
Fri Sep 05 17:12:00 EDT 2025
Mon Jul 07 01:54:04 EDT 2025
Thu Jul 10 08:08:51 EDT 2025
Mon Jul 21 06:06:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Cancer-fibroblast-mutualism
TME-communication
ERBB Signaling
Endocrine Resistance
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-b93b26371977f6a450a0f65752a3c240fb8b19a4f796e2cd3d744012141d71683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4578-5636
0000-0003-4850-0453
0000-0002-5677-895X
0000-0001-7784-7785
0000-0003-0070-2224
0000-0002-1667-8233
OpenAccessLink https://doaj.org/article/e37e7ccbb4cb4c7b99ec431e1fdb4440
PMID 40341770
PQID 3202397858
PQPubID 23479
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_e37e7ccbb4cb4c7b99ec431e1fdb4440
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12222798
proquest_miscellaneous_3202397858
pubmed_primary_40341770
crossref_primary_10_1038_s44320_025_00104_6
springer_journals_10_1038_s44320_025_00104_6
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2025
Publisher Nature Publishing Group UK
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature
References CR Henderson (104_CR31) 1982; 38
MM Mueller (104_CR56) 2004; 4
K Weber (104_CR76) 2008; 16
JI Griffiths (104_CR23) 2021; 2
MA Schumacher (104_CR69) 2017; 8
S Almaraz Postigo (104_CR2) 2023; 137
X Liu (104_CR47) 2021; 22
S Loibl (104_CR48) 2021; 39
S Navid (104_CR57) 2020; 21
M Hafner (104_CR27) 2017; 4
GH Heppner (104_CR32) 2014; 28
QJ Khan (104_CR38) 2020; 38
D Bates (104_CR6) 2015; 67
H Masuda (104_CR50) 2012; 136
A Ootani (104_CR58) 2009; 15
X Ren (104_CR64) 2018; 19
A Calon (104_CR12) 2014; 25
S Chatterjee (104_CR14) 2019; 19
R Michalet (104_CR53) 2014; 25
AC Midgley (104_CR54) 2013; 288
VK Grolmusz (104_CR25) 2020; 20
A Papait (104_CR60) 2022; 14
MP Rogers (104_CR66) 2022; 14
A Jameera Begam (104_CR33) 2017; 71
S Modi (104_CR55) 2022; 387
Y Liao (104_CR45) 2014; 30
104_CR24
SP Hammarlund (104_CR28) 2019; 116
M Kretzschmar (104_CR39) 2000; 2
A Dominiak (104_CR16) 2020; 12
RC Ekyalongo (104_CR18) 2017; 1
104_CR26
UE Martinez-Outschoorn (104_CR49) 2019; 9
D Aran (104_CR3) 2019; 20
A Rani (104_CR63) 2019; 10
Z Zhang (104_CR82) 2020; 38
E Armingol (104_CR4) 2021; 22
JP Edwards (104_CR17) 2009; 182
S Hänzelmann (104_CR30) 2013; 14
MP Kumar (104_CR41) 2018; 25
F Wu (104_CR79) 2021; 6
H Zhao (104_CR83) 2016; 57
V Erba (104_CR20) 2019; 9
C Kerneur (104_CR36) 2022; 13
K Van den Berge (104_CR74) 2020; 11
EL Mayer (104_CR51) 2021; 22
S Biswas (104_CR10) 2007; 117
JA Ramilowski (104_CR62) 2015; 6
B Erdogan (104_CR21) 2017; 45
MD Bertness (104_CR9) 1994; 9
RA Glabman (104_CR22) 2022; 14
X Shi (104_CR71) 2020; 10
PF Christopoulos (104_CR15) 2015; 14
MF Santolla (104_CR68) 2020; 12
104_CR37
W Zhang (104_CR81) 2016; 7
M Piezzo (104_CR61) 2020; 21
104_CR70
S Meran (104_CR52) 2011; 286
D Risso (104_CR65) 2018; 9
KH Kensler (104_CR35) 2019; 28
GM LaMuraglia (104_CR43) 1988; 8
104_CR73
A Kuznetsova (104_CR42) 2017; 82
B Rozeboom (104_CR67) 2019; 9
M Berdiel-Acer (104_CR8) 2021; 40
104_CR1
M Krzywinski (104_CR40) 2014; 11
A Liberzon (104_CR46) 2011; 27
104_CR7
104_CR5
RML Simpson (104_CR72) 2010; 176
SRD Johnston (104_CR34) 2020; 38
F Wu (104_CR78) 2019; 10
R Emond (104_CR19) 2023; 14
104_CR84
AM Castellaro (104_CR13) 2019; 11
CK Osborne (104_CR59) 1998; 339
SZ Wu (104_CR80) 2020; 39
E Lee (104_CR44) 2014; 4
AC Watt (104_CR75) 2022; 24
BM Bolker (104_CR11) 2009; 24
AB Hanker (104_CR29) 2020; 37
P Wee (104_CR77) 2017; 9
References_xml – volume: 25
  start-page: 1458
  year: 2018
  ident: 104_CR41
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.10.047
– ident: 104_CR7
  doi: 10.1038/nbt.4314
– volume: 38
  start-page: 279
  year: 2020
  ident: 104_CR82
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.06.005
– volume: 20
  start-page: 163
  year: 2019
  ident: 104_CR3
  publication-title: Nat Immunol
  doi: 10.1038/s41590-018-0276-y
– volume: 8
  start-page: 18
  year: 1988
  ident: 104_CR43
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.1900080106
– volume: 25
  start-page: 15
  year: 2014
  ident: 104_CR12
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2013.12.008
– volume: 4
  start-page: 839
  year: 2004
  ident: 104_CR56
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1477
– ident: 104_CR70
  doi: 10.17504/protocols.io.t3aeqie
– volume: 13
  start-page: 1026954
  year: 2022
  ident: 104_CR36
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1026954
– volume: 8
  year: 2017
  ident: 104_CR69
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2017.42
– volume: 27
  start-page: 1739
  year: 2011
  ident: 104_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– ident: 104_CR37
– volume: 286
  start-page: 17618
  year: 2011
  ident: 104_CR52
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.226563
– volume: 19
  year: 2018
  ident: 104_CR64
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1593-z
– volume: 15
  start-page: 701
  year: 2009
  ident: 104_CR58
  publication-title: Nat Med
  doi: 10.1038/nm.1951
– volume: 12
  start-page: 3029
  year: 2020
  ident: 104_CR68
  publication-title: Cancers
  doi: 10.3390/cancers12103029
– volume: 182
  start-page: 1929
  year: 2009
  ident: 104_CR17
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0802703
– volume: 117
  start-page: 1305
  year: 2007
  ident: 104_CR10
  publication-title: J Clin Investig
  doi: 10.1172/JCI30740
– volume: 14
  start-page: 3906
  year: 2022
  ident: 104_CR22
  publication-title: Cancers
  doi: 10.3390/cancers14163906
– volume: 136
  start-page: 331
  year: 2012
  ident: 104_CR50
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-012-2289-9
– volume: 9
  start-page: 52
  year: 2017
  ident: 104_CR77
  publication-title: Cancers
  doi: 10.3390/cancers9050052
– volume: 9
  start-page: 718
  year: 2019
  ident: 104_CR49
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00718
– volume: 10
  year: 2019
  ident: 104_CR78
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08188-5
– volume: 67
  start-page: 1
  year: 2015
  ident: 104_CR6
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
– ident: 104_CR1
  doi: 10.1016/S0140-6736(05)66544-0
– volume: 14
  year: 2013
  ident: 104_CR30
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-14-7
– volume: 11
  start-page: 977
  year: 2014
  ident: 104_CR40
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3137
– volume: 2
  start-page: 658
  year: 2021
  ident: 104_CR23
  publication-title: Nat Cancer
  doi: 10.1038/s43018-021-00215-7
– volume: 82
  start-page: 1
  year: 2017
  ident: 104_CR42
  publication-title: J Stat Softw
  doi: 10.18637/jss.v082.i13
– volume: 9
  year: 2018
  ident: 104_CR65
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02554-5
– volume: 1
  year: 2017
  ident: 104_CR18
  publication-title: NPJ Precis Oncol
  doi: 10.1038/s41698-017-0017-y
– volume: 22
  start-page: bbab039
  year: 2021
  ident: 104_CR47
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab039
– volume: 11
  year: 2020
  ident: 104_CR74
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14766-3
– volume: 14
  year: 2023
  ident: 104_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39242-6
– volume: 37
  start-page: 496
  year: 2020
  ident: 104_CR29
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.03.009
– volume: 28
  start-page: 798
  year: 2019
  ident: 104_CR35
  publication-title: Cancer Epidemiol Biomark Prev
  doi: 10.1158/1055-9965.EPI-18-0863
– volume: 19
  start-page: 388
  year: 2019
  ident: 104_CR14
  publication-title: iScience
  doi: 10.1016/j.isci.2019.07.034
– volume: 339
  start-page: 1609
  year: 1998
  ident: 104_CR59
  publication-title: New Engl J Med
  doi: 10.1056/NEJM199811263392207
– volume: 14
  year: 2015
  ident: 104_CR15
  publication-title: Mol Cancer
  doi: 10.1186/s12943-015-0291-7
– volume: 6
  year: 2015
  ident: 104_CR62
  publication-title: Nat Commun
  doi: 10.1038/ncomms8866
– volume: 11
  start-page: 189
  year: 2019
  ident: 104_CR13
  publication-title: Cancers
  doi: 10.3390/cancers11020189
– volume: 40
  start-page: 2651
  year: 2021
  ident: 104_CR8
  publication-title: Oncogene
  doi: 10.1038/s41388-021-01719-3
– volume: 6
  start-page: 218
  year: 2021
  ident: 104_CR79
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-021-00641-0
– volume: 137
  start-page: 1
  year: 2023
  ident: 104_CR2
  publication-title: Clin Sci
  doi: 10.1042/CS20220472
– volume: 4
  year: 2017
  ident: 104_CR27
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.166
– volume: 39
  start-page: 1518
  year: 2021
  ident: 104_CR48
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.20.03639
– ident: 104_CR5
  doi: 10.1093/jnci/djx131
– volume: 14
  start-page: 3570
  year: 2022
  ident: 104_CR60
  publication-title: Cancers
  doi: 10.3390/cancers14153570
– volume: 57
  start-page: R19
  year: 2016
  ident: 104_CR83
  publication-title: J Mol Endocrinol
  doi: 10.1530/JME-15-0310
– volume: 38
  start-page: 623
  year: 1982
  ident: 104_CR31
  publication-title: Biometrics
  doi: 10.2307/2530044
– volume: 38
  start-page: 505
  year: 2020
  ident: 104_CR38
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2020.38.15_suppl.505
– volume: 116
  start-page: 15760
  year: 2019
  ident: 104_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1910420116
– volume: 9
  start-page: 2821
  year: 2019
  ident: 104_CR67
  publication-title: Am J Cancer Res
– volume: 16
  start-page: 698
  year: 2008
  ident: 104_CR76
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.6
– volume: 387
  start-page: 9
  year: 2022
  ident: 104_CR55
  publication-title: New Engl J Med
  doi: 10.1056/NEJMoa2203690
– volume: 10
  start-page: 1666
  year: 2020
  ident: 104_CR71
  publication-title: Biomolecules
  doi: 10.3390/biom10121666
– volume: 14
  start-page: e29354
  year: 2022
  ident: 104_CR66
  publication-title: Cureus
– volume: 20
  year: 2020
  ident: 104_CR25
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-01337-1
– volume: 4
  year: 2014
  ident: 104_CR44
  publication-title: Sci Rep
  doi: 10.1038/srep05853
– ident: 104_CR24
  doi: 10.1038/s41467-025-56279-x
– volume: 24
  year: 2022
  ident: 104_CR75
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-022-01510-6
– volume: 9
  start-page: 191
  year: 1994
  ident: 104_CR9
  publication-title: Trends Ecol Evol
  doi: 10.1016/0169-5347(94)90088-4
– volume: 71
  start-page: 257
  year: 2017
  ident: 104_CR33
  publication-title: Bioorg Chem
  doi: 10.1016/j.bioorg.2017.02.011
– volume: 39
  year: 2020
  ident: 104_CR80
  publication-title: EMBO J
  doi: 10.15252/embj.2019104063
– volume: 45
  start-page: 229
  year: 2017
  ident: 104_CR21
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20160387
– ident: 104_CR26
  doi: 10.5061/dryad.03n60
– volume: 28
  start-page: 780
  year: 2014
  ident: 104_CR32
  publication-title: Oncology
– volume: 10
  start-page: 245
  year: 2019
  ident: 104_CR63
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2019.00245
– ident: 104_CR73
– volume: 25
  start-page: 609
  year: 2014
  ident: 104_CR53
  publication-title: J Vegetation Sci
  doi: 10.1111/jvs.12123
– volume: 176
  start-page: 1215
  year: 2010
  ident: 104_CR72
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2010.090802
– ident: 104_CR84
– volume: 38
  start-page: 3987
  year: 2020
  ident: 104_CR34
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.20.02514
– volume: 288
  start-page: 14824
  year: 2013
  ident: 104_CR54
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.451336
– volume: 21
  start-page: 6400
  year: 2020
  ident: 104_CR61
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21176400
– volume: 22
  start-page: 71
  year: 2021
  ident: 104_CR4
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-00292-x
– volume: 12
  start-page: 1232
  year: 2020
  ident: 104_CR16
  publication-title: Cancers
  doi: 10.3390/cancers12051232
– volume: 30
  start-page: 923
  year: 2014
  ident: 104_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 7
  start-page: 75366
  year: 2016
  ident: 104_CR81
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12207
– volume: 22
  start-page: 212
  year: 2021
  ident: 104_CR51
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(20)30642-2
– volume: 9
  year: 2019
  ident: 104_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53549-9
– volume: 24
  start-page: 127
  year: 2009
  ident: 104_CR11
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2008.10.008
– volume: 2
  start-page: 107
  year: 2000
  ident: 104_CR39
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr42
– volume: 21
  start-page: 2011
  year: 2020
  ident: 104_CR57
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21062011
SSID ssj0038182
Score 2.4605758
Snippet In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift...
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift...
Abstract In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 825
SubjectTerms Antineoplastic Agents, Hormonal - pharmacology
Biomedical and Life Sciences
Breast Neoplasms - drug therapy
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cancer-Associated Fibroblasts - drug effects
Cancer-Associated Fibroblasts - metabolism
Cancer-Associated Fibroblasts - pathology
Cancer-fibroblast-mutualism
Cell Line, Tumor
Cell Proliferation - drug effects
Cyclin-Dependent Kinase 4 - antagonists & inhibitors
Cyclin-Dependent Kinase 6 - antagonists & inhibitors
Drug Resistance, Neoplasm - drug effects
EMBO03
EMBO09
Endocrine Resistance
ErbB Receptors - metabolism
ERBB Signaling
Female
Fibroblasts - drug effects
Fibroblasts - metabolism
Gene Expression Regulation, Neoplastic - drug effects
Humans
Life Sciences
Protein Kinase Inhibitors - pharmacology
Signal Transduction - drug effects
Systems Biology
TME-communication
Tumor Microenvironment - drug effects
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nieDL4bd7nhLBN61uPpo0D3J44nEI-uTCvYUmTdyC195tu3D73zuTtguri09Cn9okTTIznd90MjOEvDG5kHklqsyXORgolfGZUUWZSR6U8JFrnjym376ri4X8eplfHpCp3NG4gd1e0w7rSS1Wv97f3mxOQeA_DiHjxYdOSowDxsKsKd1Mpu6Qu8lfhEf55NargMqJj4Ez-_vtKKeUw38f8Pz7_OQfTtSkm84fkKMRVNJPAxc8JAeheUTuDWUmN4_J8gw0Fv4Spx5pvMoi2MitA9zc06s1BpDU3RWtm2Xt6r6j11jIJ4aBNWgbaWiq1mOUIB2itTYUbHTEnU1PHR5q78eBn5DF-Zcfny-yscJC5qVSfeaMcFwJzQAFRlXKfF7OI7pieCk86ProCsdMKaM2KnAPNMV8gowzySowtArxlBw2bROeE4pAswpuLmSF3wFZqujmhXORGxa0UDPydtpaez0k0rDJAS4KOxDCAiFsIoSF1me4-9uWmAQ73WhXP-0oUzYIHbT3zkkPl3bGBA94KLBYOQnznJHXE-0sCA16QsomtOvOpqLxYD_nxYw8G2i5fZWEJTCtoXexQ-Wduew-aeplSszNOEYWGxj03cQQduLofyz2-H8s9gW5zxMna2DoE3LYr9bhJeCl3r1KQvAbNvQTcA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbphkIvJU1fm6RFhd5a09XDknXchIawkF7aQG7CkqWuD7HD2nvIv8-MbAc2CYWCL7YlWdI30sx4NDOEfDW5kHklqsyXOSgolfGZUUWZSR6U8JFrniyml7_UxZVcXefXe4RPvjDp0H4KaZm26el02I9OSvT1xeSrKaRMpl6Q_ULD9jsj-8vl6vdq2n-RBfHRPQZunqm5w4JSpP7nxMunpyQfmUoTBzo_IK9H0ZEuh86-IXuhOSQvh2SSd2_J-hT4Ev74ph6R3GQRNOHWgXTc05stuonU3Q2tm3Xt6r6jt5iuJ4aBAGgbaWiq1qMvIB18su4oaOIoXTY9dXh0vR8bfkeuzn_-ObvIxjwKmZdK9ZkzwnElNANZL6pS5otyEdHgwkvhgaNHVzhmShm1UYF7QA6jBjLOJKtAnSrEezJr2iZ8JBTFySq4hZAVrnZZqugWhXORGxYAjTn5Nk2tvR3CZdhk5haFHYCwAIRNQFgofYqz_1ASQ12nB-3mrx2ht0HooL13Tnq4tDMmeJB6AouVk9DPOfkyYWdhaaC9o2xCu-1sSg0PWnJezMmHAcuHT0kYAtMaahc7KO_0ZfdNU69T-G3G0X_YQKPfJ4Kw48Lv_jHYo_8rfkxe8USzGkj3hMz6zTZ8Avmnd59Hgr8HZ0EBjw
  priority: 102
  providerName: Springer Nature
Title Blocking cancer-fibroblast mutualism inhibits proliferation of endocrine therapy resistant breast cancer
URI https://link.springer.com/article/10.1038/s44320-025-00104-6
https://www.ncbi.nlm.nih.gov/pubmed/40341770
https://www.proquest.com/docview/3202397858
https://pubmed.ncbi.nlm.nih.gov/PMC12222798
https://doaj.org/article/e37e7ccbb4cb4c7b99ec431e1fdb4440
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifrt-LBF803JtkibN4-5yx7Fwh6gH-xaaNGH7cO1x7T7cf-9M0j1cFX0RSkvTNk3ym3RmOpkZQj7qkouy4U3m6hIUlEa7TMuqzgTzkrvAFIsW0_MLeXYp1pty81OqL1wTlsIDp4E79lx55Zy1wsGmrNbeAdPzRWisECJq67nO98pU-gYjG2KTiwycHA9CoKcwpm6NAWkyecCGYrT-P4mYv6-U_MVcGrnQ6RPyeBIf6SI1-ym557tn5GFKKHn7nGyXwJvw5zd1iOZNFkAb7i1IyCO92qGrSDtc0bbbtrYdB3qNKXuCT0RA-0B91_QO_QFp8su6paCNo4TZjdTi8vVxqvgFuTw9-b46y6ZcCpkTUo6Z1dwyyVUB8l6QtSjzOg9odGE1d8DVg61soWsRlJaeOUAPIwcWrBBFAypVxV-So67v_GtCUaRsvM25aHDGi1oGm1fWBqYLr7ickU_7oTXXKWSGiaZuXpkEhAEgTATCwN1LHP27OzHcdSwAIjATEZh_EcGMfNhjZ2B6oM2j7ny_G0xMDw-aclnNyKuE5d2rBHShUAqerg5QPmjL4ZWu3cYQ3AVDH2INlX7eE4SZJv_wl86--R-dfUsesUjJCgj6HTkab3b-PUhGo52T-2qj5uTBYrH-tobj8uTiy1coXcnVPE4Q2J-L6ge02xJm
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9wgEEZpqqi9VH13-wqVemutLg-DOTZRos3zlEi5IYOh60PsaO095N93BtuRNo0qRfLFNmDgA2bG8yLku8mFzCtRZb7MQUCpjM-MKspM8qCEj1zzpDE9O1eLS3l8lV9tET75wiSj_RTSMh3Tk3XYr05K9PXF5KsppEymnpCnBQZ_RwWt2p9OXyRAfHSOgZsH6m0QoBSn_yHm8l8byXuK0kR_Dl-SFyPjSH8PXX1FtkLzmuwMqSRv35DlHlAl_O1NPeK4yiLIwa0D3rin12t0Eqm7a1o3y9rVfUdvMFlPDAP8tI00NFXr0ROQDh5ZtxTkcOQtm546NFzvx4bfksvDg4v9RTZmUci8VKrPnBGOK6EZcHpRlTKfl_OI6hZeCg_0PLrCMVPKqI0K3ANuGDOQcSZZBcJUId6R7aZtwgdCkZmsgpsLWeFel6WKbl44F7lhQQs1Iz-mqbU3Q7AMm5TcorADEBaAsAkIC6X3cPbvSmKg6_SgXf2xI_A2CB20985JD5d2xgQPPE9gsXIS-jkj3ybsLGwM1HaUTWjXnU2J4UFGzosZeT9gefcpCUNgWkPtYgPljb5svmnqZQq-zTh6Dxto9Oe0IOy47bv_DPbj44rvkmeLi7NTe3p0fvKJPOdp_WpYxp_Jdr9ahy_ACfXua1r6fwFiRQMj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEYgL4s0CBSNxg8DGduz4SLesyqviQKXerPjF5tBktcke-u-ZcZJKS6tKSLkksR3b39gzk_HMEPJOF1wUnvvMVQUoKF67TMuyygQLkrvIFEsW058n8vhUfDsrzvaInHxh0qH9FNIybdPT6bBPnRDo64vJV1NImUx-XPt4i9wugSWi0rWQi2kHRibERgcZuLmm7g4TSrH6rxMwr56T_MdYmnjQ8gG5PwqP9PPQ3YdkLzSPyJ0hneTFY7I6BM6Ev76pQyw3WQRduLUgH_f0fIuOInV3TutmVdu67-gaE_bEMJAAbSMNjW8degPSwSvrgoIujvJl01OLh9f7seEn5HT55ffiOBszKWROSNlnVnPLJFc5SHtRVqKYV_OIJhdWcQc8PdrS5roSUWkZmAPsMG5gznKRe1CoSv6U7DdtE54TigKlD3bOhcf1LioZ7by0NjKdB8XljLyfptash4AZJhm6eWkGIAwAYRIQBkof4uxflsRg1-lBu_ljRvBN4Coo56wVDi5ltQ4O5J6QR28F9HNG3k7YGVgcaPGomtBuO5OSw4OeXJQz8mzA8vJTAoaQKwW1yx2Ud_qy-6apVykAd87Qg1hDox8mgjDj0u9uGOyL_yv-htz9dbQ0P76efH9J7rFEvgqo-BXZ7zfbcADCUG9fJ8r_CwjFBCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blocking+cancer-fibroblast+mutualism+inhibits+proliferation+of+endocrine+therapy+resistant+breast+cancer&rft.jtitle=Molecular+systems+biology&rft.au=Jason+I+Griffiths&rft.au=Feng+Chi&rft.au=Elena+Farmaki&rft.au=Eric+F+Medina&rft.date=2025-07-02&rft.pub=Springer+Nature&rft.eissn=1744-4292&rft.volume=21&rft.issue=7&rft.spage=825&rft.epage=855&rft_id=info:doi/10.1038%2Fs44320-025-00104-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e37e7ccbb4cb4c7b99ec431e1fdb4440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon