Breast cancer diagnosis using the fast learning network algorithm

The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in oncology Vol. 13; p. 1150840
Main Authors Albadr, Musatafa Abbas Abbood, Ayob, Masri, Tiun, Sabrina, AL-Dhief, Fahad Taha, Arram, Anas, Khalaf, Sura
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 27.04.2023
Subjects
Online AccessGet full text
ISSN2234-943X
2234-943X
DOI10.3389/fonc.2023.1150840

Cover

Abstract The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.
AbstractList The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.
The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.
Author Ayob, Masri
Tiun, Sabrina
AL-Dhief, Fahad Taha
Albadr, Musatafa Abbas Abbood
Khalaf, Sura
Arram, Anas
AuthorAffiliation 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, (UTM), Johor Bahru , Johor , Malaysia
4 Department of Communication Technology Engineering, College of Information Technology, Imam Ja’afer Al-Sadiq University , Baghdad , Iraq
3 Department of Computer Science, Birzeit University , Birzeit , Palestine
1 Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Selangor , Malaysia
AuthorAffiliation_xml – name: 3 Department of Computer Science, Birzeit University , Birzeit , Palestine
– name: 4 Department of Communication Technology Engineering, College of Information Technology, Imam Ja’afer Al-Sadiq University , Baghdad , Iraq
– name: 1 Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Selangor , Malaysia
– name: 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, (UTM), Johor Bahru , Johor , Malaysia
Author_xml – sequence: 1
  givenname: Musatafa Abbas Abbood
  surname: Albadr
  fullname: Albadr, Musatafa Abbas Abbood
– sequence: 2
  givenname: Masri
  surname: Ayob
  fullname: Ayob, Masri
– sequence: 3
  givenname: Sabrina
  surname: Tiun
  fullname: Tiun, Sabrina
– sequence: 4
  givenname: Fahad Taha
  surname: AL-Dhief
  fullname: AL-Dhief, Fahad Taha
– sequence: 5
  givenname: Anas
  surname: Arram
  fullname: Arram, Anas
– sequence: 6
  givenname: Sura
  surname: Khalaf
  fullname: Khalaf, Sura
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37434975$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1UREvpA7BBWbKZwffYK1QqKJUqsQGJnXXiOBkXjz3YDlXfnqQzVC0L8MbWuXz_Ob9foqOYokPoNcFrxpR-N6Ro1xRTtiZEYMXxM3RCKeMrzdn3o0fvY3RWyg2ejxSYYPYCHbOWM65bcYLOP2QHpTYWonW56T2MMRVfmqn4ODZ145phyQcHOS6R6Optyj8aCGPKvm62r9DzAUJxZ4f7FH379PHrxefV9ZfLq4vz65XlUtYVdFK0VDvdaTJYZQettSOiHyRtObdECkGIkhhoB9o67CzrmWYdGbRjEoCdoqs9t09wY3bZbyHfmQTe3AdSHg3k6m1wRghrqVKdwlpysKTTFiva9kIqyVqLZxbds6a4g7tbCOEBSLBZ7DWLvWax1xzsnZve75t2U7d1vXWxZghPJnmaiX5jxvRrRjJGiZQz4e2BkNPPyZVqtr5YFwJEl6ZiqGKS6nlrOpe-eSz2oPLn5-aCdl9gcyolu8FYX6H6tGj78M89yF-d_9_9N5bYvvk
CitedBy_id crossref_primary_10_1007_s11042_024_19183_y
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1016_j_neuri_2025_100193
crossref_primary_10_1016_j_heliyon_2025_e42544
crossref_primary_10_1016_j_jksuci_2023_101866
crossref_primary_10_1016_j_engappai_2025_110342
crossref_primary_10_1007_s11042_024_20108_y
crossref_primary_10_1051_bioconf_20249700076
crossref_primary_10_1016_j_specom_2024_103100
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_24237_djes_2024_17310
crossref_primary_10_1371_journal_pone_0298373
crossref_primary_10_1016_j_aej_2024_11_009
crossref_primary_10_35414_akufemubid_1360156
crossref_primary_10_1038_s41598_024_63556_0
crossref_primary_10_1097_EDE_0000000000001803
crossref_primary_10_1007_s10772_024_10135_3
crossref_primary_10_1016_j_bspc_2024_106545
crossref_primary_10_3390_sci6010002
crossref_primary_10_1007_s11760_024_03619_x
crossref_primary_10_1007_s12065_024_00994_9
crossref_primary_10_1016_j_specom_2024_103092
crossref_primary_10_1007_s11042_024_19299_1
crossref_primary_10_1007_s11042_023_17915_0
crossref_primary_10_1007_s11042_024_19788_3
crossref_primary_10_1016_j_engappai_2024_108047
crossref_primary_10_1007_s43657_023_00152_8
crossref_primary_10_1007_s11042_024_19515_y
Cites_doi 10.1016/j.cmpbup.2023.100098
10.1007/s42979-020-00305-w
10.11648/j.acm.20180704.15
10.1145/3184066.3184080
10.1007/s10772-019-09621-w
10.26415/2572-004X-vol4iss2p535-544
10.1371/journal.pone.0194770
10.1109/ICECCE52056.2021.9514107
10.1109/ACCESS.2020.2984925
10.3322/caac.21583
10.1007/s11548-016-1437-9
10.1007/s10489-016-0843-6
10.1007/978-3-319-11933-5_40
10.1007/s12559-021-09914-w
10.1109/ICAI52203.2021.9445249
10.1109/EICT48899.2019.9068816
10.1016/j.eswa.2018.01.054
10.2196/14464
10.1108/IJICC-07-2021-0138
10.1371/journal.pone.0242899
10.1177/1748301818756225
10.1016/j.procs.2016.04.224
10.1007/s11063-016-9496-z
10.7717/peerj-cs.427
10.1109/ACCESS.2020.3016715
10.17576/apjitm-2018-0701-06
10.1109/ICICT48043.2020.9112464
10.1109/IICETA50496.2020.9318815
10.26483/ijarcs.v8i8.4602
10.1109/EBBT.2018.8391453
10.3389/fpubh.2022.925901
10.1007/s11042-022-12747-w
10.1016/j.knosys.2016.11.011
10.1002/joc.7149
10.1109/ACCESS.2021.3082565
10.3390/designs2020013
10.1016/j.procs.2018.05.197
10.1155/2020/8017496
10.1007/0-387-34224-9_58
10.1016/j.procs.2023.01.194
10.1016/j.bspc.2021.102682
10.1007/978-981-19-1559-8_12
10.1109/ACCESS.2021.3139595
10.1016/j.tele.2017.01.007
10.1109/APCC49754.2021.9609830
10.1007/s00521-013-1398-7
10.1016/j.procs.2021.07.062
10.1109/IC4ME247184.2019.9036627
10.1109/ISTT50966.2020.9279346
10.1155/2019/4253641
10.1007/s11135-014-0090-z
10.1109/ACCESS.2018.2820092
10.3390/sym12111758
10.1007/978-3-030-47358-7_34
10.1007/s00034-020-01388-9
10.1016/j.eswa.2017.05.035
10.1007/s12559-022-10063-x
10.3892/ijfn.2020.9
ContentType Journal Article
Copyright Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf.
Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf
Copyright_xml – notice: Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf.
– notice: Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fonc.2023.1150840
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_55cc288b80964ac1b9c0827d568637c0
10.3389/fonc.2023.1150840
PMC10332166
37434975
10_3389_fonc_2023_1150840
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c466t-ab65729e9b91fc8cf999e15df62744c165511860a2ba9ce0ec3d393b1f9e36aa3
IEDL.DBID M48
ISSN 2234-943X
IngestDate Fri Oct 03 12:48:41 EDT 2025
Sun Oct 26 03:44:40 EDT 2025
Thu Aug 21 18:37:13 EDT 2025
Fri Sep 05 14:39:28 EDT 2025
Thu Apr 03 06:55:13 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Wed Oct 01 03:38:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wisconsin breast cancer database
fast learning network
breast cancer
Wisconsin Diagnostic Breast Cancer
machine learning algorithms
data mining algorithms
Language English
License Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-ab65729e9b91fc8cf999e15df62744c165511860a2ba9ce0ec3d393b1f9e36aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: San-Gang Wu, First Affiliated Hospital of Xiamen University, China
Reviewed by: Saurabh Pal, Veer Bahadur Singh Purvanchal University, India; Laboni Akter, Khulna University of Engineering and Technology, Bangladesh
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fonc.2023.1150840
PMID 37434975
PQID 2836293932
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_55cc288b80964ac1b9c0827d568637c0
unpaywall_primary_10_3389_fonc_2023_1150840
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10332166
proquest_miscellaneous_2836293932
pubmed_primary_37434975
crossref_citationtrail_10_3389_fonc_2023_1150840
crossref_primary_10_3389_fonc_2023_1150840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in oncology
PublicationTitleAlternate Front Oncol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Uddin (B42) 2023
Sánchez (B68) 2018; 100
Asri (B38) 2016; 83
Dr. William (B46) 1995
HOUFANI (B61) 2020; 4
Aalaei (B55) 2016; 19
Zafiropoulos (B4) 2006
Naji (B35) 2021; 191
AL-Dhief (B18) 2021
Showrov (B71) 2019
Briguglio (B6) 2020; 1
Albadr (B10) 2022
Bashir (B58) 2015; 49
Niu (B26) 2017; 118
Ayoub (B28) 2021
Agarap (B37) 2018
ZEID (B49) 2022; 100
Hasan (B60) 2019
Li (B47) 2014; 24
Kumar (B34) 2021; 68
DeSantis (B5) 2019; 69
Dhahri (B41) 2019; 2019
Khan (B1) 2020; 2020
Sarkar (B69) 2017; 8
Nilashi (B67) 2017; 34
Shaila (B48) 2022
Chaurasia (B59) 2018; 12
Dubey (B32) 2016; 11
Albadr (B53) 2019; 22
AL-Dhief (B17) 2020
Albadr (B13) 2018; 13
Albadr (B11) 2021
Phan (B36) 2017; 46
Albadr (B52) 2020; 12
Albadr (B12) 2020; 39
Albadr (B9) 2020; 15
B44
Ali (B23) 2021
ALIPOOR (B14) 2018; 7
Krishnakumar (B65) 2020
Utomo (B31) 2014; 3
Ara (B33) 2021
Ali (B29) 2018; 6
Thomas (B20) 2020
Dubey (B7) 2015
Jabbar (B43) 2021; 48
Abdulkareem (B56) 2021; 55
Birchha (B40) 2023; 218
Sathyapriya (B3) 2020; 8
Zhou (B54) 2021; 41
Yue (B22) 2018; 2
Albadr (B51) 2021; 13
Albadr (B8) 2022
Ali (B30) 2018; 10
SAYGILI (B70) 2018; 2
Niu (B25) 2016; 44
Islam (B64) 2020; 1
Amrane (B57) 2018
Sinha (B72) 2020; 9
Bisoyi (B2) 2022
Fatima (B19) 2020; 8
Idris (B63) 2021; 7
Al-Dhief (B50) 2021; 9
Al-Dhief (B16) 2020; 8
Albadra (B24) 2017; 12
Huang (B62) 2021; 10
Dora (B45) 2017; 85
Li (B66) 2018; 7
Albadr (B15) 2022; 10
Kumari (B39) 2018; 132
Gardezi (B21) 2019; 21
Ali (B27) 2020
References_xml – start-page: 100098
  year: 2023
  ident: B42
  article-title: Machine learning-based diagnosis of breast cancer utilizing feature optimization technique
  publication-title: Comput Methods Programs Biomedicine Update
  doi: 10.1016/j.cmpbup.2023.100098
– volume: 1
  start-page: 1
  year: 2020
  ident: B64
  article-title: Breast cancer prediction: a comparative study using machine learning techniques
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-020-00305-w
– volume: 7
  year: 2018
  ident: B66
  article-title: Performance evaluation of machine learning methods for breast cancer prediction
  publication-title: Appl Comput Math
  doi: 10.11648/j.acm.20180704.15
– volume: 12
  year: 2017
  ident: B24
  article-title: Extreme learning machine: a review
  publication-title: Int J Appl Eng Res
– year: 2018
  ident: B37
  article-title: On breast cancer detection: an application of machine learning algorithms on the wisconsin diagnostic dataset
  doi: 10.1145/3184066.3184080
– volume: 22
  year: 2019
  ident: B53
  article-title: Spoken language identification based on optimised genetic algorithm–extreme learning machine approach
  publication-title: Int J Speech Technol
  doi: 10.1007/s10772-019-09621-w
– volume: 4
  year: 2020
  ident: B61
  article-title: Breast cancer classification using machine learning techniques: a comparative study
  publication-title: Med Technol J
  doi: 10.26415/2572-004X-vol4iss2p535-544
– volume: 13
  start-page: e0194770
  year: 2018
  ident: B13
  article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
  publication-title: PloS One
  doi: 10.1371/journal.pone.0194770
– year: 2021
  ident: B11
  article-title: Extreme learning machine for automatic language identification utilizing emotion speech data
  doi: 10.1109/ICECCE52056.2021.9514107
– volume: 8
  year: 2020
  ident: B16
  article-title: A survey of voice pathology surveillance systems based on internet of things and machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984925
– volume: 19
  start-page: 476
  year: 2016
  ident: B55
  article-title: Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
  publication-title: Iranian J basic Med Sci
– volume: 69
  year: 2019
  ident: B5
  article-title: Breast cancer statistics, 2019
  publication-title: CA: Cancer J Clin
  doi: 10.3322/caac.21583
– volume-title: Comparison between extreme learning machine and fast learning network based on intrusion detection system
  year: 2021
  ident: B23
– volume: 11
  year: 2016
  ident: B32
  article-title: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset
  publication-title: Int J Comput assisted Radiol Surg
  doi: 10.1007/s11548-016-1437-9
– volume: 46
  year: 2017
  ident: B36
  article-title: Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0843-6
– year: 2015
  ident: B7
  article-title: A survey on breast cancer scenario and prediction strategy
  doi: 10.1007/978-3-319-11933-5_40
– volume: 13
  year: 2021
  ident: B51
  article-title: Mel-Frequency cepstral coefficient features based on standard deviation and principal component analysis for language identification systems
  publication-title: Cogn Comput
  doi: 10.1007/s12559-021-09914-w
– year: 2021
  ident: B33
  article-title: Malignant and benign breast cancer classification using machine learning algorithms
  doi: 10.1109/ICAI52203.2021.9445249
– volume-title: 2019 4th international conference on electrical information and communication technology (EICT)
  year: 2019
  ident: B71
  article-title: Performance comparison of three classifiers for the classification of breast cancer dataset
  doi: 10.1109/EICT48899.2019.9068816
– volume: 100
  year: 2018
  ident: B68
  article-title: Scaled radial axes for interactive visual feature selection: a case study for analyzing chronic conditions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.01.054
– ident: B44
– volume: 21
  year: 2019
  ident: B21
  article-title: Breast cancer detection and diagnosis using mammographic data: systematic review
  publication-title: J Med Internet Res
  doi: 10.2196/14464
– year: 2021
  ident: B28
  article-title: An optimized parkinson's disorder identification through evolutionary fast learning network
  publication-title: Int J Intelligent Computing Cybernetics
  doi: 10.1108/IJICC-07-2021-0138
– volume: 3
  year: 2014
  ident: B31
  article-title: Breast cancer diagnosis using artificial neural networks with extreme learning techniques
  publication-title: Int J Adv Res Artif Intel
– start-page: 1
  year: 2022
  ident: B2
  article-title: A brief tour guide to cancer disease
  publication-title: Understanding cancer (Elsevier)
– volume: 15
  start-page: e0242899
  year: 2020
  ident: B9
  article-title: Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection
  publication-title: PloS One
  doi: 10.1371/journal.pone.0242899
– volume: 12
  year: 2018
  ident: B59
  article-title: Prediction of benign and malignant breast cancer using data mining techniques
  publication-title: J Algorithms Comput Technol
  doi: 10.1177/1748301818756225
– volume: 2
  start-page: 48
  year: 2018
  ident: B70
  article-title: Classification and diagnostic prediction of breast cancers via different classifiers
  publication-title: Int Sci Vocational Stud J
– volume: 83
  year: 2016
  ident: B38
  article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2016.04.224
– volume: 9
  year: 2020
  ident: B72
  article-title: Developing a web based system for breast cancer prediction using xgboost classifier
  publication-title: Int J Eng Res
– volume: 44
  year: 2016
  ident: B25
  article-title: A kind of parameters self-adjusting extreme learning machine
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-016-9496-z
– volume: 7
  start-page: e427
  year: 2021
  ident: B63
  article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.427
– volume: 8
  year: 2020
  ident: B19
  article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016715
– volume-title: Wisconsin Diagnosis breast cancer (WDBC)
  year: 1995
  ident: B46
– volume: 7
  year: 2018
  ident: B14
  article-title: Robust speaker gender identification using empirical mode decomposition-based cepstral features
  publication-title: Asia-Pacific Journal of Information Technology and Multimedia
  doi: 10.17576/apjitm-2018-0701-06
– year: 2020
  ident: B20
  article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey
  doi: 10.1109/ICICT48043.2020.9112464
– year: 2020
  ident: B27
  article-title: Improved intrusion detection accuracy based on optimization fast learning network model
  doi: 10.1109/IICETA50496.2020.9318815
– volume: 8
  start-page: 88
  year: 2017
  ident: B69
  article-title: Identifying patients at risk of breast cancer through decision trees
  publication-title: Int J Advanced Res Comput Sci
  doi: 10.26483/ijarcs.v8i8.4602
– volume: 55
  start-page: 67
  year: 2021
  ident: B56
  article-title: An evaluation of the Wisconsin breast cancer dataset using ensemble classifiers and RFE feature selection
  publication-title: Int J Sci. Basic Appl Res
– volume-title: 2018 electric electronics, computer science, biomedical engineerings' meeting (EBBT)
  year: 2018
  ident: B57
  article-title: Breast cancer classification using machine learning
  doi: 10.1109/EBBT.2018.8391453
– volume: 10
  year: 2022
  ident: B15
  article-title: Gray Wolf optimization-extreme learning machine approach for diabetic retinopathy detection
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2022.925901
– volume: 10
  year: 2018
  ident: B30
  article-title: Propose a new machine learning algorithm based on cancer diagnosis
  publication-title: Jour of Adv Research in Dynamical & Control Systems
– start-page: 1
  year: 2022
  ident: B8
  article-title: Speech emotion recognition using optimized genetic algorithm-extreme learning machine
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-12747-w
– volume: 118
  start-page: 80
  year: 2017
  ident: B26
  article-title: Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2016.11.011
– volume: 41
  year: 2021
  ident: B54
  article-title: Decompositions of Taylor diagram and DISO performance criteria
  publication-title: Int J Climatology
  doi: 10.1002/joc.7149
– volume: 9
  year: 2021
  ident: B50
  article-title: Voice pathology detection and classification by adopting online sequential extreme learning machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082565
– volume: 2
  start-page: 13
  year: 2018
  ident: B22
  article-title: Machine learning with applications in breast cancer diagnosis and prognosis
  publication-title: Designs
  doi: 10.3390/designs2020013
– volume: 132
  year: 2018
  ident: B39
  article-title: Breast cancer prediction system
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.05.197
– volume: 48
  start-page: 65
  year: 2021
  ident: B43
  article-title: Breast cancer data classification using ensemble machine learning
  publication-title: Eng Appl Sci Res
  doi: 10.1109/ICAI52203.2021.9445249
– volume: 2020
  year: 2020
  ident: B1
  article-title: Cloud-based breast cancer prediction empowered with soft computing approaches
  publication-title: J healthcare Eng
  doi: 10.1155/2020/8017496
– year: 2006
  ident: B4
  article-title: A support vector machine approach to breast cancer diagnosis and prognosis
  doi: 10.1007/0-387-34224-9_58
– volume: 218
  year: 2023
  ident: B40
  article-title: Performance analysis of averaged perceptron machine learning classifier for breast cancer detection
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2023.01.194
– volume: 68
  start-page: 102682
  year: 2021
  ident: B34
  article-title: An efficient classification framework for breast cancer using hyper parameter tuned random decision forest classifier and Bayesian optimization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102682
– volume-title: Data engineering and intelligent computing
  year: 2022
  ident: B48
  article-title: Analysis and prediction of breast cancer using multi-model classification approach
  doi: 10.1007/978-981-19-1559-8_12
– volume: 10
  year: 2021
  ident: B62
  article-title: A breast cancer diagnosis method based on VIM feature selection and hierarchical clustering random forest algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3139595
– volume: 34
  year: 2017
  ident: B67
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telematics Inf
  doi: 10.1016/j.tele.2017.01.007
– year: 2021
  ident: B18
  article-title: Voice Pathology Detection Using Support Vector Machine Based on Different Number of Voice Signals
  doi: 10.1109/APCC49754.2021.9609830
– volume: 24
  year: 2014
  ident: B47
  article-title: Fast learning network: a novel artificial neural network with a fast learning speed
  publication-title: Neural Computing Appl
  doi: 10.1007/s00521-013-1398-7
– volume: 8
  year: 2020
  ident: B3
  article-title: Deep learning algorithems for breast cancer image classification
  publication-title: Int J Eng Res Technol
– volume: 191
  year: 2021
  ident: B35
  article-title: Machine learning algorithms for breast cancer prediction and diagnosis
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2021.07.062
– year: 2019
  ident: B60
  article-title: Breast cancer diagnosis models using PCA and different neural network architectures
  doi: 10.1109/IC4ME247184.2019.9036627
– volume-title: 2020 IEEE 5th international symposium on telecommunication technologies (ISTT)
  year: 2020
  ident: B17
  article-title: Voice pathology detection using machine learning technique
  doi: 10.1109/ISTT50966.2020.9279346
– volume: 2019
  year: 2019
  ident: B41
  article-title: Automated breast cancer diagnosis based on machine learning algorithms
  publication-title: J healthcare Eng
  doi: 10.1155/2019/4253641
– volume: 49
  year: 2015
  ident: B58
  article-title: Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble
  publication-title: Qual Quantity
  doi: 10.1007/s11135-014-0090-z
– volume: 6
  year: 2018
  ident: B29
  article-title: A new intrusion detection system based on fast learning network and particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820092
– volume: 12
  start-page: 1758
  year: 2020
  ident: B52
  article-title: Genetic algorithm based on natural selection theory for optimization problems
  publication-title: Symmetry
  doi: 10.3390/sym12111758
– volume-title: Canadian Conference on artificial intelligence
  year: 2020
  ident: B65
  article-title: Detection and diagnosis of breast cancer using a Bayesian approach
  doi: 10.1007/978-3-030-47358-7_34
– volume: 39
  year: 2020
  ident: B12
  article-title: Spoken language identification based on particle swarm optimisation–extreme learning machine approach
  publication-title: Circuits Systems Signal Process
  doi: 10.1007/s00034-020-01388-9
– volume: 85
  year: 2017
  ident: B45
  article-title: Optimal breast cancer classification using gauss–newton representation based algorithm
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.035
– volume: 100
  year: 2022
  ident: B49
  article-title: AN EFFICIENT OPTIMIZED FRAMEWORK FOR ANALYZING THE PERFORMANCE OF BREAST CANCER USING MACHINE LEARNING ALGORITHMS
  publication-title: J Theor Appl Inf Technol
– start-page: 1
  year: 2022
  ident: B10
  article-title: Particle swarm optimization-based extreme learning machine for COVID-19 detection
  publication-title: Cogn Comput
  doi: 10.1007/s12559-022-10063-x
– volume: 1
  start-page: 1
  year: 2020
  ident: B6
  article-title: Polyphenols in cancer prevention: new insights
  publication-title: Int J Funct Nutr
  doi: 10.3892/ijfn.2020.9
SSID ssj0000650103
Score 2.5061724
Snippet The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1150840
SubjectTerms breast cancer
data mining algorithms
fast learning network
machine learning algorithms
Oncology
Wisconsin breast cancer database
Wisconsin Diagnostic Breast Cancer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHoALojwDLTISJ1BoEseOfWwrqgqpnKjUm-XndqUlW22zQvx7ZuJ0tSsQvXCNncSeGWe-yYzmA_jQYFQRRS1L1G0o2zqmUje-K2XsAne8SmFkLbn4Js8v269X4mqL6otqwnJ74Cy4IyG8b5RyCrF2a33ttEev1QUhleSdH6P1SumtYCp_gwURGOQ0JkZh-igte-pY2PDPhIEU_ezYckRjv_6_gcw_ayUfrfsb--unXSy2HNHZU3gyIUh2nFe-Dw9i_wweXkw58udwfEJ15gPzpM8VC7mWbn7LqMR9xhDwsUTjE1_EjPW5EpzZxWy5mg_XP17A5dmX76fn5USUUPpWyqG0TgoEyVE7XSevfELUF2sREhHrtL6WguIIWdnGWe1jFT0PXHNXJx25tJa_hL1-2cfXwLroEQKI1kYZ0NcnlSovXdJtcijw4Auo7qRm_NRFnMgsFgajCRK0IUEbErSZBF3Ax80tN7mFxr8mn5AqNhOp-_V4AW3CTDZh7rOJAt7fKdLgaaEUiO3jcn1rEExJBDgIWgt4lRW7eRVHMNXqThSgdlS-s5bdkX5-PXbkRlPjTS1lAZ821nH_Xt_8j72-hcf0TEpwNd0B7A2rdTxEnDS4d-OR-A1SaQ4W
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_wUpA4gdKN40fiYxexWiHtigOVyimyx3a3oqRVNxWCX89Mk1ZbWIEQx8R2Ys-M5W80428Ye12gVxEU1xnq1meSh5iZAspMh9ILJ_LoN1VLTs_0yVh-mKjJpbswlFYZ6eo-FYKeNR1TcJ8iRjscPSpzGBcNsQ8WYkh4Bl2Uw6WP19mBVojHB-xgfPZx9JmqyhVCZkaKSRfOvHrs3oG04e2_Cmz-njN5c90s7fdvdj6_dCAd32GwXUqXh_JluG7dEH78wvL4f2u9y273eDUddQPusWuhuc9unPYR-QdsdERZ7W0KZD2r1HeZe7OLlBLqpynCyzRSe1-dYpo2Xd55aufTxWrWnn99yMbH7z-9O8n6sgwZSK3bzDqtEJIH4wyPUEFEjBm48pHK-EjgWpHXonNbOGsg5AGEF0Y4Hk0Q2lrxiA2aRROesLQMgIBDSRu0R2QRq5iDdtHI6HSlPSQs3-qmhp6znEpnzGv0XUg8NYmnJvHUvXgS9mY3ZNkRdvyp8xEpfNeRuLY3L1AVda-KWimAoqpchd6etMCdAcRNpVc4RVECfuTV1lxq3JsUcLFNWKwvaoRuGuEUQuSEPe7MZ_crgdBNmlIlrNozrL257Lc0s_MN_zfPhSi41gl7u7PBv6_16T_1fsZu0SPFzYryORu0q3V4gfCrdS_7_fUTk4UsjQ
  priority: 102
  providerName: Unpaywall
Title Breast cancer diagnosis using the fast learning network algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/37434975
https://www.proquest.com/docview/2836293932
https://pubmed.ncbi.nlm.nih.gov/PMC10332166
https://www.frontiersin.org/articles/10.3389/fonc.2023.1150840/pdf
https://doaj.org/article/55cc288b80964ac1b9c0827d568637c0
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: GX1
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2234-943X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000650103
  issn: 2234-943X
  databaseCode: M48
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_OO1BfxM8zfpQIPik5k-xHsg8iPfE8hB4-WKhPYXez2yvE5GxT9P57Z5K0WCyKL4FkN5vNzG7mN5lhfgAvU_QqnEhkhLotI544H6nUZpF0WckMi33ZsZZMLuT5lH-aidkBbOitBgGu9rp2xCc1XVYnP79fv8MN_5Y8TrS3b3xTUzHClJ0QvEGP5QYcoaFSxOQwGdB-_2EWxGpAdHMp45HibNbHOfePsmOpuoL--1Don8mUt9b1lb7-oavqN0t1dhfuDBAzHPdr4h4cuPo-3JwMQfQHMD6lRPQ2tKTwZVj2yXaLVUg58PMQEWHoqX0glJiHdZ8qHupq3iwX7eW3hzA9-_Dl_Xk0MClElkvZRtpIgSjaKaMSb3PrERa6RJSemHe4TaQgR0PGOjVaWRc7y0qmmEm8ckxqzR7BYd3U7jGEmbOIEQTXTpYIBnzuYyuNV9wbmcvSBhBvpFbYocw4sV1UBbobJOiCBF2QoItB0AG82t5y1dfY-FvnU1LFtiOVx-4uNMt5Mey2Qghr0zw3OTpoXNvEKItQJysFTpFlFgd5sVFkgduJYiS6ds16VSDakoiAENUGcNwrdvsohmiLq0wEkO-ofGcuuy314rIr2Y3LjqWJlAG83q6Of7_rk_8RzFO4TacU6UqzZ3DYLtfuOQKm1oy6Hw14_DhLRt2WGMHR9OLz-OsvetATrQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_wUpA4gdKN40fiYxexWiHtigOVyimyx3a3oqRVNxWCX89Mk1ZbWIEQx8R2Ys-M5W80428Ye12gVxEU1xnq1meSh5iZAspMh9ILJ_LoN1VLTs_0yVh-mKjJpbswlFYZ6eo-FYKeNR1TcJ8iRjscPSpzGBcNsQ8WYkh4Bl2Uw6WP19mBVojHB-xgfPZx9JmqyhVCZkaKSRfOvHrs3oG04e2_Cmz-njN5c90s7fdvdj6_dCAd32GwXUqXh_JluG7dEH78wvL4f2u9y273eDUddQPusWuhuc9unPYR-QdsdERZ7W0KZD2r1HeZe7OLlBLqpynCyzRSe1-dYpo2Xd55aufTxWrWnn99yMbH7z-9O8n6sgwZSK3bzDqtEJIH4wyPUEFEjBm48pHK-EjgWpHXonNbOGsg5AGEF0Y4Hk0Q2lrxiA2aRROesLQMgIBDSRu0R2QRq5iDdtHI6HSlPSQs3-qmhp6znEpnzGv0XUg8NYmnJvHUvXgS9mY3ZNkRdvyp8xEpfNeRuLY3L1AVda-KWimAoqpchd6etMCdAcRNpVc4RVECfuTV1lxq3JsUcLFNWKwvaoRuGuEUQuSEPe7MZ_crgdBNmlIlrNozrL257Lc0s_MN_zfPhSi41gl7u7PBv6_16T_1fsZu0SPFzYryORu0q3V4gfCrdS_7_fUTk4UsjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+using+the+fast+learning+network+algorithm&rft.jtitle=Frontiers+in+oncology&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Ayob%2C+Masri&rft.au=Tiun%2C+Sabrina&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2023-04-27&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=13&rft_id=info:doi/10.3389%2Ffonc.2023.1150840&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2023_1150840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon