Breast cancer diagnosis using the fast learning network algorithm
The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient...
Saved in:
| Published in | Frontiers in oncology Vol. 13; p. 1150840 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Media S.A
27.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2234-943X 2234-943X |
| DOI | 10.3389/fonc.2023.1150840 |
Cover
| Abstract | The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector. |
|---|---|
| AbstractList | The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector. The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector.The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of these efforts, however, still require improvement since either they were not statistically evaluated or they were evaluated using insufficient assessment metrics, or both. One of the most recent and effective ML algorithms, fast learning network (FLN), may be seen as a reputable and efficient approach for classifying data; however, it has not been applied to the problem of BC diagnosis. Therefore, this study proposes the FLN algorithm in order to improve the accuracy of the BC diagnosis. The FLN algorithm has the capability to a) eliminate overfitting, b) solve the issues of both binary and multiclass classification, and c) perform like a kernel-based support vector machine with a structure of the neural network. In this study, two BC databases (Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic Breast Cancer (WDBC)) were used to assess the performance of the FLN algorithm. The results of the experiment demonstrated the great performance of the suggested FLN method, which achieved an average of accuracy 98.37%, precision 95.94%, recall 99.40%, F-measure 97.64%, G-mean 97.65%, MCC 96.44%, and specificity 97.85% using the WBCD, as well as achieved an average of accuracy 96.88%, precision 94.84%, recall 96.81%, F-measure 95.80%, G-mean 95.81%, MCC 93.35%, and specificity 96.96% using the WDBC database. This suggests that the FLN algorithm is a reliable classifier for diagnosing BC and may be useful for resolving other application-related problems in the healthcare sector. |
| Author | Ayob, Masri Tiun, Sabrina AL-Dhief, Fahad Taha Albadr, Musatafa Abbas Abbood Khalaf, Sura Arram, Anas |
| AuthorAffiliation | 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, (UTM), Johor Bahru , Johor , Malaysia 4 Department of Communication Technology Engineering, College of Information Technology, Imam Ja’afer Al-Sadiq University , Baghdad , Iraq 3 Department of Computer Science, Birzeit University , Birzeit , Palestine 1 Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Selangor , Malaysia |
| AuthorAffiliation_xml | – name: 3 Department of Computer Science, Birzeit University , Birzeit , Palestine – name: 4 Department of Communication Technology Engineering, College of Information Technology, Imam Ja’afer Al-Sadiq University , Baghdad , Iraq – name: 1 Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia , Bangi, Selangor , Malaysia – name: 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, (UTM), Johor Bahru , Johor , Malaysia |
| Author_xml | – sequence: 1 givenname: Musatafa Abbas Abbood surname: Albadr fullname: Albadr, Musatafa Abbas Abbood – sequence: 2 givenname: Masri surname: Ayob fullname: Ayob, Masri – sequence: 3 givenname: Sabrina surname: Tiun fullname: Tiun, Sabrina – sequence: 4 givenname: Fahad Taha surname: AL-Dhief fullname: AL-Dhief, Fahad Taha – sequence: 5 givenname: Anas surname: Arram fullname: Arram, Anas – sequence: 6 givenname: Sura surname: Khalaf fullname: Khalaf, Sura |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37434975$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1DAUhi1UREvpA7BBWbKZwffYK1QqKJUqsQGJnXXiOBkXjz3YDlXfnqQzVC0L8MbWuXz_Ob9foqOYokPoNcFrxpR-N6Ro1xRTtiZEYMXxM3RCKeMrzdn3o0fvY3RWyg2ejxSYYPYCHbOWM65bcYLOP2QHpTYWonW56T2MMRVfmqn4ODZ145phyQcHOS6R6Optyj8aCGPKvm62r9DzAUJxZ4f7FH379PHrxefV9ZfLq4vz65XlUtYVdFK0VDvdaTJYZQettSOiHyRtObdECkGIkhhoB9o67CzrmWYdGbRjEoCdoqs9t09wY3bZbyHfmQTe3AdSHg3k6m1wRghrqVKdwlpysKTTFiva9kIqyVqLZxbds6a4g7tbCOEBSLBZ7DWLvWax1xzsnZve75t2U7d1vXWxZghPJnmaiX5jxvRrRjJGiZQz4e2BkNPPyZVqtr5YFwJEl6ZiqGKS6nlrOpe-eSz2oPLn5-aCdl9gcyolu8FYX6H6tGj78M89yF-d_9_9N5bYvvk |
| CitedBy_id | crossref_primary_10_1007_s11042_024_19183_y crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1016_j_neuri_2025_100193 crossref_primary_10_1016_j_heliyon_2025_e42544 crossref_primary_10_1016_j_jksuci_2023_101866 crossref_primary_10_1016_j_engappai_2025_110342 crossref_primary_10_1007_s11042_024_20108_y crossref_primary_10_1051_bioconf_20249700076 crossref_primary_10_1016_j_specom_2024_103100 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_24237_djes_2024_17310 crossref_primary_10_1371_journal_pone_0298373 crossref_primary_10_1016_j_aej_2024_11_009 crossref_primary_10_35414_akufemubid_1360156 crossref_primary_10_1038_s41598_024_63556_0 crossref_primary_10_1097_EDE_0000000000001803 crossref_primary_10_1007_s10772_024_10135_3 crossref_primary_10_1016_j_bspc_2024_106545 crossref_primary_10_3390_sci6010002 crossref_primary_10_1007_s11760_024_03619_x crossref_primary_10_1007_s12065_024_00994_9 crossref_primary_10_1016_j_specom_2024_103092 crossref_primary_10_1007_s11042_024_19299_1 crossref_primary_10_1007_s11042_023_17915_0 crossref_primary_10_1007_s11042_024_19788_3 crossref_primary_10_1016_j_engappai_2024_108047 crossref_primary_10_1007_s43657_023_00152_8 crossref_primary_10_1007_s11042_024_19515_y |
| Cites_doi | 10.1016/j.cmpbup.2023.100098 10.1007/s42979-020-00305-w 10.11648/j.acm.20180704.15 10.1145/3184066.3184080 10.1007/s10772-019-09621-w 10.26415/2572-004X-vol4iss2p535-544 10.1371/journal.pone.0194770 10.1109/ICECCE52056.2021.9514107 10.1109/ACCESS.2020.2984925 10.3322/caac.21583 10.1007/s11548-016-1437-9 10.1007/s10489-016-0843-6 10.1007/978-3-319-11933-5_40 10.1007/s12559-021-09914-w 10.1109/ICAI52203.2021.9445249 10.1109/EICT48899.2019.9068816 10.1016/j.eswa.2018.01.054 10.2196/14464 10.1108/IJICC-07-2021-0138 10.1371/journal.pone.0242899 10.1177/1748301818756225 10.1016/j.procs.2016.04.224 10.1007/s11063-016-9496-z 10.7717/peerj-cs.427 10.1109/ACCESS.2020.3016715 10.17576/apjitm-2018-0701-06 10.1109/ICICT48043.2020.9112464 10.1109/IICETA50496.2020.9318815 10.26483/ijarcs.v8i8.4602 10.1109/EBBT.2018.8391453 10.3389/fpubh.2022.925901 10.1007/s11042-022-12747-w 10.1016/j.knosys.2016.11.011 10.1002/joc.7149 10.1109/ACCESS.2021.3082565 10.3390/designs2020013 10.1016/j.procs.2018.05.197 10.1155/2020/8017496 10.1007/0-387-34224-9_58 10.1016/j.procs.2023.01.194 10.1016/j.bspc.2021.102682 10.1007/978-981-19-1559-8_12 10.1109/ACCESS.2021.3139595 10.1016/j.tele.2017.01.007 10.1109/APCC49754.2021.9609830 10.1007/s00521-013-1398-7 10.1016/j.procs.2021.07.062 10.1109/IC4ME247184.2019.9036627 10.1109/ISTT50966.2020.9279346 10.1155/2019/4253641 10.1007/s11135-014-0090-z 10.1109/ACCESS.2018.2820092 10.3390/sym12111758 10.1007/978-3-030-47358-7_34 10.1007/s00034-020-01388-9 10.1016/j.eswa.2017.05.035 10.1007/s12559-022-10063-x 10.3892/ijfn.2020.9 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf. Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf |
| Copyright_xml | – notice: Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf. – notice: Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fonc.2023.1150840 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2234-943X |
| ExternalDocumentID | oai_doaj_org_article_55cc288b80964ac1b9c0827d568637c0 10.3389/fonc.2023.1150840 PMC10332166 37434975 10_3389_fonc_2023_1150840 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c466t-ab65729e9b91fc8cf999e15df62744c165511860a2ba9ce0ec3d393b1f9e36aa3 |
| IEDL.DBID | M48 |
| ISSN | 2234-943X |
| IngestDate | Fri Oct 03 12:48:41 EDT 2025 Sun Oct 26 03:44:40 EDT 2025 Thu Aug 21 18:37:13 EDT 2025 Fri Sep 05 14:39:28 EDT 2025 Thu Apr 03 06:55:13 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Wed Oct 01 03:38:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wisconsin breast cancer database fast learning network breast cancer Wisconsin Diagnostic Breast Cancer machine learning algorithms data mining algorithms |
| Language | English |
| License | Copyright © 2023 Albadr, Ayob, Tiun, AL-Dhief, Arram and Khalaf. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-ab65729e9b91fc8cf999e15df62744c165511860a2ba9ce0ec3d393b1f9e36aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: San-Gang Wu, First Affiliated Hospital of Xiamen University, China Reviewed by: Saurabh Pal, Veer Bahadur Singh Purvanchal University, India; Laboni Akter, Khulna University of Engineering and Technology, Bangladesh |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fonc.2023.1150840 |
| PMID | 37434975 |
| PQID | 2836293932 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_55cc288b80964ac1b9c0827d568637c0 unpaywall_primary_10_3389_fonc_2023_1150840 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10332166 proquest_miscellaneous_2836293932 pubmed_primary_37434975 crossref_citationtrail_10_3389_fonc_2023_1150840 crossref_primary_10_3389_fonc_2023_1150840 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-27 |
| PublicationDateYYYYMMDD | 2023-04-27 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in oncology |
| PublicationTitleAlternate | Front Oncol |
| PublicationYear | 2023 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Uddin (B42) 2023 Sánchez (B68) 2018; 100 Asri (B38) 2016; 83 Dr. William (B46) 1995 HOUFANI (B61) 2020; 4 Aalaei (B55) 2016; 19 Zafiropoulos (B4) 2006 Naji (B35) 2021; 191 AL-Dhief (B18) 2021 Showrov (B71) 2019 Briguglio (B6) 2020; 1 Albadr (B10) 2022 Bashir (B58) 2015; 49 Niu (B26) 2017; 118 Ayoub (B28) 2021 Agarap (B37) 2018 ZEID (B49) 2022; 100 Hasan (B60) 2019 Li (B47) 2014; 24 Kumar (B34) 2021; 68 DeSantis (B5) 2019; 69 Dhahri (B41) 2019; 2019 Khan (B1) 2020; 2020 Sarkar (B69) 2017; 8 Nilashi (B67) 2017; 34 Shaila (B48) 2022 Chaurasia (B59) 2018; 12 Dubey (B32) 2016; 11 Albadr (B53) 2019; 22 AL-Dhief (B17) 2020 Albadr (B13) 2018; 13 Albadr (B11) 2021 Phan (B36) 2017; 46 Albadr (B52) 2020; 12 Albadr (B12) 2020; 39 Albadr (B9) 2020; 15 B44 Ali (B23) 2021 ALIPOOR (B14) 2018; 7 Krishnakumar (B65) 2020 Utomo (B31) 2014; 3 Ara (B33) 2021 Ali (B29) 2018; 6 Thomas (B20) 2020 Dubey (B7) 2015 Jabbar (B43) 2021; 48 Abdulkareem (B56) 2021; 55 Birchha (B40) 2023; 218 Sathyapriya (B3) 2020; 8 Zhou (B54) 2021; 41 Yue (B22) 2018; 2 Albadr (B51) 2021; 13 Albadr (B8) 2022 Ali (B30) 2018; 10 SAYGILI (B70) 2018; 2 Niu (B25) 2016; 44 Islam (B64) 2020; 1 Amrane (B57) 2018 Sinha (B72) 2020; 9 Bisoyi (B2) 2022 Fatima (B19) 2020; 8 Idris (B63) 2021; 7 Al-Dhief (B50) 2021; 9 Al-Dhief (B16) 2020; 8 Albadra (B24) 2017; 12 Huang (B62) 2021; 10 Dora (B45) 2017; 85 Li (B66) 2018; 7 Albadr (B15) 2022; 10 Kumari (B39) 2018; 132 Gardezi (B21) 2019; 21 Ali (B27) 2020 |
| References_xml | – start-page: 100098 year: 2023 ident: B42 article-title: Machine learning-based diagnosis of breast cancer utilizing feature optimization technique publication-title: Comput Methods Programs Biomedicine Update doi: 10.1016/j.cmpbup.2023.100098 – volume: 1 start-page: 1 year: 2020 ident: B64 article-title: Breast cancer prediction: a comparative study using machine learning techniques publication-title: SN Comput Sci doi: 10.1007/s42979-020-00305-w – volume: 7 year: 2018 ident: B66 article-title: Performance evaluation of machine learning methods for breast cancer prediction publication-title: Appl Comput Math doi: 10.11648/j.acm.20180704.15 – volume: 12 year: 2017 ident: B24 article-title: Extreme learning machine: a review publication-title: Int J Appl Eng Res – year: 2018 ident: B37 article-title: On breast cancer detection: an application of machine learning algorithms on the wisconsin diagnostic dataset doi: 10.1145/3184066.3184080 – volume: 22 year: 2019 ident: B53 article-title: Spoken language identification based on optimised genetic algorithm–extreme learning machine approach publication-title: Int J Speech Technol doi: 10.1007/s10772-019-09621-w – volume: 4 year: 2020 ident: B61 article-title: Breast cancer classification using machine learning techniques: a comparative study publication-title: Med Technol J doi: 10.26415/2572-004X-vol4iss2p535-544 – volume: 13 start-page: e0194770 year: 2018 ident: B13 article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach publication-title: PloS One doi: 10.1371/journal.pone.0194770 – year: 2021 ident: B11 article-title: Extreme learning machine for automatic language identification utilizing emotion speech data doi: 10.1109/ICECCE52056.2021.9514107 – volume: 8 year: 2020 ident: B16 article-title: A survey of voice pathology surveillance systems based on internet of things and machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984925 – volume: 19 start-page: 476 year: 2016 ident: B55 article-title: Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets publication-title: Iranian J basic Med Sci – volume: 69 year: 2019 ident: B5 article-title: Breast cancer statistics, 2019 publication-title: CA: Cancer J Clin doi: 10.3322/caac.21583 – volume-title: Comparison between extreme learning machine and fast learning network based on intrusion detection system year: 2021 ident: B23 – volume: 11 year: 2016 ident: B32 article-title: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset publication-title: Int J Comput assisted Radiol Surg doi: 10.1007/s11548-016-1437-9 – volume: 46 year: 2017 ident: B36 article-title: Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems publication-title: Appl Intell doi: 10.1007/s10489-016-0843-6 – year: 2015 ident: B7 article-title: A survey on breast cancer scenario and prediction strategy doi: 10.1007/978-3-319-11933-5_40 – volume: 13 year: 2021 ident: B51 article-title: Mel-Frequency cepstral coefficient features based on standard deviation and principal component analysis for language identification systems publication-title: Cogn Comput doi: 10.1007/s12559-021-09914-w – year: 2021 ident: B33 article-title: Malignant and benign breast cancer classification using machine learning algorithms doi: 10.1109/ICAI52203.2021.9445249 – volume-title: 2019 4th international conference on electrical information and communication technology (EICT) year: 2019 ident: B71 article-title: Performance comparison of three classifiers for the classification of breast cancer dataset doi: 10.1109/EICT48899.2019.9068816 – volume: 100 year: 2018 ident: B68 article-title: Scaled radial axes for interactive visual feature selection: a case study for analyzing chronic conditions publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.01.054 – ident: B44 – volume: 21 year: 2019 ident: B21 article-title: Breast cancer detection and diagnosis using mammographic data: systematic review publication-title: J Med Internet Res doi: 10.2196/14464 – year: 2021 ident: B28 article-title: An optimized parkinson's disorder identification through evolutionary fast learning network publication-title: Int J Intelligent Computing Cybernetics doi: 10.1108/IJICC-07-2021-0138 – volume: 3 year: 2014 ident: B31 article-title: Breast cancer diagnosis using artificial neural networks with extreme learning techniques publication-title: Int J Adv Res Artif Intel – start-page: 1 year: 2022 ident: B2 article-title: A brief tour guide to cancer disease publication-title: Understanding cancer (Elsevier) – volume: 15 start-page: e0242899 year: 2020 ident: B9 article-title: Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection publication-title: PloS One doi: 10.1371/journal.pone.0242899 – volume: 12 year: 2018 ident: B59 article-title: Prediction of benign and malignant breast cancer using data mining techniques publication-title: J Algorithms Comput Technol doi: 10.1177/1748301818756225 – volume: 2 start-page: 48 year: 2018 ident: B70 article-title: Classification and diagnostic prediction of breast cancers via different classifiers publication-title: Int Sci Vocational Stud J – volume: 83 year: 2016 ident: B38 article-title: Using machine learning algorithms for breast cancer risk prediction and diagnosis publication-title: Proc Comput Sci doi: 10.1016/j.procs.2016.04.224 – volume: 9 year: 2020 ident: B72 article-title: Developing a web based system for breast cancer prediction using xgboost classifier publication-title: Int J Eng Res – volume: 44 year: 2016 ident: B25 article-title: A kind of parameters self-adjusting extreme learning machine publication-title: Neural Process Lett doi: 10.1007/s11063-016-9496-z – volume: 7 start-page: e427 year: 2021 ident: B63 article-title: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.427 – volume: 8 year: 2020 ident: B19 article-title: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016715 – volume-title: Wisconsin Diagnosis breast cancer (WDBC) year: 1995 ident: B46 – volume: 7 year: 2018 ident: B14 article-title: Robust speaker gender identification using empirical mode decomposition-based cepstral features publication-title: Asia-Pacific Journal of Information Technology and Multimedia doi: 10.17576/apjitm-2018-0701-06 – year: 2020 ident: B20 article-title: Comparative analysis to predict breast cancer using machine learning algorithms: a survey doi: 10.1109/ICICT48043.2020.9112464 – year: 2020 ident: B27 article-title: Improved intrusion detection accuracy based on optimization fast learning network model doi: 10.1109/IICETA50496.2020.9318815 – volume: 8 start-page: 88 year: 2017 ident: B69 article-title: Identifying patients at risk of breast cancer through decision trees publication-title: Int J Advanced Res Comput Sci doi: 10.26483/ijarcs.v8i8.4602 – volume: 55 start-page: 67 year: 2021 ident: B56 article-title: An evaluation of the Wisconsin breast cancer dataset using ensemble classifiers and RFE feature selection publication-title: Int J Sci. Basic Appl Res – volume-title: 2018 electric electronics, computer science, biomedical engineerings' meeting (EBBT) year: 2018 ident: B57 article-title: Breast cancer classification using machine learning doi: 10.1109/EBBT.2018.8391453 – volume: 10 year: 2022 ident: B15 article-title: Gray Wolf optimization-extreme learning machine approach for diabetic retinopathy detection publication-title: Front Public Health doi: 10.3389/fpubh.2022.925901 – volume: 10 year: 2018 ident: B30 article-title: Propose a new machine learning algorithm based on cancer diagnosis publication-title: Jour of Adv Research in Dynamical & Control Systems – start-page: 1 year: 2022 ident: B8 article-title: Speech emotion recognition using optimized genetic algorithm-extreme learning machine publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-12747-w – volume: 118 start-page: 80 year: 2017 ident: B26 article-title: Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2016.11.011 – volume: 41 year: 2021 ident: B54 article-title: Decompositions of Taylor diagram and DISO performance criteria publication-title: Int J Climatology doi: 10.1002/joc.7149 – volume: 9 year: 2021 ident: B50 article-title: Voice pathology detection and classification by adopting online sequential extreme learning machine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082565 – volume: 2 start-page: 13 year: 2018 ident: B22 article-title: Machine learning with applications in breast cancer diagnosis and prognosis publication-title: Designs doi: 10.3390/designs2020013 – volume: 132 year: 2018 ident: B39 article-title: Breast cancer prediction system publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.05.197 – volume: 48 start-page: 65 year: 2021 ident: B43 article-title: Breast cancer data classification using ensemble machine learning publication-title: Eng Appl Sci Res doi: 10.1109/ICAI52203.2021.9445249 – volume: 2020 year: 2020 ident: B1 article-title: Cloud-based breast cancer prediction empowered with soft computing approaches publication-title: J healthcare Eng doi: 10.1155/2020/8017496 – year: 2006 ident: B4 article-title: A support vector machine approach to breast cancer diagnosis and prognosis doi: 10.1007/0-387-34224-9_58 – volume: 218 year: 2023 ident: B40 article-title: Performance analysis of averaged perceptron machine learning classifier for breast cancer detection publication-title: Proc Comput Sci doi: 10.1016/j.procs.2023.01.194 – volume: 68 start-page: 102682 year: 2021 ident: B34 article-title: An efficient classification framework for breast cancer using hyper parameter tuned random decision forest classifier and Bayesian optimization publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102682 – volume-title: Data engineering and intelligent computing year: 2022 ident: B48 article-title: Analysis and prediction of breast cancer using multi-model classification approach doi: 10.1007/978-981-19-1559-8_12 – volume: 10 year: 2021 ident: B62 article-title: A breast cancer diagnosis method based on VIM feature selection and hierarchical clustering random forest algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3139595 – volume: 34 year: 2017 ident: B67 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telematics Inf doi: 10.1016/j.tele.2017.01.007 – year: 2021 ident: B18 article-title: Voice Pathology Detection Using Support Vector Machine Based on Different Number of Voice Signals doi: 10.1109/APCC49754.2021.9609830 – volume: 24 year: 2014 ident: B47 article-title: Fast learning network: a novel artificial neural network with a fast learning speed publication-title: Neural Computing Appl doi: 10.1007/s00521-013-1398-7 – volume: 8 year: 2020 ident: B3 article-title: Deep learning algorithems for breast cancer image classification publication-title: Int J Eng Res Technol – volume: 191 year: 2021 ident: B35 article-title: Machine learning algorithms for breast cancer prediction and diagnosis publication-title: Proc Comput Sci doi: 10.1016/j.procs.2021.07.062 – year: 2019 ident: B60 article-title: Breast cancer diagnosis models using PCA and different neural network architectures doi: 10.1109/IC4ME247184.2019.9036627 – volume-title: 2020 IEEE 5th international symposium on telecommunication technologies (ISTT) year: 2020 ident: B17 article-title: Voice pathology detection using machine learning technique doi: 10.1109/ISTT50966.2020.9279346 – volume: 2019 year: 2019 ident: B41 article-title: Automated breast cancer diagnosis based on machine learning algorithms publication-title: J healthcare Eng doi: 10.1155/2019/4253641 – volume: 49 year: 2015 ident: B58 article-title: Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble publication-title: Qual Quantity doi: 10.1007/s11135-014-0090-z – volume: 6 year: 2018 ident: B29 article-title: A new intrusion detection system based on fast learning network and particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820092 – volume: 12 start-page: 1758 year: 2020 ident: B52 article-title: Genetic algorithm based on natural selection theory for optimization problems publication-title: Symmetry doi: 10.3390/sym12111758 – volume-title: Canadian Conference on artificial intelligence year: 2020 ident: B65 article-title: Detection and diagnosis of breast cancer using a Bayesian approach doi: 10.1007/978-3-030-47358-7_34 – volume: 39 year: 2020 ident: B12 article-title: Spoken language identification based on particle swarm optimisation–extreme learning machine approach publication-title: Circuits Systems Signal Process doi: 10.1007/s00034-020-01388-9 – volume: 85 year: 2017 ident: B45 article-title: Optimal breast cancer classification using gauss–newton representation based algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.035 – volume: 100 year: 2022 ident: B49 article-title: AN EFFICIENT OPTIMIZED FRAMEWORK FOR ANALYZING THE PERFORMANCE OF BREAST CANCER USING MACHINE LEARNING ALGORITHMS publication-title: J Theor Appl Inf Technol – start-page: 1 year: 2022 ident: B10 article-title: Particle swarm optimization-based extreme learning machine for COVID-19 detection publication-title: Cogn Comput doi: 10.1007/s12559-022-10063-x – volume: 1 start-page: 1 year: 2020 ident: B6 article-title: Polyphenols in cancer prevention: new insights publication-title: Int J Funct Nutr doi: 10.3892/ijfn.2020.9 |
| SSID | ssj0000650103 |
| Score | 2.5061724 |
| Snippet | The use of machine learning (ML) and data mining algorithms in the diagnosis of breast cancer (BC) has recently received a lot of attention. The majority of... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1150840 |
| SubjectTerms | breast cancer data mining algorithms fast learning network machine learning algorithms Oncology Wisconsin breast cancer database Wisconsin Diagnostic Breast Cancer |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHoALojwDLTISJ1BoEseOfWwrqgqpnKjUm-XndqUlW22zQvx7ZuJ0tSsQvXCNncSeGWe-yYzmA_jQYFQRRS1L1G0o2zqmUje-K2XsAne8SmFkLbn4Js8v269X4mqL6otqwnJ74Cy4IyG8b5RyCrF2a33ttEev1QUhleSdH6P1SumtYCp_gwURGOQ0JkZh-igte-pY2PDPhIEU_ezYckRjv_6_gcw_ayUfrfsb--unXSy2HNHZU3gyIUh2nFe-Dw9i_wweXkw58udwfEJ15gPzpM8VC7mWbn7LqMR9xhDwsUTjE1_EjPW5EpzZxWy5mg_XP17A5dmX76fn5USUUPpWyqG0TgoEyVE7XSevfELUF2sREhHrtL6WguIIWdnGWe1jFT0PXHNXJx25tJa_hL1-2cfXwLroEQKI1kYZ0NcnlSovXdJtcijw4Auo7qRm_NRFnMgsFgajCRK0IUEbErSZBF3Ax80tN7mFxr8mn5AqNhOp-_V4AW3CTDZh7rOJAt7fKdLgaaEUiO3jcn1rEExJBDgIWgt4lRW7eRVHMNXqThSgdlS-s5bdkX5-PXbkRlPjTS1lAZ821nH_Xt_8j72-hcf0TEpwNd0B7A2rdTxEnDS4d-OR-A1SaQ4W priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_wUpA4gdKN40fiYxexWiHtigOVyimyx3a3oqRVNxWCX89Mk1ZbWIEQx8R2Ys-M5W80428Ye12gVxEU1xnq1meSh5iZAspMh9ILJ_LoN1VLTs_0yVh-mKjJpbswlFYZ6eo-FYKeNR1TcJ8iRjscPSpzGBcNsQ8WYkh4Bl2Uw6WP19mBVojHB-xgfPZx9JmqyhVCZkaKSRfOvHrs3oG04e2_Cmz-njN5c90s7fdvdj6_dCAd32GwXUqXh_JluG7dEH78wvL4f2u9y273eDUddQPusWuhuc9unPYR-QdsdERZ7W0KZD2r1HeZe7OLlBLqpynCyzRSe1-dYpo2Xd55aufTxWrWnn99yMbH7z-9O8n6sgwZSK3bzDqtEJIH4wyPUEFEjBm48pHK-EjgWpHXonNbOGsg5AGEF0Y4Hk0Q2lrxiA2aRROesLQMgIBDSRu0R2QRq5iDdtHI6HSlPSQs3-qmhp6znEpnzGv0XUg8NYmnJvHUvXgS9mY3ZNkRdvyp8xEpfNeRuLY3L1AVda-KWimAoqpchd6etMCdAcRNpVc4RVECfuTV1lxq3JsUcLFNWKwvaoRuGuEUQuSEPe7MZ_crgdBNmlIlrNozrL257Lc0s_MN_zfPhSi41gl7u7PBv6_16T_1fsZu0SPFzYryORu0q3V4gfCrdS_7_fUTk4UsjQ priority: 102 providerName: Unpaywall |
| Title | Breast cancer diagnosis using the fast learning network algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37434975 https://www.proquest.com/docview/2836293932 https://pubmed.ncbi.nlm.nih.gov/PMC10332166 https://www.frontiersin.org/articles/10.3389/fonc.2023.1150840/pdf https://doaj.org/article/55cc288b80964ac1b9c0827d568637c0 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2234-943X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2234-943X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000650103 issn: 2234-943X databaseCode: M48 dateStart: 20110601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_OO1BfxM8zfpQIPik5k-xHsg8iPfE8hB4-WKhPYXez2yvE5GxT9P57Z5K0WCyKL4FkN5vNzG7mN5lhfgAvU_QqnEhkhLotI544H6nUZpF0WckMi33ZsZZMLuT5lH-aidkBbOitBgGu9rp2xCc1XVYnP79fv8MN_5Y8TrS3b3xTUzHClJ0QvEGP5QYcoaFSxOQwGdB-_2EWxGpAdHMp45HibNbHOfePsmOpuoL--1Don8mUt9b1lb7-oavqN0t1dhfuDBAzHPdr4h4cuPo-3JwMQfQHMD6lRPQ2tKTwZVj2yXaLVUg58PMQEWHoqX0glJiHdZ8qHupq3iwX7eW3hzA9-_Dl_Xk0MClElkvZRtpIgSjaKaMSb3PrERa6RJSemHe4TaQgR0PGOjVaWRc7y0qmmEm8ckxqzR7BYd3U7jGEmbOIEQTXTpYIBnzuYyuNV9wbmcvSBhBvpFbYocw4sV1UBbobJOiCBF2QoItB0AG82t5y1dfY-FvnU1LFtiOVx-4uNMt5Mey2Qghr0zw3OTpoXNvEKItQJysFTpFlFgd5sVFkgduJYiS6ds16VSDakoiAENUGcNwrdvsohmiLq0wEkO-ofGcuuy314rIr2Y3LjqWJlAG83q6Of7_rk_8RzFO4TacU6UqzZ3DYLtfuOQKm1oy6Hw14_DhLRt2WGMHR9OLz-OsvetATrQ |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_wUpA4gdKN40fiYxexWiHtigOVyimyx3a3oqRVNxWCX89Mk1ZbWIEQx8R2Ys-M5W80428Ye12gVxEU1xnq1meSh5iZAspMh9ILJ_LoN1VLTs_0yVh-mKjJpbswlFYZ6eo-FYKeNR1TcJ8iRjscPSpzGBcNsQ8WYkh4Bl2Uw6WP19mBVojHB-xgfPZx9JmqyhVCZkaKSRfOvHrs3oG04e2_Cmz-njN5c90s7fdvdj6_dCAd32GwXUqXh_JluG7dEH78wvL4f2u9y273eDUddQPusWuhuc9unPYR-QdsdERZ7W0KZD2r1HeZe7OLlBLqpynCyzRSe1-dYpo2Xd55aufTxWrWnn99yMbH7z-9O8n6sgwZSK3bzDqtEJIH4wyPUEFEjBm48pHK-EjgWpHXonNbOGsg5AGEF0Y4Hk0Q2lrxiA2aRROesLQMgIBDSRu0R2QRq5iDdtHI6HSlPSQs3-qmhp6znEpnzGv0XUg8NYmnJvHUvXgS9mY3ZNkRdvyp8xEpfNeRuLY3L1AVda-KWimAoqpchd6etMCdAcRNpVc4RVECfuTV1lxq3JsUcLFNWKwvaoRuGuEUQuSEPe7MZ_crgdBNmlIlrNozrL257Lc0s_MN_zfPhSi41gl7u7PBv6_16T_1fsZu0SPFzYryORu0q3V4gfCrdS_7_fUTk4UsjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+diagnosis+using+the+fast+learning+network+algorithm&rft.jtitle=Frontiers+in+oncology&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Ayob%2C+Masri&rft.au=Tiun%2C+Sabrina&rft.au=AL-Dhief%2C+Fahad+Taha&rft.date=2023-04-27&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=13&rft_id=info:doi/10.3389%2Ffonc.2023.1150840&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2023_1150840 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |