A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease

Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogr...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 30; no. 3; pp. 493 - 507.e6
Main Authors Baik, Sung Hoon, Kang, Seokjo, Lee, Woochan, Choi, Hayoung, Chung, Sunwoo, Kim, Jong-Il, Mook-Jung, Inhee
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.09.2019
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2019.06.005

Cover

Abstract Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD. [Display omitted] •Aβ induces metabolic reprogramming of microglia from OXPHOS to glycolysis•Metabolic reprogramming of microglia is dependent on the mTOR-HIF-1α pathway•Chronic exposure to Aβ induces metabolic defects of microglia•Metabolic boosting with IFN-γ restores immunological function of microglia Baik et al. report that amyloid-β acutely triggers microglial activation and metabolic reprogramming from OXPHOS to glycolysis. However, chronic exposure to amyloid-β induces overall metabolic defects in microglia in a model of Alzheimer's disease. Treatment with IFN-γ restores glycolytic metabolism and immunological function of microglia, suggesting that modulation of microglial metabolism may be a potential therapeutic strategy.
AbstractList Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.
Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD. [Display omitted] •Aβ induces metabolic reprogramming of microglia from OXPHOS to glycolysis•Metabolic reprogramming of microglia is dependent on the mTOR-HIF-1α pathway•Chronic exposure to Aβ induces metabolic defects of microglia•Metabolic boosting with IFN-γ restores immunological function of microglia Baik et al. report that amyloid-β acutely triggers microglial activation and metabolic reprogramming from OXPHOS to glycolysis. However, chronic exposure to amyloid-β induces overall metabolic defects in microglia in a model of Alzheimer's disease. Treatment with IFN-γ restores glycolytic metabolism and immunological function of microglia, suggesting that modulation of microglial metabolism may be a potential therapeutic strategy.
Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.
Author Mook-Jung, Inhee
Baik, Sung Hoon
Kim, Jong-Il
Lee, Woochan
Choi, Hayoung
Chung, Sunwoo
Kang, Seokjo
Author_xml – sequence: 1
  givenname: Sung Hoon
  surname: Baik
  fullname: Baik, Sung Hoon
  organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 2
  givenname: Seokjo
  surname: Kang
  fullname: Kang, Seokjo
  organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 3
  givenname: Woochan
  surname: Lee
  fullname: Lee, Woochan
  organization: Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 4
  givenname: Hayoung
  surname: Choi
  fullname: Choi, Hayoung
  organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 5
  givenname: Sunwoo
  surname: Chung
  fullname: Chung, Sunwoo
  organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 6
  givenname: Jong-Il
  surname: Kim
  fullname: Kim, Jong-Il
  organization: Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
– sequence: 7
  givenname: Inhee
  surname: Mook-Jung
  fullname: Mook-Jung, Inhee
  email: inhee@snu.ac.kr
  organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31257151$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1P3DAQhq0KVGDpH-ihyq29JIzt2NlIvWyXTwmEhOilF2viTKi3-QA7AcGvx9uFC4c9zWj0PqOZ54Dt9ENPjH3lkHHg-miV2Y7GTAAvM9AZgPrE9nkpRVrkAnZirxSkOZd8jx2EsAKQWpbyM9uTXKiCK77P_iySX57wXz089YnrkysasRpaZ5MbuvfDnceuc_1dssQpUEiunI3D1mFy_ByaqbejG_5zi_blL7mO_PeQHLtAGOiQ7TbYBvryVmfs9-nJ7fI8vbw-u1guLlObaz2mZVVJDkI2hRB8XkpUaGuqqsZqAlRQ1Epig7XlSJRbSUrl2AgUtSYuoJAz9mOzN977MFEYTeeCpbbFnoYpGCEUaFFIPY_Rb2_RqeqoNvfedeifzbuPGJhvAvHNEDw1xroR10-OHl1rOJi1erMya_Vmrd6ANlF9RMUH9H37VujnBqIo6NGRN8E66i3VzpMdTT24bfgrORidiA
CitedBy_id crossref_primary_10_3390_molecules27082484
crossref_primary_10_1016_j_neuint_2023_105614
crossref_primary_10_1073_pnas_2009680117
crossref_primary_10_1002_adbi_202200321
crossref_primary_10_1002_alz_12845
crossref_primary_10_1016_j_jep_2021_114264
crossref_primary_10_1038_s41467_021_23337_z
crossref_primary_10_3390_ijms24108967
crossref_primary_10_1002_eji_202350815
crossref_primary_10_1016_j_pneurobio_2021_102089
crossref_primary_10_1038_s41598_020_67649_4
crossref_primary_10_1016_j_tins_2020_08_008
crossref_primary_10_1016_j_arr_2024_102250
crossref_primary_10_1186_s12974_022_02401_5
crossref_primary_10_14336_AD_2024_1629
crossref_primary_10_1016_j_semcdb_2020_08_001
crossref_primary_10_1007_s12035_020_01994_3
crossref_primary_10_1096_fj_202301173RRR
crossref_primary_10_1186_s12967_020_02672_7
crossref_primary_10_1016_j_exger_2019_110766
crossref_primary_10_1002_adma_202100746
crossref_primary_10_3389_fphar_2020_00368
crossref_primary_10_1155_2022_5227335
crossref_primary_10_3233_JAD_201448
crossref_primary_10_1007_s12031_022_02020_y
crossref_primary_10_1111_acel_14496
crossref_primary_10_1007_s13365_024_01239_2
crossref_primary_10_1248_bpb_b22_00855
crossref_primary_10_3389_fimmu_2021_624538
crossref_primary_10_3390_antiox13070836
crossref_primary_10_1007_s10456_024_09948_2
crossref_primary_10_3389_fonc_2022_822085
crossref_primary_10_3390_brainsci13010055
crossref_primary_10_1016_j_biopha_2024_117235
crossref_primary_10_1016_j_bbi_2020_05_052
crossref_primary_10_1016_j_phymed_2024_155592
crossref_primary_10_1002_stem_3309
crossref_primary_10_3389_fphar_2024_1366061
crossref_primary_10_3389_fnagi_2022_1042488
crossref_primary_10_1007_s11357_023_00859_6
crossref_primary_10_1016_j_mito_2021_03_014
crossref_primary_10_3390_biomedicines10081800
crossref_primary_10_15252_embr_202052013
crossref_primary_10_4093_dmj_2024_0117
crossref_primary_10_1016_j_biopha_2024_116158
crossref_primary_10_1016_j_neuint_2021_105184
crossref_primary_10_54461_JKMST_2022_6_2_89
crossref_primary_10_1016_j_cmet_2022_02_013
crossref_primary_10_1038_s41467_023_39077_1
crossref_primary_10_1152_ajpendo_00331_2024
crossref_primary_10_1007_s12032_021_01586_8
crossref_primary_10_1016_j_trim_2022_101664
crossref_primary_10_1016_j_ymgme_2021_01_011
crossref_primary_10_1016_j_neuint_2020_104919
crossref_primary_10_1038_s41423_022_00922_w
crossref_primary_10_1186_s12974_021_02318_5
crossref_primary_10_1186_s40035_024_00402_3
crossref_primary_10_3233_JAD_210177
crossref_primary_10_1038_s42255_022_00647_0
crossref_primary_10_3390_antiox12051117
crossref_primary_10_2139_ssrn_3869900
crossref_primary_10_3389_fnins_2022_884667
crossref_primary_10_1016_j_ecoenv_2023_115868
crossref_primary_10_3390_brainsci15030294
crossref_primary_10_1016_j_arr_2021_101409
crossref_primary_10_1111_fcp_12928
crossref_primary_10_3389_fimmu_2025_1469737
crossref_primary_10_1016_j_biopha_2022_113412
crossref_primary_10_3390_metabo15030159
crossref_primary_10_1038_s41598_021_92602_4
crossref_primary_10_3390_ijms222313035
crossref_primary_10_1186_s12906_022_03534_z
crossref_primary_10_3390_molecules27030951
crossref_primary_10_1016_j_jbc_2024_107306
crossref_primary_10_1038_s42003_021_02984_4
crossref_primary_10_1007_s00011_024_01935_z
crossref_primary_10_1515_revneuro_2022_0121
crossref_primary_10_1016_j_jep_2024_118532
crossref_primary_10_1016_j_jep_2024_118412
crossref_primary_10_3389_fnins_2021_778822
crossref_primary_10_3389_fncel_2022_953534
crossref_primary_10_1016_j_intimp_2023_111361
crossref_primary_10_1016_j_immuni_2020_10_016
crossref_primary_10_31083_j_jin2305091
crossref_primary_10_3389_fimmu_2024_1462003
crossref_primary_10_1007_s00702_023_02723_5
crossref_primary_10_3390_antiox11010170
crossref_primary_10_3389_fimmu_2022_943321
crossref_primary_10_1186_s12974_025_03401_x
crossref_primary_10_3390_biomedicines11092421
crossref_primary_10_1016_j_biochi_2024_07_003
crossref_primary_10_1016_j_neulet_2024_137751
crossref_primary_10_3390_molecules29071478
crossref_primary_10_1016_j_ejphar_2024_176432
crossref_primary_10_1111_cns_13899
crossref_primary_10_1186_s13059_024_03308_5
crossref_primary_10_3390_cells10061372
crossref_primary_10_1002_advs_202300180
crossref_primary_10_1016_j_nbd_2021_105290
crossref_primary_10_1186_s12974_025_03337_2
crossref_primary_10_1186_s13195_022_01022_7
crossref_primary_10_1016_j_tins_2023_05_001
crossref_primary_10_4103_1673_5374_391330
crossref_primary_10_1038_s41392_023_01484_7
crossref_primary_10_1038_s41598_024_64872_1
crossref_primary_10_1016_j_immuni_2021_12_001
crossref_primary_10_3389_fimmu_2022_978513
crossref_primary_10_1016_j_gendis_2024_101286
crossref_primary_10_1016_j_molmet_2021_101180
crossref_primary_10_1002_adma_202408729
crossref_primary_10_26599_AGR_2023_9340020
crossref_primary_10_3390_ijms252111399
crossref_primary_10_1111_ejn_15914
crossref_primary_10_3389_fphar_2023_1125982
crossref_primary_10_1186_s13041_020_00601_9
crossref_primary_10_1007_s12035_023_03373_0
crossref_primary_10_3389_fimmu_2020_00493
crossref_primary_10_1007_s10571_023_01376_y
crossref_primary_10_2174_1570159X22666240131121032
crossref_primary_10_1007_s10571_021_01148_6
crossref_primary_10_1101_gad_348190_120
crossref_primary_10_3389_fimmu_2022_861290
crossref_primary_10_3233_JAD_220227
crossref_primary_10_1016_j_jare_2024_04_004
crossref_primary_10_1038_s41392_025_02141_x
crossref_primary_10_20517_and_2024_11
crossref_primary_10_3389_fnagi_2022_873929
crossref_primary_10_1002_ptr_8136
crossref_primary_10_1007_s11064_023_03961_5
crossref_primary_10_3390_cells10113144
crossref_primary_10_1126_scisignal_aay1027
crossref_primary_10_1016_j_freeradbiomed_2023_12_012
crossref_primary_10_1177_25152564241312807
crossref_primary_10_3389_fcell_2021_697578
crossref_primary_10_1038_s41593_024_01847_5
crossref_primary_10_1002_advs_202400064
crossref_primary_10_1016_j_expneurol_2020_113490
crossref_primary_10_3390_bios12121176
crossref_primary_10_1007_s43440_022_00363_2
crossref_primary_10_1186_s13024_022_00541_z
crossref_primary_10_3390_nu12102977
crossref_primary_10_1016_j_mam_2019_100838
crossref_primary_10_1523_JNEUROSCI_1563_23_2024
crossref_primary_10_3389_fimmu_2022_960906
crossref_primary_10_3390_jpm10020032
crossref_primary_10_1177_1934578X221075079
crossref_primary_10_2174_0115672050324909240823104209
crossref_primary_10_1126_sciadv_adi1863
crossref_primary_10_1016_j_preteyeres_2021_100998
crossref_primary_10_1016_j_scitotenv_2024_176603
crossref_primary_10_1016_j_jep_2025_119464
crossref_primary_10_1007_s12035_021_02297_x
crossref_primary_10_1016_j_phymed_2024_156152
crossref_primary_10_1016_j_phymed_2025_156453
crossref_primary_10_3390_genes10100798
crossref_primary_10_1016_j_bioorg_2023_106987
crossref_primary_10_1186_s12974_023_02869_9
crossref_primary_10_3390_cells10051138
crossref_primary_10_7717_peerj_8682
crossref_primary_10_1016_j_immuni_2024_03_004
crossref_primary_10_3233_JAD_210213
crossref_primary_10_3390_biology12081081
crossref_primary_10_1038_s44324_024_00044_z
crossref_primary_10_3389_fneur_2023_1115318
crossref_primary_10_1038_s42255_022_00643_4
crossref_primary_10_1016_j_envres_2023_116411
crossref_primary_10_3233_JAD_230128
crossref_primary_10_1186_s41983_024_00908_7
crossref_primary_10_3389_fimmu_2022_900132
crossref_primary_10_4103_NRR_NRR_D_23_00805
crossref_primary_10_1016_j_nbd_2024_106763
crossref_primary_10_1002_glia_24323
crossref_primary_10_1038_s41419_023_06217_w
crossref_primary_10_3390_cells10020321
crossref_primary_10_3390_genes12081247
crossref_primary_10_1016_j_isci_2021_103238
crossref_primary_10_1038_s41467_021_23111_1
crossref_primary_10_18632_aging_205624
crossref_primary_10_7554_eLife_92741
crossref_primary_10_1016_j_arr_2024_102452
crossref_primary_10_1016_j_cmet_2023_03_006
crossref_primary_10_1002_biof_2149
crossref_primary_10_3389_fnagi_2023_1245904
crossref_primary_10_3389_fncel_2020_00246
crossref_primary_10_1002_ange_202420547
crossref_primary_10_31393_reports_vnmedical_2023_27_4__24
crossref_primary_10_1038_s41420_023_01343_y
crossref_primary_10_3390_cells9071717
crossref_primary_10_26508_lsa_202201556
crossref_primary_10_3390_ijms22041968
crossref_primary_10_61958_NDFS3904
crossref_primary_10_1016_j_ijbiomac_2025_141048
crossref_primary_10_1186_s12974_021_02103_4
crossref_primary_10_3389_fmicb_2024_1475984
crossref_primary_10_3389_fmicb_2024_1440564
crossref_primary_10_1142_S0192415X24500873
crossref_primary_10_3390_ph14050416
crossref_primary_10_1016_j_celrep_2022_111391
crossref_primary_10_3390_horticulturae8030224
crossref_primary_10_3390_antiox13111378
crossref_primary_10_1016_j_celrep_2024_114908
crossref_primary_10_1002_glia_24664
crossref_primary_10_1007_s10787_024_01550_8
crossref_primary_10_1016_j_neures_2021_10_010
crossref_primary_10_1038_s42255_021_00392_w
crossref_primary_10_1186_s12974_025_03357_y
crossref_primary_10_1038_d41586_021_00063_6
crossref_primary_10_3390_ijms25116025
crossref_primary_10_3390_ijms252313210
crossref_primary_10_14336_AD_2023_0807
crossref_primary_10_1016_j_arr_2023_102032
crossref_primary_10_1016_j_arr_2024_102596
crossref_primary_10_1016_j_arr_2024_102472
crossref_primary_10_1016_j_neuint_2023_105639
crossref_primary_10_1038_s41590_023_01640_9
crossref_primary_10_1016_j_cellsig_2024_111466
crossref_primary_10_1016_j_pneurobio_2019_101719
crossref_primary_10_1186_s12864_022_08417_8
crossref_primary_10_1186_s12974_024_03203_7
crossref_primary_10_1111_cns_14913
crossref_primary_10_1002_prot_26723
crossref_primary_10_1007_s10571_021_01147_7
crossref_primary_10_1038_s12276_024_01295_y
crossref_primary_10_1111_acel_13623
crossref_primary_10_3389_fncel_2020_00020
crossref_primary_10_1186_s13024_025_00824_1
crossref_primary_10_1016_j_expneurol_2020_113310
crossref_primary_10_1186_s12974_024_03026_6
crossref_primary_10_1016_j_cell_2024_08_019
crossref_primary_10_3389_fncel_2022_939830
crossref_primary_10_1172_JCI167501
crossref_primary_10_3390_brainsci14111098
crossref_primary_10_3389_fimmu_2021_717157
crossref_primary_10_1186_s42234_022_00101_2
crossref_primary_10_1007_s11011_024_01396_7
crossref_primary_10_1038_s41392_023_01588_0
crossref_primary_10_1016_j_molcel_2023_02_022
crossref_primary_10_1007_s12975_022_01090_9
crossref_primary_10_1016_j_bcp_2023_115619
crossref_primary_10_5483_BMBRep_2019_52_12_282
crossref_primary_10_1073_pnas_2209177120
crossref_primary_10_1126_scitranslmed_abe5640
crossref_primary_10_1186_s12974_024_03015_9
crossref_primary_10_1212_WNL_0000000000200920
crossref_primary_10_3390_ijms22115887
crossref_primary_10_1080_19490976_2022_2125739
crossref_primary_10_1177_15353702221134093
crossref_primary_10_1016_j_tem_2024_04_017
crossref_primary_10_1093_braincomms_fcac216
crossref_primary_10_1016_j_bbi_2025_02_006
crossref_primary_10_3389_fimmu_2024_1375453
crossref_primary_10_1007_s12035_023_03621_3
crossref_primary_10_1038_s42255_024_01081_0
crossref_primary_10_1016_j_conb_2023_102730
crossref_primary_10_3389_fneur_2024_1515981
crossref_primary_10_1073_pnas_2212256120
crossref_primary_10_3389_fimmu_2022_1008072
crossref_primary_10_1111_jcmm_17759
crossref_primary_10_1186_s12974_023_02722_z
crossref_primary_10_1016_j_neubiorev_2024_105971
crossref_primary_10_1186_s12974_022_02595_8
crossref_primary_10_2174_2212796817666230510095530
crossref_primary_10_1016_j_phrs_2024_107357
crossref_primary_10_15252_embj_2022111038
crossref_primary_10_1016_j_neuron_2022_04_001
crossref_primary_10_1002_jnr_25015
crossref_primary_10_1016_j_intimp_2024_113024
crossref_primary_10_3390_biom14020187
crossref_primary_10_1016_j_nbd_2024_106672
crossref_primary_10_1186_s12974_022_02637_1
crossref_primary_10_3389_fnut_2022_1051964
crossref_primary_10_3390_cells12242824
crossref_primary_10_3389_fphys_2020_00393
crossref_primary_10_1038_s12276_021_00719_3
crossref_primary_10_1038_s41467_020_20440_5
crossref_primary_10_3389_fimmu_2022_1037318
crossref_primary_10_1177_0271678X221098841
crossref_primary_10_4103_NRR_NRR_D_23_01299
crossref_primary_10_1038_s43587_021_00054_2
crossref_primary_10_1186_s12974_023_02779_w
crossref_primary_10_1111_ane_13551
crossref_primary_10_1111_jnc_15206
crossref_primary_10_1111_imr_13365
crossref_primary_10_1002_brb3_70361
crossref_primary_10_1016_j_cmet_2020_03_015
crossref_primary_10_1038_s42255_024_01080_1
crossref_primary_10_1007_s11302_025_10066_x
crossref_primary_10_3390_cells12111521
crossref_primary_10_1038_s42255_022_00707_5
crossref_primary_10_1186_s13041_022_00986_9
crossref_primary_10_1002_adbi_202101166
crossref_primary_10_1371_journal_pntd_0011350
crossref_primary_10_1111_jcmm_18554
crossref_primary_10_1038_s42255_024_01095_8
crossref_primary_10_3390_neuroglia5040029
crossref_primary_10_1007_s12017_022_08710_5
crossref_primary_10_3389_fnins_2021_749925
crossref_primary_10_1038_s41467_024_49709_9
crossref_primary_10_3390_ijms241411450
crossref_primary_10_1016_j_psychres_2024_116220
crossref_primary_10_1016_j_apsb_2022_07_014
crossref_primary_10_1016_j_ghres_2024_100003
crossref_primary_10_3390_biomedicines11051387
crossref_primary_10_5483_BMBRep_2020_53_1_309
crossref_primary_10_1155_2022_3086010
crossref_primary_10_1016_j_isci_2023_107780
crossref_primary_10_2174_1570159X20666220817140737
crossref_primary_10_1158_2159_8290_CD_21_1006
crossref_primary_10_1002_glia_24145
crossref_primary_10_3233_JAD_240787
crossref_primary_10_1016_j_arr_2024_102636
crossref_primary_10_1002_advs_202412379
crossref_primary_10_3390_biom12111722
crossref_primary_10_14336_AD_2024_1293
crossref_primary_10_3389_fcell_2020_00265
crossref_primary_10_1016_j_fct_2020_111936
crossref_primary_10_1155_2020_5328031
crossref_primary_10_1002_alz_70025
crossref_primary_10_3390_ijms21176047
crossref_primary_10_1016_j_biocel_2024_106541
crossref_primary_10_1002_prp2_638
crossref_primary_10_1016_j_tins_2022_10_007
crossref_primary_10_1038_s41380_021_01068_3
crossref_primary_10_1016_j_isci_2023_106588
crossref_primary_10_3389_fimmu_2021_665782
crossref_primary_10_3390_ijms22136984
crossref_primary_10_1038_s41577_024_01104_7
crossref_primary_10_2174_0115680266322320240911194626
crossref_primary_10_1002_jcb_30458
crossref_primary_10_3233_JAD_220721
crossref_primary_10_3390_biom13020313
crossref_primary_10_3390_ijms23084351
crossref_primary_10_1002_advs_202307245
crossref_primary_10_1038_s41467_022_28473_8
crossref_primary_10_1038_s41467_024_44737_x
crossref_primary_10_3389_fimmu_2021_639049
crossref_primary_10_1016_j_biomaterials_2025_123142
crossref_primary_10_1186_s40035_024_00397_x
crossref_primary_10_3389_fnagi_2021_766267
crossref_primary_10_3389_fimmu_2022_856376
crossref_primary_10_3390_ijms22063027
crossref_primary_10_1186_s12974_021_02244_6
crossref_primary_10_1016_j_neuropharm_2024_109951
crossref_primary_10_1016_j_mtbio_2025_101475
crossref_primary_10_3389_fphar_2021_714556
crossref_primary_10_1021_acsnano_3c03232
crossref_primary_10_3389_fnagi_2022_1057214
crossref_primary_10_1111_febs_15327
crossref_primary_10_1016_j_tem_2021_12_001
crossref_primary_10_3233_JAD_215217
crossref_primary_10_1016_j_ejmech_2023_115986
crossref_primary_10_3389_fnagi_2021_788055
crossref_primary_10_14309_ctg_0000000000000536
crossref_primary_10_31083_j_fbl2711312
crossref_primary_10_1002_jcp_29682
crossref_primary_10_3390_ijms221910757
crossref_primary_10_3389_fphys_2020_584135
crossref_primary_10_1002_psp4_12852
crossref_primary_10_1016_j_neuroscience_2022_03_003
crossref_primary_10_1016_j_bbi_2024_02_027
crossref_primary_10_1016_j_cmet_2019_08_017
crossref_primary_10_1016_j_celrep_2023_113183
crossref_primary_10_1007_s12035_024_04067_x
crossref_primary_10_1186_s12979_024_00437_0
crossref_primary_10_1002_dad2_12028
crossref_primary_10_1126_sciadv_abo3610
crossref_primary_10_1007_s12975_022_01105_5
crossref_primary_10_1016_j_bbr_2021_113481
crossref_primary_10_1111_jnc_15959
crossref_primary_10_1002_anie_202420547
crossref_primary_10_1016_j_prp_2024_155614
crossref_primary_10_1007_s11011_021_00733_4
crossref_primary_10_1016_j_bbi_2023_07_024
crossref_primary_10_1002_cbin_11710
crossref_primary_10_3389_fphys_2019_01531
crossref_primary_10_15252_embr_202051696
crossref_primary_10_1038_s42003_024_07425_6
crossref_primary_10_3233_JAD_190729
crossref_primary_10_1111_jnc_14860
crossref_primary_10_3389_fphar_2021_763866
crossref_primary_10_3389_fimmu_2023_1107298
crossref_primary_10_1016_j_bcp_2024_116729
crossref_primary_10_7554_eLife_92741_4
crossref_primary_10_1038_s41467_023_42096_7
crossref_primary_10_3233_JAD_215235
crossref_primary_10_3390_toxics8020021
crossref_primary_10_4103_NRR_NRR_D_24_00190
crossref_primary_10_3233_JAD_201074
crossref_primary_10_1016_j_bbi_2024_01_009
crossref_primary_10_1007_s11064_022_03533_z
crossref_primary_10_1186_s12979_023_00390_4
crossref_primary_10_1016_j_lfs_2021_120299
crossref_primary_10_1038_s41531_024_00858_0
crossref_primary_10_3389_fcell_2021_801422
crossref_primary_10_1089_ars_2020_8070
crossref_primary_10_1016_j_nbd_2022_105782
crossref_primary_10_1016_j_abb_2022_109377
crossref_primary_10_1186_s12974_024_03296_0
crossref_primary_10_3390_ani12121535
crossref_primary_10_1016_j_isci_2023_106829
crossref_primary_10_1038_s41582_024_01036_9
crossref_primary_10_1016_j_celrep_2023_112196
crossref_primary_10_1007_s00401_023_02564_2
crossref_primary_10_1016_j_neuroscience_2022_03_020
crossref_primary_10_3390_ijms242115834
crossref_primary_10_3389_fnagi_2024_1388654
crossref_primary_10_1002_advs_202401731
crossref_primary_10_1002_glia_23913
crossref_primary_10_1016_j_brainresbull_2024_111066
crossref_primary_10_1016_j_jneuroim_2025_578552
crossref_primary_10_4103_NRR_NRR_D_24_00063
crossref_primary_10_3390_biomedicines9050524
crossref_primary_10_1523_JNEUROSCI_0998_21_2022
crossref_primary_10_1080_08820139_2024_2358446
crossref_primary_10_1016_j_ecoenv_2022_113568
crossref_primary_10_1097_WCO_0000000000001356
crossref_primary_10_1016_j_drudis_2022_01_004
crossref_primary_10_1007_s10571_023_01335_7
crossref_primary_10_1016_j_cbi_2023_110387
crossref_primary_10_1016_j_celrep_2024_114488
crossref_primary_10_1016_j_intimp_2024_113801
crossref_primary_10_1186_s13195_019_0551_7
crossref_primary_10_1113_JP282894
crossref_primary_10_3390_cells11081367
crossref_primary_10_1186_s12974_025_03415_5
crossref_primary_10_1136_gutjnl_2018_317431
crossref_primary_10_1186_s12974_022_02613_9
crossref_primary_10_1038_s42255_023_00756_4
crossref_primary_10_1080_13880209_2021_1992449
crossref_primary_10_3389_fphar_2022_1077222
crossref_primary_10_1016_j_jconrel_2024_12_060
crossref_primary_10_1111_jnc_15867
crossref_primary_10_1186_s12974_024_03130_7
crossref_primary_10_1080_14789450_2023_2260955
crossref_primary_10_1016_j_tics_2024_11_010
crossref_primary_10_1007_s00281_023_00989_1
crossref_primary_10_1016_j_neubiorev_2023_105246
crossref_primary_10_1038_s42003_024_07405_w
crossref_primary_10_1016_j_molmed_2023_05_007
crossref_primary_10_1038_s41467_022_29506_y
crossref_primary_10_1186_s12974_024_03254_w
crossref_primary_10_1016_j_cmet_2021_10_010
crossref_primary_10_3389_fneur_2020_570711
crossref_primary_10_1007_s12195_023_00782_y
crossref_primary_10_1096_fj_202400289R
crossref_primary_10_1016_j_imlet_2022_04_001
crossref_primary_10_3390_molecules28114501
crossref_primary_10_1146_annurev_immunol_101921_035222
crossref_primary_10_3389_fnagi_2024_1402774
crossref_primary_10_1016_j_jconrel_2022_02_034
crossref_primary_10_1007_s11033_022_07319_y
crossref_primary_10_1186_s13024_023_00668_7
crossref_primary_10_3389_fnins_2020_530219
crossref_primary_10_1111_jnc_15760
crossref_primary_10_1016_j_arr_2022_101574
crossref_primary_10_1080_17460441_2024_2335210
crossref_primary_10_3389_fphar_2024_1434568
crossref_primary_10_3389_fnagi_2022_979869
crossref_primary_10_1007_s00213_021_06025_0
Cites_doi 10.1038/ncomms8967
10.1016/j.neuron.2014.12.068
10.1016/j.neuroimage.2015.12.044
10.1016/S0092-8674(03)00154-5
10.1016/j.cell.2016.08.064
10.1038/s41598-017-05232-0
10.1016/j.cell.2017.07.023
10.2967/jnumed.117.195107
10.3233/JAD-2011-111778
10.1126/science.1250684
10.1186/s40478-015-0209-z
10.1016/j.immuni.2015.02.002
10.1016/j.immuni.2014.06.008
10.1038/ni.3704
10.1016/S0165-5728(97)00034-9
10.1038/nn1472
10.1073/pnas.94.24.13287
10.1146/annurev.immunol.17.1.593
10.1016/j.cmet.2016.06.004
10.1016/j.neurobiolaging.2011.09.039
10.1074/jbc.M115.664995
10.1523/JNEUROSCI.1860-14.2014
10.1038/nature25986
10.1038/nm.3639
10.3233/JAD-151200
10.1038/s41420-017-0023-4
10.1016/j.neuron.2014.11.020
10.1038/s41467-017-00037-1
10.1038/ni.3398
10.4161/auto.29647
10.1038/nm0503-512
10.1038/nri.2017.66
10.1126/science.aal3535
10.1016/j.neuron.2017.04.043
10.3389/fimmu.2015.00539
10.1016/S1474-4422(18)30028-0
10.1038/nature18626
10.1002/glia.23074
10.1126/science.1072994
10.1371/journal.pone.0060921
10.1038/ncomms7176
10.1056/NEJMra0909142
10.1056/NEJMoa1202753
10.4049/jimmunol.1303321
10.1038/nri.2016.70
10.1001/jamaneurol.2014.3314
10.1523/JNEUROSCI.1202-06.2006
10.4049/jimmunol.0903382
10.1073/pnas.1317918110
10.1038/s41586-018-0023-4
10.1038/sj.mp.4002013
10.1056/NEJMoa1211103
10.1126/science.1251086
10.1016/j.cmet.2016.10.008
10.1056/NEJMoa1211851
10.1016/j.oraloncology.2014.11.014
10.1097/00003246-200201001-00009
10.1016/j.cell.2017.05.018
10.1371/journal.pone.0096786
10.1038/nature11986
10.1016/j.it.2009.07.009
10.1038/ni.3306
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cmet.2019.06.005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 507.e6
ExternalDocumentID 31257151
10_1016_j_cmet_2019_06_005
S1550413119303080
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c466t-9bb31023f7221893a5acdebbfc6e0a507d53afadc1aee4c3e554af2a2d6e12073
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Sun Sep 28 05:57:45 EDT 2025
Thu Apr 03 06:58:01 EDT 2025
Tue Jul 01 03:58:18 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 23 02:48:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords IFN-γ
amyloid-β
mTOR
OXPHOS
HIF-1α
Alzheimer's disease
microglia
aerobic glycolysis
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-9bb31023f7221893a5acdebbfc6e0a507d53afadc1aee4c3e554af2a2d6e12073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1550413119303080/pdf
PMID 31257151
PQID 2250627368
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2250627368
pubmed_primary_31257151
crossref_citationtrail_10_1016_j_cmet_2019_06_005
crossref_primary_10_1016_j_cmet_2019_06_005
elsevier_sciencedirect_doi_10_1016_j_cmet_2019_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-03
PublicationDateYYYYMMDD 2019-09-03
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Condello, Yuan, Schain, Grutzendler (bib17) 2015; 6
Gordon, Blazey, Su, Hari-Raj, Dincer, Flores, Christensen, McDade, Wang, Xiong (bib25) 2018; 17
Morizawa, Hirayama, Ohno, Shibata, Shigetomi, Sui, Nabekura, Sato, Okajima, Takebayashi (bib43) 2017; 8
Zhang, Chen, Sloan, Bennett, Scholze, O’Keeffe, Phatnani, Guarnieri, Caneda, Ruderisch (bib64) 2014; 34
Bateman, Xiong, Benzinger, Fagan, Goate, Fox, Marcus, Cairns, Xie, Blazey (bib7) 2012; 367
Krabbe, Halle, Matyash, Rinnenthal, Eom, Bernhardt, Miller, Prokop, Kettenmann, Heppner (bib35) 2013; 8
Baik, Kang, Son, Mook-Jung (bib5) 2016; 64
Katoh, Wu, Nguyen, Thai, Yamasaki, Lu, Rietsch, Zorlu, Shinozaki, Saitoh (bib33) 2017; 7
Ottum, Arellano, Reyes, Iruretagoyena, Naves (bib47) 2015; 6
Baruch, Rosenzweig, Kertser, Deczkowska, Sharif, Spinrad, Tsitsou-Kampeli, Sarel, Cahalon, Schwartz (bib6) 2015; 6
Galván-Peña, O’Neill (bib23) 2014; 5
Arts, Novakovic, Ter Horst, Carvalho, Bekkering, Lachmandas, Rodrigues, Silvestre, Cheng, Wang (bib2) 2016; 24
Tannahill, Curtis, Adamik, Palsson-Mcdermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib57) 2013; 496
Sturchler-Pierrat, Abramowski, Duke, Wiederhold, Mistl, Rothacher, Ledermann, Bürki, Frey, Paganetti (bib56) 1997; 94
Filiano, Xu, Tustison, Marsh, Baker, Smirnov, Overall, Gadani, Turner, Weng (bib21) 2016; 535
Biswas, Lopez-Collazo (bib9) 2009; 30
Son, Jung, Shin, Byun, Mook-Jung (bib53) 2012; 33
Mehta, Weinberg, Chandel (bib38) 2017; 17
Chakrabarty, Li, Ceballos-Diaz, Eddy, Funk, Moore, DiNunno, Rosario, Cruz, Verbeeck (bib13) 2015; 85
Glass, Natoli (bib24) 2016; 17
Davalos, Grutzendler, Yang, Kim, Zuo, Jung, Littman, Dustin, Gan (bib19) 2005; 8
Bachstetter, Van Eldik, Schmitt, Neltner, Ighodaro, Webster, Patel, Abner, Kryscio, Nelson (bib3) 2015; 3
Cheng, Scicluna, Arts, Gresnigt, Lachmandas, Giamarellos-Bourboulis, Kox, Manjeri, Wagenaars, Cremer (bib15) 2016; 17
Saeed, Quintin, Kerstens, Rao, Aghajanirefah, Matarese, Cheng, Ratter, Berentsen, van der Ent (bib52) 2014; 345
Benzinger, Blazey, Jack, Koeppe, Su, Xiong, Raichle, Snyder, Ances, Bateman (bib8) 2013; 110
Chakrabarty, Ceballos-Diaz, Beccard, Janus, Dickson, Golde, Das (bib12) 2010; 184
Strieter (bib55) 2003; 9
Hardy, Selkoe (bib28) 2002; 297
Querfurth, Laferla (bib50) 2010; 362
Ritprajak, Azuma (bib51) 2015; 51
O’Neill, Kishton, Rathmell (bib45) 2016; 16
Fleisher, Chen, Quiroz, Jakimovich, Gutierrez Gomez, Langois, Langbaum, Roontiva, Thiyyagura, Lee (bib22) 2015; 72
Aderem, Underhill (bib1) 1999; 17
Jonsson, Stefansson, Steinberg, Jonsdottir, Jonsson, Snaedal, Bjornsson, Huttenlocher, Levey, Lah (bib31) 2013; 368
Moon, Hong, Nam, Baik, Song, Kook, Kim, Lee, Mook-Jung (bib42) 2012; 29
Cheng, Quintin, Cramer, Shepardson, Saeed, Kumar, Giamarellos-Bourboulis, Martens, Rao, Aghajanirefah (bib14) 2014; 345
Venter, Oerlemans, Wijers, Willemse, Fransen, Wieringa (bib59) 2014; 9
Weinberg, Sena, Chandel (bib61) 2015; 42
Oakley, Cole, Logan, Maus, Shao, Craft, Guillozet-Bongaarts, Ohno, Disterhoft, Van Eldik (bib46) 2006; 26
Kang, Byun, Son, Mook-Jung (bib32) 2018; 4
Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib39) 2016; 167
Keren-Shaul, Spinrad, Weiner, Matcovitch-Natan, Dvir-Szternfeld, Ulland, David, Baruch, Lara-Astaiso, Toth (bib34) 2017; 169
Murray, Allen, Biswas, Fisher, Gilroy, Goerdt, Gordon, Hamilton, Ivashkiv, Lawrence (bib44) 2014; 41
Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib41) 2018; 556
Guerreiro, Wojtas, Bras, Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, Kauwe, Younkin (bib26) 2013; 368
Pan, Banks, Kastin (bib48) 1997; 76
Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib37) 2016; 24
Backes, Walberer, Ladwig, Rueger, Neumaier, Endepols, Hoehn, Fink, Schroeter, Graf (bib4) 2016; 128
Cramer, Yamanishi, Clausen, Förster, Pawlinski, Mackman, Haase, Jaenisch, Corr, Nizet (bib18) 2003; 112
West, Heagy (bib63) 2002; 30
Jo, Yarishkin, Hwang, Chun, Park, Woo, Bae, Kim, Lee, Chun (bib30) 2014; 20
Son, Shin, Byun, Kook, Moon, Chang, Mook-Jung (bib54) 2016; 51
Wendeln, Degenhardt, Kaurani, Gertig, Ulas, Jain, Wagner, Häsler, Wild, Skodras (bib62) 2018; 556
Wang, Campbell, Zhang (bib60) 2008; 13
Pavlou, Wang, Xu, Chen (bib49) 2017; 14
Ding, Yan, Li, Li, Ciric, Yang, Zhang, Wu, Xu, Chen (bib20) 2015; 194
Ulland, Song, Huang, Ulrich, Sergushichev, Beatty, Loboda, Zhou, Cairns, Kambal (bib58) 2017; 170
Bohlen, Bennett, Tucker, Collins, Mulinyawe, Barres (bib10) 2017; 94
Guillot-Sestier, Doty, Gate, Rodriguez, Leung, Rezai-Zadeh, Town (bib27) 2015; 85
Brendel, Focke, Blume, Peters, Deussing, Probst, Jaworska, Overhoff, Albert, Lindner (bib11) 2017; 58
Ip, Hoshi, Shouval, Snapper, Medzhitov (bib29) 2017; 356
Mills, Kelly, O’Neill (bib40) 2017; 18
Cho, Cho, Kang, Jeon, Kim, Kwon, Kim, Kim, Yoon (bib16) 2014; 10
Kroczynska, Rafidi, Majchrzak-Kita, Kosciuczuk, Blyth, Jemielity, Warminska, Saleiro, Mehrotra, Arslan (bib36) 2016; 291
Saeed (10.1016/j.cmet.2019.06.005_bib52) 2014; 345
Condello (10.1016/j.cmet.2019.06.005_bib17) 2015; 6
Zhang (10.1016/j.cmet.2019.06.005_bib64) 2014; 34
Chakrabarty (10.1016/j.cmet.2019.06.005_bib13) 2015; 85
Moon (10.1016/j.cmet.2019.06.005_bib42) 2012; 29
Gordon (10.1016/j.cmet.2019.06.005_bib25) 2018; 17
O’Neill (10.1016/j.cmet.2019.06.005_bib45) 2016; 16
Wendeln (10.1016/j.cmet.2019.06.005_bib62) 2018; 556
Bachstetter (10.1016/j.cmet.2019.06.005_bib3) 2015; 3
Filiano (10.1016/j.cmet.2019.06.005_bib21) 2016; 535
Biswas (10.1016/j.cmet.2019.06.005_bib9) 2009; 30
Strieter (10.1016/j.cmet.2019.06.005_bib55) 2003; 9
Bohlen (10.1016/j.cmet.2019.06.005_bib10) 2017; 94
Ip (10.1016/j.cmet.2019.06.005_bib29) 2017; 356
Ottum (10.1016/j.cmet.2019.06.005_bib47) 2015; 6
Ritprajak (10.1016/j.cmet.2019.06.005_bib51) 2015; 51
Mills (10.1016/j.cmet.2019.06.005_bib40) 2017; 18
Pavlou (10.1016/j.cmet.2019.06.005_bib49) 2017; 14
Guerreiro (10.1016/j.cmet.2019.06.005_bib26) 2013; 368
Pan (10.1016/j.cmet.2019.06.005_bib48) 1997; 76
Wang (10.1016/j.cmet.2019.06.005_bib60) 2008; 13
Weinberg (10.1016/j.cmet.2019.06.005_bib61) 2015; 42
Mills (10.1016/j.cmet.2019.06.005_bib39) 2016; 167
Mills (10.1016/j.cmet.2019.06.005_bib41) 2018; 556
Murray (10.1016/j.cmet.2019.06.005_bib44) 2014; 41
Aderem (10.1016/j.cmet.2019.06.005_bib1) 1999; 17
Sturchler-Pierrat (10.1016/j.cmet.2019.06.005_bib56) 1997; 94
Tannahill (10.1016/j.cmet.2019.06.005_bib57) 2013; 496
Lampropoulou (10.1016/j.cmet.2019.06.005_bib37) 2016; 24
Davalos (10.1016/j.cmet.2019.06.005_bib19) 2005; 8
Ulland (10.1016/j.cmet.2019.06.005_bib58) 2017; 170
Cheng (10.1016/j.cmet.2019.06.005_bib15) 2016; 17
Fleisher (10.1016/j.cmet.2019.06.005_bib22) 2015; 72
Mehta (10.1016/j.cmet.2019.06.005_bib38) 2017; 17
Hardy (10.1016/j.cmet.2019.06.005_bib28) 2002; 297
Morizawa (10.1016/j.cmet.2019.06.005_bib43) 2017; 8
Cho (10.1016/j.cmet.2019.06.005_bib16) 2014; 10
Ding (10.1016/j.cmet.2019.06.005_bib20) 2015; 194
Oakley (10.1016/j.cmet.2019.06.005_bib46) 2006; 26
Cheng (10.1016/j.cmet.2019.06.005_bib14) 2014; 345
Brendel (10.1016/j.cmet.2019.06.005_bib11) 2017; 58
Keren-Shaul (10.1016/j.cmet.2019.06.005_bib34) 2017; 169
Backes (10.1016/j.cmet.2019.06.005_bib4) 2016; 128
West (10.1016/j.cmet.2019.06.005_bib63) 2002; 30
Benzinger (10.1016/j.cmet.2019.06.005_bib8) 2013; 110
Querfurth (10.1016/j.cmet.2019.06.005_bib50) 2010; 362
Glass (10.1016/j.cmet.2019.06.005_bib24) 2016; 17
Kroczynska (10.1016/j.cmet.2019.06.005_bib36) 2016; 291
Kang (10.1016/j.cmet.2019.06.005_bib32) 2018; 4
Krabbe (10.1016/j.cmet.2019.06.005_bib35) 2013; 8
Son (10.1016/j.cmet.2019.06.005_bib53) 2012; 33
Son (10.1016/j.cmet.2019.06.005_bib54) 2016; 51
Arts (10.1016/j.cmet.2019.06.005_bib2) 2016; 24
Baruch (10.1016/j.cmet.2019.06.005_bib6) 2015; 6
Baik (10.1016/j.cmet.2019.06.005_bib5) 2016; 64
Guillot-Sestier (10.1016/j.cmet.2019.06.005_bib27) 2015; 85
Venter (10.1016/j.cmet.2019.06.005_bib59) 2014; 9
Bateman (10.1016/j.cmet.2019.06.005_bib7) 2012; 367
Jonsson (10.1016/j.cmet.2019.06.005_bib31) 2013; 368
Katoh (10.1016/j.cmet.2019.06.005_bib33) 2017; 7
Cramer (10.1016/j.cmet.2019.06.005_bib18) 2003; 112
Chakrabarty (10.1016/j.cmet.2019.06.005_bib12) 2010; 184
Galván-Peña (10.1016/j.cmet.2019.06.005_bib23) 2014; 5
Jo (10.1016/j.cmet.2019.06.005_bib30) 2014; 20
31484050 - Cell Metab. 2019 Sep 3;30(3):405-406
References_xml – volume: 18
  start-page: 488
  year: 2017
  end-page: 498
  ident: bib40
  article-title: Mitochondria are the powerhouses of immunity
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 7967
  year: 2015
  ident: bib6
  article-title: Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology
  publication-title: Nat. Commun.
– volume: 64
  start-page: 2274
  year: 2016
  end-page: 2290
  ident: bib5
  article-title: Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model
  publication-title: Glia
– volume: 10
  start-page: 1761
  year: 2014
  end-page: 1775
  ident: bib16
  article-title: Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome
  publication-title: Autophagy
– volume: 7
  start-page: 4942
  year: 2017
  ident: bib33
  article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation
  publication-title: Sci. Rep.
– volume: 8
  start-page: e60921
  year: 2013
  ident: bib35
  article-title: Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology
  publication-title: PLoS One
– volume: 167
  start-page: 457
  year: 2016
  end-page: 470
  ident: bib39
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
– volume: 29
  start-page: 615
  year: 2012
  end-page: 628
  ident: bib42
  article-title: Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
– volume: 194
  start-page: 4251
  year: 2015
  end-page: 4264
  ident: bib20
  article-title: Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity
  publication-title: J. Immunol.
– volume: 8
  start-page: 28
  year: 2017
  ident: bib43
  article-title: Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway
  publication-title: Nat. Commun.
– volume: 169
  start-page: 1276
  year: 2017
  end-page: 1290
  ident: bib34
  article-title: A unique microglia type associated with restricting development of Alzheimer’s disease
  publication-title: Cell
– volume: 16
  start-page: 553
  year: 2016
  end-page: 565
  ident: bib45
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
– volume: 24
  start-page: 807
  year: 2016
  end-page: 819
  ident: bib2
  article-title: Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
  publication-title: Cell Metab.
– volume: 17
  start-page: 593
  year: 1999
  end-page: 623
  ident: bib1
  article-title: Mechanisms of phagocytosis in macrophages
  publication-title: Annu. Rev. Immunol.
– volume: 33
  start-page: 1006
  year: 2012
  ident: bib53
  article-title: Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling
  publication-title: Neurobiol. Aging
– volume: 9
  start-page: 512
  year: 2003
  end-page: 513
  ident: bib55
  article-title: Mastering innate immunity
  publication-title: Nat. Med.
– volume: 496
  start-page: 238
  year: 2013
  end-page: 242
  ident: bib57
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
– volume: 85
  start-page: 519
  year: 2015
  end-page: 533
  ident: bib13
  article-title: IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior
  publication-title: Neuron
– volume: 4
  start-page: 31
  year: 2018
  ident: bib32
  article-title: Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells
  publication-title: Cell Death Discov.
– volume: 17
  start-page: 406
  year: 2016
  end-page: 413
  ident: bib15
  article-title: Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis
  publication-title: Nat. Immunol.
– volume: 556
  start-page: 332
  year: 2018
  end-page: 338
  ident: bib62
  article-title: Innate immune memory in the brain shapes neurological disease hallmarks
  publication-title: Nature
– volume: 51
  start-page: 221
  year: 2015
  end-page: 228
  ident: bib51
  article-title: Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma
  publication-title: Oral Oncol.
– volume: 51
  start-page: 1197
  year: 2016
  end-page: 1208
  ident: bib54
  article-title: Metformin facilitates amyloid-β generation by β- and γ -secretases via autophagy activation
  publication-title: J. Alzheimers Dis.
– volume: 85
  start-page: 534
  year: 2015
  end-page: 548
  ident: bib27
  article-title: Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology
  publication-title: Neuron
– volume: 6
  start-page: 6176
  year: 2015
  ident: bib17
  article-title: Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques
  publication-title: Nat. Commun.
– volume: 6
  start-page: 539
  year: 2015
  ident: bib47
  article-title: Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation
  publication-title: Front. Immunol.
– volume: 17
  start-page: 241
  year: 2018
  end-page: 250
  ident: bib25
  article-title: Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study
  publication-title: Lancet Neurol.
– volume: 3
  start-page: 32
  year: 2015
  ident: bib3
  article-title: Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging
  publication-title: Acta Neuropathol. Commun.
– volume: 184
  start-page: 5333
  year: 2010
  end-page: 5343
  ident: bib12
  article-title: IFN-g promotes complement expression and attenuates amyloid plaque deposition in amyloid precursor protein transgenic mice
  publication-title: J. Immunol.
– volume: 5
  start-page: 420
  year: 2014
  ident: bib23
  article-title: Metabolic reprograming in macrophage polarization
  publication-title: Front. Immunol.
– volume: 76
  start-page: 105
  year: 1997
  end-page: 111
  ident: bib48
  article-title: Permeability of the blood-brain and blood-spinal cord barriers to interferons
  publication-title: J. Neuroimmunol.
– volume: 345
  start-page: 1250684
  year: 2014
  ident: bib14
  article-title: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
– volume: 13
  start-page: 293
  year: 2008
  end-page: 301
  ident: bib60
  article-title: Systemic interferon-α regulates interferon-stimulated genes in the central nervous system
  publication-title: Mol. Psychiatry
– volume: 17
  start-page: 26
  year: 2016
  end-page: 33
  ident: bib24
  article-title: Molecular control of activation and priming in macrophages
  publication-title: Nat. Immunol.
– volume: 535
  start-page: 425
  year: 2016
  end-page: 429
  ident: bib21
  article-title: Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour
  publication-title: Nature
– volume: 291
  start-page: 2389
  year: 2016
  end-page: 2396
  ident: bib36
  article-title: Interferon γ (IFNγ) signaling via mechanistic target of rapamycin complex 2 (mTORC2) and regulatory effects in the generation of type II interferon biological responses
  publication-title: J. Biol. Chem.
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bib41
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 128
  start-page: 54
  year: 2016
  end-page: 62
  ident: bib4
  article-title: Glucose consumption of inflammatory cells masks metabolic deficits in the brain
  publication-title: Neuroimage
– volume: 30
  start-page: 475
  year: 2009
  end-page: 487
  ident: bib9
  article-title: Endotoxin tolerance: new mechanisms, molecules and clinical significance
  publication-title: Trends Immunol.
– volume: 110
  start-page: E4502
  year: 2013
  end-page: E4509
  ident: bib8
  article-title: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 608
  year: 2017
  end-page: 620
  ident: bib38
  article-title: Mitochondrial control of immunity: beyond ATP
  publication-title: Nat. Rev. Immunol.
– volume: 42
  start-page: 406
  year: 2015
  end-page: 417
  ident: bib61
  article-title: Mitochondria in the regulation of innate and adaptive immunity
  publication-title: Immunity
– volume: 367
  start-page: 795
  year: 2012
  end-page: 804
  ident: bib7
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 112
  start-page: 645
  year: 2003
  end-page: 657
  ident: bib18
  article-title: HIF-1α is essential for myeloid cell-mediated inflammation
  publication-title: Cell
– volume: 41
  start-page: 14
  year: 2014
  end-page: 20
  ident: bib44
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
– volume: 26
  start-page: 10129
  year: 2006
  end-page: 10140
  ident: bib46
  article-title: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation
  publication-title: J. Neurosci.
– volume: 345
  start-page: 1251086
  year: 2014
  ident: bib52
  article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
  publication-title: Science
– volume: 8
  start-page: 752
  year: 2005
  end-page: 758
  ident: bib19
  article-title: ATP mediates rapid microglial response to local brain injury in vivo
  publication-title: Nat. Neurosci.
– volume: 58
  start-page: 1984
  year: 2017
  end-page: 1990
  ident: bib11
  article-title: Time courses of cortical glucose metabolism and microglial activity Across the life span of wild-type mice: a PET study
  publication-title: J. Nucl. Med.
– volume: 72
  start-page: 316
  year: 2015
  end-page: 324
  ident: bib22
  article-title: Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study
  publication-title: JAMA Neurol.
– volume: 30
  start-page: S64
  year: 2002
  end-page: S73
  ident: bib63
  article-title: Endotoxin tolerance: a review
  publication-title: Crit. Care Med.
– volume: 297
  start-page: 353
  year: 2002
  end-page: 356
  ident: bib28
  article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics
  publication-title: Science
– volume: 14
  start-page: 12
  year: 2017
  end-page: 17
  ident: bib49
  article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells
  publication-title: J. Inflam. (Lond.)
– volume: 24
  start-page: 158
  year: 2016
  end-page: 166
  ident: bib37
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
– volume: 368
  start-page: 107
  year: 2013
  end-page: 116
  ident: bib31
  article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 362
  start-page: 329
  year: 2010
  end-page: 344
  ident: bib50
  article-title: Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 20
  start-page: 886
  year: 2014
  end-page: 896
  ident: bib30
  article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease
  publication-title: Nat. Med.
– volume: 170
  start-page: 649
  year: 2017
  end-page: 663
  ident: bib58
  article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease
  publication-title: Cell
– volume: 368
  start-page: 117
  year: 2013
  end-page: 127
  ident: bib26
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 94
  start-page: 759
  year: 2017
  end-page: 773
  ident: bib10
  article-title: Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures
  publication-title: Neuron
– volume: 356
  start-page: 513
  year: 2017
  end-page: 519
  ident: bib29
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
– volume: 9
  start-page: e96786
  year: 2014
  ident: bib59
  article-title: Glucose controls morphodynamics of LPS-stimulated macrophages
  publication-title: PLoS One
– volume: 94
  start-page: 13287
  year: 1997
  end-page: 13292
  ident: bib56
  article-title: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 11929
  year: 2014
  end-page: 11947
  ident: bib64
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J. Neurosci.
– volume: 6
  start-page: 7967
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib6
  article-title: Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8967
– volume: 85
  start-page: 534
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib27
  article-title: Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.068
– volume: 128
  start-page: 54
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib4
  article-title: Glucose consumption of inflammatory cells masks metabolic deficits in the brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.12.044
– volume: 112
  start-page: 645
  year: 2003
  ident: 10.1016/j.cmet.2019.06.005_bib18
  article-title: HIF-1α is essential for myeloid cell-mediated inflammation
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00154-5
– volume: 167
  start-page: 457
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib39
  article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.064
– volume: 7
  start-page: 4942
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib33
  article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05232-0
– volume: 170
  start-page: 649
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib58
  article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.023
– volume: 58
  start-page: 1984
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib11
  article-title: Time courses of cortical glucose metabolism and microglial activity Across the life span of wild-type mice: a PET study
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.117.195107
– volume: 29
  start-page: 615
  year: 2012
  ident: 10.1016/j.cmet.2019.06.005_bib42
  article-title: Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-111778
– volume: 345
  start-page: 1250684
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib14
  article-title: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
  doi: 10.1126/science.1250684
– volume: 3
  start-page: 32
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib3
  article-title: Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-015-0209-z
– volume: 42
  start-page: 406
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib61
  article-title: Mitochondria in the regulation of innate and adaptive immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.002
– volume: 41
  start-page: 14
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib44
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.008
– volume: 18
  start-page: 488
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib40
  article-title: Mitochondria are the powerhouses of immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3704
– volume: 76
  start-page: 105
  year: 1997
  ident: 10.1016/j.cmet.2019.06.005_bib48
  article-title: Permeability of the blood-brain and blood-spinal cord barriers to interferons
  publication-title: J. Neuroimmunol.
  doi: 10.1016/S0165-5728(97)00034-9
– volume: 8
  start-page: 752
  year: 2005
  ident: 10.1016/j.cmet.2019.06.005_bib19
  article-title: ATP mediates rapid microglial response to local brain injury in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1472
– volume: 94
  start-page: 13287
  year: 1997
  ident: 10.1016/j.cmet.2019.06.005_bib56
  article-title: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.24.13287
– volume: 17
  start-page: 593
  year: 1999
  ident: 10.1016/j.cmet.2019.06.005_bib1
  article-title: Mechanisms of phagocytosis in macrophages
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.17.1.593
– volume: 24
  start-page: 158
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib37
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 33
  start-page: 1006
  year: 2012
  ident: 10.1016/j.cmet.2019.06.005_bib53
  article-title: Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.09.039
– volume: 291
  start-page: 2389
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib36
  article-title: Interferon γ (IFNγ) signaling via mechanistic target of rapamycin complex 2 (mTORC2) and regulatory effects in the generation of type II interferon biological responses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.664995
– volume: 34
  start-page: 11929
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib64
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.cmet.2019.06.005_bib41
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 20
  start-page: 886
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib30
  article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3639
– volume: 51
  start-page: 1197
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib54
  article-title: Metformin facilitates amyloid-β generation by β- and γ -secretases via autophagy activation
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-151200
– volume: 4
  start-page: 31
  year: 2018
  ident: 10.1016/j.cmet.2019.06.005_bib32
  article-title: Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-017-0023-4
– volume: 85
  start-page: 519
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib13
  article-title: IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.11.020
– volume: 14
  start-page: 12
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib49
  article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells
  publication-title: J. Inflam. (Lond.)
– volume: 8
  start-page: 28
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib43
  article-title: Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00037-1
– volume: 17
  start-page: 406
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib15
  article-title: Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3398
– volume: 10
  start-page: 1761
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib16
  article-title: Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome
  publication-title: Autophagy
  doi: 10.4161/auto.29647
– volume: 9
  start-page: 512
  year: 2003
  ident: 10.1016/j.cmet.2019.06.005_bib55
  article-title: Mastering innate immunity
  publication-title: Nat. Med.
  doi: 10.1038/nm0503-512
– volume: 17
  start-page: 608
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib38
  article-title: Mitochondrial control of immunity: beyond ATP
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.66
– volume: 356
  start-page: 513
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib29
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
  doi: 10.1126/science.aal3535
– volume: 94
  start-page: 759
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib10
  article-title: Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.04.043
– volume: 6
  start-page: 539
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib47
  article-title: Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00539
– volume: 17
  start-page: 241
  year: 2018
  ident: 10.1016/j.cmet.2019.06.005_bib25
  article-title: Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30028-0
– volume: 535
  start-page: 425
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib21
  article-title: Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour
  publication-title: Nature
  doi: 10.1038/nature18626
– volume: 64
  start-page: 2274
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib5
  article-title: Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model
  publication-title: Glia
  doi: 10.1002/glia.23074
– volume: 297
  start-page: 353
  year: 2002
  ident: 10.1016/j.cmet.2019.06.005_bib28
  article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics
  publication-title: Science
  doi: 10.1126/science.1072994
– volume: 5
  start-page: 420
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib23
  article-title: Metabolic reprograming in macrophage polarization
  publication-title: Front. Immunol.
– volume: 8
  start-page: e60921
  year: 2013
  ident: 10.1016/j.cmet.2019.06.005_bib35
  article-title: Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060921
– volume: 6
  start-page: 6176
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib17
  article-title: Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7176
– volume: 362
  start-page: 329
  year: 2010
  ident: 10.1016/j.cmet.2019.06.005_bib50
  article-title: Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0909142
– volume: 367
  start-page: 795
  year: 2012
  ident: 10.1016/j.cmet.2019.06.005_bib7
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1202753
– volume: 194
  start-page: 4251
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib20
  article-title: Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303321
– volume: 16
  start-page: 553
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib45
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
– volume: 72
  start-page: 316
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib22
  article-title: Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2014.3314
– volume: 26
  start-page: 10129
  year: 2006
  ident: 10.1016/j.cmet.2019.06.005_bib46
  article-title: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1202-06.2006
– volume: 184
  start-page: 5333
  year: 2010
  ident: 10.1016/j.cmet.2019.06.005_bib12
  article-title: IFN-g promotes complement expression and attenuates amyloid plaque deposition in amyloid precursor protein transgenic mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0903382
– volume: 110
  start-page: E4502
  year: 2013
  ident: 10.1016/j.cmet.2019.06.005_bib8
  article-title: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1317918110
– volume: 556
  start-page: 332
  year: 2018
  ident: 10.1016/j.cmet.2019.06.005_bib62
  article-title: Innate immune memory in the brain shapes neurological disease hallmarks
  publication-title: Nature
  doi: 10.1038/s41586-018-0023-4
– volume: 13
  start-page: 293
  year: 2008
  ident: 10.1016/j.cmet.2019.06.005_bib60
  article-title: Systemic interferon-α regulates interferon-stimulated genes in the central nervous system
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4002013
– volume: 368
  start-page: 107
  year: 2013
  ident: 10.1016/j.cmet.2019.06.005_bib31
  article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211103
– volume: 345
  start-page: 1251086
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib52
  article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
  publication-title: Science
  doi: 10.1126/science.1251086
– volume: 24
  start-page: 807
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib2
  article-title: Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.10.008
– volume: 368
  start-page: 117
  year: 2013
  ident: 10.1016/j.cmet.2019.06.005_bib26
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211851
– volume: 51
  start-page: 221
  year: 2015
  ident: 10.1016/j.cmet.2019.06.005_bib51
  article-title: Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2014.11.014
– volume: 30
  start-page: S64
  year: 2002
  ident: 10.1016/j.cmet.2019.06.005_bib63
  article-title: Endotoxin tolerance: a review
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200201001-00009
– volume: 169
  start-page: 1276
  year: 2017
  ident: 10.1016/j.cmet.2019.06.005_bib34
  article-title: A unique microglia type associated with restricting development of Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 9
  start-page: e96786
  year: 2014
  ident: 10.1016/j.cmet.2019.06.005_bib59
  article-title: Glucose controls morphodynamics of LPS-stimulated macrophages
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096786
– volume: 496
  start-page: 238
  year: 2013
  ident: 10.1016/j.cmet.2019.06.005_bib57
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 30
  start-page: 475
  year: 2009
  ident: 10.1016/j.cmet.2019.06.005_bib9
  article-title: Endotoxin tolerance: new mechanisms, molecules and clinical significance
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2009.07.009
– volume: 17
  start-page: 26
  year: 2016
  ident: 10.1016/j.cmet.2019.06.005_bib24
  article-title: Molecular control of activation and priming in macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3306
– reference: 31484050 - Cell Metab. 2019 Sep 3;30(3):405-406
SSID ssj0036393
Score 2.7056725
Snippet Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 493
SubjectTerms aerobic glycolysis
Alzheimer's disease
amyloid-β
HIF-1α
IFN-γ
microglia
mTOR
OXPHOS
Title A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease
URI https://dx.doi.org/10.1016/j.cmet.2019.06.005
https://www.ncbi.nlm.nih.gov/pubmed/31257151
https://www.proquest.com/docview/2250627368
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCIIHKWuaNLbHdVV8sF5UWLyENJnV6m5X7O5Bf70zfQiCevDYkqEhk8x8od98w9i-TSLpfayDxCkVKKlFkMROB8ci8kcx2NCWck29G31xr676UX-GdZtaGKJV1rG_iulltK7ftOvVbL9mWfuWwLUitZhEkugK3dupqpSK-PonTTSWmIFLkj0ODmh0XThTcbzcCIhPKZJSw5Na2P2cnH4Dn2USOl9kCzV65J1qgktsBvJlNlf1k3xfYQ8dfoIg8MXj1ZpnOe_BBH08zBxHnF0RsUaYqnjXTgsoeI_IeI_DzPLT94ISHDmJ7DrDjyfIRvB2UPDT6g_OKrs_P7vrXgR184TAKa0nQZKmkmQZBschZvFE2sg6D2k6cBqOLKJAH0k7sN4JC6CcBMQVdhDa0GsQIR78NTabj3PYYBxBJF4qfOxi8EpYNEi9j3ySIpgCAarFRLNqxtXK4tTgYmgaCtmzoZU2tNKm5NFFLXb4ZfNa6Wr8OTpqnGG-7Q6Dgf9Pu73GcwaPDf0LsTmMp4XBMEYCzVLHLbZeufRrHhJBH-5VsfnPr26xeXoqmWhym81O3qawg9Blku4iaL-83i136Cd1cuxs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaIXVGhpl6crVeoBRbuOHZMc9wFaHsulIK24WI49Cym7WUR2D_TXdyYPpEqFA9fEo1ie8cxn5fM3jP2wSSS9j3WQOKUCJbUIktjp4FhEvhODDW0p1zS60sMbdT6Oxius39yFIVplnfurnF5m6_pJu17N9mOWtX8RuFakFpNIEl3Bc_sHRAMdCu2zca9JxxJLcMmyx9EBDa9vzlQkLzcDIlSKpBTxpB52_69Or6HPsgqdfmIbNXzk3WqGm2wF8i22VjWUfP7Mbru8hyjwwePZmmc5H8ECnTzNHEegXTGxZlireN8uCyj4iNh4d9PM8sFzQRWOvER23emfe8hm8PSz4IPqF84XdnN6ct0fBnX3hMAprRdBkqaSdBkmxyGW8UTayDoPaTpxGjoWYaCPpJ1Y74QFUE4CAgs7CW3oNYgQd_42W83nOXxjHFEknip87GLwSlg0SL2PfJIimgIBqsVEs2rG1dLi1OFiahoO2W9DK21opU1JpIta7OjF5rES1nhzdNQ4w_wTHgYz_5t23xvPGdw39DPE5jBfFgbzGCk0Sx232NfKpS_zkIj6MFjFzju_esjWh9ejS3N5dnWxyz7Sm5KWJvfY6uJpCfuIYxbpQRmnfwHU2O6W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Breakdown+in+Metabolic+Reprogramming+Causes+Microglia+Dysfunction+in+Alzheimer%27s+Disease&rft.jtitle=Cell+metabolism&rft.au=Baik%2C+Sung+Hoon&rft.au=Kang%2C+Seokjo&rft.au=Lee%2C+Woochan&rft.au=Choi%2C+Hayoung&rft.date=2019-09-03&rft.eissn=1932-7420&rft.volume=30&rft.issue=3&rft.spage=493&rft_id=info:doi/10.1016%2Fj.cmet.2019.06.005&rft_id=info%3Apmid%2F31257151&rft.externalDocID=31257151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon