A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease
Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogr...
Saved in:
Published in | Cell metabolism Vol. 30; no. 3; pp. 493 - 507.e6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4131 1932-7420 1932-7420 |
DOI | 10.1016/j.cmet.2019.06.005 |
Cover
Abstract | Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.
[Display omitted]
•Aβ induces metabolic reprogramming of microglia from OXPHOS to glycolysis•Metabolic reprogramming of microglia is dependent on the mTOR-HIF-1α pathway•Chronic exposure to Aβ induces metabolic defects of microglia•Metabolic boosting with IFN-γ restores immunological function of microglia
Baik et al. report that amyloid-β acutely triggers microglial activation and metabolic reprogramming from OXPHOS to glycolysis. However, chronic exposure to amyloid-β induces overall metabolic defects in microglia in a model of Alzheimer's disease. Treatment with IFN-γ restores glycolytic metabolism and immunological function of microglia, suggesting that modulation of microglial metabolism may be a potential therapeutic strategy. |
---|---|
AbstractList | Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD. Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD. [Display omitted] •Aβ induces metabolic reprogramming of microglia from OXPHOS to glycolysis•Metabolic reprogramming of microglia is dependent on the mTOR-HIF-1α pathway•Chronic exposure to Aβ induces metabolic defects of microglia•Metabolic boosting with IFN-γ restores immunological function of microglia Baik et al. report that amyloid-β acutely triggers microglial activation and metabolic reprogramming from OXPHOS to glycolysis. However, chronic exposure to amyloid-β induces overall metabolic defects in microglia in a model of Alzheimer's disease. Treatment with IFN-γ restores glycolytic metabolism and immunological function of microglia, suggesting that modulation of microglial metabolism may be a potential therapeutic strategy. Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD. |
Author | Mook-Jung, Inhee Baik, Sung Hoon Kim, Jong-Il Lee, Woochan Choi, Hayoung Chung, Sunwoo Kang, Seokjo |
Author_xml | – sequence: 1 givenname: Sung Hoon surname: Baik fullname: Baik, Sung Hoon organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 2 givenname: Seokjo surname: Kang fullname: Kang, Seokjo organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 3 givenname: Woochan surname: Lee fullname: Lee, Woochan organization: Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 4 givenname: Hayoung surname: Choi fullname: Choi, Hayoung organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 5 givenname: Sunwoo surname: Chung fullname: Chung, Sunwoo organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 6 givenname: Jong-Il surname: Kim fullname: Kim, Jong-Il organization: Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea – sequence: 7 givenname: Inhee surname: Mook-Jung fullname: Mook-Jung, Inhee email: inhee@snu.ac.kr organization: Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31257151$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1P3DAQhq0KVGDpH-ihyq29JIzt2NlIvWyXTwmEhOilF2viTKi3-QA7AcGvx9uFC4c9zWj0PqOZ54Dt9ENPjH3lkHHg-miV2Y7GTAAvM9AZgPrE9nkpRVrkAnZirxSkOZd8jx2EsAKQWpbyM9uTXKiCK77P_iySX57wXz089YnrkysasRpaZ5MbuvfDnceuc_1dssQpUEiunI3D1mFy_ByaqbejG_5zi_blL7mO_PeQHLtAGOiQ7TbYBvryVmfs9-nJ7fI8vbw-u1guLlObaz2mZVVJDkI2hRB8XkpUaGuqqsZqAlRQ1Epig7XlSJRbSUrl2AgUtSYuoJAz9mOzN977MFEYTeeCpbbFnoYpGCEUaFFIPY_Rb2_RqeqoNvfedeifzbuPGJhvAvHNEDw1xroR10-OHl1rOJi1erMya_Vmrd6ANlF9RMUH9H37VujnBqIo6NGRN8E66i3VzpMdTT24bfgrORidiA |
CitedBy_id | crossref_primary_10_3390_molecules27082484 crossref_primary_10_1016_j_neuint_2023_105614 crossref_primary_10_1073_pnas_2009680117 crossref_primary_10_1002_adbi_202200321 crossref_primary_10_1002_alz_12845 crossref_primary_10_1016_j_jep_2021_114264 crossref_primary_10_1038_s41467_021_23337_z crossref_primary_10_3390_ijms24108967 crossref_primary_10_1002_eji_202350815 crossref_primary_10_1016_j_pneurobio_2021_102089 crossref_primary_10_1038_s41598_020_67649_4 crossref_primary_10_1016_j_tins_2020_08_008 crossref_primary_10_1016_j_arr_2024_102250 crossref_primary_10_1186_s12974_022_02401_5 crossref_primary_10_14336_AD_2024_1629 crossref_primary_10_1016_j_semcdb_2020_08_001 crossref_primary_10_1007_s12035_020_01994_3 crossref_primary_10_1096_fj_202301173RRR crossref_primary_10_1186_s12967_020_02672_7 crossref_primary_10_1016_j_exger_2019_110766 crossref_primary_10_1002_adma_202100746 crossref_primary_10_3389_fphar_2020_00368 crossref_primary_10_1155_2022_5227335 crossref_primary_10_3233_JAD_201448 crossref_primary_10_1007_s12031_022_02020_y crossref_primary_10_1111_acel_14496 crossref_primary_10_1007_s13365_024_01239_2 crossref_primary_10_1248_bpb_b22_00855 crossref_primary_10_3389_fimmu_2021_624538 crossref_primary_10_3390_antiox13070836 crossref_primary_10_1007_s10456_024_09948_2 crossref_primary_10_3389_fonc_2022_822085 crossref_primary_10_3390_brainsci13010055 crossref_primary_10_1016_j_biopha_2024_117235 crossref_primary_10_1016_j_bbi_2020_05_052 crossref_primary_10_1016_j_phymed_2024_155592 crossref_primary_10_1002_stem_3309 crossref_primary_10_3389_fphar_2024_1366061 crossref_primary_10_3389_fnagi_2022_1042488 crossref_primary_10_1007_s11357_023_00859_6 crossref_primary_10_1016_j_mito_2021_03_014 crossref_primary_10_3390_biomedicines10081800 crossref_primary_10_15252_embr_202052013 crossref_primary_10_4093_dmj_2024_0117 crossref_primary_10_1016_j_biopha_2024_116158 crossref_primary_10_1016_j_neuint_2021_105184 crossref_primary_10_54461_JKMST_2022_6_2_89 crossref_primary_10_1016_j_cmet_2022_02_013 crossref_primary_10_1038_s41467_023_39077_1 crossref_primary_10_1152_ajpendo_00331_2024 crossref_primary_10_1007_s12032_021_01586_8 crossref_primary_10_1016_j_trim_2022_101664 crossref_primary_10_1016_j_ymgme_2021_01_011 crossref_primary_10_1016_j_neuint_2020_104919 crossref_primary_10_1038_s41423_022_00922_w crossref_primary_10_1186_s12974_021_02318_5 crossref_primary_10_1186_s40035_024_00402_3 crossref_primary_10_3233_JAD_210177 crossref_primary_10_1038_s42255_022_00647_0 crossref_primary_10_3390_antiox12051117 crossref_primary_10_2139_ssrn_3869900 crossref_primary_10_3389_fnins_2022_884667 crossref_primary_10_1016_j_ecoenv_2023_115868 crossref_primary_10_3390_brainsci15030294 crossref_primary_10_1016_j_arr_2021_101409 crossref_primary_10_1111_fcp_12928 crossref_primary_10_3389_fimmu_2025_1469737 crossref_primary_10_1016_j_biopha_2022_113412 crossref_primary_10_3390_metabo15030159 crossref_primary_10_1038_s41598_021_92602_4 crossref_primary_10_3390_ijms222313035 crossref_primary_10_1186_s12906_022_03534_z crossref_primary_10_3390_molecules27030951 crossref_primary_10_1016_j_jbc_2024_107306 crossref_primary_10_1038_s42003_021_02984_4 crossref_primary_10_1007_s00011_024_01935_z crossref_primary_10_1515_revneuro_2022_0121 crossref_primary_10_1016_j_jep_2024_118532 crossref_primary_10_1016_j_jep_2024_118412 crossref_primary_10_3389_fnins_2021_778822 crossref_primary_10_3389_fncel_2022_953534 crossref_primary_10_1016_j_intimp_2023_111361 crossref_primary_10_1016_j_immuni_2020_10_016 crossref_primary_10_31083_j_jin2305091 crossref_primary_10_3389_fimmu_2024_1462003 crossref_primary_10_1007_s00702_023_02723_5 crossref_primary_10_3390_antiox11010170 crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_1186_s12974_025_03401_x crossref_primary_10_3390_biomedicines11092421 crossref_primary_10_1016_j_biochi_2024_07_003 crossref_primary_10_1016_j_neulet_2024_137751 crossref_primary_10_3390_molecules29071478 crossref_primary_10_1016_j_ejphar_2024_176432 crossref_primary_10_1111_cns_13899 crossref_primary_10_1186_s13059_024_03308_5 crossref_primary_10_3390_cells10061372 crossref_primary_10_1002_advs_202300180 crossref_primary_10_1016_j_nbd_2021_105290 crossref_primary_10_1186_s12974_025_03337_2 crossref_primary_10_1186_s13195_022_01022_7 crossref_primary_10_1016_j_tins_2023_05_001 crossref_primary_10_4103_1673_5374_391330 crossref_primary_10_1038_s41392_023_01484_7 crossref_primary_10_1038_s41598_024_64872_1 crossref_primary_10_1016_j_immuni_2021_12_001 crossref_primary_10_3389_fimmu_2022_978513 crossref_primary_10_1016_j_gendis_2024_101286 crossref_primary_10_1016_j_molmet_2021_101180 crossref_primary_10_1002_adma_202408729 crossref_primary_10_26599_AGR_2023_9340020 crossref_primary_10_3390_ijms252111399 crossref_primary_10_1111_ejn_15914 crossref_primary_10_3389_fphar_2023_1125982 crossref_primary_10_1186_s13041_020_00601_9 crossref_primary_10_1007_s12035_023_03373_0 crossref_primary_10_3389_fimmu_2020_00493 crossref_primary_10_1007_s10571_023_01376_y crossref_primary_10_2174_1570159X22666240131121032 crossref_primary_10_1007_s10571_021_01148_6 crossref_primary_10_1101_gad_348190_120 crossref_primary_10_3389_fimmu_2022_861290 crossref_primary_10_3233_JAD_220227 crossref_primary_10_1016_j_jare_2024_04_004 crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_20517_and_2024_11 crossref_primary_10_3389_fnagi_2022_873929 crossref_primary_10_1002_ptr_8136 crossref_primary_10_1007_s11064_023_03961_5 crossref_primary_10_3390_cells10113144 crossref_primary_10_1126_scisignal_aay1027 crossref_primary_10_1016_j_freeradbiomed_2023_12_012 crossref_primary_10_1177_25152564241312807 crossref_primary_10_3389_fcell_2021_697578 crossref_primary_10_1038_s41593_024_01847_5 crossref_primary_10_1002_advs_202400064 crossref_primary_10_1016_j_expneurol_2020_113490 crossref_primary_10_3390_bios12121176 crossref_primary_10_1007_s43440_022_00363_2 crossref_primary_10_1186_s13024_022_00541_z crossref_primary_10_3390_nu12102977 crossref_primary_10_1016_j_mam_2019_100838 crossref_primary_10_1523_JNEUROSCI_1563_23_2024 crossref_primary_10_3389_fimmu_2022_960906 crossref_primary_10_3390_jpm10020032 crossref_primary_10_1177_1934578X221075079 crossref_primary_10_2174_0115672050324909240823104209 crossref_primary_10_1126_sciadv_adi1863 crossref_primary_10_1016_j_preteyeres_2021_100998 crossref_primary_10_1016_j_scitotenv_2024_176603 crossref_primary_10_1016_j_jep_2025_119464 crossref_primary_10_1007_s12035_021_02297_x crossref_primary_10_1016_j_phymed_2024_156152 crossref_primary_10_1016_j_phymed_2025_156453 crossref_primary_10_3390_genes10100798 crossref_primary_10_1016_j_bioorg_2023_106987 crossref_primary_10_1186_s12974_023_02869_9 crossref_primary_10_3390_cells10051138 crossref_primary_10_7717_peerj_8682 crossref_primary_10_1016_j_immuni_2024_03_004 crossref_primary_10_3233_JAD_210213 crossref_primary_10_3390_biology12081081 crossref_primary_10_1038_s44324_024_00044_z crossref_primary_10_3389_fneur_2023_1115318 crossref_primary_10_1038_s42255_022_00643_4 crossref_primary_10_1016_j_envres_2023_116411 crossref_primary_10_3233_JAD_230128 crossref_primary_10_1186_s41983_024_00908_7 crossref_primary_10_3389_fimmu_2022_900132 crossref_primary_10_4103_NRR_NRR_D_23_00805 crossref_primary_10_1016_j_nbd_2024_106763 crossref_primary_10_1002_glia_24323 crossref_primary_10_1038_s41419_023_06217_w crossref_primary_10_3390_cells10020321 crossref_primary_10_3390_genes12081247 crossref_primary_10_1016_j_isci_2021_103238 crossref_primary_10_1038_s41467_021_23111_1 crossref_primary_10_18632_aging_205624 crossref_primary_10_7554_eLife_92741 crossref_primary_10_1016_j_arr_2024_102452 crossref_primary_10_1016_j_cmet_2023_03_006 crossref_primary_10_1002_biof_2149 crossref_primary_10_3389_fnagi_2023_1245904 crossref_primary_10_3389_fncel_2020_00246 crossref_primary_10_1002_ange_202420547 crossref_primary_10_31393_reports_vnmedical_2023_27_4__24 crossref_primary_10_1038_s41420_023_01343_y crossref_primary_10_3390_cells9071717 crossref_primary_10_26508_lsa_202201556 crossref_primary_10_3390_ijms22041968 crossref_primary_10_61958_NDFS3904 crossref_primary_10_1016_j_ijbiomac_2025_141048 crossref_primary_10_1186_s12974_021_02103_4 crossref_primary_10_3389_fmicb_2024_1475984 crossref_primary_10_3389_fmicb_2024_1440564 crossref_primary_10_1142_S0192415X24500873 crossref_primary_10_3390_ph14050416 crossref_primary_10_1016_j_celrep_2022_111391 crossref_primary_10_3390_horticulturae8030224 crossref_primary_10_3390_antiox13111378 crossref_primary_10_1016_j_celrep_2024_114908 crossref_primary_10_1002_glia_24664 crossref_primary_10_1007_s10787_024_01550_8 crossref_primary_10_1016_j_neures_2021_10_010 crossref_primary_10_1038_s42255_021_00392_w crossref_primary_10_1186_s12974_025_03357_y crossref_primary_10_1038_d41586_021_00063_6 crossref_primary_10_3390_ijms25116025 crossref_primary_10_3390_ijms252313210 crossref_primary_10_14336_AD_2023_0807 crossref_primary_10_1016_j_arr_2023_102032 crossref_primary_10_1016_j_arr_2024_102596 crossref_primary_10_1016_j_arr_2024_102472 crossref_primary_10_1016_j_neuint_2023_105639 crossref_primary_10_1038_s41590_023_01640_9 crossref_primary_10_1016_j_cellsig_2024_111466 crossref_primary_10_1016_j_pneurobio_2019_101719 crossref_primary_10_1186_s12864_022_08417_8 crossref_primary_10_1186_s12974_024_03203_7 crossref_primary_10_1111_cns_14913 crossref_primary_10_1002_prot_26723 crossref_primary_10_1007_s10571_021_01147_7 crossref_primary_10_1038_s12276_024_01295_y crossref_primary_10_1111_acel_13623 crossref_primary_10_3389_fncel_2020_00020 crossref_primary_10_1186_s13024_025_00824_1 crossref_primary_10_1016_j_expneurol_2020_113310 crossref_primary_10_1186_s12974_024_03026_6 crossref_primary_10_1016_j_cell_2024_08_019 crossref_primary_10_3389_fncel_2022_939830 crossref_primary_10_1172_JCI167501 crossref_primary_10_3390_brainsci14111098 crossref_primary_10_3389_fimmu_2021_717157 crossref_primary_10_1186_s42234_022_00101_2 crossref_primary_10_1007_s11011_024_01396_7 crossref_primary_10_1038_s41392_023_01588_0 crossref_primary_10_1016_j_molcel_2023_02_022 crossref_primary_10_1007_s12975_022_01090_9 crossref_primary_10_1016_j_bcp_2023_115619 crossref_primary_10_5483_BMBRep_2019_52_12_282 crossref_primary_10_1073_pnas_2209177120 crossref_primary_10_1126_scitranslmed_abe5640 crossref_primary_10_1186_s12974_024_03015_9 crossref_primary_10_1212_WNL_0000000000200920 crossref_primary_10_3390_ijms22115887 crossref_primary_10_1080_19490976_2022_2125739 crossref_primary_10_1177_15353702221134093 crossref_primary_10_1016_j_tem_2024_04_017 crossref_primary_10_1093_braincomms_fcac216 crossref_primary_10_1016_j_bbi_2025_02_006 crossref_primary_10_3389_fimmu_2024_1375453 crossref_primary_10_1007_s12035_023_03621_3 crossref_primary_10_1038_s42255_024_01081_0 crossref_primary_10_1016_j_conb_2023_102730 crossref_primary_10_3389_fneur_2024_1515981 crossref_primary_10_1073_pnas_2212256120 crossref_primary_10_3389_fimmu_2022_1008072 crossref_primary_10_1111_jcmm_17759 crossref_primary_10_1186_s12974_023_02722_z crossref_primary_10_1016_j_neubiorev_2024_105971 crossref_primary_10_1186_s12974_022_02595_8 crossref_primary_10_2174_2212796817666230510095530 crossref_primary_10_1016_j_phrs_2024_107357 crossref_primary_10_15252_embj_2022111038 crossref_primary_10_1016_j_neuron_2022_04_001 crossref_primary_10_1002_jnr_25015 crossref_primary_10_1016_j_intimp_2024_113024 crossref_primary_10_3390_biom14020187 crossref_primary_10_1016_j_nbd_2024_106672 crossref_primary_10_1186_s12974_022_02637_1 crossref_primary_10_3389_fnut_2022_1051964 crossref_primary_10_3390_cells12242824 crossref_primary_10_3389_fphys_2020_00393 crossref_primary_10_1038_s12276_021_00719_3 crossref_primary_10_1038_s41467_020_20440_5 crossref_primary_10_3389_fimmu_2022_1037318 crossref_primary_10_1177_0271678X221098841 crossref_primary_10_4103_NRR_NRR_D_23_01299 crossref_primary_10_1038_s43587_021_00054_2 crossref_primary_10_1186_s12974_023_02779_w crossref_primary_10_1111_ane_13551 crossref_primary_10_1111_jnc_15206 crossref_primary_10_1111_imr_13365 crossref_primary_10_1002_brb3_70361 crossref_primary_10_1016_j_cmet_2020_03_015 crossref_primary_10_1038_s42255_024_01080_1 crossref_primary_10_1007_s11302_025_10066_x crossref_primary_10_3390_cells12111521 crossref_primary_10_1038_s42255_022_00707_5 crossref_primary_10_1186_s13041_022_00986_9 crossref_primary_10_1002_adbi_202101166 crossref_primary_10_1371_journal_pntd_0011350 crossref_primary_10_1111_jcmm_18554 crossref_primary_10_1038_s42255_024_01095_8 crossref_primary_10_3390_neuroglia5040029 crossref_primary_10_1007_s12017_022_08710_5 crossref_primary_10_3389_fnins_2021_749925 crossref_primary_10_1038_s41467_024_49709_9 crossref_primary_10_3390_ijms241411450 crossref_primary_10_1016_j_psychres_2024_116220 crossref_primary_10_1016_j_apsb_2022_07_014 crossref_primary_10_1016_j_ghres_2024_100003 crossref_primary_10_3390_biomedicines11051387 crossref_primary_10_5483_BMBRep_2020_53_1_309 crossref_primary_10_1155_2022_3086010 crossref_primary_10_1016_j_isci_2023_107780 crossref_primary_10_2174_1570159X20666220817140737 crossref_primary_10_1158_2159_8290_CD_21_1006 crossref_primary_10_1002_glia_24145 crossref_primary_10_3233_JAD_240787 crossref_primary_10_1016_j_arr_2024_102636 crossref_primary_10_1002_advs_202412379 crossref_primary_10_3390_biom12111722 crossref_primary_10_14336_AD_2024_1293 crossref_primary_10_3389_fcell_2020_00265 crossref_primary_10_1016_j_fct_2020_111936 crossref_primary_10_1155_2020_5328031 crossref_primary_10_1002_alz_70025 crossref_primary_10_3390_ijms21176047 crossref_primary_10_1016_j_biocel_2024_106541 crossref_primary_10_1002_prp2_638 crossref_primary_10_1016_j_tins_2022_10_007 crossref_primary_10_1038_s41380_021_01068_3 crossref_primary_10_1016_j_isci_2023_106588 crossref_primary_10_3389_fimmu_2021_665782 crossref_primary_10_3390_ijms22136984 crossref_primary_10_1038_s41577_024_01104_7 crossref_primary_10_2174_0115680266322320240911194626 crossref_primary_10_1002_jcb_30458 crossref_primary_10_3233_JAD_220721 crossref_primary_10_3390_biom13020313 crossref_primary_10_3390_ijms23084351 crossref_primary_10_1002_advs_202307245 crossref_primary_10_1038_s41467_022_28473_8 crossref_primary_10_1038_s41467_024_44737_x crossref_primary_10_3389_fimmu_2021_639049 crossref_primary_10_1016_j_biomaterials_2025_123142 crossref_primary_10_1186_s40035_024_00397_x crossref_primary_10_3389_fnagi_2021_766267 crossref_primary_10_3389_fimmu_2022_856376 crossref_primary_10_3390_ijms22063027 crossref_primary_10_1186_s12974_021_02244_6 crossref_primary_10_1016_j_neuropharm_2024_109951 crossref_primary_10_1016_j_mtbio_2025_101475 crossref_primary_10_3389_fphar_2021_714556 crossref_primary_10_1021_acsnano_3c03232 crossref_primary_10_3389_fnagi_2022_1057214 crossref_primary_10_1111_febs_15327 crossref_primary_10_1016_j_tem_2021_12_001 crossref_primary_10_3233_JAD_215217 crossref_primary_10_1016_j_ejmech_2023_115986 crossref_primary_10_3389_fnagi_2021_788055 crossref_primary_10_14309_ctg_0000000000000536 crossref_primary_10_31083_j_fbl2711312 crossref_primary_10_1002_jcp_29682 crossref_primary_10_3390_ijms221910757 crossref_primary_10_3389_fphys_2020_584135 crossref_primary_10_1002_psp4_12852 crossref_primary_10_1016_j_neuroscience_2022_03_003 crossref_primary_10_1016_j_bbi_2024_02_027 crossref_primary_10_1016_j_cmet_2019_08_017 crossref_primary_10_1016_j_celrep_2023_113183 crossref_primary_10_1007_s12035_024_04067_x crossref_primary_10_1186_s12979_024_00437_0 crossref_primary_10_1002_dad2_12028 crossref_primary_10_1126_sciadv_abo3610 crossref_primary_10_1007_s12975_022_01105_5 crossref_primary_10_1016_j_bbr_2021_113481 crossref_primary_10_1111_jnc_15959 crossref_primary_10_1002_anie_202420547 crossref_primary_10_1016_j_prp_2024_155614 crossref_primary_10_1007_s11011_021_00733_4 crossref_primary_10_1016_j_bbi_2023_07_024 crossref_primary_10_1002_cbin_11710 crossref_primary_10_3389_fphys_2019_01531 crossref_primary_10_15252_embr_202051696 crossref_primary_10_1038_s42003_024_07425_6 crossref_primary_10_3233_JAD_190729 crossref_primary_10_1111_jnc_14860 crossref_primary_10_3389_fphar_2021_763866 crossref_primary_10_3389_fimmu_2023_1107298 crossref_primary_10_1016_j_bcp_2024_116729 crossref_primary_10_7554_eLife_92741_4 crossref_primary_10_1038_s41467_023_42096_7 crossref_primary_10_3233_JAD_215235 crossref_primary_10_3390_toxics8020021 crossref_primary_10_4103_NRR_NRR_D_24_00190 crossref_primary_10_3233_JAD_201074 crossref_primary_10_1016_j_bbi_2024_01_009 crossref_primary_10_1007_s11064_022_03533_z crossref_primary_10_1186_s12979_023_00390_4 crossref_primary_10_1016_j_lfs_2021_120299 crossref_primary_10_1038_s41531_024_00858_0 crossref_primary_10_3389_fcell_2021_801422 crossref_primary_10_1089_ars_2020_8070 crossref_primary_10_1016_j_nbd_2022_105782 crossref_primary_10_1016_j_abb_2022_109377 crossref_primary_10_1186_s12974_024_03296_0 crossref_primary_10_3390_ani12121535 crossref_primary_10_1016_j_isci_2023_106829 crossref_primary_10_1038_s41582_024_01036_9 crossref_primary_10_1016_j_celrep_2023_112196 crossref_primary_10_1007_s00401_023_02564_2 crossref_primary_10_1016_j_neuroscience_2022_03_020 crossref_primary_10_3390_ijms242115834 crossref_primary_10_3389_fnagi_2024_1388654 crossref_primary_10_1002_advs_202401731 crossref_primary_10_1002_glia_23913 crossref_primary_10_1016_j_brainresbull_2024_111066 crossref_primary_10_1016_j_jneuroim_2025_578552 crossref_primary_10_4103_NRR_NRR_D_24_00063 crossref_primary_10_3390_biomedicines9050524 crossref_primary_10_1523_JNEUROSCI_0998_21_2022 crossref_primary_10_1080_08820139_2024_2358446 crossref_primary_10_1016_j_ecoenv_2022_113568 crossref_primary_10_1097_WCO_0000000000001356 crossref_primary_10_1016_j_drudis_2022_01_004 crossref_primary_10_1007_s10571_023_01335_7 crossref_primary_10_1016_j_cbi_2023_110387 crossref_primary_10_1016_j_celrep_2024_114488 crossref_primary_10_1016_j_intimp_2024_113801 crossref_primary_10_1186_s13195_019_0551_7 crossref_primary_10_1113_JP282894 crossref_primary_10_3390_cells11081367 crossref_primary_10_1186_s12974_025_03415_5 crossref_primary_10_1136_gutjnl_2018_317431 crossref_primary_10_1186_s12974_022_02613_9 crossref_primary_10_1038_s42255_023_00756_4 crossref_primary_10_1080_13880209_2021_1992449 crossref_primary_10_3389_fphar_2022_1077222 crossref_primary_10_1016_j_jconrel_2024_12_060 crossref_primary_10_1111_jnc_15867 crossref_primary_10_1186_s12974_024_03130_7 crossref_primary_10_1080_14789450_2023_2260955 crossref_primary_10_1016_j_tics_2024_11_010 crossref_primary_10_1007_s00281_023_00989_1 crossref_primary_10_1016_j_neubiorev_2023_105246 crossref_primary_10_1038_s42003_024_07405_w crossref_primary_10_1016_j_molmed_2023_05_007 crossref_primary_10_1038_s41467_022_29506_y crossref_primary_10_1186_s12974_024_03254_w crossref_primary_10_1016_j_cmet_2021_10_010 crossref_primary_10_3389_fneur_2020_570711 crossref_primary_10_1007_s12195_023_00782_y crossref_primary_10_1096_fj_202400289R crossref_primary_10_1016_j_imlet_2022_04_001 crossref_primary_10_3390_molecules28114501 crossref_primary_10_1146_annurev_immunol_101921_035222 crossref_primary_10_3389_fnagi_2024_1402774 crossref_primary_10_1016_j_jconrel_2022_02_034 crossref_primary_10_1007_s11033_022_07319_y crossref_primary_10_1186_s13024_023_00668_7 crossref_primary_10_3389_fnins_2020_530219 crossref_primary_10_1111_jnc_15760 crossref_primary_10_1016_j_arr_2022_101574 crossref_primary_10_1080_17460441_2024_2335210 crossref_primary_10_3389_fphar_2024_1434568 crossref_primary_10_3389_fnagi_2022_979869 crossref_primary_10_1007_s00213_021_06025_0 |
Cites_doi | 10.1038/ncomms8967 10.1016/j.neuron.2014.12.068 10.1016/j.neuroimage.2015.12.044 10.1016/S0092-8674(03)00154-5 10.1016/j.cell.2016.08.064 10.1038/s41598-017-05232-0 10.1016/j.cell.2017.07.023 10.2967/jnumed.117.195107 10.3233/JAD-2011-111778 10.1126/science.1250684 10.1186/s40478-015-0209-z 10.1016/j.immuni.2015.02.002 10.1016/j.immuni.2014.06.008 10.1038/ni.3704 10.1016/S0165-5728(97)00034-9 10.1038/nn1472 10.1073/pnas.94.24.13287 10.1146/annurev.immunol.17.1.593 10.1016/j.cmet.2016.06.004 10.1016/j.neurobiolaging.2011.09.039 10.1074/jbc.M115.664995 10.1523/JNEUROSCI.1860-14.2014 10.1038/nature25986 10.1038/nm.3639 10.3233/JAD-151200 10.1038/s41420-017-0023-4 10.1016/j.neuron.2014.11.020 10.1038/s41467-017-00037-1 10.1038/ni.3398 10.4161/auto.29647 10.1038/nm0503-512 10.1038/nri.2017.66 10.1126/science.aal3535 10.1016/j.neuron.2017.04.043 10.3389/fimmu.2015.00539 10.1016/S1474-4422(18)30028-0 10.1038/nature18626 10.1002/glia.23074 10.1126/science.1072994 10.1371/journal.pone.0060921 10.1038/ncomms7176 10.1056/NEJMra0909142 10.1056/NEJMoa1202753 10.4049/jimmunol.1303321 10.1038/nri.2016.70 10.1001/jamaneurol.2014.3314 10.1523/JNEUROSCI.1202-06.2006 10.4049/jimmunol.0903382 10.1073/pnas.1317918110 10.1038/s41586-018-0023-4 10.1038/sj.mp.4002013 10.1056/NEJMoa1211103 10.1126/science.1251086 10.1016/j.cmet.2016.10.008 10.1056/NEJMoa1211851 10.1016/j.oraloncology.2014.11.014 10.1097/00003246-200201001-00009 10.1016/j.cell.2017.05.018 10.1371/journal.pone.0096786 10.1038/nature11986 10.1016/j.it.2009.07.009 10.1038/ni.3306 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.cmet.2019.06.005 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 507.e6 |
ExternalDocumentID | 31257151 10_1016_j_cmet_2019_06_005 S1550413119303080 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c466t-9bb31023f7221893a5acdebbfc6e0a507d53afadc1aee4c3e554af2a2d6e12073 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Sun Sep 28 05:57:45 EDT 2025 Thu Apr 03 06:58:01 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Fri Feb 23 02:48:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | IFN-γ amyloid-β mTOR OXPHOS HIF-1α Alzheimer's disease microglia aerobic glycolysis |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-9bb31023f7221893a5acdebbfc6e0a507d53afadc1aee4c3e554af2a2d6e12073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1550413119303080/pdf |
PMID | 31257151 |
PQID | 2250627368 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2250627368 pubmed_primary_31257151 crossref_citationtrail_10_1016_j_cmet_2019_06_005 crossref_primary_10_1016_j_cmet_2019_06_005 elsevier_sciencedirect_doi_10_1016_j_cmet_2019_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-03 |
PublicationDateYYYYMMDD | 2019-09-03 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Condello, Yuan, Schain, Grutzendler (bib17) 2015; 6 Gordon, Blazey, Su, Hari-Raj, Dincer, Flores, Christensen, McDade, Wang, Xiong (bib25) 2018; 17 Morizawa, Hirayama, Ohno, Shibata, Shigetomi, Sui, Nabekura, Sato, Okajima, Takebayashi (bib43) 2017; 8 Zhang, Chen, Sloan, Bennett, Scholze, O’Keeffe, Phatnani, Guarnieri, Caneda, Ruderisch (bib64) 2014; 34 Bateman, Xiong, Benzinger, Fagan, Goate, Fox, Marcus, Cairns, Xie, Blazey (bib7) 2012; 367 Krabbe, Halle, Matyash, Rinnenthal, Eom, Bernhardt, Miller, Prokop, Kettenmann, Heppner (bib35) 2013; 8 Baik, Kang, Son, Mook-Jung (bib5) 2016; 64 Katoh, Wu, Nguyen, Thai, Yamasaki, Lu, Rietsch, Zorlu, Shinozaki, Saitoh (bib33) 2017; 7 Ottum, Arellano, Reyes, Iruretagoyena, Naves (bib47) 2015; 6 Baruch, Rosenzweig, Kertser, Deczkowska, Sharif, Spinrad, Tsitsou-Kampeli, Sarel, Cahalon, Schwartz (bib6) 2015; 6 Galván-Peña, O’Neill (bib23) 2014; 5 Arts, Novakovic, Ter Horst, Carvalho, Bekkering, Lachmandas, Rodrigues, Silvestre, Cheng, Wang (bib2) 2016; 24 Tannahill, Curtis, Adamik, Palsson-Mcdermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib57) 2013; 496 Sturchler-Pierrat, Abramowski, Duke, Wiederhold, Mistl, Rothacher, Ledermann, Bürki, Frey, Paganetti (bib56) 1997; 94 Filiano, Xu, Tustison, Marsh, Baker, Smirnov, Overall, Gadani, Turner, Weng (bib21) 2016; 535 Biswas, Lopez-Collazo (bib9) 2009; 30 Son, Jung, Shin, Byun, Mook-Jung (bib53) 2012; 33 Mehta, Weinberg, Chandel (bib38) 2017; 17 Chakrabarty, Li, Ceballos-Diaz, Eddy, Funk, Moore, DiNunno, Rosario, Cruz, Verbeeck (bib13) 2015; 85 Glass, Natoli (bib24) 2016; 17 Davalos, Grutzendler, Yang, Kim, Zuo, Jung, Littman, Dustin, Gan (bib19) 2005; 8 Bachstetter, Van Eldik, Schmitt, Neltner, Ighodaro, Webster, Patel, Abner, Kryscio, Nelson (bib3) 2015; 3 Cheng, Scicluna, Arts, Gresnigt, Lachmandas, Giamarellos-Bourboulis, Kox, Manjeri, Wagenaars, Cremer (bib15) 2016; 17 Saeed, Quintin, Kerstens, Rao, Aghajanirefah, Matarese, Cheng, Ratter, Berentsen, van der Ent (bib52) 2014; 345 Benzinger, Blazey, Jack, Koeppe, Su, Xiong, Raichle, Snyder, Ances, Bateman (bib8) 2013; 110 Chakrabarty, Ceballos-Diaz, Beccard, Janus, Dickson, Golde, Das (bib12) 2010; 184 Strieter (bib55) 2003; 9 Hardy, Selkoe (bib28) 2002; 297 Querfurth, Laferla (bib50) 2010; 362 Ritprajak, Azuma (bib51) 2015; 51 O’Neill, Kishton, Rathmell (bib45) 2016; 16 Fleisher, Chen, Quiroz, Jakimovich, Gutierrez Gomez, Langois, Langbaum, Roontiva, Thiyyagura, Lee (bib22) 2015; 72 Aderem, Underhill (bib1) 1999; 17 Jonsson, Stefansson, Steinberg, Jonsdottir, Jonsson, Snaedal, Bjornsson, Huttenlocher, Levey, Lah (bib31) 2013; 368 Moon, Hong, Nam, Baik, Song, Kook, Kim, Lee, Mook-Jung (bib42) 2012; 29 Cheng, Quintin, Cramer, Shepardson, Saeed, Kumar, Giamarellos-Bourboulis, Martens, Rao, Aghajanirefah (bib14) 2014; 345 Venter, Oerlemans, Wijers, Willemse, Fransen, Wieringa (bib59) 2014; 9 Weinberg, Sena, Chandel (bib61) 2015; 42 Oakley, Cole, Logan, Maus, Shao, Craft, Guillozet-Bongaarts, Ohno, Disterhoft, Van Eldik (bib46) 2006; 26 Kang, Byun, Son, Mook-Jung (bib32) 2018; 4 Mills, Kelly, Logan, Costa, Varma, Bryant, Tourlomousis, Däbritz, Gottlieb, Latorre (bib39) 2016; 167 Keren-Shaul, Spinrad, Weiner, Matcovitch-Natan, Dvir-Szternfeld, Ulland, David, Baruch, Lara-Astaiso, Toth (bib34) 2017; 169 Murray, Allen, Biswas, Fisher, Gilroy, Goerdt, Gordon, Hamilton, Ivashkiv, Lawrence (bib44) 2014; 41 Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib41) 2018; 556 Guerreiro, Wojtas, Bras, Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, Kauwe, Younkin (bib26) 2013; 368 Pan, Banks, Kastin (bib48) 1997; 76 Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib37) 2016; 24 Backes, Walberer, Ladwig, Rueger, Neumaier, Endepols, Hoehn, Fink, Schroeter, Graf (bib4) 2016; 128 Cramer, Yamanishi, Clausen, Förster, Pawlinski, Mackman, Haase, Jaenisch, Corr, Nizet (bib18) 2003; 112 West, Heagy (bib63) 2002; 30 Jo, Yarishkin, Hwang, Chun, Park, Woo, Bae, Kim, Lee, Chun (bib30) 2014; 20 Son, Shin, Byun, Kook, Moon, Chang, Mook-Jung (bib54) 2016; 51 Wendeln, Degenhardt, Kaurani, Gertig, Ulas, Jain, Wagner, Häsler, Wild, Skodras (bib62) 2018; 556 Wang, Campbell, Zhang (bib60) 2008; 13 Pavlou, Wang, Xu, Chen (bib49) 2017; 14 Ding, Yan, Li, Li, Ciric, Yang, Zhang, Wu, Xu, Chen (bib20) 2015; 194 Ulland, Song, Huang, Ulrich, Sergushichev, Beatty, Loboda, Zhou, Cairns, Kambal (bib58) 2017; 170 Bohlen, Bennett, Tucker, Collins, Mulinyawe, Barres (bib10) 2017; 94 Guillot-Sestier, Doty, Gate, Rodriguez, Leung, Rezai-Zadeh, Town (bib27) 2015; 85 Brendel, Focke, Blume, Peters, Deussing, Probst, Jaworska, Overhoff, Albert, Lindner (bib11) 2017; 58 Ip, Hoshi, Shouval, Snapper, Medzhitov (bib29) 2017; 356 Mills, Kelly, O’Neill (bib40) 2017; 18 Cho, Cho, Kang, Jeon, Kim, Kwon, Kim, Kim, Yoon (bib16) 2014; 10 Kroczynska, Rafidi, Majchrzak-Kita, Kosciuczuk, Blyth, Jemielity, Warminska, Saleiro, Mehrotra, Arslan (bib36) 2016; 291 Saeed (10.1016/j.cmet.2019.06.005_bib52) 2014; 345 Condello (10.1016/j.cmet.2019.06.005_bib17) 2015; 6 Zhang (10.1016/j.cmet.2019.06.005_bib64) 2014; 34 Chakrabarty (10.1016/j.cmet.2019.06.005_bib13) 2015; 85 Moon (10.1016/j.cmet.2019.06.005_bib42) 2012; 29 Gordon (10.1016/j.cmet.2019.06.005_bib25) 2018; 17 O’Neill (10.1016/j.cmet.2019.06.005_bib45) 2016; 16 Wendeln (10.1016/j.cmet.2019.06.005_bib62) 2018; 556 Bachstetter (10.1016/j.cmet.2019.06.005_bib3) 2015; 3 Filiano (10.1016/j.cmet.2019.06.005_bib21) 2016; 535 Biswas (10.1016/j.cmet.2019.06.005_bib9) 2009; 30 Strieter (10.1016/j.cmet.2019.06.005_bib55) 2003; 9 Bohlen (10.1016/j.cmet.2019.06.005_bib10) 2017; 94 Ip (10.1016/j.cmet.2019.06.005_bib29) 2017; 356 Ottum (10.1016/j.cmet.2019.06.005_bib47) 2015; 6 Ritprajak (10.1016/j.cmet.2019.06.005_bib51) 2015; 51 Mills (10.1016/j.cmet.2019.06.005_bib40) 2017; 18 Pavlou (10.1016/j.cmet.2019.06.005_bib49) 2017; 14 Guerreiro (10.1016/j.cmet.2019.06.005_bib26) 2013; 368 Pan (10.1016/j.cmet.2019.06.005_bib48) 1997; 76 Wang (10.1016/j.cmet.2019.06.005_bib60) 2008; 13 Weinberg (10.1016/j.cmet.2019.06.005_bib61) 2015; 42 Mills (10.1016/j.cmet.2019.06.005_bib39) 2016; 167 Mills (10.1016/j.cmet.2019.06.005_bib41) 2018; 556 Murray (10.1016/j.cmet.2019.06.005_bib44) 2014; 41 Aderem (10.1016/j.cmet.2019.06.005_bib1) 1999; 17 Sturchler-Pierrat (10.1016/j.cmet.2019.06.005_bib56) 1997; 94 Tannahill (10.1016/j.cmet.2019.06.005_bib57) 2013; 496 Lampropoulou (10.1016/j.cmet.2019.06.005_bib37) 2016; 24 Davalos (10.1016/j.cmet.2019.06.005_bib19) 2005; 8 Ulland (10.1016/j.cmet.2019.06.005_bib58) 2017; 170 Cheng (10.1016/j.cmet.2019.06.005_bib15) 2016; 17 Fleisher (10.1016/j.cmet.2019.06.005_bib22) 2015; 72 Mehta (10.1016/j.cmet.2019.06.005_bib38) 2017; 17 Hardy (10.1016/j.cmet.2019.06.005_bib28) 2002; 297 Morizawa (10.1016/j.cmet.2019.06.005_bib43) 2017; 8 Cho (10.1016/j.cmet.2019.06.005_bib16) 2014; 10 Ding (10.1016/j.cmet.2019.06.005_bib20) 2015; 194 Oakley (10.1016/j.cmet.2019.06.005_bib46) 2006; 26 Cheng (10.1016/j.cmet.2019.06.005_bib14) 2014; 345 Brendel (10.1016/j.cmet.2019.06.005_bib11) 2017; 58 Keren-Shaul (10.1016/j.cmet.2019.06.005_bib34) 2017; 169 Backes (10.1016/j.cmet.2019.06.005_bib4) 2016; 128 West (10.1016/j.cmet.2019.06.005_bib63) 2002; 30 Benzinger (10.1016/j.cmet.2019.06.005_bib8) 2013; 110 Querfurth (10.1016/j.cmet.2019.06.005_bib50) 2010; 362 Glass (10.1016/j.cmet.2019.06.005_bib24) 2016; 17 Kroczynska (10.1016/j.cmet.2019.06.005_bib36) 2016; 291 Kang (10.1016/j.cmet.2019.06.005_bib32) 2018; 4 Krabbe (10.1016/j.cmet.2019.06.005_bib35) 2013; 8 Son (10.1016/j.cmet.2019.06.005_bib53) 2012; 33 Son (10.1016/j.cmet.2019.06.005_bib54) 2016; 51 Arts (10.1016/j.cmet.2019.06.005_bib2) 2016; 24 Baruch (10.1016/j.cmet.2019.06.005_bib6) 2015; 6 Baik (10.1016/j.cmet.2019.06.005_bib5) 2016; 64 Guillot-Sestier (10.1016/j.cmet.2019.06.005_bib27) 2015; 85 Venter (10.1016/j.cmet.2019.06.005_bib59) 2014; 9 Bateman (10.1016/j.cmet.2019.06.005_bib7) 2012; 367 Jonsson (10.1016/j.cmet.2019.06.005_bib31) 2013; 368 Katoh (10.1016/j.cmet.2019.06.005_bib33) 2017; 7 Cramer (10.1016/j.cmet.2019.06.005_bib18) 2003; 112 Chakrabarty (10.1016/j.cmet.2019.06.005_bib12) 2010; 184 Galván-Peña (10.1016/j.cmet.2019.06.005_bib23) 2014; 5 Jo (10.1016/j.cmet.2019.06.005_bib30) 2014; 20 31484050 - Cell Metab. 2019 Sep 3;30(3):405-406 |
References_xml | – volume: 18 start-page: 488 year: 2017 end-page: 498 ident: bib40 article-title: Mitochondria are the powerhouses of immunity publication-title: Nat. Immunol. – volume: 6 start-page: 7967 year: 2015 ident: bib6 article-title: Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology publication-title: Nat. Commun. – volume: 64 start-page: 2274 year: 2016 end-page: 2290 ident: bib5 article-title: Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model publication-title: Glia – volume: 10 start-page: 1761 year: 2014 end-page: 1775 ident: bib16 article-title: Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome publication-title: Autophagy – volume: 7 start-page: 4942 year: 2017 ident: bib33 article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation publication-title: Sci. Rep. – volume: 8 start-page: e60921 year: 2013 ident: bib35 article-title: Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology publication-title: PLoS One – volume: 167 start-page: 457 year: 2016 end-page: 470 ident: bib39 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell – volume: 29 start-page: 615 year: 2012 end-page: 628 ident: bib42 article-title: Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer’s disease publication-title: J. Alzheimers Dis. – volume: 194 start-page: 4251 year: 2015 end-page: 4264 ident: bib20 article-title: Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity publication-title: J. Immunol. – volume: 8 start-page: 28 year: 2017 ident: bib43 article-title: Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway publication-title: Nat. Commun. – volume: 169 start-page: 1276 year: 2017 end-page: 1290 ident: bib34 article-title: A unique microglia type associated with restricting development of Alzheimer’s disease publication-title: Cell – volume: 16 start-page: 553 year: 2016 end-page: 565 ident: bib45 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. – volume: 24 start-page: 807 year: 2016 end-page: 819 ident: bib2 article-title: Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity publication-title: Cell Metab. – volume: 17 start-page: 593 year: 1999 end-page: 623 ident: bib1 article-title: Mechanisms of phagocytosis in macrophages publication-title: Annu. Rev. Immunol. – volume: 33 start-page: 1006 year: 2012 ident: bib53 article-title: Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling publication-title: Neurobiol. Aging – volume: 9 start-page: 512 year: 2003 end-page: 513 ident: bib55 article-title: Mastering innate immunity publication-title: Nat. Med. – volume: 496 start-page: 238 year: 2013 end-page: 242 ident: bib57 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature – volume: 85 start-page: 519 year: 2015 end-page: 533 ident: bib13 article-title: IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior publication-title: Neuron – volume: 4 start-page: 31 year: 2018 ident: bib32 article-title: Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells publication-title: Cell Death Discov. – volume: 17 start-page: 406 year: 2016 end-page: 413 ident: bib15 article-title: Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis publication-title: Nat. Immunol. – volume: 556 start-page: 332 year: 2018 end-page: 338 ident: bib62 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature – volume: 51 start-page: 221 year: 2015 end-page: 228 ident: bib51 article-title: Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma publication-title: Oral Oncol. – volume: 51 start-page: 1197 year: 2016 end-page: 1208 ident: bib54 article-title: Metformin facilitates amyloid-β generation by β- and γ -secretases via autophagy activation publication-title: J. Alzheimers Dis. – volume: 85 start-page: 534 year: 2015 end-page: 548 ident: bib27 article-title: Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology publication-title: Neuron – volume: 6 start-page: 6176 year: 2015 ident: bib17 article-title: Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques publication-title: Nat. Commun. – volume: 6 start-page: 539 year: 2015 ident: bib47 article-title: Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation publication-title: Front. Immunol. – volume: 17 start-page: 241 year: 2018 end-page: 250 ident: bib25 article-title: Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study publication-title: Lancet Neurol. – volume: 3 start-page: 32 year: 2015 ident: bib3 article-title: Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging publication-title: Acta Neuropathol. Commun. – volume: 184 start-page: 5333 year: 2010 end-page: 5343 ident: bib12 article-title: IFN-g promotes complement expression and attenuates amyloid plaque deposition in amyloid precursor protein transgenic mice publication-title: J. Immunol. – volume: 5 start-page: 420 year: 2014 ident: bib23 article-title: Metabolic reprograming in macrophage polarization publication-title: Front. Immunol. – volume: 76 start-page: 105 year: 1997 end-page: 111 ident: bib48 article-title: Permeability of the blood-brain and blood-spinal cord barriers to interferons publication-title: J. Neuroimmunol. – volume: 345 start-page: 1250684 year: 2014 ident: bib14 article-title: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity publication-title: Science – volume: 13 start-page: 293 year: 2008 end-page: 301 ident: bib60 article-title: Systemic interferon-α regulates interferon-stimulated genes in the central nervous system publication-title: Mol. Psychiatry – volume: 17 start-page: 26 year: 2016 end-page: 33 ident: bib24 article-title: Molecular control of activation and priming in macrophages publication-title: Nat. Immunol. – volume: 535 start-page: 425 year: 2016 end-page: 429 ident: bib21 article-title: Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour publication-title: Nature – volume: 291 start-page: 2389 year: 2016 end-page: 2396 ident: bib36 article-title: Interferon γ (IFNγ) signaling via mechanistic target of rapamycin complex 2 (mTORC2) and regulatory effects in the generation of type II interferon biological responses publication-title: J. Biol. Chem. – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bib41 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 128 start-page: 54 year: 2016 end-page: 62 ident: bib4 article-title: Glucose consumption of inflammatory cells masks metabolic deficits in the brain publication-title: Neuroimage – volume: 30 start-page: 475 year: 2009 end-page: 487 ident: bib9 article-title: Endotoxin tolerance: new mechanisms, molecules and clinical significance publication-title: Trends Immunol. – volume: 110 start-page: E4502 year: 2013 end-page: E4509 ident: bib8 article-title: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 608 year: 2017 end-page: 620 ident: bib38 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat. Rev. Immunol. – volume: 42 start-page: 406 year: 2015 end-page: 417 ident: bib61 article-title: Mitochondria in the regulation of innate and adaptive immunity publication-title: Immunity – volume: 367 start-page: 795 year: 2012 end-page: 804 ident: bib7 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 112 start-page: 645 year: 2003 end-page: 657 ident: bib18 article-title: HIF-1α is essential for myeloid cell-mediated inflammation publication-title: Cell – volume: 41 start-page: 14 year: 2014 end-page: 20 ident: bib44 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity – volume: 26 start-page: 10129 year: 2006 end-page: 10140 ident: bib46 article-title: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation publication-title: J. Neurosci. – volume: 345 start-page: 1251086 year: 2014 ident: bib52 article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity publication-title: Science – volume: 8 start-page: 752 year: 2005 end-page: 758 ident: bib19 article-title: ATP mediates rapid microglial response to local brain injury in vivo publication-title: Nat. Neurosci. – volume: 58 start-page: 1984 year: 2017 end-page: 1990 ident: bib11 article-title: Time courses of cortical glucose metabolism and microglial activity Across the life span of wild-type mice: a PET study publication-title: J. Nucl. Med. – volume: 72 start-page: 316 year: 2015 end-page: 324 ident: bib22 article-title: Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study publication-title: JAMA Neurol. – volume: 30 start-page: S64 year: 2002 end-page: S73 ident: bib63 article-title: Endotoxin tolerance: a review publication-title: Crit. Care Med. – volume: 297 start-page: 353 year: 2002 end-page: 356 ident: bib28 article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics publication-title: Science – volume: 14 start-page: 12 year: 2017 end-page: 17 ident: bib49 article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells publication-title: J. Inflam. (Lond.) – volume: 24 start-page: 158 year: 2016 end-page: 166 ident: bib37 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. – volume: 368 start-page: 107 year: 2013 end-page: 116 ident: bib31 article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 362 start-page: 329 year: 2010 end-page: 344 ident: bib50 article-title: Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 20 start-page: 886 year: 2014 end-page: 896 ident: bib30 article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease publication-title: Nat. Med. – volume: 170 start-page: 649 year: 2017 end-page: 663 ident: bib58 article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease publication-title: Cell – volume: 368 start-page: 117 year: 2013 end-page: 127 ident: bib26 article-title: TREM2 variants in Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 94 start-page: 759 year: 2017 end-page: 773 ident: bib10 article-title: Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures publication-title: Neuron – volume: 356 start-page: 513 year: 2017 end-page: 519 ident: bib29 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science – volume: 9 start-page: e96786 year: 2014 ident: bib59 article-title: Glucose controls morphodynamics of LPS-stimulated macrophages publication-title: PLoS One – volume: 94 start-page: 13287 year: 1997 end-page: 13292 ident: bib56 article-title: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 11929 year: 2014 end-page: 11947 ident: bib64 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. – volume: 6 start-page: 7967 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib6 article-title: Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology publication-title: Nat. Commun. doi: 10.1038/ncomms8967 – volume: 85 start-page: 534 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib27 article-title: Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology publication-title: Neuron doi: 10.1016/j.neuron.2014.12.068 – volume: 128 start-page: 54 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib4 article-title: Glucose consumption of inflammatory cells masks metabolic deficits in the brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.12.044 – volume: 112 start-page: 645 year: 2003 ident: 10.1016/j.cmet.2019.06.005_bib18 article-title: HIF-1α is essential for myeloid cell-mediated inflammation publication-title: Cell doi: 10.1016/S0092-8674(03)00154-5 – volume: 167 start-page: 457 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib39 article-title: Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages publication-title: Cell doi: 10.1016/j.cell.2016.08.064 – volume: 7 start-page: 4942 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib33 article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation publication-title: Sci. Rep. doi: 10.1038/s41598-017-05232-0 – volume: 170 start-page: 649 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib58 article-title: TREM2 maintains microglial metabolic fitness in Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2017.07.023 – volume: 58 start-page: 1984 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib11 article-title: Time courses of cortical glucose metabolism and microglial activity Across the life span of wild-type mice: a PET study publication-title: J. Nucl. Med. doi: 10.2967/jnumed.117.195107 – volume: 29 start-page: 615 year: 2012 ident: 10.1016/j.cmet.2019.06.005_bib42 article-title: Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer’s disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-111778 – volume: 345 start-page: 1250684 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib14 article-title: mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity publication-title: Science doi: 10.1126/science.1250684 – volume: 3 start-page: 32 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib3 article-title: Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-015-0209-z – volume: 42 start-page: 406 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib61 article-title: Mitochondria in the regulation of innate and adaptive immunity publication-title: Immunity doi: 10.1016/j.immuni.2015.02.002 – volume: 41 start-page: 14 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib44 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity doi: 10.1016/j.immuni.2014.06.008 – volume: 18 start-page: 488 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib40 article-title: Mitochondria are the powerhouses of immunity publication-title: Nat. Immunol. doi: 10.1038/ni.3704 – volume: 76 start-page: 105 year: 1997 ident: 10.1016/j.cmet.2019.06.005_bib48 article-title: Permeability of the blood-brain and blood-spinal cord barriers to interferons publication-title: J. Neuroimmunol. doi: 10.1016/S0165-5728(97)00034-9 – volume: 8 start-page: 752 year: 2005 ident: 10.1016/j.cmet.2019.06.005_bib19 article-title: ATP mediates rapid microglial response to local brain injury in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn1472 – volume: 94 start-page: 13287 year: 1997 ident: 10.1016/j.cmet.2019.06.005_bib56 article-title: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.24.13287 – volume: 17 start-page: 593 year: 1999 ident: 10.1016/j.cmet.2019.06.005_bib1 article-title: Mechanisms of phagocytosis in macrophages publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.17.1.593 – volume: 24 start-page: 158 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib37 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.004 – volume: 33 start-page: 1006 year: 2012 ident: 10.1016/j.cmet.2019.06.005_bib53 article-title: Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.09.039 – volume: 291 start-page: 2389 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib36 article-title: Interferon γ (IFNγ) signaling via mechanistic target of rapamycin complex 2 (mTORC2) and regulatory effects in the generation of type II interferon biological responses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.664995 – volume: 34 start-page: 11929 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib64 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.cmet.2019.06.005_bib41 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 20 start-page: 886 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib30 article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/nm.3639 – volume: 51 start-page: 1197 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib54 article-title: Metformin facilitates amyloid-β generation by β- and γ -secretases via autophagy activation publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-151200 – volume: 4 start-page: 31 year: 2018 ident: 10.1016/j.cmet.2019.06.005_bib32 article-title: Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells publication-title: Cell Death Discov. doi: 10.1038/s41420-017-0023-4 – volume: 85 start-page: 519 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib13 article-title: IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior publication-title: Neuron doi: 10.1016/j.neuron.2014.11.020 – volume: 14 start-page: 12 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib49 article-title: Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells publication-title: J. Inflam. (Lond.) – volume: 8 start-page: 28 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib43 article-title: Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway publication-title: Nat. Commun. doi: 10.1038/s41467-017-00037-1 – volume: 17 start-page: 406 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib15 article-title: Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis publication-title: Nat. Immunol. doi: 10.1038/ni.3398 – volume: 10 start-page: 1761 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib16 article-title: Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome publication-title: Autophagy doi: 10.4161/auto.29647 – volume: 9 start-page: 512 year: 2003 ident: 10.1016/j.cmet.2019.06.005_bib55 article-title: Mastering innate immunity publication-title: Nat. Med. doi: 10.1038/nm0503-512 – volume: 17 start-page: 608 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib38 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.66 – volume: 356 start-page: 513 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib29 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science doi: 10.1126/science.aal3535 – volume: 94 start-page: 759 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib10 article-title: Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures publication-title: Neuron doi: 10.1016/j.neuron.2017.04.043 – volume: 6 start-page: 539 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib47 article-title: Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00539 – volume: 17 start-page: 241 year: 2018 ident: 10.1016/j.cmet.2019.06.005_bib25 article-title: Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30028-0 – volume: 535 start-page: 425 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib21 article-title: Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour publication-title: Nature doi: 10.1038/nature18626 – volume: 64 start-page: 2274 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib5 article-title: Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model publication-title: Glia doi: 10.1002/glia.23074 – volume: 297 start-page: 353 year: 2002 ident: 10.1016/j.cmet.2019.06.005_bib28 article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics publication-title: Science doi: 10.1126/science.1072994 – volume: 5 start-page: 420 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib23 article-title: Metabolic reprograming in macrophage polarization publication-title: Front. Immunol. – volume: 8 start-page: e60921 year: 2013 ident: 10.1016/j.cmet.2019.06.005_bib35 article-title: Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology publication-title: PLoS One doi: 10.1371/journal.pone.0060921 – volume: 6 start-page: 6176 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib17 article-title: Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques publication-title: Nat. Commun. doi: 10.1038/ncomms7176 – volume: 362 start-page: 329 year: 2010 ident: 10.1016/j.cmet.2019.06.005_bib50 article-title: Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0909142 – volume: 367 start-page: 795 year: 2012 ident: 10.1016/j.cmet.2019.06.005_bib7 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1202753 – volume: 194 start-page: 4251 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib20 article-title: Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1303321 – volume: 16 start-page: 553 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib45 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.70 – volume: 72 start-page: 316 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib22 article-title: Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2014.3314 – volume: 26 start-page: 10129 year: 2006 ident: 10.1016/j.cmet.2019.06.005_bib46 article-title: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1202-06.2006 – volume: 184 start-page: 5333 year: 2010 ident: 10.1016/j.cmet.2019.06.005_bib12 article-title: IFN-g promotes complement expression and attenuates amyloid plaque deposition in amyloid precursor protein transgenic mice publication-title: J. Immunol. doi: 10.4049/jimmunol.0903382 – volume: 110 start-page: E4502 year: 2013 ident: 10.1016/j.cmet.2019.06.005_bib8 article-title: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1317918110 – volume: 556 start-page: 332 year: 2018 ident: 10.1016/j.cmet.2019.06.005_bib62 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature doi: 10.1038/s41586-018-0023-4 – volume: 13 start-page: 293 year: 2008 ident: 10.1016/j.cmet.2019.06.005_bib60 article-title: Systemic interferon-α regulates interferon-stimulated genes in the central nervous system publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4002013 – volume: 368 start-page: 107 year: 2013 ident: 10.1016/j.cmet.2019.06.005_bib31 article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211103 – volume: 345 start-page: 1251086 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib52 article-title: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity publication-title: Science doi: 10.1126/science.1251086 – volume: 24 start-page: 807 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib2 article-title: Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.10.008 – volume: 368 start-page: 117 year: 2013 ident: 10.1016/j.cmet.2019.06.005_bib26 article-title: TREM2 variants in Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211851 – volume: 51 start-page: 221 year: 2015 ident: 10.1016/j.cmet.2019.06.005_bib51 article-title: Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma publication-title: Oral Oncol. doi: 10.1016/j.oraloncology.2014.11.014 – volume: 30 start-page: S64 year: 2002 ident: 10.1016/j.cmet.2019.06.005_bib63 article-title: Endotoxin tolerance: a review publication-title: Crit. Care Med. doi: 10.1097/00003246-200201001-00009 – volume: 169 start-page: 1276 year: 2017 ident: 10.1016/j.cmet.2019.06.005_bib34 article-title: A unique microglia type associated with restricting development of Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 9 start-page: e96786 year: 2014 ident: 10.1016/j.cmet.2019.06.005_bib59 article-title: Glucose controls morphodynamics of LPS-stimulated macrophages publication-title: PLoS One doi: 10.1371/journal.pone.0096786 – volume: 496 start-page: 238 year: 2013 ident: 10.1016/j.cmet.2019.06.005_bib57 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature doi: 10.1038/nature11986 – volume: 30 start-page: 475 year: 2009 ident: 10.1016/j.cmet.2019.06.005_bib9 article-title: Endotoxin tolerance: new mechanisms, molecules and clinical significance publication-title: Trends Immunol. doi: 10.1016/j.it.2009.07.009 – volume: 17 start-page: 26 year: 2016 ident: 10.1016/j.cmet.2019.06.005_bib24 article-title: Molecular control of activation and priming in macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.3306 – reference: 31484050 - Cell Metab. 2019 Sep 3;30(3):405-406 |
SSID | ssj0036393 |
Score | 2.7056725 |
Snippet | Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 493 |
SubjectTerms | aerobic glycolysis Alzheimer's disease amyloid-β HIF-1α IFN-γ microglia mTOR OXPHOS |
Title | A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease |
URI | https://dx.doi.org/10.1016/j.cmet.2019.06.005 https://www.ncbi.nlm.nih.gov/pubmed/31257151 https://www.proquest.com/docview/2250627368 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCIIHKWuaNLbHdVV8sF5UWLyENJnV6m5X7O5Bf70zfQiCevDYkqEhk8x8od98w9i-TSLpfayDxCkVKKlFkMROB8ci8kcx2NCWck29G31xr676UX-GdZtaGKJV1rG_iulltK7ftOvVbL9mWfuWwLUitZhEkugK3dupqpSK-PonTTSWmIFLkj0ODmh0XThTcbzcCIhPKZJSw5Na2P2cnH4Dn2USOl9kCzV65J1qgktsBvJlNlf1k3xfYQ8dfoIg8MXj1ZpnOe_BBH08zBxHnF0RsUaYqnjXTgsoeI_IeI_DzPLT94ISHDmJ7DrDjyfIRvB2UPDT6g_OKrs_P7vrXgR184TAKa0nQZKmkmQZBschZvFE2sg6D2k6cBqOLKJAH0k7sN4JC6CcBMQVdhDa0GsQIR78NTabj3PYYBxBJF4qfOxi8EpYNEi9j3ySIpgCAarFRLNqxtXK4tTgYmgaCtmzoZU2tNKm5NFFLXb4ZfNa6Wr8OTpqnGG-7Q6Dgf9Pu73GcwaPDf0LsTmMp4XBMEYCzVLHLbZeufRrHhJBH-5VsfnPr26xeXoqmWhym81O3qawg9Blku4iaL-83i136Cd1cuxs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaIXVGhpl6crVeoBRbuOHZMc9wFaHsulIK24WI49Cym7WUR2D_TXdyYPpEqFA9fEo1ie8cxn5fM3jP2wSSS9j3WQOKUCJbUIktjp4FhEvhODDW0p1zS60sMbdT6Oxius39yFIVplnfurnF5m6_pJu17N9mOWtX8RuFakFpNIEl3Bc_sHRAMdCu2zca9JxxJLcMmyx9EBDa9vzlQkLzcDIlSKpBTxpB52_69Or6HPsgqdfmIbNXzk3WqGm2wF8i22VjWUfP7Mbru8hyjwwePZmmc5H8ECnTzNHEegXTGxZlireN8uCyj4iNh4d9PM8sFzQRWOvER23emfe8hm8PSz4IPqF84XdnN6ct0fBnX3hMAprRdBkqaSdBkmxyGW8UTayDoPaTpxGjoWYaCPpJ1Y74QFUE4CAgs7CW3oNYgQd_42W83nOXxjHFEknip87GLwSlg0SL2PfJIimgIBqsVEs2rG1dLi1OFiahoO2W9DK21opU1JpIta7OjF5rES1nhzdNQ4w_wTHgYz_5t23xvPGdw39DPE5jBfFgbzGCk0Sx232NfKpS_zkIj6MFjFzju_esjWh9ejS3N5dnWxyz7Sm5KWJvfY6uJpCfuIYxbpQRmnfwHU2O6W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Breakdown+in+Metabolic+Reprogramming+Causes+Microglia+Dysfunction+in+Alzheimer%27s+Disease&rft.jtitle=Cell+metabolism&rft.au=Baik%2C+Sung+Hoon&rft.au=Kang%2C+Seokjo&rft.au=Lee%2C+Woochan&rft.au=Choi%2C+Hayoung&rft.date=2019-09-03&rft.eissn=1932-7420&rft.volume=30&rft.issue=3&rft.spage=493&rft_id=info:doi/10.1016%2Fj.cmet.2019.06.005&rft_id=info%3Apmid%2F31257151&rft.externalDocID=31257151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |