Understanding the evolutionary processes and causes of groundwater drought using an interpretable machine learning model

Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability meth...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 20981 - 14
Main Authors Gan, Zhiyuan, Xie, Xianjun, Su, Chunli, Ge, Weili, Pan, Hongjie, Yang, Liangping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-05316-2

Cover

Abstract Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability method, to understand and predict the evolution of groundwater drought by evaluating eight models with SHAP analysis in the West Liao River Plain (WLRP), with a semi-arid climate. The research showed: (1) The XGBoost model, optimized by the Sparrow Search Algorithm (SSA), achieved the highest performance (AUC: 0.922, F1-score: 0.84). (2) SHAP analysis revealed that the Standardized Precipitation Evapotranspiration Index (SPEI) at 12- and 24-month scales (SPEI12 and SPEI24) were key predictors, with long-term meteorological drought causing delayed groundwater drought, exacerbated by over-extraction and urbanization. The local SHAP values confirmed the robust importance of long-term meteorological drought and precipitation, and identified the interaction between precipitation and meteorological factors responsible for groundwater drought. (3) Future projections under the SSP5-8.5 climate scenario indicated a significant increase in drought-affected areas, with earlier onset, broader extent, and greater severity. This work provides a machine learning framework for evaluating groundwater drought characteristics driven by multiple factors.
AbstractList Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability method, to understand and predict the evolution of groundwater drought by evaluating eight models with SHAP analysis in the West Liao River Plain (WLRP), with a semi-arid climate. The research showed: (1) The XGBoost model, optimized by the Sparrow Search Algorithm (SSA), achieved the highest performance (AUC: 0.922, F1-score: 0.84). (2) SHAP analysis revealed that the Standardized Precipitation Evapotranspiration Index (SPEI) at 12- and 24-month scales (SPEI12 and SPEI24) were key predictors, with long-term meteorological drought causing delayed groundwater drought, exacerbated by over-extraction and urbanization. The local SHAP values confirmed the robust importance of long-term meteorological drought and precipitation, and identified the interaction between precipitation and meteorological factors responsible for groundwater drought. (3) Future projections under the SSP5-8.5 climate scenario indicated a significant increase in drought-affected areas, with earlier onset, broader extent, and greater severity. This work provides a machine learning framework for evaluating groundwater drought characteristics driven by multiple factors.
Abstract Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability method, to understand and predict the evolution of groundwater drought by evaluating eight models with SHAP analysis in the West Liao River Plain (WLRP), with a semi-arid climate. The research showed: (1) The XGBoost model, optimized by the Sparrow Search Algorithm (SSA), achieved the highest performance (AUC: 0.922, F1-score: 0.84). (2) SHAP analysis revealed that the Standardized Precipitation Evapotranspiration Index (SPEI) at 12- and 24-month scales (SPEI12 and SPEI24) were key predictors, with long-term meteorological drought causing delayed groundwater drought, exacerbated by over-extraction and urbanization. The local SHAP values confirmed the robust importance of long-term meteorological drought and precipitation, and identified the interaction between precipitation and meteorological factors responsible for groundwater drought. (3) Future projections under the SSP5-8.5 climate scenario indicated a significant increase in drought-affected areas, with earlier onset, broader extent, and greater severity. This work provides a machine learning framework for evaluating groundwater drought characteristics driven by multiple factors.
Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability method, to understand and predict the evolution of groundwater drought by evaluating eight models with SHAP analysis in the West Liao River Plain (WLRP), with a semi-arid climate. The research showed: (1) The XGBoost model, optimized by the Sparrow Search Algorithm (SSA), achieved the highest performance (AUC: 0.922, F1-score: 0.84). (2) SHAP analysis revealed that the Standardized Precipitation Evapotranspiration Index (SPEI) at 12- and 24-month scales (SPEI12 and SPEI24) were key predictors, with long-term meteorological drought causing delayed groundwater drought, exacerbated by over-extraction and urbanization. The local SHAP values confirmed the robust importance of long-term meteorological drought and precipitation, and identified the interaction between precipitation and meteorological factors responsible for groundwater drought. (3) Future projections under the SSP5-8.5 climate scenario indicated a significant increase in drought-affected areas, with earlier onset, broader extent, and greater severity. This work provides a machine learning framework for evaluating groundwater drought characteristics driven by multiple factors.Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal observation of groundwater. We employed machine learning models and the Shapley Additive Explanation (SHAP), a game theory-based interpretability method, to understand and predict the evolution of groundwater drought by evaluating eight models with SHAP analysis in the West Liao River Plain (WLRP), with a semi-arid climate. The research showed: (1) The XGBoost model, optimized by the Sparrow Search Algorithm (SSA), achieved the highest performance (AUC: 0.922, F1-score: 0.84). (2) SHAP analysis revealed that the Standardized Precipitation Evapotranspiration Index (SPEI) at 12- and 24-month scales (SPEI12 and SPEI24) were key predictors, with long-term meteorological drought causing delayed groundwater drought, exacerbated by over-extraction and urbanization. The local SHAP values confirmed the robust importance of long-term meteorological drought and precipitation, and identified the interaction between precipitation and meteorological factors responsible for groundwater drought. (3) Future projections under the SSP5-8.5 climate scenario indicated a significant increase in drought-affected areas, with earlier onset, broader extent, and greater severity. This work provides a machine learning framework for evaluating groundwater drought characteristics driven by multiple factors.
ArticleNumber 20981
Author Yang, Liangping
Gan, Zhiyuan
Xie, Xianjun
Ge, Weili
Pan, Hongjie
Su, Chunli
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Gan
  fullname: Gan, Zhiyuan
  organization: School of Environmental Studies, China University of Geosciences, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment
– sequence: 2
  givenname: Xianjun
  surname: Xie
  fullname: Xie, Xianjun
  organization: School of Environmental Studies, China University of Geosciences, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment
– sequence: 3
  givenname: Chunli
  surname: Su
  fullname: Su, Chunli
  email: chl.su@cug.edu.cn
  organization: School of Environmental Studies, China University of Geosciences, State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment
– sequence: 4
  givenname: Weili
  surname: Ge
  fullname: Ge, Weili
  organization: School of Environmental Studies, China University of Geosciences, Geological Survey Institute of Inner Mongolia Autonomous Region
– sequence: 5
  givenname: Hongjie
  surname: Pan
  fullname: Pan, Hongjie
  organization: Geological Survey Institute of Inner Mongolia Autonomous Region
– sequence: 6
  givenname: Liangping
  surname: Yang
  fullname: Yang, Liangping
  organization: Geological Survey Institute of Inner Mongolia Autonomous Region
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594148$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhSNUREvpH2CBvGQTsB07jxVCFY9KldjQtTWxJ7m5cuxgOy399_g2l6rdILzx0fjMNx6d18WJ8w6L4i2jHxit2o9RMNm1JeWypLJidclfFGecClnyivOTJ_q0uIhxT_ORvBOse1WcCiqzEu1Z8fvGGQwxgTOTG0naIcFbb9c0eQfhnizBa4wRI8kOomE9SD-QMfjVmTtIGIjJetwlssYDAhyZXC4vARP0FskMejc5JBYhuINj9gbtm-LlADbixfE-L26-fvl5-b28_vHt6vLzdalFXaeyHmQPhlIYQAPnlRwGbIVErBpsegOdlJXomkH0VIA0mrGDs0PaSWQAfXVeXG1c42GvljDNeS3lYVIPBR9GBSFN2qKi_YBDR9E03Ii-zfOkbo2uODUoemYyq9pYq1vg_g6sfQQyqg6xqC0WlWNRD7Eonrs-bV3L2s9oNLoUwD77yvMXN-3U6G8V45w1lNeZ8P5ICP7XijGpeYoarQWHfo0qh1xXUshGZOu7p8Mep_xNPBv4ZtDBxxhw-L8VjovHbHYjBrX3a3A5t391_QFbxdPB
Cites_doi 10.1175/2009JCLI2909.1
10.1016/j.jhydrol.2014.09.027
10.1016/j.scitotenv.2020.144232
10.1016/j.jhydrol.2022.127977
10.1016/j.rse.2017.06.026
10.1016/j.jenvman.2023.117460
10.1186/s13104-020-05050-0
10.1016/j.jclepro.2019.03.075
10.1007/s11356-021-15640-5
10.1016/j.rse.2014.08.006
10.3390/w15091720
10.1016/j.ecolind.2024.111925
10.1029/2022WR033847
10.5194/hess-22-4771-2018
10.1016/j.agwat.2022.108099
10.1016/j.scitotenv.2024.174289
10.1016/j.pce.2023.103395
10.1038/s41467-021-26692-z
10.1016/j.scitotenv.2022.161138
10.1080/21642583.2019.1708830
10.1007/s42452-024-05851-z
10.1038/s41598-019-47219-z
10.1016/j.watres.2022.118078
10.1016/j.watres.2015.08.007
10.3850/978-90-833476-1-5_iahr40wc-p1339-cd
10.1007/978-94-015-9472-1_4
10.3389/fevo.2023.1176131
10.1038/s42256-019-0138-9
10.1016/j.scitotenv.2016.10.145
10.1016/j.jhydrol.2023.130131
10.1016/j.jhydrol.2021.126227
10.1038/s41598-024-77002-8
10.1016/j.scitotenv.2020.142760
10.1016/j.jhydrol.2021.126917
10.1016/j.scitotenv.2023.166716
10.1002/wcc.248
10.1016/j.jenvman.2024.121375
10.1016/j.jhydrol.2022.127759
10.1016/j.gloenvcha.2016.05.015
10.1002/hyp.1274
10.1080/02508060.2020.1768724
10.1016/j.jhydrol.2019.124102
10.1038/s41467-017-01320-x
10.1007/s11273-017-9535-1
10.1002/2014GL059323
10.1029/1998WR900071
10.1016/j.jhydrol.2022.128295
10.48550/arXiv.2109.09847
10.1002/2014GL061055
10.3389/fenvs.2023.1304845
10.1016/j.atmosres.2023.106923
10.1016/j.jhydrol.2021.127154
10.1038/ngeo2646
10.1016/j.jhydrol.2021.126174
10.1029/2021WR030028
10.1038/s43247-023-00922-2
10.3390/rs11242979
10.1016/j.jhydrol.2017.06.029
10.5194/hess-23-1393-2019
10.1016/j.jum.2018.04.006
10.1145/2939672.2939778
10.5194/hess-17-4769-2013
10.3390/rs10040493
10.1002/hyp.15258
10.1007/s11600-019-00382-3
10.1016/j.jhydrol.2021.127007
10.1016/j.scitotenv.2024.175523
10.1016/j.agrformet.2016.08.006
10.1038/s41467-022-35582-x
10.1007/s00382-024-07319-7
10.48550/arXiv.1705.07874
10.1016/j.jhydrol.2019.04.093
10.3390/w16233389
10.1016/j.jhydrol.2020.125566
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-05316-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_0bfef90ed72d4b8ca25c8dc320de4b1d
10.1038/s41598-025-05316-2
PMC12217026
40594148
10_1038_s41598_025_05316_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant 42177078; Grant 42177078; Grant 42177078; Grant 42177078; Grant 42177078; Grant 42177078
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC2503001; 2022YFC2503001; 2022YFC2503001; 2022YFC2503001; 2022YFC2503001; 2022YFC2503001
  funderid: https://doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: Grant 42177078
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC2503001
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7X8
5PM
ADTOC
EJD
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c466t-6f5bad00afaca2235ffe845ee37e7bda9553497f4b04a5dc11afac9e095e1aab3
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:48 EDT 2025
Sun Oct 26 04:03:10 EDT 2025
Tue Sep 30 17:02:16 EDT 2025
Tue Aug 26 08:57:31 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Wed Oct 01 05:57:08 EDT 2025
Wed Jul 02 02:43:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SHAP
Groundwater
Climate Change
XGBoost
Northern China
Machine learning
Meteorological drought
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-6f5bad00afaca2235ffe845ee37e7bda9553497f4b04a5dc11afac9e095e1aab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-025-05316-2
PMID 40594148
PQID 3226354574
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0bfef90ed72d4b8ca25c8dc320de4b1d
unpaywall_primary_10_1038_s41598_025_05316_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12217026
proquest_miscellaneous_3226354574
pubmed_primary_40594148
crossref_primary_10_1038_s41598_025_05316_2
springer_journals_10_1038_s41598_025_05316_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References L Gao (5316_CR48) 2020; 13
Q Zhu (5316_CR18) 2022; 609
L Chen (5316_CR26) 2019; 11
Z Han (5316_CR60) 2023; 625
A Memon (5316_CR77) 2020; 68
5316_CR39
BQ Nguyen (5316_CR3) 2024; 62
A Badawy (5316_CR13) 2024; 14
J Niu (5316_CR71) 2019; 222
B Li (5316_CR20) 2015; 526
M Guo (5316_CR2) 2021; 598
5316_CR31
L Cui (5316_CR63) 2023; 15
J Xue (5316_CR44) 2020; 8
D Long (5316_CR22) 2014; 155
PW Liu (5316_CR42) 2022; 13
5316_CR73
J Wu (5316_CR50) 2017; 551
S Hua (5316_CR74) 2015; 85
J Mardian (5316_CR28) 2023; 59
EAB Eltahir (5316_CR6) 1999; 35
TND Tran (5316_CR5) 2024; 17
M Gao (5316_CR37) 2023; 11
H Zhang (5316_CR62) 2021; 603
SK Do (5316_CR19) 2024; 55
S Kumari (5316_CR25) 2023; 130
Y Liu (5316_CR53) 2023; 333
AP Schreiner-McGraw (5316_CR58) 2021; 603
MR Tapas (5316_CR14) 2024; 951
E Peters (5316_CR61) 2003; 17
Y Zhong (5316_CR33) 2018; 10
AC Thomas (5316_CR23) 2014; 41
SM Lundberg (5316_CR29) 2020; 2
T Olarinoye (5316_CR68) 2020; 45
L Wang (5316_CR45) 2021; 765
R Gong (5316_CR65) 2023; 45
S Patra (5316_CR69) 2018; 7
V Arya (5316_CR79) 2024; 6
JP Bloomfield (5316_CR72) 2019; 23
B Lange (5316_CR8) 2017; 578
TND Tran (5316_CR12) 2023; 11
J Wu (5316_CR49) 2021; 765
L Fawen (5316_CR59) 2023; 277
J Fu (5316_CR64) 2024; 38
R Liu (5316_CR47) 2022; 610
G Tayfur (5316_CR57) 2021; 597
D Mirosław-Świątek (5316_CR55) 2017; 25
HAJ Van Lanen (5316_CR7) 2000
5316_CR52
V Agarwal (5316_CR24) 2023; 865
TND Tran (5316_CR4) 2024; 947
CH Vu (5316_CR1) 2024; 16
5316_CR15
TND Tran (5316_CR11) 2023; 293
H Zhao (5316_CR34) 2022; 29
5316_CR51
D Secci (5316_CR17) 2021; 603
Z Gao (5316_CR70) 2017; 232
BF Thomas (5316_CR9) 2017; 198
SL Castle (5316_CR54) 2014; 41
Q Liu (5316_CR16) 2024; 161
TND Tran (5316_CR10) 2024; 363
S Ali (5316_CR27) 2022; 612
S Lundberg (5316_CR30) 2017
AF Van Loon (5316_CR67) 2016; 9
AP Smith (5316_CR78) 2017; 8
JP Bloomfield (5316_CR38) 2013; 17
K Khosravi (5316_CR46) 2018; 22
Z Han (5316_CR21) 2019; 574
JI Christian (5316_CR75) 2021; 12
Z Han (5316_CR40) 2020; 591
L Li (5316_CR32) 2022; 211
Z Han (5316_CR66) 2019; 578
M Hulme (5316_CR76) 2014; 5
W Jiang (5316_CR36) 2023; 904
B Li (5316_CR41) 2019; 9
E Kriegler (5316_CR35) 2017; 42
SM Vicente-Serrano (5316_CR43) 2010; 23
Y Qing (5316_CR56) 2023; 4
References_xml – volume: 23
  start-page: 1696
  year: 2010
  ident: 5316_CR43
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2909.1
– volume: 526
  start-page: 78
  year: 2015
  ident: 5316_CR20
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.027
– volume: 765
  start-page: 144232
  year: 2021
  ident: 5316_CR49
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144232
– volume: 610
  start-page: 127977
  year: 2022
  ident: 5316_CR47
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127977
– volume: 198
  start-page: 384
  year: 2017
  ident: 5316_CR9
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.026
– volume: 333
  start-page: 117460
  year: 2023
  ident: 5316_CR53
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2023.117460
– volume: 13
  start-page: 205
  year: 2020
  ident: 5316_CR48
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-020-05050-0
– volume: 222
  start-page: 182
  year: 2019
  ident: 5316_CR71
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.075
– volume: 29
  start-page: 509
  year: 2022
  ident: 5316_CR34
  publication-title: Environ. Sci. Pollut R
  doi: 10.1007/s11356-021-15640-5
– volume: 155
  start-page: 145
  year: 2014
  ident: 5316_CR22
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.006
– volume: 15
  start-page: 1720
  year: 2023
  ident: 5316_CR63
  publication-title: Water
  doi: 10.3390/w15091720
– volume: 161
  start-page: 111925
  year: 2024
  ident: 5316_CR16
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2024.111925
– volume: 59
  start-page: e2022WR033847
  year: 2023
  ident: 5316_CR28
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR033847
– volume: 22
  start-page: 4771
  year: 2018
  ident: 5316_CR46
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-4771-2018
– volume: 277
  start-page: 108099
  year: 2023
  ident: 5316_CR59
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2022.108099
– volume: 947
  start-page: 174289
  year: 2024
  ident: 5316_CR4
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.174289
– volume: 55
  start-page: 101906
  year: 2024
  ident: 5316_CR19
  publication-title: J. Hydrol. : Reg. Stud.
– volume: 130
  start-page: 103395
  year: 2023
  ident: 5316_CR25
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2023.103395
– volume: 12
  start-page: 6330
  year: 2021
  ident: 5316_CR75
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26692-z
– volume: 865
  start-page: 161138
  year: 2023
  ident: 5316_CR24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.161138
– volume: 8
  start-page: 22
  year: 2020
  ident: 5316_CR44
  publication-title: Sys Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 6
  start-page: 367
  year: 2024
  ident: 5316_CR79
  publication-title: Discov Appl. Sci.
  doi: 10.1007/s42452-024-05851-z
– volume: 9
  start-page: 10746
  year: 2019
  ident: 5316_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47219-z
– volume: 211
  start-page: 118078
  year: 2022
  ident: 5316_CR32
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118078
– volume: 85
  start-page: 31
  year: 2015
  ident: 5316_CR74
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.08.007
– ident: 5316_CR15
  doi: 10.3850/978-90-833476-1-5_iahr40wc-p1339-cd
– start-page: 49
  volume-title: Drought and Drought Mitigation in Europe
  year: 2000
  ident: 5316_CR7
  doi: 10.1007/978-94-015-9472-1_4
– volume: 11
  start-page: 1176131
  year: 2023
  ident: 5316_CR37
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2023.1176131
– volume: 2
  start-page: 56
  year: 2020
  ident: 5316_CR29
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 578
  start-page: 297
  year: 2017
  ident: 5316_CR8
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.145
– volume: 625
  start-page: 130131
  year: 2023
  ident: 5316_CR60
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130131
– ident: 5316_CR73
– volume: 598
  start-page: 126227
  year: 2021
  ident: 5316_CR2
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126227
– volume: 14
  start-page: 27031
  year: 2024
  ident: 5316_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-77002-8
– volume: 765
  start-page: 142760
  year: 2021
  ident: 5316_CR45
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142760
– volume: 603
  start-page: 126917
  year: 2021
  ident: 5316_CR58
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126917
– volume: 904
  start-page: 166716
  year: 2023
  ident: 5316_CR36
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.166716
– volume: 5
  start-page: 1
  year: 2014
  ident: 5316_CR76
  publication-title: WIREs Clim. Change
  doi: 10.1002/wcc.248
– volume: 363
  start-page: 121375
  year: 2024
  ident: 5316_CR10
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2024.121375
– volume: 609
  start-page: 127759
  year: 2022
  ident: 5316_CR18
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127759
– ident: 5316_CR39
– volume: 42
  start-page: 297
  year: 2017
  ident: 5316_CR35
  publication-title: Global Environ. Change
  doi: 10.1016/j.gloenvcha.2016.05.015
– volume: 17
  start-page: 3023
  year: 2003
  ident: 5316_CR61
  publication-title: Hydrolo Processes
  doi: 10.1002/hyp.1274
– volume: 45
  start-page: 497
  year: 2020
  ident: 5316_CR68
  publication-title: Water Int. L
  doi: 10.1080/02508060.2020.1768724
– volume: 578
  start-page: 124102
  year: 2019
  ident: 5316_CR66
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124102
– volume: 8
  start-page: 1335
  year: 2017
  ident: 5316_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01320-x
– volume: 25
  start-page: 547
  year: 2017
  ident: 5316_CR55
  publication-title: Wetlands Ecol. Manage.
  doi: 10.1007/s11273-017-9535-1
– volume: 41
  start-page: 1537
  year: 2014
  ident: 5316_CR23
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059323
– volume: 35
  start-page: 1199
  year: 1999
  ident: 5316_CR6
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900071
– volume: 612
  start-page: 128295
  year: 2022
  ident: 5316_CR27
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128295
– ident: 5316_CR52
  doi: 10.48550/arXiv.2109.09847
– volume: 41
  start-page: 5904
  year: 2014
  ident: 5316_CR54
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061055
– volume: 11
  start-page: 1304845
  year: 2023
  ident: 5316_CR12
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2023.1304845
– volume: 45
  start-page: 101317
  year: 2023
  ident: 5316_CR65
  publication-title: J. Hydrol. : Reg. Stud.
– volume: 293
  start-page: 106923
  year: 2023
  ident: 5316_CR11
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2023.106923
– volume: 603
  start-page: 127154
  year: 2021
  ident: 5316_CR17
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127154
– volume: 9
  start-page: 89
  year: 2016
  ident: 5316_CR67
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2646
– volume: 597
  start-page: 126174
  year: 2021
  ident: 5316_CR57
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126174
– ident: 5316_CR51
  doi: 10.1029/2021WR030028
– volume: 4
  start-page: 254
  year: 2023
  ident: 5316_CR56
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00922-2
– volume: 11
  start-page: 2979
  year: 2019
  ident: 5316_CR26
  publication-title: Remote Sens.
  doi: 10.3390/rs11242979
– volume: 551
  start-page: 495
  year: 2017
  ident: 5316_CR50
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.06.029
– volume: 23
  start-page: 1393
  year: 2019
  ident: 5316_CR72
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-1393-2019
– volume: 7
  start-page: 70
  year: 2018
  ident: 5316_CR69
  publication-title: J. Urban Manag
  doi: 10.1016/j.jum.2018.04.006
– ident: 5316_CR31
  doi: 10.1145/2939672.2939778
– volume: 17
  start-page: 4769
  year: 2013
  ident: 5316_CR38
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-4769-2013
– volume: 10
  start-page: 493
  year: 2018
  ident: 5316_CR33
  publication-title: Remote Sens.
  doi: 10.3390/rs10040493
– volume: 38
  start-page: e15258
  year: 2024
  ident: 5316_CR64
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.15258
– volume: 68
  start-page: 155
  year: 2020
  ident: 5316_CR77
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-019-00382-3
– volume: 17
  start-page: 7516
  year: 2024
  ident: 5316_CR5
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs Remote Sens.
– volume: 603
  start-page: 127007
  year: 2021
  ident: 5316_CR62
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127007
– volume: 951
  start-page: 175523
  year: 2024
  ident: 5316_CR14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.175523
– volume: 232
  start-page: 106
  year: 2017
  ident: 5316_CR70
  publication-title: Agric. Meteorol.
  doi: 10.1016/j.agrformet.2016.08.006
– volume: 13
  start-page: 7825
  year: 2022
  ident: 5316_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35582-x
– volume: 62
  start-page: 7997
  year: 2024
  ident: 5316_CR3
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-024-07319-7
– year: 2017
  ident: 5316_CR30
  publication-title: Preprint At.
  doi: 10.48550/arXiv.1705.07874
– volume: 574
  start-page: 836
  year: 2019
  ident: 5316_CR21
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.04.093
– volume: 16
  start-page: 3389
  year: 2024
  ident: 5316_CR1
  publication-title: Water
  doi: 10.3390/w16233389
– volume: 591
  start-page: 125566
  year: 2020
  ident: 5316_CR40
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125566
SSID ssj0000529419
Score 2.4548383
Snippet Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal...
Abstract Drought is a widespread natural disaster, and rapid assessment of groundwater drought has become a challenge due to the lack of direct spatiotemporal...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20981
SubjectTerms 631/158/1144
631/158/2459
704/172
704/242
Climate Change
Groundwater
Humanities and Social Sciences
Machine learning
Meteorological drought
multidisciplinary
Science
Science (multidisciplinary)
SHAP
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQpQo4oLI2bDISNxo18ZI4xxZRVUhwYqTeLC_PpdKQGc1CmX_Ps52JZgQCDtyi5EmJ3_v8lvgthLzlEq2uV6IUKigMULgpuwaiMrSWc7CNDPE_5KfPzeVEfLySVzujvmJOWG4PnBl3WtkAoavAt8wLq5xh0invOKs8CFv7qH0r1e0EU7mrN-tE3Q1VMhVXp0u0VLGajMky4q4p2Z4lSg37f-dl_posOZ6Y3id31_3cbG7NdLpjlC6OyIPBm6RneRUPyR3oH5HDPF9y85j8mOyWrlD09Sh8H7BmFhs6z1UCsKRIQZ1Zx8tZoLHUo_e36IYuqE9zfFY0JshfIx29GdMU7RTot5SMCXSYPnFN02idJ2Ry8eHL-8tyGLVQOtE0q7IJ0hpfVSYY5DDjMgRQQgLwFlrrTSclF10bhK2Ekd7VdaTsAB00qI2x_Ck56Gc9HBMqGvQalGdOQYzVWmUb1_oqCJSjBOYK8m7Ldj3PHTV0OgnnSmchaRSSTkLSrCDnUTIjZeyGnW4gRvSAEf03jBTkzVauGndPPBIxPczWS43qDD0uIVtRkGdZzuOrRGxlg9FiQdQeAva-Zf9Jf_M1deiuGUZ6GN0W5GQLFj3ohuUfF3syAuofePP8f_DmBbnH0qaIGcgvycFqsYZX6Get7Ou0pX4Co30oxg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrRDwwH2ES0bijabksB3vY0FUFRIVD6woT5Ydj5eKJbvag7L8esZOsupChehblEyOsT_b38RzALwsBa26TvGUK6_IQClNOpQYJkNryxKtFD78h_xwLI9G_P2JONkB2cfCRKf9mNIyTtO9d9jrBS00IRisEGmAjUzJHnT-CuxKQRx8ALuj448HX0IlOeIoKdGEoouQyUp1wc1bq1BM1n8Rw_zbUXKzW3oDrq2amVmfmcnk3IJ0eAs-96q0fijf9ldLu1__-iPL4-V1vQ03O47KDlrJO7CDzV242latXN-Dn6PzATGMGCTDHx2CzXzNZm3sAS4YSbDarMLh1LMQQNK4MyK3c-ZidaAlC273Y5JjpxvnRztB9j26eCLralqMWSzYcx9Gh-8-vT1KuwIOac2lXKbSC2tclhlvakM8RHiPigvEssLKOjMUouTDynObcSNcnedBcohE-zA3xpYPYNBMG3wEjEviIsoVtcJgAVbKyrpymecevcCiTuBV36F61ubp0HF_vVS6bU9N7alje-oigTehzzeSIcd2PDGdj3XXDzqz9Oxhhq4qHLeKNBC1cnVZZA65zV0CL3rEaBqTYaPFNDhdLTShj3gcFxVP4GGLoM2reEiQQzZoAmoLW1vfsn2lOf0a837nBdmPZDMnsNfDUHczzuKfyu5toPofbfP4cuJP4HoRkRo8mJ_CYDlf4TPiaUv7vBuUvwERpjuc
  priority: 102
  providerName: Unpaywall
Title Understanding the evolutionary processes and causes of groundwater drought using an interpretable machine learning model
URI https://link.springer.com/article/10.1038/s41598-025-05316-2
https://www.ncbi.nlm.nih.gov/pubmed/40594148
https://www.proquest.com/docview/3226354574
https://pubmed.ncbi.nlm.nih.gov/PMC12217026
https://www.nature.com/articles/s41598-025-05316-2.pdf
https://doaj.org/article/0bfef90ed72d4b8ca25c8dc320de4b1d
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRDwgLgTLpWReKMRudiO89hVm6ZKVBNQqTxZdmyPSSWtemH033PspNGqIQRPiRw7iX2O7e_43ADe5wx3XSNoTIUTKKDkKi659Yuh1nluNWfOn0N-mvDzKR3P2OwIBntfmAP9fQjdvcYtxruBZSz2DMNjXHCPBTKm6MHxcDj-Mu7OVLzWiqZl6xuDzT_ebnyw_4Qw_X_ClrdNJDs96QO4t62Xanet5vMbW9HZI3jYYkgybIj-GI5s_QTuNlkld0_h1_SmwwpBhEfsz5bD1GpHlo1vgF0TrEEqtfW3C0e8g0dtrhF8rogJ2Xs2xJvFX2I9ctUZJ-q5JT-CCaYlbc6JSxIS6jyD6dnp19F53CZYiCvK-SbmjmllkkQ5VSnECcw5KyizNi9soY0qGctpWTiqE6qYqdLU1ywtwjKbKqXz59CrF7V9CYRyxArCZJWwXkIrhOZVYRJHnXXMZlUEH_bDLpdNHA0Z9N-5kA2RJBJJBiLJLIITT5mupo-BHQqQNWQ7pWSi8d1lYk2RGaoF9oBVwlR5lhhLdWoieLenq8Q54xUhqraL7VriIoY4i7KCRvCioXP3KeoD2KCMGIE44ICDfzl8Ul99D3G50wzlO5RpIxjsmUW2K8L6r50ddAz1D2Pz6v_e_hruZ4H9vYXxG-htVlv7FnHURvfhTjEr-u0kwuvJ6eTiM5aO-KgfziawbDq5GH77DVSYHxU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VW6HSA-Ld8DQSNzYiDztxjguiWpa2F7pSb5Ydj9tKS3a1D8r-e8ZJNmpUhOAWJXYSe8aebzwvgPepIKlrJQ-5dJIUlFSHRYZ-MzQmTdFkwvlzyNOzbDzlkwtxsQfDXSxMz35fp-5ekYjxYWCJCD3DZCFtuPuSBF80gP3RaPJ90p2peKsVj4s2Noa6f7zbuSd_6jT9f8KWd10kOzvpIRxsqoXe3ujZ7JYoOn4ID1oMyUYN0R_BHlaP4V5TVXL7BH5NbwesMEJ4DH-2HKaXW7ZoYgNwxagFK_XGX84d8wEelb0h8Llktq7es2beLf6S2rHrzjnRzJD9qF0wkbU1Jy5ZXVDnKUyPv5x_HodtgYWw5Fm2DjMnjLZRpJ0uNeEE4RxKLhDTHHNjdSFEyovccRNxLWwZx75lgQTLMNbapM9gUM0rPALGM8IK0ialRK-h5dJkZW4jxx06gUkZwIfdtKtFk0dD1fbvVKqGSIqIpGoiqSSAT54yXUufA7u-Qayh2iWlIkPvLiK0eWK5kTQCUUpbpklkkZvYBvBuR1dFa8YbQnSF881K0SZGOIuLnAfwvKFz9ynuE9iQjhiA7HFA71_6T6rrqzovd5yQfkc6bQDDHbOodkdY_XWww46h_mFuXvzf29_Cwfj89ESdfD379hLuJ_VS8N7Gr2CwXm7wNWGqtXnTLqXf4o8b-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELaWXXE9IG7CaSTe2GiT-IjzWI5qKbBCgkr7ZtnxuKxU0qoHS_89YyeNtmKF4C1KLMf2jGe-secg5BUTqHWd4ilXXqGBwkxaSQjC0FrGwErhwznk5xN5POajU3G6R-Q2FiY67ceUllFMb73DjpaoaEIwWCHSwDYyRXvQ-SvkQJVMIjcfDAajr6P-dCXcX_G86qJkMqYu6WBHE8WE_ZehzD-dJfsb05vk-rqZm825mU4vKKXhbXKrQ5N00I7_DtmD5i652taX3Nwjv8YXQ1coYj0KPzteM4sNnbdRArCk2ILWZh0eZ56GUI_GnSMMXVAX6_isaHCQn2A7eta7Kdop0B_RGRNoV31iQmNpnftkPHz_7e1x2pVaSGsu5SqVXljjssx4UxtEDMJ7UFwAsBJK60wlBONV6bnNuBGuzvPQsgIEaJAbY9kDst_MGnhEKJeIGpQragXBViuVlXXpMs89eAFFnZDX22XX8zajho434UzplkgaiaQjkXSRkDeBMn3LkA07vpgtJrrjDp1Z7LvKwJWF41bhDEStXM2KzAG3uUvIyy1dNe6ecCViGpitlxrFGSIuLkqekIctnftf8ZDKBq3FhKgdDtgZy-6X5ux7zNCdF2jpoXWbkMMts-hONiz_OtnDnqH-YW0e_1_vL8i1L--G-tOHk49PyI0i7oTgdvyU7K8Wa3iG4Gpln3c76TftsiGE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrRDwwH2ES0bijabksB3vY0FUFRIVD6woT5Ydj5eKJbvag7L8esZOsupChehblEyOsT_b38RzALwsBa26TvGUK6_IQClNOpQYJkNryxKtFD78h_xwLI9G_P2JONkB2cfCRKf9mNIyTtO9d9jrBS00IRisEGmAjUzJHnT-CuxKQRx8ALuj448HX0IlOeIoKdGEoouQyUp1wc1bq1BM1n8Rw_zbUXKzW3oDrq2amVmfmcnk3IJ0eAs-96q0fijf9ldLu1__-iPL4-V1vQ03O47KDlrJO7CDzV242latXN-Dn6PzATGMGCTDHx2CzXzNZm3sAS4YSbDarMLh1LMQQNK4MyK3c-ZidaAlC273Y5JjpxvnRztB9j26eCLralqMWSzYcx9Gh-8-vT1KuwIOac2lXKbSC2tclhlvakM8RHiPigvEssLKOjMUouTDynObcSNcnedBcohE-zA3xpYPYNBMG3wEjEviIsoVtcJgAVbKyrpymecevcCiTuBV36F61ubp0HF_vVS6bU9N7alje-oigTehzzeSIcd2PDGdj3XXDzqz9Oxhhq4qHLeKNBC1cnVZZA65zV0CL3rEaBqTYaPFNDhdLTShj3gcFxVP4GGLoM2reEiQQzZoAmoLW1vfsn2lOf0a837nBdmPZDMnsNfDUHczzuKfyu5toPofbfP4cuJP4HoRkRo8mJ_CYDlf4TPiaUv7vBuUvwERpjuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+evolutionary+processes+and+causes+of+groundwater+drought+using+an+interpretable+machine+learning+model&rft.jtitle=Scientific+reports&rft.au=Gan%2C+Zhiyuan&rft.au=Xie%2C+Xianjun&rft.au=Su%2C+Chunli&rft.au=Ge%2C+Weili&rft.date=2025-07-01&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=20981&rft_id=info:doi/10.1038%2Fs41598-025-05316-2&rft_id=info%3Apmid%2F40594148&rft.externalDocID=40594148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon