Improving EEG based brain computer interface emotion detection with EKO ALSTM model

Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for auto...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 20727 - 14
Main Authors Kanna, R. Kishore, Shoran, Preety, Yadav, Meenakshi, Ahmed, Mohammad Nadeem, Burje, Shrikant, Shukla, Garima, Sinha, Anurag, Hussain, Mohammad Rashid, Khalid, Saifullah
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-07438-z

Cover

Abstract Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for automatic emotion identification based on body language, speech, or facial expressions are nowadays in use. However, the monitoring of exterior emotions, which are easily manipulated, limits the applicability of these procedures. EEG-based emotion detection research might yield significant benefits for enhancing BCI application performance and user experience. To overcome these issues, this study proposed a novel EKO-ALSTM for emotion detection in EEG-based brain–computer interfaces. The proposed study comprises EEG-based signals that record the electrical activity of the brain connected to various emotional states, which are gathered as real-time acquired EEG signals for emotion detection. The data was pre-processed using a bandpass filter to remove unwanted frequency noise for the obtained data. Then, feature extraction is performed using DWT from pre-processed data. Specifically, the proposed approach is implemented using Python software. The proposed system and existing algorithms are compared using a variety of evaluation criteria, including specificity, F1 score, accuracy, recall or sensitivity, and positive predictive values or precision. The results demonstrated that the proposed method achieved better performance in EEG-based BCI emotion detection with an accuracy of 97.93%, a positive predictive value of 96.24%, a sensitivity of 97.81%, and a specificity of 97.75%. This study emphasizes that innovative approaches have significantly increased the accuracy of emotion identification when applied to EEG-based emotion recognition systems. Additionally, the findings suggest that integrating advanced machine learning techniques can further enhance the effectiveness and reliability of these systems in real-world applications, paving the way for more responsive and intuitive BCI technologies.
AbstractList Abstract Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for automatic emotion identification based on body language, speech, or facial expressions are nowadays in use. However, the monitoring of exterior emotions, which are easily manipulated, limits the applicability of these procedures. EEG-based emotion detection research might yield significant benefits for enhancing BCI application performance and user experience. To overcome these issues, this study proposed a novel EKO-ALSTM for emotion detection in EEG-based brain–computer interfaces. The proposed study comprises EEG-based signals that record the electrical activity of the brain connected to various emotional states, which are gathered as real-time acquired EEG signals for emotion detection. The data was pre-processed using a bandpass filter to remove unwanted frequency noise for the obtained data. Then, feature extraction is performed using DWT from pre-processed data. Specifically, the proposed approach is implemented using Python software. The proposed system and existing algorithms are compared using a variety of evaluation criteria, including specificity, F1 score, accuracy, recall or sensitivity, and positive predictive values or precision. The results demonstrated that the proposed method achieved better performance in EEG-based BCI emotion detection with an accuracy of 97.93%, a positive predictive value of 96.24%, a sensitivity of 97.81%, and a specificity of 97.75%. This study emphasizes that innovative approaches have significantly increased the accuracy of emotion identification when applied to EEG-based emotion recognition systems. Additionally, the findings suggest that integrating advanced machine learning techniques can further enhance the effectiveness and reliability of these systems in real-world applications, paving the way for more responsive and intuitive BCI technologies.
Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for automatic emotion identification based on body language, speech, or facial expressions are nowadays in use. However, the monitoring of exterior emotions, which are easily manipulated, limits the applicability of these procedures. EEG-based emotion detection research might yield significant benefits for enhancing BCI application performance and user experience. To overcome these issues, this study proposed a novel EKO-ALSTM for emotion detection in EEG-based brain–computer interfaces. The proposed study comprises EEG-based signals that record the electrical activity of the brain connected to various emotional states, which are gathered as real-time acquired EEG signals for emotion detection. The data was pre-processed using a bandpass filter to remove unwanted frequency noise for the obtained data. Then, feature extraction is performed using DWT from pre-processed data. Specifically, the proposed approach is implemented using Python software. The proposed system and existing algorithms are compared using a variety of evaluation criteria, including specificity, F1 score, accuracy, recall or sensitivity, and positive predictive values or precision. The results demonstrated that the proposed method achieved better performance in EEG-based BCI emotion detection with an accuracy of 97.93%, a positive predictive value of 96.24%, a sensitivity of 97.81%, and a specificity of 97.75%. This study emphasizes that innovative approaches have significantly increased the accuracy of emotion identification when applied to EEG-based emotion recognition systems. Additionally, the findings suggest that integrating advanced machine learning techniques can further enhance the effectiveness and reliability of these systems in real-world applications, paving the way for more responsive and intuitive BCI technologies.
Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for automatic emotion identification based on body language, speech, or facial expressions are nowadays in use. However, the monitoring of exterior emotions, which are easily manipulated, limits the applicability of these procedures. EEG-based emotion detection research might yield significant benefits for enhancing BCI application performance and user experience. To overcome these issues, this study proposed a novel EKO-ALSTM for emotion detection in EEG-based brain-computer interfaces. The proposed study comprises EEG-based signals that record the electrical activity of the brain connected to various emotional states, which are gathered as real-time acquired EEG signals for emotion detection. The data was pre-processed using a bandpass filter to remove unwanted frequency noise for the obtained data. Then, feature extraction is performed using DWT from pre-processed data. Specifically, the proposed approach is implemented using Python software. The proposed system and existing algorithms are compared using a variety of evaluation criteria, including specificity, F1 score, accuracy, recall or sensitivity, and positive predictive values or precision. The results demonstrated that the proposed method achieved better performance in EEG-based BCI emotion detection with an accuracy of 97.93%, a positive predictive value of 96.24%, a sensitivity of 97.81%, and a specificity of 97.75%. This study emphasizes that innovative approaches have significantly increased the accuracy of emotion identification when applied to EEG-based emotion recognition systems. Additionally, the findings suggest that integrating advanced machine learning techniques can further enhance the effectiveness and reliability of these systems in real-world applications, paving the way for more responsive and intuitive BCI technologies.Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling communication equipment enabling command, communication, and action without using neuromuscular or muscle channels. Various techniques for automatic emotion identification based on body language, speech, or facial expressions are nowadays in use. However, the monitoring of exterior emotions, which are easily manipulated, limits the applicability of these procedures. EEG-based emotion detection research might yield significant benefits for enhancing BCI application performance and user experience. To overcome these issues, this study proposed a novel EKO-ALSTM for emotion detection in EEG-based brain-computer interfaces. The proposed study comprises EEG-based signals that record the electrical activity of the brain connected to various emotional states, which are gathered as real-time acquired EEG signals for emotion detection. The data was pre-processed using a bandpass filter to remove unwanted frequency noise for the obtained data. Then, feature extraction is performed using DWT from pre-processed data. Specifically, the proposed approach is implemented using Python software. The proposed system and existing algorithms are compared using a variety of evaluation criteria, including specificity, F1 score, accuracy, recall or sensitivity, and positive predictive values or precision. The results demonstrated that the proposed method achieved better performance in EEG-based BCI emotion detection with an accuracy of 97.93%, a positive predictive value of 96.24%, a sensitivity of 97.81%, and a specificity of 97.75%. This study emphasizes that innovative approaches have significantly increased the accuracy of emotion identification when applied to EEG-based emotion recognition systems. Additionally, the findings suggest that integrating advanced machine learning techniques can further enhance the effectiveness and reliability of these systems in real-world applications, paving the way for more responsive and intuitive BCI technologies.
ArticleNumber 20727
Author Shoran, Preety
Khalid, Saifullah
Ahmed, Mohammad Nadeem
Yadav, Meenakshi
Kanna, R. Kishore
Hussain, Mohammad Rashid
Shukla, Garima
Sinha, Anurag
Burje, Shrikant
Author_xml – sequence: 1
  givenname: R. Kishore
  orcidid: 0000-0002-8004-1501
  surname: Kanna
  fullname: Kanna, R. Kishore
  organization: Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
– sequence: 2
  givenname: Preety
  surname: Shoran
  fullname: Shoran, Preety
  organization: Department of Computer Science, CHRIST University
– sequence: 3
  givenname: Meenakshi
  surname: Yadav
  fullname: Yadav, Meenakshi
  organization: Department of Information & Technology, Galgotias College of Engineering and Technology
– sequence: 4
  givenname: Mohammad Nadeem
  surname: Ahmed
  fullname: Ahmed, Mohammad Nadeem
  organization: Department of Computer Science, College of Computer Science, King Khalid University
– sequence: 5
  givenname: Shrikant
  surname: Burje
  fullname: Burje, Shrikant
  organization: Department of Electronics and Telecommunication Engineering, RSR Rungta College of Engineering and Technology
– sequence: 6
  givenname: Garima
  orcidid: 0000-0002-3306-2465
  surname: Shukla
  fullname: Shukla, Garima
  organization: Jamia Millia Islamia
– sequence: 7
  givenname: Anurag
  surname: Sinha
  fullname: Sinha, Anurag
  organization: Tech School, Computer Science Department, ICFAI University
– sequence: 8
  givenname: Mohammad Rashid
  surname: Hussain
  fullname: Hussain, Mohammad Rashid
  organization: Department of Business Informatics, College of Business, King Khalid University
– sequence: 9
  givenname: Saifullah
  surname: Khalid
  fullname: Khalid, Saifullah
  email: skhalid.sudan@yahoo.com
  organization: IBM Multi Activities Co. Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594760$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQjVARLaV_gAPykUvAH3Ecn1BVLWXFoh5azpbtTLZeJXawk1btr8dslqq9IHzwjOz33sy8eVsc-eChKN4T_Ilg1nxOFeGyKTHlJRYVa8rHV8UJxRUvKaP06Fl-XJyltMP5cCorIt8UxxXmshI1Pimu18MYw53zW7RaXSKjE7TIRO08smEY5wkicj7fnbaAYAiTCx61MIHdZ_duukWr71fofHN98wMNoYX-XfG6032Cs0M8LX5-Xd1cfCs3V5fri_NNaau6nkoOneTECosZAUtbWgOmBgzpNJZgpIE6ByFqgmtpia05a2QrOkExtk1L2WmxXnTboHdqjG7Q8UEF7dT-IcSt0nFytgeFmSCGcwHENhUW2GgrCZhOdC3VHRZZiy1asx_1w73u-ydBgtUfx9XiuMqOq73j6jGzviyscTYDtBb8FHX_opWXP97dqm24U4RS0hDOs8LHg0IMv2ZIkxpcstD32kOYk8r7qxmvmMQZ-uF5sacqf5eZAXQB2BhSitD93wiHwVMG-y1EtQtz9Hlv_2L9Bkpewqg
Cites_doi 10.38094/jastt20291
10.3390/computers9040095
10.1299/jamdsm.2019jamdsm0075
10.1007/s11042-019-7250-z
10.21037/atm.2019.11.109
10.1016/j.inat.2020.100694
10.1016/j.jneumeth.2025.110463
10.1016/j.eswa.2024.122954
10.1109/TNNLS.2023.3238519
10.1016/j.bspc.2024.106244
10.1007/s13246-024-01425-w
10.1007/s00521-019-04564-4
10.5772/intechopen.84856
10.1016/j.inffus.2020.01.011
10.1016/j.compbiomed.2024.10992
10.1016/j.eswa.2020.113768
10.1109/TNSRE.2023.3246989
10.1007/s11571-024-10153-6
10.1016/j.tics.2021.04.003
10.1016/j.imu.2020.100372
10.3390/app112210540
10.3390/brainsci10100687
10.1007/s11042-022-13363-4
10.1007/s11042-022-12310-7
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-07438-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_0371b557e1c84070bac91ebf7fd2af07
10.1038/s41598-025-07438-z
PMC12218155
40594760
10_1038_s41598_025_07438_z
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
EJD
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c466t-5ef951c7c031ec2d26e02beb1fa09eb9be69eb7761069c1c65389d7f7200c8d23
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:46:20 EDT 2025
Sun Oct 26 04:09:46 EDT 2025
Tue Sep 30 17:02:22 EDT 2025
Tue Aug 26 08:58:09 EDT 2025
Mon Jul 21 06:03:38 EDT 2025
Wed Oct 01 06:05:40 EDT 2025
Wed Jul 02 02:43:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Discrete wavelet transform (DWT)
Electroencephalogram (EEG)
Enhanced kookaburra optimized adjustable long short term memory (EKO-ALSTM)
Emotion detection
Brain–computer interface (BCI)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-5ef951c7c031ec2d26e02beb1fa09eb9be69eb7761069c1c65389d7f7200c8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3306-2465
0000-0002-8004-1501
OpenAccessLink https://doi.org/10.1038%2Fs41598-025-07438-z
PMID 40594760
PQID 3226354390
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0371b557e1c84070bac91ebf7fd2af07
unpaywall_primary_10_1038_s41598_025_07438_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12218155
proquest_miscellaneous_3226354390
pubmed_primary_40594760
crossref_primary_10_1038_s41598_025_07438_z
springer_journals_10_1038_s41598_025_07438_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References SK Mudgal (7438_CR8) 2020; 20
PH Kachare (7438_CR23) 2024; 18
P Gong (7438_CR20) 2023; 31
7438_CR15
7438_CR16
7438_CR17
H Chang (7438_CR18) 2022; 12
7438_CR2
DV Puri (7438_CR22) 2024; 94
P Mukherjee (7438_CR27) 2024; 244
A Iyer (7438_CR19) 2023; 82
S De (7438_CR26) 2025; 419
S Chamishka (7438_CR10) 2022; 81
N Rathour (7438_CR13) 2021; 11
A Hassouneh (7438_CR5) 2020; 20
P Kachare (7438_CR25) 2024; 47
S De (7438_CR28) 2025; 189
Z He (7438_CR9) 2020; 10
J Zhang (7438_CR6) 2020; 59
Z Yin (7438_CR14) 2020; 162
7438_CR21
X Zhang (7438_CR3) 2020; 8
JR Zhuang (7438_CR12) 2019; 13
X Gao (7438_CR7) 2021; 25
S Jaiswal (7438_CR1) 2020; 32
SMSA Abdullah (7438_CR4) 2021; 2
K Bahreini (7438_CR11) 2019; 78
R Alhalaseh (7438_CR24) 2020; 9
References_xml – ident: 7438_CR15
– volume: 2
  start-page: 73
  issue: 01
  year: 2021
  ident: 7438_CR4
  publication-title: J. Appl. Sci. Technol. Trends
  doi: 10.38094/jastt20291
– volume: 9
  start-page: 95
  issue: 4
  year: 2020
  ident: 7438_CR24
  publication-title: Computers
  doi: 10.3390/computers9040095
– volume: 13
  start-page: JAMDSM0075
  issue: 4
  year: 2019
  ident: 7438_CR12
  publication-title: J. Adv. Mech. Des. Syst. Manuf.
  doi: 10.1299/jamdsm.2019jamdsm0075
– volume: 78
  start-page: 18943
  year: 2019
  ident: 7438_CR11
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7250-z
– volume: 8
  start-page: 712
  issue: 11
  year: 2020
  ident: 7438_CR3
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2019.11.109
– volume: 20
  year: 2020
  ident: 7438_CR8
  publication-title: Interdiscip. Neurosurg.
  doi: 10.1016/j.inat.2020.100694
– volume: 419
  year: 2025
  ident: 7438_CR26
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2025.110463
– volume: 12
  year: 2022
  ident: 7438_CR18
  publication-title: Front. Psychol.
– volume: 244
  year: 2024
  ident: 7438_CR27
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.122954
– ident: 7438_CR17
  doi: 10.1109/TNNLS.2023.3238519
– volume: 94
  year: 2024
  ident: 7438_CR22
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106244
– volume: 47
  start-page: 1037
  issue: 3
  year: 2024
  ident: 7438_CR25
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-024-01425-w
– ident: 7438_CR21
– volume: 32
  start-page: 11253
  issue: 15
  year: 2020
  ident: 7438_CR1
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04564-4
– ident: 7438_CR2
  doi: 10.5772/intechopen.84856
– volume: 59
  start-page: 103
  year: 2020
  ident: 7438_CR6
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.011
– ident: 7438_CR16
– volume: 189
  year: 2025
  ident: 7438_CR28
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.10992
– volume: 162
  year: 2020
  ident: 7438_CR14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113768
– volume: 31
  start-page: 1440
  year: 2023
  ident: 7438_CR20
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3246989
– volume: 18
  start-page: 3195
  issue: 5
  year: 2024
  ident: 7438_CR23
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-024-10153-6
– volume: 25
  start-page: 671
  issue: 8
  year: 2021
  ident: 7438_CR7
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2021.04.003
– volume: 20
  year: 2020
  ident: 7438_CR5
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100372
– volume: 11
  start-page: 10540
  issue: 22
  year: 2021
  ident: 7438_CR13
  publication-title: Appl. Sci.
  doi: 10.3390/app112210540
– volume: 10
  start-page: 687
  issue: 10
  year: 2020
  ident: 7438_CR9
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10100687
– volume: 81
  start-page: 35173
  issue: 24
  year: 2022
  ident: 7438_CR10
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13363-4
– volume: 82
  start-page: 4883
  issue: 4
  year: 2023
  ident: 7438_CR19
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12310-7
SSID ssj0000529419
Score 2.4548774
Snippet Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered compelling...
Abstract Decoding signals from the CNS brain activity is done by a computer-based communication device called a BCI. In contrast, the system is considered...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20727
SubjectTerms 631/114/1305
631/114/2401
631/114/2415
Adult
Algorithms
Brain - physiology
Brain-Computer Interfaces
Brain–computer interface (BCI)
Discrete wavelet transform (DWT)
Electroencephalogram (EEG)
Electroencephalography - methods
Emotion detection
Emotions - physiology
Enhanced kookaburra optimized adjustable long short term memory (EKO-ALSTM)
Female
Humanities and Social Sciences
Humans
Male
multidisciplinary
Science
Science (multidisciplinary)
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SEHUhvh2rEsGdDU0yk0myrHJrUauLttBdyOMEhTItvfci7a9vHnOHe1HUhauBSWAm38nJ-fL6DkJvo2Vetw5Ip70mHeiOKOcD8cJq2wJoXhRvDr_2Byfdp1NxupbqK58Jq_LAFbjdLCnnhJDAfJqLSOqs1wxclDFwG-s9cqr02mSqqnpz3TE93pKhrdqdp0iVb5NxQXLUVOR6IxIVwf7fscxfD0tOO6b30J3lcGGvftqzs7WgtP8A3R_ZJN6rrXiIbsHwCN2u-SWvHqOjackAz2YfcY5YAbucFAL7MZsDznoRl9F6wFAz-uAAi3I-a8B5kRbPPn_De1-Ojg9xyZrzBJ3sz44_HJAxiwLxXd8viICYWJSXPrkveB54D5S7NERHSzU47aBPDykTj-q1Z75PQ6AOMsrkP14F3j5FW8P5AM8R9jToSF1kjoXOxqCp8EzpxM8DUCVtg96tEDUXVSzDlE3uVpmKv0n4m4K_uW7Q-wz6VDMLXZcXyfxmNL_5m_kb9GZlMpMcI-922AHOl3OTRqpEphLfog16Vk04farLKjWyTyVqw7gb_7JZMvz4XsS3Gc-kSIgG7az6gRndfv7Hxu5MfeUfsHnxP7DZRnd57e-Espdoa3G5hFeJQi3c6-ItN9mtF5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrRDwwH2ES0bijXrrOIfjxwVtqYAWpHZFebJ80ooqu9rNCnV_PbaTrFioEH2KFE-UeDye-WKPvwF47WSqeaYszrnmOLc8x5XSButCcplZy2lkvDk4LPcn-YeT4mQLyv4sTEzaj5SW0U332WG7Cx9owmEwWuAQ9Cq8Gs6MuwbbZeEx-AC2J4dfRt9CJTmPUbCHCbQ7IUOy6pKHN6JQJOu_DGH-nSi53i29BTeW9Uxe_JTn578FpL078LXvSpuH8mO4bNRQr_5gebx6X-_C7Q6jolEreQ-2bH0frrdVKy8ewNF6IQKNx-9RiIMGqVBqAumuRgQKLBRzJ7VFtq0ThIxtYtZXjcLSLxp__IxGn46OD1CsxfMQJnvj43f7uKvNgHVelg0urPPYTDPtnYLV1NDSEqq843eScKu4sqW_MObRWcl1qkvvWLlhjvlZqStDs0cwqKe1fQJIE8MdUS5VqcmlM5wUOq24R_3GkorJBN70YyVmLQWHiFvnWSVaVQmvKhFVJVYJvA3DuZYM9NnxxnT-XXQqFoGnUBUFs6n2P7iMKKl5apVjzlDpCEvgVW8Mwk-3sIciaztdLoQ3LA_RPIojCTxujWP9qjxw37DSt1QbZrPxLZst9dlppPROaYBaRZHATm9honMmi392dmdthf-hm6dXE38GN2lrhJikz2HQzJf2hYdgjXrZzbdfkVws2w
  priority: 102
  providerName: Unpaywall
Title Improving EEG based brain computer interface emotion detection with EKO ALSTM model
URI https://link.springer.com/article/10.1038/s41598-025-07438-z
https://www.ncbi.nlm.nih.gov/pubmed/40594760
https://www.proquest.com/docview/3226354390
https://pubmed.ncbi.nlm.nih.gov/PMC12218155
https://www.nature.com/articles/s41598-025-07438-z.pdf
https://doaj.org/article/0371b557e1c84070bac91ebf7fd2af07
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tnRDwgPimfFRG4o1aJGkSx49ZlTEVVia6SuXJ8qdAmrJpbYW2v56zk0ZEQwieLNlxPu58vl989u8A3jkZaz5RlqZcc5pantJCaUN1JrmcWMuTwHhzMs-Pl-lsla32YLw7C9OL3wfq7jW6GH8MLMmod3cFvdmHgwIHZjGAg7KcLWbdmoqPWqUxb8_GYPcPtzv3_E-g6f8Ttry9RbKLk96Hu9v6Ul7_lOfnv7mio4fwoMWQpGyU_gj2bP0Y7jRZJa-fwKJbKCBV9ZF4P2WI8qkgiG5zOBDPEnHlpLbENnl8iLGbsCurJn5pllSfvpDy8-LshIRcOU9heVSdTY9pmzuB6jTPNzSzDrGTZhqN1urEJLmNEoUTs5MRt4orm2PBGKKnnOtY5zjxccMcQ6vRhUkmz2BQX9T2BRAdGe4i5WIVm1Q6w6NMxwVHVG5sVDA5hPc7iYrLhiJDhND2pBCN_AXKXwT5i5shHHqhd1d6eutQgVoXrbUIzyOosozZWOMPKIuU1Dy2yjFnEukiNoS3O5UJNAcf45C1vdiuBc5PCKEQZUVDeN6osHtU6rlpWI4tRU-5vXfpt9Q_vgfK7TjxUCjLhjDejQPRGvv6rx877sbKP8jm5f_d_RXcS5qRTaP4NQw2V1v7BiHSRo1gn63YqLUPLA-r-elXrJ3m01FYdsC65fy0_PYLXeIQBQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTmjwgPgmfBqJN2rNTpM4fiyoo3TteGgn7c3yp0Casmlthba_nnOSRkRDCJ4SxXGc3Pl8v_js3wF8CJpbOTKeZtJKmnmZ0dJYR22upR55L9Oa8WZxUkxPs9lZfrYHw91emF78vqbuXqOLidvA0pxGd1fSmzuwX-IZG8D-eDxbzro5lRi1yrhs98Zg9cPblXv-p6bp_xO2vL1EsouT3oeDbXWpr3_q8_PfXNHRQ3jQYkgybpT-CPZ89RjuNlklr5_AspsoIJPJFxL9lCMmpoIgts3hQCJLxFXQ1hPf5PEhzm_qVVkViVOzZHL8jYzny9WC1LlynsLp0WT1eUrb3AnUZkWxobkPiJ2ssGi03qYuLTxLDQ7MQTPpjTS-wIMQiJ4KabktcOCTTgSBVmNLl46ewaC6qPwLIJY5GZgJ3HCX6eAkyy0vJaJy51kpdAIfdxJVlw1FhqpD26NSNfJXKH9Vy1_dJPApCr27M9Jb1xdQ66q1FhV5BE2eC88t_oAKZrSV3Jsggkt1YCKB9zuVKTSHGOPQlb_YrhWOTwihEGWxBJ43KuyayiI3jSiwpOwpt_cu_ZLqx_eacpunEQrleQLDXT9QrbGv__qxw66v_INsXv7f09_BwXS1mKv515PjV3AvbXo5Zfw1DDZXW_8G4dLGvG2t5Bc36wzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH4qrdgOiJ2wGokbdbGz2PFxgBnKdAFpWqk3yysgVZnRLELtr8d2MhEjKgSnSHHkOG_x-2I_fw_gjVfUiEI7XAojcOlEiWttLDaVEqpwTuSJ8ebomO2fluOz6mwL2PosTEraT5SWaZpeZ4e9W4RAEw-D5RWOQa_Gl3sz66_BTs0LFqx5ZzAYT8b96krcvyqp6E7JkKK-ooONSJQI-69CmX8mS_Y7prfh5qqZqYuf6vz8t6A0ugt3OjSJBu3478GWa-7D9ba-5MUDmPRLBmg4_IRixLJIx6IQyHTVHFDki5h7ZRxybUUfZN0y5Wc1KC7SouHBFzQ4nJwcoVQ15yGcjoYnH_ZxV0UBm5KxJa6cDyjKcBPc15nc5syRXIcp2isinBbasXDhPOAoJgw1LEyBwnLPg_-Y2ubFI9hupo17AsgQKzzRnmpqS-WtIJWhtQj43DpSc5XB27VE5awly5Bpk7uoZSt_GeQvk_zlZQbvo9D7JyPRdboxnX-TneJlZBTUVcUdNeFXlBOtjKBOe-5trjzhGbxeq0wGx4i7Hapx09VChpkqgKmAt0gGj1sV9q8qI0sNZ6Gl3lDuxlg2W5of3xP5Ns0jKKqqDHbXdiA7t1_89WN3e1v5B9k8_b_eX8GNrx9H8vDz8cEzuJW3Ro4JfQ7by_nKvQi4aalfdk7yC4OzEnQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrRDwwH2ES0bijXrrOIfjxwVtqYAWpHZFebJ80ooqu9rNCnV_PbaTrFioEH2KFE-UeDye-WKPvwF47WSqeaYszrnmOLc8x5XSButCcplZy2lkvDk4LPcn-YeT4mQLyv4sTEzaj5SW0U332WG7Cx9owmEwWuAQ9Cq8Gs6MuwbbZeEx-AC2J4dfRt9CJTmPUbCHCbQ7IUOy6pKHN6JQJOu_DGH-nSi53i29BTeW9Uxe_JTn578FpL078LXvSpuH8mO4bNRQr_5gebx6X-_C7Q6jolEreQ-2bH0frrdVKy8ewNF6IQKNx-9RiIMGqVBqAumuRgQKLBRzJ7VFtq0ThIxtYtZXjcLSLxp__IxGn46OD1CsxfMQJnvj43f7uKvNgHVelg0urPPYTDPtnYLV1NDSEqq843eScKu4sqW_MObRWcl1qkvvWLlhjvlZqStDs0cwqKe1fQJIE8MdUS5VqcmlM5wUOq24R_3GkorJBN70YyVmLQWHiFvnWSVaVQmvKhFVJVYJvA3DuZYM9NnxxnT-XXQqFoGnUBUFs6n2P7iMKKl5apVjzlDpCEvgVW8Mwk-3sIciaztdLoQ3LA_RPIojCTxujWP9qjxw37DSt1QbZrPxLZst9dlppPROaYBaRZHATm9honMmi392dmdthf-hm6dXE38GN2lrhJikz2HQzJf2hYdgjXrZzbdfkVws2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+EEG+based+brain+computer+interface+emotion+detection+with+EKO+ALSTM+model&rft.jtitle=Scientific+reports&rft.au=Kanna%2C+R.+Kishore&rft.au=Shoran%2C+Preety&rft.au=Yadav%2C+Meenakshi&rft.au=Ahmed%2C+Mohammad+Nadeem&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-07438-z&rft.externalDocID=10_1038_s41598_025_07438_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon