Identification and verification of immune and oxidative stress-related diagnostic indicators for malignant lung nodules through WGCNA and machine learning

Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathway...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 22449 - 13
Main Authors An, Zhou, Zeng, Meichun, Wang, Xianhua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-04639-4

Cover

Abstract Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the “limma” package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein–protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.
AbstractList Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.
Abstract Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the “limma” package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein–protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.
Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.
ArticleNumber 22449
Author An, Zhou
Wang, Xianhua
Zeng, Meichun
Author_xml – sequence: 1
  givenname: Zhou
  surname: An
  fullname: An, Zhou
  organization: Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 2
  givenname: Meichun
  surname: Zeng
  fullname: Zeng, Meichun
  organization: Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine
– sequence: 3
  givenname: Xianhua
  surname: Wang
  fullname: Wang, Xianhua
  email: xhwang1212@163.com
  organization: Department of Endoscope, Hangzhou Hospital of Traditional Chinese Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40594252$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLUv_AAfkI5dA4q_EJ1RVUCpVcAFxtCbxOOtVYi92stC_wq_F3V1Ke0H4YuvNm_c8evO8OPHBY1G8rKs3dcXat4nXQrVlRUVZcclUyZ8UZ7TioqSM0pMH79PiPKVNlY-gitfqWXHKK6E4FfSs-HVt0M_Ouh5mFzwBb8gO418gWOKmafG4L4WfzmR8hyTNEVMqI44woyHGweBDml1PnDd3zSEmYkMkE4xu8OBnMi5-ID6YZcRE5nUMy7Am364uP13stSfo1y77jAjROz-8KJ5aGBOeH-9V8fXD-y-XH8ubz1fXlxc3Zc-lnEuhwNquYdCDrFqKaAwaaVsJNXLBpGAcqtpyBkJ1qjHYgOxUxwXtukY1LVsV1wddE2Cjt9FNEG91AKf3QIiDhpgHG1E31NSdpdLKruU9WFCG1V1GoWFostuqYAetxW_h9geM471gXem74PQhOJ2D0_vgNM9d7w5d26Wb0PQ5kQjjo688rni31kPY6ZrSuqWqygqvjwoxfF8wzXpyqcdxBI9hSTqvgWRCCHlHffXQ7N7lz05kAj0Q-hhSimj_b4Tj4CmT_YBRb8ISfc7tX12_AVOI3qo
Cites_doi 10.1093/nar/gkw937
10.1186/s12911-023-02171-x
10.1245/s10434-024-15762-3
10.3389/fphys.2019.01229
10.1016/j.tranon.2023.101870
10.1111/1759-7714.15380
10.1016/j.phymed.2025.156455
10.31557/APJCP.2019.20.9.2659
10.1002/cbf.4027
10.1016/j.compbiolchem.2024.108037
10.1111/cas.16292
10.1038/s41598-025-97645-5
10.3389/fgene.2022.949314
10.1186/s12885-025-13998-0
10.7150/thno.49451
10.1186/s12935-024-03416-z
10.1371/journal.pone.0195875
10.1002/14651858.CD015783
10.1016/j.jacr.2024.12.003
10.1002/smll.202411299
10.1007/s00432-022-04289-3
10.1039/d4md00337c
10.3390/antiox12091734
10.1016/j.isci.2024.110846
10.13075/mp.5893.01050
10.1016/j.xcrm.2025.101988
10.1016/j.lfs.2023.121615
10.1016/j.csbj.2022.07.018
10.1021/acssensors.5c00314
10.1016/j.intimp.2025.114210
10.1186/s12943-024-02177-7
10.1186/s40425-019-0530-3
10.14712/fb2024070020104
10.2174/0118715206350735241224073200
10.1186/1752-0509-8-S4-S11
10.1186/s12931-025-03216-7
10.3390/nu16234090
10.1186/s12890-022-02125-5
10.1038/s41598-022-21891-0
10.1016/j.lungcan.2024.107847
10.1016/j.intimp.2023.110661
10.1158/0008-5472.CAN-18-2032
10.1186/s12916-023-02878-8
10.1158/1940-6207.CAPR-10-0170
10.1016/j.fsi.2025.110312
10.1021/acsmedchemlett.5c00005
10.2202/1544-6115.1128
10.1007/s00210-024-03328-9
10.1186/s12885-025-13783-z
10.1002/cam4.70590
10.1186/s13046-024-03122-8
10.3109/01902148.2012.686559
10.1186/s12906-019-2601-x
10.18632/aging.103984
10.3390/cells14070511
10.1186/s12967-023-04468-x
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-04639-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_72d1bf26f6b84cafa9d31b72da73ed45
10.1038/s41598-025-04639-4
PMC12218290
40594252
10_1038_s41598_025_04639_4
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
EJD
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c466t-59affb73aca6082eedded6f86a1e4536534a01f43a59b97de7a6b9b452bb79783
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Tue Oct 14 19:02:39 EDT 2025
Sun Oct 26 04:15:23 EDT 2025
Tue Sep 30 17:02:17 EDT 2025
Tue Aug 26 08:58:32 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Wed Oct 01 06:00:22 EDT 2025
Wed Jul 02 02:43:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immune cell infiltration
Oxidative stress
Diagnostic indicators
Lung nodules (LNs)
Lung cancer
Immune
Machine learning
WGCNA
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-59affb73aca6082eedded6f86a1e4536534a01f43a59b97de7a6b9b452bb79783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-025-04639-4.pdf
PMID 40594252
PQID 3226355560
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_72d1bf26f6b84cafa9d31b72da73ed45
unpaywall_primary_10_1038_s41598_025_04639_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12218290
proquest_miscellaneous_3226355560
pubmed_primary_40594252
crossref_primary_10_1038_s41598_025_04639_4
springer_journals_10_1038_s41598_025_04639_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Y Hu (4639_CR46) 2024; 20
M Nishio (4639_CR29) 2018; 13
H Zhang (4639_CR36) 2025; 21
M Hammad (4639_CR1) 2025; 13
Y Matsui (4639_CR54) 2024; 115
Y Zhao (4639_CR55) 2024; 70
W Wei (4639_CR19) 2024; 31
D Sun (4639_CR52) 2024; 22
J Zhang (4639_CR18) 2025; 14
4639_CR12
C Hu (4639_CR48) 2025; 139
Z Jiang (4639_CR10) 2024; 54
CH Chin (4639_CR27) 2014; 8
MMK El-Deeb (4639_CR35) 2019; 1
K Krishnamoorthy (4639_CR34) 2024; 42
J Liu (4639_CR47) 2024; 28
O Baothman (4639_CR51) 2024; 110
M Zhao (4639_CR49) 2020; 7
X Guan (4639_CR30) 2023; 13
G Shanmugam (4639_CR32) 2023; 122
M Niczyporuk (4639_CR40) 2012; 38
CL Chen (4639_CR57) 2023; 15
Y Mao (4639_CR6) 2025; 18
S Sui (4639_CR24) 2020; 10
RW Sabnis (4639_CR53) 2025; 13
M Barsan (4639_CR14) 2021; 30
Z Torok (4639_CR2) 2025; 13
4639_CR45
D Kimono (4639_CR38) 2019; 10
X Wang (4639_CR33) 2025; 398
H Sultana (4639_CR42) 2025; 7
AV Kossenkov (4639_CR20) 2019; 1
N Zaharudin (4639_CR31) 2022; 29
S Xu (4639_CR22) 2023; 21
Z Que (4639_CR13) 2019; 7
K Mahmood (4639_CR50) 2024; 193
N Pakvisal (4639_CR44) 2022; 2
Z Li (4639_CR9) 2025; 10
R Qu (4639_CR17) 2023; 149
D Szklarczyk (4639_CR26) 2017; 4
P Cao (4639_CR39) 2024; 41
YF Ren (4639_CR15) 2024; 23
Y Lv (4639_CR41) 2019; 26
R Taje (4639_CR3) 2025; 9
H Qin (4639_CR28) 2023; 2
4639_CR37
4639_CR4
4639_CR5
Z Zhang (4639_CR7) 2025; 7
B Zhang (4639_CR25) 2005; 4
4639_CR8
T Jamali (4639_CR11) 2025; 6
MS Islam (4639_CR56) 2024; 14
C Zhao (4639_CR16) 2024; 15
J Cai (4639_CR23) 2022; 13
M Rotunno (4639_CR21) 2011; 4
T Zhang (4639_CR43) 2022; 20
References_xml – volume: 4
  start-page: D362
  issue: D1
  year: 2017
  ident: 4639_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw937
– volume: 54
  start-page: 774
  issue: 6
  year: 2024
  ident: 4639_CR10
  publication-title: Ann Clin. Lab. Sci
– volume: 13
  start-page: 107
  issue: 1
  year: 2023
  ident: 4639_CR30
  publication-title: BMC Med. Inf. Decis. Mak
  doi: 10.1186/s12911-023-02171-x
– volume: 31
  start-page: 7738
  issue: 12
  year: 2024
  ident: 4639_CR19
  publication-title: Ann Surg. Oncol
  doi: 10.1245/s10434-024-15762-3
– volume: 10
  start-page: 1229
  year: 2019
  ident: 4639_CR38
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.01229
– volume: 41
  start-page: 101870
  year: 2024
  ident: 4639_CR39
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2023.101870
– volume: 15
  start-page: 1459
  issue: 19
  year: 2024
  ident: 4639_CR16
  publication-title: Thorac Cancer
  doi: 10.1111/1759-7714.15380
– volume: 139
  start-page: 156455
  year: 2025
  ident: 4639_CR48
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2025.156455
– volume: 1
  start-page: 2659
  issue: 9
  year: 2019
  ident: 4639_CR35
  publication-title: Asian Pac. J. Cancer Prev
  doi: 10.31557/APJCP.2019.20.9.2659
– volume: 42
  start-page: e4027
  issue: 4
  year: 2024
  ident: 4639_CR34
  publication-title: Cell Biochem. Funct
  doi: 10.1002/cbf.4027
– volume: 110
  start-page: 108037
  year: 2024
  ident: 4639_CR51
  publication-title: Comput Biol. Chem
  doi: 10.1016/j.compbiolchem.2024.108037
– volume: 115
  start-page: 3333
  issue: 10
  year: 2024
  ident: 4639_CR54
  publication-title: Cancer Sci
  doi: 10.1111/cas.16292
– volume: 13
  start-page: 12707
  issue: 1
  year: 2025
  ident: 4639_CR1
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-97645-5
– volume: 13
  start-page: 949314
  year: 2022
  ident: 4639_CR23
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.949314
– volume: 9
  start-page: 647
  issue: 1
  year: 2025
  ident: 4639_CR3
  publication-title: BMC Cancer
  doi: 10.1186/s12885-025-13998-0
– volume: 10
  start-page: 11938
  issue: 26
  year: 2020
  ident: 4639_CR24
  publication-title: Theranostics
  doi: 10.7150/thno.49451
– volume: 28
  start-page: 224
  issue: 1
  year: 2024
  ident: 4639_CR47
  publication-title: Cancer Cell. Int
  doi: 10.1186/s12935-024-03416-z
– volume: 13
  start-page: e0195875
  issue: 4
  year: 2018
  ident: 4639_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195875
– volume: 7
  start-page: CD015783
  issue: 2(2
  year: 2025
  ident: 4639_CR42
  publication-title: Cochrane Database Syst. Rev
  doi: 10.1002/14651858.CD015783
– ident: 4639_CR5
  doi: 10.1016/j.jacr.2024.12.003
– volume: 21
  start-page: e2411299
  issue: 14
  year: 2025
  ident: 4639_CR36
  publication-title: Small
  doi: 10.1002/smll.202411299
– volume: 149
  start-page: 3775
  issue: 7
  year: 2023
  ident: 4639_CR17
  publication-title: J Cancer Res. Clin. Oncol
  doi: 10.1007/s00432-022-04289-3
– volume: 14
  start-page: 2937
  issue: 8
  year: 2024
  ident: 4639_CR56
  publication-title: RSC Med. Chem
  doi: 10.1039/d4md00337c
– ident: 4639_CR37
  doi: 10.3390/antiox12091734
– volume: 20
  start-page: 110846
  issue: 9
  year: 2024
  ident: 4639_CR46
  publication-title: iScience
  doi: 10.1016/j.isci.2024.110846
– volume: 30
  start-page: 239
  issue: 3
  year: 2021
  ident: 4639_CR14
  publication-title: Med Pr.
  doi: 10.13075/mp.5893.01050
– volume: 18
  start-page: 101988
  issue: 3
  year: 2025
  ident: 4639_CR6
  publication-title: Cell Rep. Med
  doi: 10.1016/j.xcrm.2025.101988
– volume: 15
  start-page: 121615
  year: 2023
  ident: 4639_CR57
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2023.121615
– volume: 20
  start-page: 3851
  year: 2022
  ident: 4639_CR43
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.07.018
– ident: 4639_CR4
  doi: 10.1021/acssensors.5c00314
– volume: 6
  start-page: 114210
  year: 2025
  ident: 4639_CR11
  publication-title: Int Immunopharmacol.
  doi: 10.1016/j.intimp.2025.114210
– volume: 23
  start-page: 263
  issue: 1
  year: 2024
  ident: 4639_CR15
  publication-title: Mol Cancer
  doi: 10.1186/s12943-024-02177-7
– volume: 26
  start-page: 54
  issue: 1
  year: 2019
  ident: 4639_CR41
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0530-3
– volume: 70
  start-page: 104
  issue: 2
  year: 2024
  ident: 4639_CR55
  publication-title: Folia Biol. (Praha)
  doi: 10.14712/fb2024070020104
– ident: 4639_CR45
  doi: 10.2174/0118715206350735241224073200
– volume: 8
  start-page: S11
  issue: Suppl 4
  year: 2014
  ident: 4639_CR27
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-8-S4-S11
– volume: 13
  start-page: 141
  issue: 1
  year: 2025
  ident: 4639_CR2
  publication-title: Respir Res
  doi: 10.1186/s12931-025-03216-7
– ident: 4639_CR12
  doi: 10.3390/nu16234090
– volume: 29
  start-page: 328
  issue: 1
  year: 2022
  ident: 4639_CR31
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-022-02125-5
– volume: 2
  start-page: 18439
  issue: 1
  year: 2022
  ident: 4639_CR44
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-21891-0
– volume: 193
  start-page: 107847
  year: 2024
  ident: 4639_CR50
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2024.107847
– volume: 122
  start-page: 110661
  year: 2023
  ident: 4639_CR32
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2023.110661
– volume: 1
  start-page: 263
  issue: 1
  year: 2019
  ident: 4639_CR20
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-2032
– volume: 21
  start-page: 179
  issue: 1
  year: 2023
  ident: 4639_CR22
  publication-title: BMC Med.
  doi: 10.1186/s12916-023-02878-8
– volume: 4
  start-page: 1599
  issue: 10
  year: 2011
  ident: 4639_CR21
  publication-title: Cancer Prev. Res. (Phila)
  doi: 10.1158/1940-6207.CAPR-10-0170
– volume: 10
  start-page: 110312
  year: 2025
  ident: 4639_CR9
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2025.110312
– volume: 13
  start-page: 198
  issue: 2
  year: 2025
  ident: 4639_CR53
  publication-title: ACS Med. Chem. Lett
  doi: 10.1021/acsmedchemlett.5c00005
– volume: 4
  start-page: 17
  year: 2005
  ident: 4639_CR25
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1128
– volume: 398
  start-page: 967
  issue: 1
  year: 2025
  ident: 4639_CR33
  publication-title: Naunyn Schmiedebergs Arch. Pharmacol
  doi: 10.1007/s00210-024-03328-9
– volume: 7
  start-page: 417
  issue: 1
  year: 2025
  ident: 4639_CR7
  publication-title: BMC Cancer
  doi: 10.1186/s12885-025-13783-z
– volume: 14
  start-page: e70590
  issue: 2
  year: 2025
  ident: 4639_CR18
  publication-title: Cancer Med
  doi: 10.1002/cam4.70590
– volume: 22
  start-page: 202
  issue: 1
  year: 2024
  ident: 4639_CR52
  publication-title: J Exp. Clin. Cancer Res
  doi: 10.1186/s13046-024-03122-8
– volume: 38
  start-page: 281
  issue: 6
  year: 2012
  ident: 4639_CR40
  publication-title: Exp Lung Res
  doi: 10.3109/01902148.2012.686559
– volume: 7
  start-page: 204
  issue: 1
  year: 2019
  ident: 4639_CR13
  publication-title: BMC Complement. Altern. Med.
  doi: 10.1186/s12906-019-2601-x
– volume: 7
  start-page: 21758
  issue: 21
  year: 2020
  ident: 4639_CR49
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103984
– ident: 4639_CR8
  doi: 10.3390/cells14070511
– volume: 2
  start-page: 588
  issue: 1
  year: 2023
  ident: 4639_CR28
  publication-title: J Transl Med
  doi: 10.1186/s12967-023-04468-x
SSID ssj0000529419
Score 2.45504
Snippet Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant...
Abstract Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22449
SubjectTerms 631/67/1612
631/67/327
631/67/68
631/67/69
692/308/2056
Biomarkers, Tumor - genetics
Databases, Genetic
Diagnostic indicators
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Humanities and Social Sciences
Humans
Immune cell infiltration
Lung cancer
Lung Neoplasms - diagnosis
Lung Neoplasms - genetics
Lung Neoplasms - immunology
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lung nodules (LNs)
Machine Learning
multidisciplinary
Oxidative Stress - genetics
Protein Interaction Maps - genetics
Science
Science (multidisciplinary)
WGCNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpQo4IL5JKchI3GjUjWM79rGtKBUSPVHRm2XHdllpm1RkV7R_hV_LjJ3d7goEHLjakRN7xp7nzMwbQt46B3aoaWPJMMWHB-tKELOD7V6pxiskmMGL4qdTeXLGP56L87VSXxgTlumB88LtN8xXLjIZpVO8tdFqX1cOWm1TB88Te-lE6bXLVGb1ZppXesySmdRqfwBLhdlkTGA0I7o_NyxRIuz_Hcr8NVhy5TG9T-4uuit7893OZmtG6fgheTCiSXqQZ_GI3AndY7Kd60vePCE_chpuHP_LUdt5Cqp729BHOsUEkZC6-uupTzzgNGeQlCnRJXjqczwevISii7vFi_pAAe7SS4DxFxhLQ2dwatCu94tZGOhY_Yd--XB0epDGvkxBm4GOVSounpKz4_efj07KsRhD2XIp56XQNkbX1La1EmADmFYfvIxK2ipwUUtRczupIq-t0E43PjRWOu24YM41-H_pGdnq-i68IDROqgAj1E7g7VQpK3gLQAKp4IVt21iQd0vBmKvMuWGSr7xWJovRgBhNEqPhBTlE2a2eRL7s1ABaZEYtMn_TooK8WUrewP5Cp4ntQr8YDBx4iMkAGBbkedaE1as4kt0wwQqiNnRk41s2e7rp18ThXTGkztcw6N5Sncx4egx_nOzeSuX-YW12_sfavCT3WNo2GKO8S7bm3xbhFSCxuXudNt1PomIywQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwQLwbXjISNzaiSWzHOS4VpVqJXqCiN8uO7bLSNqmaXUH_Cr-WGSe7EBUhuNqJ85gZz2fPzGeA19aiHyrrkOZU4sO9sSmK2aK5Z6p0ighmaKH48VgenfD5qTjdgemmFmYUv4_U3R26GCoDywWlIVLc8gbsKlRMNYHd2Wz-ab7dU6GoFc-qoTYGb397_eaR_4k0_X_CltdTJLdx0jtwa91cmKtvZrn8zRUd3oO7A4Zks17o92HHNw_gZn-q5NVD-NEX34ZhN46ZxjFU2F8NbWALKgvxsav9vnCR_Zv1dSNpLG_xjrk-Cw8fwiiwXdPyvGMIctk5gvczyqBhS5wrWNO69dJ3bDjzh335cHA8i2Ofx1RNz4azKc4ewcnh-88HR-lwBENacylXqahMCLYsTG0kggV0qM47GZQ0meeikKLgZj8LvDCislXpfGmkrSwXubUl7So9hknTNn4PWNjPPI5QWEFrUqWM4DXCByKAF6auQwJvNoLRFz3Tho4R8kLpXowaxaijGDVP4B3JbnslsWTHBlQePRidLnOX2ZDLIK3itQmmckVmsdWUhXdcJPBqI3mNVkWhEtP4dt1pnOYIiSEcTOBJrwnbR3GiuMlFnoAa6cjoXcY9zeJrZO7OciLMr3DQ6Uad9DBndH_92OlW5f7h3zz9v9Gfwe08GgjlID-Hyepy7V8g0lrZl4OB_QRT6SPL
  priority: 102
  providerName: Springer Nature
Title Identification and verification of immune and oxidative stress-related diagnostic indicators for malignant lung nodules through WGCNA and machine learning
URI https://link.springer.com/article/10.1038/s41598-025-04639-4
https://www.ncbi.nlm.nih.gov/pubmed/40594252
https://www.proquest.com/docview/3226355560
https://pubmed.ncbi.nlm.nih.gov/PMC12218290
https://www.nature.com/articles/s41598-025-04639-4.pdf
https://doaj.org/article/72d1bf26f6b84cafa9d31b72da73ed45
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwwPdH-aiMxBtL1yS2kzx21cZUiWoCqo0ny47tUtEl1doKxp_CX8vZSQqFCbGnSo7rxPbZ97Pv7ncAr5VCPZTkNohciA81UgU4zQqXe5gmOnUEM-6g-G7Mjyd0dMbOdoA3sTDead9TWvptuvEO21-ionHBYBFzzojOetlbaLsLbc4Qg7egPRmfDD65THKIUQKECVEdIdOP0yv-vKWFPFn_VQjzb0fJjbX0NtxcFwt5-VXO578ppKO7cNp0pfJD-dJbr1Qv__4Hy-P1-3oP7tQYlQyqmvdhxxQP4EaVtfLyIfyognttfdtHZKEJLohfBaUlMxd2Yvyj8ttMe3ZxUsWlBD58xmiiKy8_fAlxhvPcHf-XBEE0OcfDwdR56JA57kWkKPUav5jUOYXI6dvheODbPveuoIbUuS-mj2BydPhxeBzUKR6CnHK-ClgmrVVJLHPJEYygwtZGc5tyGRrKYs5iKvuhpbFkmcoSbRLJVaYoi5RK3K3VY2gVZWGeArH90GALsWLuzJumktEc4YkjmGcyz20H3jRTLhYVk4fwFvg4FdWICxxx4Udc0A4cOKnY1HQs3L6gvJiKeqZEEulQ2YhbrlKaSyszHYcKS2USG01ZB141MiVw1TpTjCxMuV4KlE-H9BBuduBJJWObV1FHoROxqAPplvRtfcv2k2L22TODh5Ej5M-w0b1GUEW9Jy3_2dm9jTD_x9g8u17153Ar8rLsfJxfQGt1sTYvEcmtVBd2k7OkC-3BYPRhhL8Hh-OT91g65MOuvx3p1gv7Jy7fTD0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrVDhgHgTnkbixkZsEjuP41JRlqXdC63ozbJju6y0TSqyK-hf4dcy42QDURGCq504j5nxfPbMfAZ4pTX6oax0YUwlPtwqHaKYNZp7lGcmJ4IZWigeLdLZCZ-fitMdGG9rYQbxe0_d3aCLoTKwWFAaIsUtr8Fujo5vMoLd6XT-ad7vqVDUikdFVxuDt7-5evPA_3ia_j9hy6spkn2c9CbsbaoLdflNrVa_uaKD23Crw5Bs2gr9DuzY6i5cb0-VvLwHP9riW9ftxjFVGYYK-6uhdmxJZSHWd9Xfl8azf7O2biT05S3WMNNm4eFDGAW2S1qeNwxBLjtH8H5GGTRshXMFq2qzWdmGdWf-sM_v9xdTP_a5T9W0rDub4uw-nBy8O96fhd0RDGHJ03QdikI5p7NElSpFsIAO1ViTujxVkeUiSUXC1SRyPFGi0EVmbKZSXWguYq0z2lV6AKOqruwjYG4SWRwh0YLWpHmuBC8RPhABvFBl6QJ4vRWMvGiZNqSPkCe5bMUoUYzSi1HyAN6S7PoriSXbN6DyyM7oZBabSLs4danOeamcKkwSaWxVWWINFwG83EpeolVRqERVtt40Eqc5QmIIBwN42GpC_yhOFDexiAPIBzoyeJdhT7X84pm7o5gI8wscdLxVJ9nNGc1fP3bcq9w__JvH_zf6C9ibHR8dysMPi49P4EbsjYXykZ_CaP11Y58h6lrr552x_QQTniax
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK14HxLOEp5G40ZRNYjvOcSksZYEVElT0ZtmxvV1pm6y6u4L-FX4tM84DVlQIrnY0cTJjz2fPzGdCnhsDfigvfZxiiQ9z2sSgZgPTPZG5lUgwgxvFjxNxeMTGx_x4i4iuFiYk7QdKy7BMd9lhL5fgaLAYLOWYjIjRy_2F9ZfIjswzAda8MxyOP4_70xWMX7GkaKtkBpm8QMCGJwqE_RehzD-TJfuI6XVydV0t9Pk3PZ__5pRGN8mNFk3SYTP-W2TLVbfJ5eZ-yfM75EdThuvbczmqK0vBdH811J7OsEDEha76-8wGHnDaVJDEodDFWWqbfDx4CcUQd4kb9SUFuEtPAcZPMZeGzmHVoFVt1_AfaXv7D_369mAyDLJPQ9Kmo-0tFdO75Gj05svBYdxexhCXTIhVzAvtvckzXWoBsAFcq3VWeCl04hjPBM-YHiSeZZoXpsity7UwhWE8NSbH86V7ZLuqK3efUD9IHEjIDMfdqZSasxKABFLBc12WPiIvOsWoRcO5oUKsPJOqUaMCNaqgRsUi8gp11z-JfNmhoT6bqtZ-VJ7axPhUeGEkK7XXhc0SA606z5xlPCLPOs0rmF8YNNGVq9dLBQseYjIAhhHZbSyhfxVDspuUpxGRGzayMZbNnmp2Eji8kxSp8wsQuteZk2pXj-VfP3avN7l_-DcP_k_6U3Ll0-uR-vBu8v4huZaGuYKJyY_I9ups7R4D_FqZJ-1c-wneHiw9
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PujfMlIvLF0TWI7yWOZGBMSFQ9UG0-WHdulokuqtRWMP4W_ljsnKRQmxF4dx4nts-9n393vAF4ag3ooK32UUIgPd9pEOM0Gl3ucZzYnghk6KL4fy6MJf3ciTnZAdrEwwWk_UFqGbbrzDttfoqKhYLBEkDMiWS8HC-uvwK4UiMF7sDsZfxh9okxyiFEihAlJGyEzTPMLXt7SQoGs_yKE-bej5MZaegOurauFPv-q5_PfFNLhLTjuutL4oXwZrFdmUH7_g-Xx8n29DTdbjMpGTc07sOOqu3C1yVp5fg9-NMG9vr3tY7qyDBfEr4LasxmFnbjwqP42s4FdnDVxKVEIn3GW2cbLDz_CyHBe0vF_yRBEs1M8HEzJQ4fNcS9iVW3X-MeszSnEjt8ejEeh7dPgCupYm_tieh8mh28-HhxFbYqHqORSriJRaO9NlupSSwQjqLCts9LnUseOi1SKlOth7HmqRWGKzLpMS1MYLhJjMrq1egC9qq7cI2B-GDtsITWCzrx5rgUvEZ4QwbzQZen78KqbcrVomDxUsMCnuWpGXOGIqzDiivfhNUnFpiaxcIeC-myq2plSWWJj4xPppcl5qb0ubBobLNVZ6iwXfXjRyZTCVUumGF25er1UKJ-E9BBu9uFhI2ObT3Gi0ElE0od8S_q2_mX7STX7HJjB44QI-QtsdK8TVNXuSct_dnZvI8z_MTaPL1f9CVxPgiyTj_NT6K3O1u4ZIrmVed4u259-P0Ze
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+verification+of+immune+and+oxidative+stress-related+diagnostic+indicators+for+malignant+lung+nodules+through+WGCNA+and+machine+learning&rft.jtitle=Scientific+reports&rft.au=An%2C+Zhou&rft.au=Zeng%2C+Meichun&rft.au=Wang%2C+Xianhua&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-04639-4&rft_id=info%3Apmid%2F40594252&rft.externalDocID=PMC12218290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon