Identification and verification of immune and oxidative stress-related diagnostic indicators for malignant lung nodules through WGCNA and machine learning
Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathway...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 22449 - 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.07.2025
Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-04639-4 |
Cover
| Abstract | Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the “limma” package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein–protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs. |
|---|---|
| AbstractList | Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs. Abstract Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the “limma” package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein–protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs. Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs.Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant challenges in reliably distinguishing benign from malignant nodules. Thus, there is an urgent need for novel molecular biomarkers or pathways to facilitate accurate identification of truly malignant LNs. Using the Gene Expression Omnibus (GEO) database and the "limma" package, we identified differentially expressed genes (DEGs) in lung nodules (LNs) by comparing benign and malignant samples. The oxidative stress-related genes were downloaded from the GenCards database. Subsequently, genes associated with immunity and oxidative stress were analyzed using weighted gene co-expression network analysis (WGCNA). A protein-protein interaction (PPI) network was constructed and hub genes were extracted using 12 centrality-based algorithms in the CytoHubba plugin. Shared DEGs from these analyses were subjected to functional enrichment analysis. To develop a diagnostic model for LNs, we investigated 113 combinations of 12 machine-learning algorithms, employing 10-fold cross-validation on the training set, followed by external validation of the test set. A total of 31 shared differentially expressed genes associated with immunity and oxidative stress were identified, including two hub genes, CDK2 and MCL1. Immune infiltration analysis revealed distinct patterns of immune cell infiltration in malignant LNs compared to those in benign controls. A promising 11-gene diagnostic signature was developed, which exhibited superior performance to existing LNs diagnostic models in both training and testing cohorts. This study developed a diagnostic model for malignant LNs, focusing on the shared genes associated with immunity and oxidative stress pathways. Furthermore, the identified hub genes facilitate a deeper understanding of the pathobiological mechanisms underlying the different types of LNs. |
| ArticleNumber | 22449 |
| Author | An, Zhou Wang, Xianhua Zeng, Meichun |
| Author_xml | – sequence: 1 givenname: Zhou surname: An fullname: An, Zhou organization: Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine – sequence: 2 givenname: Meichun surname: Zeng fullname: Zeng, Meichun organization: Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine – sequence: 3 givenname: Xianhua surname: Wang fullname: Wang, Xianhua email: xhwang1212@163.com organization: Department of Endoscope, Hangzhou Hospital of Traditional Chinese Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40594252$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVARLUv_AAfkI5dA4q_EJ1RVUCpVcAFxtCbxOOtVYi92stC_wq_F3V1Ke0H4YuvNm_c8evO8OPHBY1G8rKs3dcXat4nXQrVlRUVZcclUyZ8UZ7TioqSM0pMH79PiPKVNlY-gitfqWXHKK6E4FfSs-HVt0M_Ouh5mFzwBb8gO418gWOKmafG4L4WfzmR8hyTNEVMqI44woyHGweBDml1PnDd3zSEmYkMkE4xu8OBnMi5-ID6YZcRE5nUMy7Am364uP13stSfo1y77jAjROz-8KJ5aGBOeH-9V8fXD-y-XH8ubz1fXlxc3Zc-lnEuhwNquYdCDrFqKaAwaaVsJNXLBpGAcqtpyBkJ1qjHYgOxUxwXtukY1LVsV1wddE2Cjt9FNEG91AKf3QIiDhpgHG1E31NSdpdLKruU9WFCG1V1GoWFostuqYAetxW_h9geM471gXem74PQhOJ2D0_vgNM9d7w5d26Wb0PQ5kQjjo688rni31kPY6ZrSuqWqygqvjwoxfF8wzXpyqcdxBI9hSTqvgWRCCHlHffXQ7N7lz05kAj0Q-hhSimj_b4Tj4CmT_YBRb8ISfc7tX12_AVOI3qo |
| Cites_doi | 10.1093/nar/gkw937 10.1186/s12911-023-02171-x 10.1245/s10434-024-15762-3 10.3389/fphys.2019.01229 10.1016/j.tranon.2023.101870 10.1111/1759-7714.15380 10.1016/j.phymed.2025.156455 10.31557/APJCP.2019.20.9.2659 10.1002/cbf.4027 10.1016/j.compbiolchem.2024.108037 10.1111/cas.16292 10.1038/s41598-025-97645-5 10.3389/fgene.2022.949314 10.1186/s12885-025-13998-0 10.7150/thno.49451 10.1186/s12935-024-03416-z 10.1371/journal.pone.0195875 10.1002/14651858.CD015783 10.1016/j.jacr.2024.12.003 10.1002/smll.202411299 10.1007/s00432-022-04289-3 10.1039/d4md00337c 10.3390/antiox12091734 10.1016/j.isci.2024.110846 10.13075/mp.5893.01050 10.1016/j.xcrm.2025.101988 10.1016/j.lfs.2023.121615 10.1016/j.csbj.2022.07.018 10.1021/acssensors.5c00314 10.1016/j.intimp.2025.114210 10.1186/s12943-024-02177-7 10.1186/s40425-019-0530-3 10.14712/fb2024070020104 10.2174/0118715206350735241224073200 10.1186/1752-0509-8-S4-S11 10.1186/s12931-025-03216-7 10.3390/nu16234090 10.1186/s12890-022-02125-5 10.1038/s41598-022-21891-0 10.1016/j.lungcan.2024.107847 10.1016/j.intimp.2023.110661 10.1158/0008-5472.CAN-18-2032 10.1186/s12916-023-02878-8 10.1158/1940-6207.CAPR-10-0170 10.1016/j.fsi.2025.110312 10.1021/acsmedchemlett.5c00005 10.2202/1544-6115.1128 10.1007/s00210-024-03328-9 10.1186/s12885-025-13783-z 10.1002/cam4.70590 10.1186/s13046-024-03122-8 10.3109/01902148.2012.686559 10.1186/s12906-019-2601-x 10.18632/aging.103984 10.3390/cells14070511 10.1186/s12967-023-04468-x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-04639-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_72d1bf26f6b84cafa9d31b72da73ed45 10.1038/s41598-025-04639-4 PMC12218290 40594252 10_1038_s41598_025_04639_4 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC EJD IPNFZ M48 RIG UNPAY |
| ID | FETCH-LOGICAL-c466t-59affb73aca6082eedded6f86a1e4536534a01f43a59b97de7a6b9b452bb79783 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:02:39 EDT 2025 Sun Oct 26 04:15:23 EDT 2025 Tue Sep 30 17:02:17 EDT 2025 Tue Aug 26 08:58:32 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Wed Oct 01 06:00:22 EDT 2025 Wed Jul 02 02:43:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Immune cell infiltration Oxidative stress Diagnostic indicators Lung nodules (LNs) Lung cancer Immune Machine learning WGCNA |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-59affb73aca6082eedded6f86a1e4536534a01f43a59b97de7a6b9b452bb79783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-025-04639-4.pdf |
| PMID | 40594252 |
| PQID | 3226355560 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_72d1bf26f6b84cafa9d31b72da73ed45 unpaywall_primary_10_1038_s41598_025_04639_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12218290 proquest_miscellaneous_3226355560 pubmed_primary_40594252 crossref_primary_10_1038_s41598_025_04639_4 springer_journals_10_1038_s41598_025_04639_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
| References | Y Hu (4639_CR46) 2024; 20 M Nishio (4639_CR29) 2018; 13 H Zhang (4639_CR36) 2025; 21 M Hammad (4639_CR1) 2025; 13 Y Matsui (4639_CR54) 2024; 115 Y Zhao (4639_CR55) 2024; 70 W Wei (4639_CR19) 2024; 31 D Sun (4639_CR52) 2024; 22 J Zhang (4639_CR18) 2025; 14 4639_CR12 C Hu (4639_CR48) 2025; 139 Z Jiang (4639_CR10) 2024; 54 CH Chin (4639_CR27) 2014; 8 MMK El-Deeb (4639_CR35) 2019; 1 K Krishnamoorthy (4639_CR34) 2024; 42 J Liu (4639_CR47) 2024; 28 O Baothman (4639_CR51) 2024; 110 M Zhao (4639_CR49) 2020; 7 X Guan (4639_CR30) 2023; 13 G Shanmugam (4639_CR32) 2023; 122 M Niczyporuk (4639_CR40) 2012; 38 CL Chen (4639_CR57) 2023; 15 Y Mao (4639_CR6) 2025; 18 S Sui (4639_CR24) 2020; 10 RW Sabnis (4639_CR53) 2025; 13 M Barsan (4639_CR14) 2021; 30 Z Torok (4639_CR2) 2025; 13 4639_CR45 D Kimono (4639_CR38) 2019; 10 X Wang (4639_CR33) 2025; 398 H Sultana (4639_CR42) 2025; 7 AV Kossenkov (4639_CR20) 2019; 1 N Zaharudin (4639_CR31) 2022; 29 S Xu (4639_CR22) 2023; 21 Z Que (4639_CR13) 2019; 7 K Mahmood (4639_CR50) 2024; 193 N Pakvisal (4639_CR44) 2022; 2 Z Li (4639_CR9) 2025; 10 R Qu (4639_CR17) 2023; 149 D Szklarczyk (4639_CR26) 2017; 4 P Cao (4639_CR39) 2024; 41 YF Ren (4639_CR15) 2024; 23 Y Lv (4639_CR41) 2019; 26 R Taje (4639_CR3) 2025; 9 H Qin (4639_CR28) 2023; 2 4639_CR37 4639_CR4 4639_CR5 Z Zhang (4639_CR7) 2025; 7 B Zhang (4639_CR25) 2005; 4 4639_CR8 T Jamali (4639_CR11) 2025; 6 MS Islam (4639_CR56) 2024; 14 C Zhao (4639_CR16) 2024; 15 J Cai (4639_CR23) 2022; 13 M Rotunno (4639_CR21) 2011; 4 T Zhang (4639_CR43) 2022; 20 |
| References_xml | – volume: 4 start-page: D362 issue: D1 year: 2017 ident: 4639_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw937 – volume: 54 start-page: 774 issue: 6 year: 2024 ident: 4639_CR10 publication-title: Ann Clin. Lab. Sci – volume: 13 start-page: 107 issue: 1 year: 2023 ident: 4639_CR30 publication-title: BMC Med. Inf. Decis. Mak doi: 10.1186/s12911-023-02171-x – volume: 31 start-page: 7738 issue: 12 year: 2024 ident: 4639_CR19 publication-title: Ann Surg. Oncol doi: 10.1245/s10434-024-15762-3 – volume: 10 start-page: 1229 year: 2019 ident: 4639_CR38 publication-title: Front. Physiol. doi: 10.3389/fphys.2019.01229 – volume: 41 start-page: 101870 year: 2024 ident: 4639_CR39 publication-title: Transl Oncol doi: 10.1016/j.tranon.2023.101870 – volume: 15 start-page: 1459 issue: 19 year: 2024 ident: 4639_CR16 publication-title: Thorac Cancer doi: 10.1111/1759-7714.15380 – volume: 139 start-page: 156455 year: 2025 ident: 4639_CR48 publication-title: Phytomedicine doi: 10.1016/j.phymed.2025.156455 – volume: 1 start-page: 2659 issue: 9 year: 2019 ident: 4639_CR35 publication-title: Asian Pac. J. Cancer Prev doi: 10.31557/APJCP.2019.20.9.2659 – volume: 42 start-page: e4027 issue: 4 year: 2024 ident: 4639_CR34 publication-title: Cell Biochem. Funct doi: 10.1002/cbf.4027 – volume: 110 start-page: 108037 year: 2024 ident: 4639_CR51 publication-title: Comput Biol. Chem doi: 10.1016/j.compbiolchem.2024.108037 – volume: 115 start-page: 3333 issue: 10 year: 2024 ident: 4639_CR54 publication-title: Cancer Sci doi: 10.1111/cas.16292 – volume: 13 start-page: 12707 issue: 1 year: 2025 ident: 4639_CR1 publication-title: Sci Rep doi: 10.1038/s41598-025-97645-5 – volume: 13 start-page: 949314 year: 2022 ident: 4639_CR23 publication-title: Front. Genet. doi: 10.3389/fgene.2022.949314 – volume: 9 start-page: 647 issue: 1 year: 2025 ident: 4639_CR3 publication-title: BMC Cancer doi: 10.1186/s12885-025-13998-0 – volume: 10 start-page: 11938 issue: 26 year: 2020 ident: 4639_CR24 publication-title: Theranostics doi: 10.7150/thno.49451 – volume: 28 start-page: 224 issue: 1 year: 2024 ident: 4639_CR47 publication-title: Cancer Cell. Int doi: 10.1186/s12935-024-03416-z – volume: 13 start-page: e0195875 issue: 4 year: 2018 ident: 4639_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0195875 – volume: 7 start-page: CD015783 issue: 2(2 year: 2025 ident: 4639_CR42 publication-title: Cochrane Database Syst. Rev doi: 10.1002/14651858.CD015783 – ident: 4639_CR5 doi: 10.1016/j.jacr.2024.12.003 – volume: 21 start-page: e2411299 issue: 14 year: 2025 ident: 4639_CR36 publication-title: Small doi: 10.1002/smll.202411299 – volume: 149 start-page: 3775 issue: 7 year: 2023 ident: 4639_CR17 publication-title: J Cancer Res. Clin. Oncol doi: 10.1007/s00432-022-04289-3 – volume: 14 start-page: 2937 issue: 8 year: 2024 ident: 4639_CR56 publication-title: RSC Med. Chem doi: 10.1039/d4md00337c – ident: 4639_CR37 doi: 10.3390/antiox12091734 – volume: 20 start-page: 110846 issue: 9 year: 2024 ident: 4639_CR46 publication-title: iScience doi: 10.1016/j.isci.2024.110846 – volume: 30 start-page: 239 issue: 3 year: 2021 ident: 4639_CR14 publication-title: Med Pr. doi: 10.13075/mp.5893.01050 – volume: 18 start-page: 101988 issue: 3 year: 2025 ident: 4639_CR6 publication-title: Cell Rep. Med doi: 10.1016/j.xcrm.2025.101988 – volume: 15 start-page: 121615 year: 2023 ident: 4639_CR57 publication-title: Life Sci doi: 10.1016/j.lfs.2023.121615 – volume: 20 start-page: 3851 year: 2022 ident: 4639_CR43 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.07.018 – ident: 4639_CR4 doi: 10.1021/acssensors.5c00314 – volume: 6 start-page: 114210 year: 2025 ident: 4639_CR11 publication-title: Int Immunopharmacol. doi: 10.1016/j.intimp.2025.114210 – volume: 23 start-page: 263 issue: 1 year: 2024 ident: 4639_CR15 publication-title: Mol Cancer doi: 10.1186/s12943-024-02177-7 – volume: 26 start-page: 54 issue: 1 year: 2019 ident: 4639_CR41 publication-title: J Immunother Cancer doi: 10.1186/s40425-019-0530-3 – volume: 70 start-page: 104 issue: 2 year: 2024 ident: 4639_CR55 publication-title: Folia Biol. (Praha) doi: 10.14712/fb2024070020104 – ident: 4639_CR45 doi: 10.2174/0118715206350735241224073200 – volume: 8 start-page: S11 issue: Suppl 4 year: 2014 ident: 4639_CR27 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-8-S4-S11 – volume: 13 start-page: 141 issue: 1 year: 2025 ident: 4639_CR2 publication-title: Respir Res doi: 10.1186/s12931-025-03216-7 – ident: 4639_CR12 doi: 10.3390/nu16234090 – volume: 29 start-page: 328 issue: 1 year: 2022 ident: 4639_CR31 publication-title: BMC Pulm Med doi: 10.1186/s12890-022-02125-5 – volume: 2 start-page: 18439 issue: 1 year: 2022 ident: 4639_CR44 publication-title: Sci Rep doi: 10.1038/s41598-022-21891-0 – volume: 193 start-page: 107847 year: 2024 ident: 4639_CR50 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2024.107847 – volume: 122 start-page: 110661 year: 2023 ident: 4639_CR32 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2023.110661 – volume: 1 start-page: 263 issue: 1 year: 2019 ident: 4639_CR20 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-2032 – volume: 21 start-page: 179 issue: 1 year: 2023 ident: 4639_CR22 publication-title: BMC Med. doi: 10.1186/s12916-023-02878-8 – volume: 4 start-page: 1599 issue: 10 year: 2011 ident: 4639_CR21 publication-title: Cancer Prev. Res. (Phila) doi: 10.1158/1940-6207.CAPR-10-0170 – volume: 10 start-page: 110312 year: 2025 ident: 4639_CR9 publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2025.110312 – volume: 13 start-page: 198 issue: 2 year: 2025 ident: 4639_CR53 publication-title: ACS Med. Chem. Lett doi: 10.1021/acsmedchemlett.5c00005 – volume: 4 start-page: 17 year: 2005 ident: 4639_CR25 publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128 – volume: 398 start-page: 967 issue: 1 year: 2025 ident: 4639_CR33 publication-title: Naunyn Schmiedebergs Arch. Pharmacol doi: 10.1007/s00210-024-03328-9 – volume: 7 start-page: 417 issue: 1 year: 2025 ident: 4639_CR7 publication-title: BMC Cancer doi: 10.1186/s12885-025-13783-z – volume: 14 start-page: e70590 issue: 2 year: 2025 ident: 4639_CR18 publication-title: Cancer Med doi: 10.1002/cam4.70590 – volume: 22 start-page: 202 issue: 1 year: 2024 ident: 4639_CR52 publication-title: J Exp. Clin. Cancer Res doi: 10.1186/s13046-024-03122-8 – volume: 38 start-page: 281 issue: 6 year: 2012 ident: 4639_CR40 publication-title: Exp Lung Res doi: 10.3109/01902148.2012.686559 – volume: 7 start-page: 204 issue: 1 year: 2019 ident: 4639_CR13 publication-title: BMC Complement. Altern. Med. doi: 10.1186/s12906-019-2601-x – volume: 7 start-page: 21758 issue: 21 year: 2020 ident: 4639_CR49 publication-title: Aging (Albany NY) doi: 10.18632/aging.103984 – ident: 4639_CR8 doi: 10.3390/cells14070511 – volume: 2 start-page: 588 issue: 1 year: 2023 ident: 4639_CR28 publication-title: J Transl Med doi: 10.1186/s12967-023-04468-x |
| SSID | ssj0000529419 |
| Score | 2.45504 |
| Snippet | Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face significant... Abstract Early detection of lung nodules (LNs) is critical for prevention and treatment of lung cancer. However, current noninvasive diagnostic methods face... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 22449 |
| SubjectTerms | 631/67/1612 631/67/327 631/67/68 631/67/69 692/308/2056 Biomarkers, Tumor - genetics Databases, Genetic Diagnostic indicators Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene Regulatory Networks Humanities and Social Sciences Humans Immune cell infiltration Lung cancer Lung Neoplasms - diagnosis Lung Neoplasms - genetics Lung Neoplasms - immunology Lung Neoplasms - metabolism Lung Neoplasms - pathology Lung nodules (LNs) Machine Learning multidisciplinary Oxidative Stress - genetics Protein Interaction Maps - genetics Science Science (multidisciplinary) WGCNA |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpQo4IL5JKchI3GjUjWM79rGtKBUSPVHRm2XHdllpm1RkV7R_hV_LjJ3d7goEHLjakRN7xp7nzMwbQt46B3aoaWPJMMWHB-tKELOD7V6pxiskmMGL4qdTeXLGP56L87VSXxgTlumB88LtN8xXLjIZpVO8tdFqX1cOWm1TB88Te-lE6bXLVGb1ZppXesySmdRqfwBLhdlkTGA0I7o_NyxRIuz_Hcr8NVhy5TG9T-4uuit7893OZmtG6fgheTCiSXqQZ_GI3AndY7Kd60vePCE_chpuHP_LUdt5Cqp729BHOsUEkZC6-uupTzzgNGeQlCnRJXjqczwevISii7vFi_pAAe7SS4DxFxhLQ2dwatCu94tZGOhY_Yd--XB0epDGvkxBm4GOVSounpKz4_efj07KsRhD2XIp56XQNkbX1La1EmADmFYfvIxK2ipwUUtRczupIq-t0E43PjRWOu24YM41-H_pGdnq-i68IDROqgAj1E7g7VQpK3gLQAKp4IVt21iQd0vBmKvMuWGSr7xWJovRgBhNEqPhBTlE2a2eRL7s1ABaZEYtMn_TooK8WUrewP5Cp4ntQr8YDBx4iMkAGBbkedaE1as4kt0wwQqiNnRk41s2e7rp18ThXTGkztcw6N5Sncx4egx_nOzeSuX-YW12_sfavCT3WNo2GKO8S7bm3xbhFSCxuXudNt1PomIywQ priority: 102 providerName: Directory of Open Access Journals – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwQLwbXjISNzaiSWzHOS4VpVqJXqCiN8uO7bLSNqmaXUH_Cr-WGSe7EBUhuNqJ85gZz2fPzGeA19aiHyrrkOZU4sO9sSmK2aK5Z6p0ighmaKH48VgenfD5qTjdgemmFmYUv4_U3R26GCoDywWlIVLc8gbsKlRMNYHd2Wz-ab7dU6GoFc-qoTYGb397_eaR_4k0_X_CltdTJLdx0jtwa91cmKtvZrn8zRUd3oO7A4Zks17o92HHNw_gZn-q5NVD-NEX34ZhN46ZxjFU2F8NbWALKgvxsav9vnCR_Zv1dSNpLG_xjrk-Cw8fwiiwXdPyvGMIctk5gvczyqBhS5wrWNO69dJ3bDjzh335cHA8i2Ofx1RNz4azKc4ewcnh-88HR-lwBENacylXqahMCLYsTG0kggV0qM47GZQ0meeikKLgZj8LvDCislXpfGmkrSwXubUl7So9hknTNn4PWNjPPI5QWEFrUqWM4DXCByKAF6auQwJvNoLRFz3Tho4R8kLpXowaxaijGDVP4B3JbnslsWTHBlQePRidLnOX2ZDLIK3itQmmckVmsdWUhXdcJPBqI3mNVkWhEtP4dt1pnOYIiSEcTOBJrwnbR3GiuMlFnoAa6cjoXcY9zeJrZO7OciLMr3DQ6Uad9DBndH_92OlW5f7h3zz9v9Gfwe08GgjlID-Hyepy7V8g0lrZl4OB_QRT6SPL priority: 102 providerName: Springer Nature |
| Title | Identification and verification of immune and oxidative stress-related diagnostic indicators for malignant lung nodules through WGCNA and machine learning |
| URI | https://link.springer.com/article/10.1038/s41598-025-04639-4 https://www.ncbi.nlm.nih.gov/pubmed/40594252 https://www.proquest.com/docview/3226355560 https://pubmed.ncbi.nlm.nih.gov/PMC12218290 https://www.nature.com/articles/s41598-025-04639-4.pdf https://doaj.org/article/72d1bf26f6b84cafa9d31b72da73ed45 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwwPdH-aiMxBtL1yS2kzx21cZUiWoCqo0ny47tUtEl1doKxp_CX8vZSQqFCbGnSo7rxPbZ97Pv7ncAr5VCPZTkNohciA81UgU4zQqXe5gmOnUEM-6g-G7Mjyd0dMbOdoA3sTDead9TWvptuvEO21-ionHBYBFzzojOetlbaLsLbc4Qg7egPRmfDD65THKIUQKECVEdIdOP0yv-vKWFPFn_VQjzb0fJjbX0NtxcFwt5-VXO578ppKO7cNp0pfJD-dJbr1Qv__4Hy-P1-3oP7tQYlQyqmvdhxxQP4EaVtfLyIfyognttfdtHZKEJLohfBaUlMxd2Yvyj8ttMe3ZxUsWlBD58xmiiKy8_fAlxhvPcHf-XBEE0OcfDwdR56JA57kWkKPUav5jUOYXI6dvheODbPveuoIbUuS-mj2BydPhxeBzUKR6CnHK-ClgmrVVJLHPJEYygwtZGc5tyGRrKYs5iKvuhpbFkmcoSbRLJVaYoi5RK3K3VY2gVZWGeArH90GALsWLuzJumktEc4YkjmGcyz20H3jRTLhYVk4fwFvg4FdWICxxx4Udc0A4cOKnY1HQs3L6gvJiKeqZEEulQ2YhbrlKaSyszHYcKS2USG01ZB141MiVw1TpTjCxMuV4KlE-H9BBuduBJJWObV1FHoROxqAPplvRtfcv2k2L22TODh5Ej5M-w0b1GUEW9Jy3_2dm9jTD_x9g8u17153Ar8rLsfJxfQGt1sTYvEcmtVBd2k7OkC-3BYPRhhL8Hh-OT91g65MOuvx3p1gv7Jy7fTD0 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrVDhgHgTnkbixkZsEjuP41JRlqXdC63ozbJju6y0TSqyK-hf4dcy42QDURGCq504j5nxfPbMfAZ4pTX6oax0YUwlPtwqHaKYNZp7lGcmJ4IZWigeLdLZCZ-fitMdGG9rYQbxe0_d3aCLoTKwWFAaIsUtr8Fujo5vMoLd6XT-ad7vqVDUikdFVxuDt7-5evPA_3ia_j9hy6spkn2c9CbsbaoLdflNrVa_uaKD23Crw5Bs2gr9DuzY6i5cb0-VvLwHP9riW9ftxjFVGYYK-6uhdmxJZSHWd9Xfl8azf7O2biT05S3WMNNm4eFDGAW2S1qeNwxBLjtH8H5GGTRshXMFq2qzWdmGdWf-sM_v9xdTP_a5T9W0rDub4uw-nBy8O96fhd0RDGHJ03QdikI5p7NElSpFsIAO1ViTujxVkeUiSUXC1SRyPFGi0EVmbKZSXWguYq0z2lV6AKOqruwjYG4SWRwh0YLWpHmuBC8RPhABvFBl6QJ4vRWMvGiZNqSPkCe5bMUoUYzSi1HyAN6S7PoriSXbN6DyyM7oZBabSLs4danOeamcKkwSaWxVWWINFwG83EpeolVRqERVtt40Eqc5QmIIBwN42GpC_yhOFDexiAPIBzoyeJdhT7X84pm7o5gI8wscdLxVJ9nNGc1fP3bcq9w__JvH_zf6C9ibHR8dysMPi49P4EbsjYXykZ_CaP11Y58h6lrr552x_QQTniax |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKK14HxLOEp5G40ZRNYjvOcSksZYEVElT0ZtmxvV1pm6y6u4L-FX4tM84DVlQIrnY0cTJjz2fPzGdCnhsDfigvfZxiiQ9z2sSgZgPTPZG5lUgwgxvFjxNxeMTGx_x4i4iuFiYk7QdKy7BMd9lhL5fgaLAYLOWYjIjRy_2F9ZfIjswzAda8MxyOP4_70xWMX7GkaKtkBpm8QMCGJwqE_RehzD-TJfuI6XVydV0t9Pk3PZ__5pRGN8mNFk3SYTP-W2TLVbfJ5eZ-yfM75EdThuvbczmqK0vBdH811J7OsEDEha76-8wGHnDaVJDEodDFWWqbfDx4CcUQd4kb9SUFuEtPAcZPMZeGzmHVoFVt1_AfaXv7D_369mAyDLJPQ9Kmo-0tFdO75Gj05svBYdxexhCXTIhVzAvtvckzXWoBsAFcq3VWeCl04hjPBM-YHiSeZZoXpsity7UwhWE8NSbH86V7ZLuqK3efUD9IHEjIDMfdqZSasxKABFLBc12WPiIvOsWoRcO5oUKsPJOqUaMCNaqgRsUi8gp11z-JfNmhoT6bqtZ-VJ7axPhUeGEkK7XXhc0SA606z5xlPCLPOs0rmF8YNNGVq9dLBQseYjIAhhHZbSyhfxVDspuUpxGRGzayMZbNnmp2Eji8kxSp8wsQuteZk2pXj-VfP3avN7l_-DcP_k_6U3Ll0-uR-vBu8v4huZaGuYKJyY_I9ups7R4D_FqZJ-1c-wneHiw9 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PujfMlIvLF0TWI7yWOZGBMSFQ9UG0-WHdulokuqtRWMP4W_ljsnKRQmxF4dx4nts-9n393vAF4ag3ooK32UUIgPd9pEOM0Gl3ucZzYnghk6KL4fy6MJf3ciTnZAdrEwwWk_UFqGbbrzDttfoqKhYLBEkDMiWS8HC-uvwK4UiMF7sDsZfxh9okxyiFEihAlJGyEzTPMLXt7SQoGs_yKE-bej5MZaegOurauFPv-q5_PfFNLhLTjuutL4oXwZrFdmUH7_g-Xx8n29DTdbjMpGTc07sOOqu3C1yVp5fg9-NMG9vr3tY7qyDBfEr4LasxmFnbjwqP42s4FdnDVxKVEIn3GW2cbLDz_CyHBe0vF_yRBEs1M8HEzJQ4fNcS9iVW3X-MeszSnEjt8ejEeh7dPgCupYm_tieh8mh28-HhxFbYqHqORSriJRaO9NlupSSwQjqLCts9LnUseOi1SKlOth7HmqRWGKzLpMS1MYLhJjMrq1egC9qq7cI2B-GDtsITWCzrx5rgUvEZ4QwbzQZen78KqbcrVomDxUsMCnuWpGXOGIqzDiivfhNUnFpiaxcIeC-myq2plSWWJj4xPppcl5qb0ubBobLNVZ6iwXfXjRyZTCVUumGF25er1UKJ-E9BBu9uFhI2ObT3Gi0ElE0od8S_q2_mX7STX7HJjB44QI-QtsdK8TVNXuSct_dnZvI8z_MTaPL1f9CVxPgiyTj_NT6K3O1u4ZIrmVed4u259-P0Ze |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+verification+of+immune+and+oxidative+stress-related+diagnostic+indicators+for+malignant+lung+nodules+through+WGCNA+and+machine+learning&rft.jtitle=Scientific+reports&rft.au=An%2C+Zhou&rft.au=Zeng%2C+Meichun&rft.au=Wang%2C+Xianhua&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-04639-4&rft_id=info%3Apmid%2F40594252&rft.externalDocID=PMC12218290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |