Data processing pipeline for cardiogenic shock prediction using machine learning

Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patient...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cardiovascular medicine Vol. 10; p. 1132680
Main Authors Jajcay, Nikola, Bezak, Branislav, Segev, Amitai, Matetzky, Shlomi, Jankova, Jana, Spartalis, Michael, El Tahlawi, Mohammad, Guerra, Federico, Friebel, Julian, Thevathasan, Tharusan, Berta, Imrich, Pölzl, Leo, Nägele, Felix, Pogran, Edita, Cader, F. Aaysha, Jarakovic, Milana, Gollmann-Tepeköylü, Can, Kollarova, Marta, Petrikova, Katarina, Tica, Otilia, Krychtiuk, Konstantin A., Tavazzi, Guido, Skurk, Carsten, Huber, Kurt, Böhm, Allan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.03.2023
Subjects
Online AccessGet full text
ISSN2297-055X
2297-055X
DOI10.3389/fcvm.2023.1132680

Cover

Abstract Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS. We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction. We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization. We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
AbstractList Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS. We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction. We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization. We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
IntroductionRecent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS.MethodsWe mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)—based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction.ResultsWe achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization.ConclusionWe believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS.IntroductionRecent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS.We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction.MethodsWe mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction.We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization.ResultsWe achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization.We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.ConclusionWe believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
Author Thevathasan, Tharusan
Skurk, Carsten
Segev, Amitai
Böhm, Allan
Jajcay, Nikola
Cader, F. Aaysha
Jankova, Jana
Nägele, Felix
Tavazzi, Guido
Gollmann-Tepeköylü, Can
Berta, Imrich
Bezak, Branislav
Petrikova, Katarina
Krychtiuk, Konstantin A.
Matetzky, Shlomi
Pogran, Edita
Spartalis, Michael
Friebel, Julian
Huber, Kurt
El Tahlawi, Mohammad
Tica, Otilia
Guerra, Federico
Kollarova, Marta
Jarakovic, Milana
Pölzl, Leo
AuthorAffiliation 4 Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
11 Department of Cardiology Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin , Charité - Universitätsmedizin Berlin , Berlin , Germany
21 Institute of Cardiovascular Sciences , University of Birmingham, Medical School , Birmingham , United Kingdom
3 Clinic of Cardiac Surgery , National Institute of Cardiovascular Diseases , Bratislava , Slovakia
19 Faculty of Medicine , University of Novi Sad , Novi Sad , Serbia
22 Department of Internal Medicine II, Division of Cardiology , Medical University of Vienna , Vienna , Austria
24 Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy
8 Global Clinical Scholars Research Training (GCSRT) Program , Harvard Medical School , Boston, MA , United States
16 3rd Medical Department, Cardiology and Intensive Care Medicine , Wilhelminen Hospital , Vienna , Austria
2 Departme
AuthorAffiliation_xml – name: 20 Cardiology Department , Emergency County Clinical Hospital of Oradea , Oradea , Romania
– name: 13 Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. , Berlin , Germany
– name: 26 Department of Acute Cardiology , National Institute of Cardiovascular Diseases , Bratislava , Slovakia
– name: 16 3rd Medical Department, Cardiology and Intensive Care Medicine , Wilhelminen Hospital , Vienna , Austria
– name: 17 Department of Cardiology , Ibrahim Cardiac Hospital & Research Institute , Dhaka , Bangladesh
– name: 14 Institute of Medical Informatics , Charité—Universitätsmedizin Berlin , Berlin , Germany
– name: 2 Department of Complex Systems , Institute of Computer Science, Czech Academy of Sciences , Prague , Czech Republic
– name: 21 Institute of Cardiovascular Sciences , University of Birmingham, Medical School , Birmingham , United Kingdom
– name: 4 Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
– name: 10 Cardiology and Arrhythmology Clinic , Marche Polytechnic University, University Hospital “Umberto I - Lancisi - Salesi” , Ancona , Italy
– name: 23 Duke Clinical Research Institute Durham , NC , United States
– name: 25 Anesthesia and Intensive Care , Fondazione Policlinico San Matteo Hospital IRCCS , Pavia , Italy
– name: 6 Affiliated to the Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
– name: 11 Department of Cardiology Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin , Charité - Universitätsmedizin Berlin , Berlin , Germany
– name: 1 Premedix Academy , Bratislava , Slovakia
– name: 5 The Leviev Cardiothoracic & Vascular Center , Chaim Sheba Medical Center , Ramat Gan , Israel
– name: 8 Global Clinical Scholars Research Training (GCSRT) Program , Harvard Medical School , Boston, MA , United States
– name: 19 Faculty of Medicine , University of Novi Sad , Novi Sad , Serbia
– name: 18 Cardiac Intensive Care Unit , Institute for Cardiovascular Diseases of Vojvodina , Sremska Kamenica , Serbia
– name: 22 Department of Internal Medicine II, Division of Cardiology , Medical University of Vienna , Vienna , Austria
– name: 3 Clinic of Cardiac Surgery , National Institute of Cardiovascular Diseases , Bratislava , Slovakia
– name: 9 Department of Cardiology, Faculty of Human Medicine , Zagazig University , Zagazig , Egypt
– name: 7 3rd Department of Cardiology , National and Kapodistrian University of Athens , Athens , Greece
– name: 12 Berlin Institute of Health , Charité—Universitätsmedizin Berlin , Berlin , Germany
– name: 24 Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy
– name: 15 Department for Cardiac Surgery, Cardiac Regeneration Research , Medical University of Innsbruck , Innsbruck , Austria
Author_xml – sequence: 1
  givenname: Nikola
  surname: Jajcay
  fullname: Jajcay, Nikola
– sequence: 2
  givenname: Branislav
  surname: Bezak
  fullname: Bezak, Branislav
– sequence: 3
  givenname: Amitai
  surname: Segev
  fullname: Segev, Amitai
– sequence: 4
  givenname: Shlomi
  surname: Matetzky
  fullname: Matetzky, Shlomi
– sequence: 5
  givenname: Jana
  surname: Jankova
  fullname: Jankova, Jana
– sequence: 6
  givenname: Michael
  surname: Spartalis
  fullname: Spartalis, Michael
– sequence: 7
  givenname: Mohammad
  surname: El Tahlawi
  fullname: El Tahlawi, Mohammad
– sequence: 8
  givenname: Federico
  surname: Guerra
  fullname: Guerra, Federico
– sequence: 9
  givenname: Julian
  surname: Friebel
  fullname: Friebel, Julian
– sequence: 10
  givenname: Tharusan
  surname: Thevathasan
  fullname: Thevathasan, Tharusan
– sequence: 11
  givenname: Imrich
  surname: Berta
  fullname: Berta, Imrich
– sequence: 12
  givenname: Leo
  surname: Pölzl
  fullname: Pölzl, Leo
– sequence: 13
  givenname: Felix
  surname: Nägele
  fullname: Nägele, Felix
– sequence: 14
  givenname: Edita
  surname: Pogran
  fullname: Pogran, Edita
– sequence: 15
  givenname: F. Aaysha
  surname: Cader
  fullname: Cader, F. Aaysha
– sequence: 16
  givenname: Milana
  surname: Jarakovic
  fullname: Jarakovic, Milana
– sequence: 17
  givenname: Can
  surname: Gollmann-Tepeköylü
  fullname: Gollmann-Tepeköylü, Can
– sequence: 18
  givenname: Marta
  surname: Kollarova
  fullname: Kollarova, Marta
– sequence: 19
  givenname: Katarina
  surname: Petrikova
  fullname: Petrikova, Katarina
– sequence: 20
  givenname: Otilia
  surname: Tica
  fullname: Tica, Otilia
– sequence: 21
  givenname: Konstantin A.
  surname: Krychtiuk
  fullname: Krychtiuk, Konstantin A.
– sequence: 22
  givenname: Guido
  surname: Tavazzi
  fullname: Tavazzi, Guido
– sequence: 23
  givenname: Carsten
  surname: Skurk
  fullname: Skurk, Carsten
– sequence: 24
  givenname: Kurt
  surname: Huber
  fullname: Huber, Kurt
– sequence: 25
  givenname: Allan
  surname: Böhm
  fullname: Böhm, Allan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37034352$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URMvQH8AGZclmBr8fK4QKLZUqwQIkdpZzczPjksTBzlTi35N0hqplwcrW9XfOufJ5SU6GNCAhrxndCGHduxbu-g2nXGwYE1xb-oycce7Mmir14-TR_ZScl3JLKWVKWqXtC3IqDBVSKH5Gvn4MU6jGnABLicO2GuOIXRywalOuIOQmpi0OEaqyS_BzJrGJMMU0VPt7vg-wW_AOQx7mwSvyvA1dwfPjuSLfLz99u_i8vvlydX3x4WYNUutpLVzLa-AmCKckC9bUtkXWgm4QHFiFumbSKWgb4ay2xgIVNW-ClmBQKCVW5Prg26Rw68cc-5B_-xSivx-kvPUhTxE69EJzN6cqZ4OSwUqHBgIXlAaLRs5fsSLvD17jvu6xARymHLonpk9fhrjz23TnGaXGMGlmh7dHh5x-7bFMvo8FsOvCgGlfPDfOMaOZszP65nHYQ8rfTmaAHQDIqZSM7QPCqF-q90v1fqneH6ufNeYfDcQpLDXN-8buP8o_5NO0oA
CitedBy_id crossref_primary_10_1093_ehjacc_zuae037
crossref_primary_10_1093_ehjdh_ztaf002
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_3390_jcdd11040125
crossref_primary_10_1016_j_jscai_2024_102047
crossref_primary_10_7759_cureus_50395
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00025
Cites_doi 10.48550/arxiv.1407.2330
10.1161/circoutcomes.109.875658
10.1097/01.mlr.0000182534.19832.83
10.21037/atm.2019.10.79
10.1093/ehjacc/zuac041.077
10.1186/s12874-018-0615-6
10.1186/s13613-018-0448-9
10.1080/01621459.1988.10478722
10.1007/s10916-019-1279-4
10.9790/0661-0651215
10.1111/j.1467-9876.2007.00613.x
10.1161/circinterventions.116.004337
10.1002/mpr.329
10.1016/j.cpnec.2021.100052
10.1001/jama.2019.17831
10.1007/978-3-030-19810-7_19
10.1136/bmjopen-2020-044779
10.1016/j.chemolab.2012.11.010
10.1038/sdata.2016.35
10.1002/sim.8915
10.1532/hsf.3571
10.1371/journal.pone.0232176
10.1093/aje/kwt312
10.1136/bmj.b2393
10.1016/j.spinee.2018.11.009
10.1177/0962280206074466
10.1002/ejhf.339
10.1136/bmjopen-2013-002847
10.1186/1471-2288-14-75
10.3389/fcvm.2021.765693
10.1371/journal.pone.0176124
10.1016/j.neucom.2019.06.100
10.4149/BLL_2022_003
10.5815/ijitcs.2019.02.03
10.1002/sim.2099
10.1109/tkde.2018.2867533
10.1191/1740774504cn032oa
ContentType Journal Article
Copyright 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm.
2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm. 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm
Copyright_xml – notice: 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm.
– notice: 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm. 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fcvm.2023.1132680
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2297-055X
ExternalDocumentID oai_doaj_org_article_3629c46598a54a849e7ca2300a8e7470
PMC10077147
37034352
10_3389_fcvm_2023_1132680
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: VEGA 1/0563/21
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c466t-39f2bc27a39541a87b8fe1fc6dec9c85e6b1495cfd3986878c03b2da64c7e3553
IEDL.DBID M48
ISSN 2297-055X
IngestDate Wed Aug 27 01:32:27 EDT 2025
Thu Aug 21 18:38:10 EDT 2025
Fri Sep 05 04:45:20 EDT 2025
Thu Jan 02 22:53:53 EST 2025
Tue Jul 01 01:10:42 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords processing pipeline
cardiogenic shock
prediction model
classification
machine learning
missing data imputation
Language English
License 2023 Jajcay, Bezak, Segev, Matetzky, Jankova, Spartalis, El Tahlawi, Guerra, Friebel, Thevathasan, Berta, Pölzl, Nägele, Pogran, Cader, Jarakovic, Gollmann-Tepeköylü, Kollarova, Petrikova, Tica, Krychtiuk, Tavazzi, Skurk, Huber and Böhm.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-39f2bc27a39541a87b8fe1fc6dec9c85e6b1495cfd3986878c03b2da64c7e3553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Benedikt Schrage, University Medical Center Hamburg-Eppendorf, Germany
Specialty Section: This article was submitted to Heart Failure and Transplantation, a section of the journal Frontiers in Cardiovascular Medicine
Reviewed by: Stefania Sacchi, San Raffaele Scientific Institute (IRCCS), Italy Meraj Neyazi, University Medical Center Hamburg-Eppendorf, Germany Kishore Surendra, University Medical Center Hamburg-Eppendorf, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcvm.2023.1132680
PMID 37034352
PQID 2799176198
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3629c46598a54a849e7ca2300a8e7470
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10077147
proquest_miscellaneous_2799176198
pubmed_primary_37034352
crossref_primary_10_3389_fcvm_2023_1132680
crossref_citationtrail_10_3389_fcvm_2023_1132680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-23
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cardiovascular medicine
PublicationTitleAlternate Front Cardiovasc Med
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Liu (B30) 2013; 120
Waljee (B20) 2013; 3
Herbers (B19) 2021; 7
Ambler (B25) 2007; 16
Morris (B27) 2014; 14
Mandawat (B13) 2017; 10
Huque (B18) 2018; 18
He (B21) 2010; 3
Song (B8) 2021; 24
Rafsunjani (B37) 2019; 11
Johnson (B6) 2016; 3
Shah (B24) 2014; 179
Wood (B39) 2004; 1
Sterne (B38) 2009; 338
Nemethova (B3) 2019; 985
Alonso (B42) 2019; 43
Peterkova (B10)
Li (B9) 2021; 11
Azur (B23) 2011; 20
Vincent (B15) 2018; 8
Tang (B22) 2006; 24
Alejo (B35) 2010
Peterson (B5) 2019; 322
Stevens (B33) 2017; 12
Salfrán (B31) 2016
Dai (B7) 2020; 15
Lan (B16) 2019; 7
De Luca (B12) 2015; 17
Yao (B29) 2018; 31
Abayomi (B32) 2008; 57
Little (B17) 1988; 83
Kovács (B36) 2019; 366
Staartjes (B41) 2019; 19
Ghassemi (B1) 2018
Ke (B26) 2017
Bohm (B2) 2022; 123
Bohm (B11) 2022; 11
Quan (B14) 2005; 43
Noghrehchi (B40) 2021; 40
Pears (B34) 2014
Malarvizhi (B28) 2012; 5
Sanchez-Martinez (B4) 2022; 8
References_xml – year: 2014
  ident: B34
  article-title: Synthetic minority over-sampling technique (smote) for predicting software build outcomes
  publication-title: arXiv
  doi: 10.48550/arxiv.1407.2330
– year: 2018
  ident: B1
  article-title: Opportunities in machine learning for healthcare
  publication-title: arXiv
– volume: 3
  start-page: 98
  year: 2010
  ident: B21
  article-title: Missing data analysis using multiple imputation: getting to the heart of the matter
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/circoutcomes.109.875658
– volume: 43
  start-page: 1130
  year: 2005
  ident: B14
  article-title: Coding algorithms for defining comorbidities in Icd-9-Cm and Icd-10 administrative data
  publication-title: Med Care
  doi: 10.1097/01.mlr.0000182534.19832.83
– volume: 7
  start-page: 662
  year: 2019
  ident: B16
  article-title: Utilization of echocardiography during septic shock was associated with a decreased 28-day mortality: a propensity score-matched analysis of the mimic-iii database
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2019.10.79
– volume: 11
  start-page: i107
  year: 2022
  ident: B11
  article-title: Artificial intelligence model for prediction of cardiogenic shock in patients with acute coronary syndrome
  publication-title: Eur Heart J Acute Cardiovascular Care
  doi: 10.1093/ehjacc/zuac041.077
– volume: 18
  start-page: 168
  year: 2018
  ident: B18
  article-title: A comparison of multiple imputation methods for missing data in longitudinal studies
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-018-0615-6
– volume: 8
  start-page: 107
  year: 2018
  ident: B15
  article-title: Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the mimic-iii database
  publication-title: Ann Intensive Care
  doi: 10.1186/s13613-018-0448-9
– ident: B10
– volume: 83
  start-page: 1198
  year: 1988
  ident: B17
  article-title: A test of missing completely at random for multivariate data with missing values
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1988.10478722
– volume-title: Lightgbm: A highly efficient gradient boosting decision tree
  year: 2017
  ident: B26
– volume: 43
  start-page: 140
  year: 2019
  ident: B42
  article-title: Predictive, personalized, preventive and participatory (4p) medicine applied to telemedicine and ehealth in the literature
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1279-4
– volume: 5
  start-page: 5
  year: 2012
  ident: B28
  article-title: K-Nearest neighbor in missing data imputation
  publication-title: IJERD
  doi: 10.9790/0661-0651215
– volume: 57
  start-page: 273
  year: 2008
  ident: B32
  article-title: Diagnostics for multivariate imputations
  publication-title: J R Stat Soc, C: Appl Stat
  doi: 10.1111/j.1467-9876.2007.00613.x
– volume: 10
  start-page: e004337
  year: 2017
  ident: B13
  article-title: Percutaneous mechanical circulatory support devices in cardiogenic shock
  publication-title: Circ: Cardiovasc Interventions
  doi: 10.1161/circinterventions.116.004337
– volume: 20
  start-page: 40
  year: 2011
  ident: B23
  article-title: Multiple imputation by chained equations: what is it and how does it work?
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
– volume: 7
  start-page: 100052
  year: 2021
  ident: B19
  article-title: How to deal with non-detectable and outlying values in biomarker research: best practices and recommendations for univariate imputation approaches
  publication-title: Compr Psychoneuroendocrinology
  doi: 10.1016/j.cpnec.2021.100052
– volume: 322
  start-page: 2283
  year: 2019
  ident: B5
  article-title: Machine learning, predictive analytics, and clinical practice: can the past inform the present?
  publication-title: JAMA
  doi: 10.1001/jama.2019.17831
– volume: 985
  start-page: 191
  year: 2019
  ident: B3
  article-title: Identification of kdd problems from medical data
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-3-030-19810-7_19
– volume: 11
  start-page: e044779
  year: 2021
  ident: B9
  article-title: Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the mimic-iii database
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-044779
– volume: 120
  start-page: 106
  year: 2013
  ident: B30
  article-title: Comparison of five iterative imputation methods for multivariate classification
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2012.11.010
– volume: 3
  start-page: 160035
  year: 2016
  ident: B6
  article-title: Mimic-Iii, a freely accessible critical care database
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.35
– volume: 40
  start-page: 2467
  year: 2021
  ident: B40
  article-title: Selecting the model for multiple imputation of missing data: just use an ic!
  publication-title: Stat Med
  doi: 10.1002/sim.8915
– volume: 24
  start-page: E351
  year: 2021
  ident: B8
  article-title: Clinical characteristics of aortic aneurysm in mimic-iii
  publication-title: Heart Surg Forum
  doi: 10.1532/hsf.3571
– start-page: 303
  volume-title: Advances in neural networks
  year: 2010
  ident: B35
  article-title: Edited nearest neighbor rule for improving neural networks classifications
– volume: 15
  start-page: e0232176
  year: 2020
  ident: B7
  article-title: Analysis of adult disease characteristics and mortality on mimic-iii
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0232176
– volume: 179
  start-page: 764
  year: 2014
  ident: B24
  article-title: Comparison of random forest and parametric imputation models for imputing missing data using mice: a caliber study
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwt312
– volume: 338
  start-page: b2393
  year: 2009
  ident: B38
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: Br Med J
  doi: 10.1136/bmj.b2393
– volume: 19
  start-page: 853
  year: 2019
  ident: B41
  article-title: Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling
  publication-title: Spine J
  doi: 10.1016/j.spinee.2018.11.009
– volume: 16
  start-page: 277
  year: 2007
  ident: B25
  article-title: A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206074466
– volume: 17
  start-page: 1124
  year: 2015
  ident: B12
  article-title: Temporal trends in the epidemiology, management, and outcome of patients with cardiogenic shock complicating acute coronary syndromes
  publication-title: Eur J Heart Fail
  doi: 10.1002/ejhf.339
– volume-title: Missing data: on criteria to evaluate imputation methods
  year: 2016
  ident: B31
– volume: 3
  start-page: e002847
  year: 2013
  ident: B20
  article-title: Comparison of imputation methods for missing laboratory data in medicine
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-002847
– volume: 14
  start-page: 75
  year: 2014
  ident: B27
  article-title: Tuning multiple imputation by predictive mean matching and local residual draws
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-75
– volume: 8
  start-page: 765693
  year: 2022
  ident: B4
  article-title: Machine learning for clinical decision-making: challenges and opportunities in cardiovascular imaging
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2021.765693
– volume: 12
  start-page: e0176124
  year: 2017
  ident: B33
  article-title: A comparison of multiple testing adjustment methods with block-correlation positively-dependent tests
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0176124
– volume: 366
  start-page: 352
  year: 2019
  ident: B36
  article-title: Smote-Variants: a python implementation of 85 minority oversampling techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.100
– volume: 123
  start-page: 16
  year: 2022
  ident: B2
  article-title: Technical and practical aspects of artificial intelligence in cardiology
  publication-title: Bratisl Lek Listy
  doi: 10.4149/BLL_2022_003
– volume: 11
  start-page: 21
  year: 2019
  ident: B37
  article-title: An empirical comparison of missing value imputation techniques on aps failure prediction
  publication-title: IJ Inf Technol Comput Sci
  doi: 10.5815/ijitcs.2019.02.03
– volume: 24
  start-page: 2111
  year: 2006
  ident: B22
  article-title: A comparison of imputation methods in a longitudinal randomized clinical trial
  publication-title: Stat Med
  doi: 10.1002/sim.2099
– volume: 31
  start-page: 1
  year: 2018
  ident: B29
  article-title: Accelerated and inexact soft-impute for large-scale matrix and tensor completion
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/tkde.2018.2867533
– volume: 1
  start-page: 368
  year: 2004
  ident: B39
  article-title: Are missing outcome data adequately handled? A review of published randomized controlled trials in Major medical journals
  publication-title: Clin Trials
  doi: 10.1191/1740774504cn032oa
SSID ssj0001548568
Score 2.2778418
Snippet Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we...
IntroductionRecent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1132680
SubjectTerms cardiogenic shock
Cardiovascular Medicine
classification
machine learning
missing data imputation
prediction model
processing pipeline
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb-uLCJ6EYrZ5H30iguJBwVtI00QXtLvorr_fmbYuuyJ68dqmNHwzTb5pZr4h5FB4rytwnrw0rMpFCFVuU5S5iZVNEkWhDBY439yqqwdx_Sgfp1p9YU5YKw_cAncMC6wNQklrvBTeCBt18MCbmTcRqHATrTPLpoKptj5YGKlMe4wJUZg9TuEDC88Ljl1MCoUykFMbUaPX_xPJ_J4rObX5XC6TpY410pN2titkLtarZOGmOxdfI3fnfuTpsE36h82IDvtDLDSPFDgpDU3OKXhKP9D3Z1gAYSQ-ijah42b8a5NTGWnXROJpnTxcXtyfXeVdr4QcwFGjnNtUlKHQnlspet7o0qTYS0FVMdhgZFQlxkIhVdwaZbQJjJdF5ZUIOgLn4Btkvh7UcYtQr3zZS1jSykohufRK6RC1Up4lzkTKCPsCzoVOSBz7Wbw4CCgQa4dYO8TadVhn5GjyyLBV0fht8ClaYzIQBbCbC-AWrnML95dbZOTgy5YOPhg8BfF1HIzfXaGBEuPPG5ORzda2k1dxWP-APxYZMTNWn5nL7J26_9yIcmO2ie4Jvf0fs98hi4gI5roVfJfMj97GcQ_Iz6jcb_z8E4eGAUM
  priority: 102
  providerName: Directory of Open Access Journals
Title Data processing pipeline for cardiogenic shock prediction using machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37034352
https://www.proquest.com/docview/2799176198
https://pubmed.ncbi.nlm.nih.gov/PMC10077147
https://doaj.org/article/3629c46598a54a849e7ca2300a8e7470
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1daxQxMJQK4ov4UfXUlgg-FVb38p0HEWstRaj44MG9hWw2aQ_q3nkfov--M9nc0ZND6OPuTrKbmcnOTOaLkLfCe90C81SNqdtKhNBWNkVZmdjaJLEolMEE54tv6nwkvo7leI-s21sVBC52mnbYT2o0v37359ffj7DhP6DFCfL2fQq_MaeccWxQwpQBC_5edhdhJF_R9vukYWH65DjGsAaplOPez7l7li1JlQv679JC_w2mvCWdzh6Rh0WtpJ96PnhM9mL3hNy_KI7zp-T7qV96OuuzAkBa0dlkhpnokYLSSkMOSgVWmgS6uII_JEDiUCQaXWX4nznoMtLSZeLygIzOvvz4fF6VZgpVEEotK24TawLTnlspht7oxqQ4TEG1MdhgZFQNGkshtdwaZbQJNW9Y65UIOoJSwp-R_W7axReEeuWbYcKc17oRkkuvlA5RK-XrxGuRBqReI86FUmkcG15cO7A4ENcOce0Q167gekCON0NmfZmN_wGfIDU2gFghO9-Yzi9d2XAOBLOFlUtrvBTeCBt18GBv1d5EMKFgkjdrWjrYUegm8V2crhaOadCZ8XTHDMjznrabV3H4QYKCyQbEbFF961u2n3STq1y1G8NR9FDol3dZ6ivyAC8x6I3x12R_OV_FQ9CCls1RPj04yhx-A7B7BLE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+processing+pipeline+for+cardiogenic+shock+prediction+using+machine+learning&rft.jtitle=Frontiers+in+cardiovascular+medicine&rft.au=Jajcay%2C+Nikola&rft.au=Bezak%2C+Branislav&rft.au=Segev%2C+Amitai&rft.au=Matetzky%2C+Shlomi&rft.date=2023-03-23&rft.issn=2297-055X&rft.eissn=2297-055X&rft.volume=10&rft_id=info:doi/10.3389%2Ffcvm.2023.1132680&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcvm_2023_1132680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-055X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-055X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-055X&client=summon