The Severity of Internal Carotid Artery Stenosis is Associated with the Cyclin-Dependent Kinase Inhibitor 2A Gene Expression

Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/...

Full description

Saved in:
Bibliographic Details
Published inJournal of Atherosclerosis and Thrombosis Vol. 21; no. 7; pp. 659 - 671
Main Authors Deser, Serkan Burc, Arslan, Caner, Arapi, Berk, Bayoglu, Burcu, Dagistanli, Fatma Kaya, Gode, Safa, Cengiz, Mujgan, Dirican, Ahmet
Format Journal Article
LanguageEnglish
Published Japan Japan Atherosclerosis Society 01.01.2014
Subjects
Online AccessGet full text
ISSN1340-3478
1880-3873
1880-3873
DOI10.5551/jat.21774

Cover

Abstract Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16INK4a protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. Methods: A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16INK4a and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). Results: The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16INK4a immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). Conclusions: An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16INK4a expression is associated with carotid atherosclerosis in various patient subgroups.
AbstractList Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16INK4a protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. Methods: A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16INK4a and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). Results: The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16INK4a immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). Conclusions: An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16INK4a expression is associated with carotid atherosclerosis in various patient subgroups.
The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples.AIMThe INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples.A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC).METHODSA total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC).The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001).RESULTSThe CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001).An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups.CONCLUSIONSAn increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups.
The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups.
Author Arslan, Caner
Gode, Safa
Arapi, Berk
Dirican, Ahmet
Cengiz, Mujgan
Dagistanli, Fatma Kaya
Bayoglu, Burcu
Deser, Serkan Burc
Author_xml – sequence: 1
  fullname: Deser, Serkan Burc
  organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Arslan, Caner
  organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Arapi, Berk
  organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Bayoglu, Burcu
  organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Dagistanli, Fatma Kaya
  organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Gode, Safa
  organization: Department of Heart and Vessel Surgery, Istanbul Mehmet Akif Ersoy Chest and Cardiovascular Surgery Training and Research Hospital
– sequence: 1
  fullname: Cengiz, Mujgan
  organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University
– sequence: 1
  fullname: Dirican, Ahmet
  organization: Department of Biostatistics and Medical Informatics, Istanbul Medical Faculty, Istanbul University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24599170$$D View this record in MEDLINE/PubMed
BookMark eNp9kE9v1DAQxa2qqP_ogS-AfASktLEdx8kJrZZSKipxaHu2Zp0J61XWDra3JRIfHre77AEhJGs8M_69Z-mdkkPnHRLyhpUXUkp2uYJ0wZlS1QE5YU1TFqJR4jD3osp9pZpjchrjqiyFkJIfkWNeybZlqjwhv-6XSO_wEYNNE_U9vXEJg4OBziH4ZDs6C3kx0buEzkcbaT6zGL2xkLCjTzYtacoe88kM1hWfcETXoUv0q3UQMfst7cImHyif0Wt0SK9-jgFjtN69Jq96GCKe7-4z8vD56n7-pbj9dn0zn90WpqrrVAghUKKCmtWNbCRy6ABrxTpe9QshWsE7XsvGGIbYdBX0ilVG5anuJDOtEGfkw9Z340aYnmAY9BjsGsKkWamfI9Q5Qv0SYYbfbeEx-B8bjEmvbTQ4DODQb6JmsmprIVTNM_p2h24Wa-z2pn_izcD7LWCCjzFg_99_L_9ijU2QckwpgB3-qfi4Vaxigu-494aQrBlwR2r1XF4U-xezhKDRid8tpLH9
CitedBy_id crossref_primary_10_1124_pr_115_010652
crossref_primary_10_3892_etm_2017_5310
crossref_primary_10_1007_s12015_018_9815_z
crossref_primary_10_3389_fgene_2022_1062212
crossref_primary_10_1016_j_clinbiochem_2016_02_012
Cites_doi 10.1097/01.hco.0000160373.77190.f1
10.1016/j.atherosclerosis.2010.06.029
10.1007/s11010-013-1629-3
10.1016/j.bbrc.2012.02.050
10.1016/j.molcel.2010.03.021
10.1016/j.atherosclerosis.2011.11.017
10.1371/journal.pgen.1001233
10.1038/ng.72
10.1038/nprot.2006.236
10.1016/j.jacc.2007.11.087
10.1016/j.atherosclerosis.2008.10.035
10.1161/ATVBAHA.109.196832
10.1016/j.acthis.2012.12.007
10.1161/CIRCULATIONAHA.109.879049
10.1016/j.ahj.2008.07.006
10.1038/onc.2010.568
10.1126/science.1142447
10.1161/ATVBAHA.109.189522
10.1111/j.1475-097X.2007.00727.x
10.1016/j.numecd.2010.11.010
10.1093/nar/30.9.e36
10.1038/nature05911
10.1111/j.1365-2796.2008.01958.x
10.1161/ATVBAHA.110.221721
10.1056/NEJMoa072366
10.1056/NEJMcibr1002359
10.1093/hmg/ddm352
10.1016/S0140-6736(00)04332-4
10.1152/physrev.00048.2003
10.1001/jama.2010.118
10.1016/S0140-6736(04)16146-1
10.1111/j.1365-2613.2009.00648.x
10.1161/CIRCULATIONAHA.107.730614
10.1161/01.ATV.0000133605.89421.79
ContentType Journal Article
Copyright 2014 Japan Atherosclerosis Society
Copyright_xml – notice: 2014 Japan Atherosclerosis Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.5551/jat.21774
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1880-3873
EndPage 671
ExternalDocumentID 10.5551/jat.21774
24599170
10_5551_jat_21774
article_jat_21_7_21_21774_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
29J
2WC
53G
5GY
5VS
AAFWJ
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P6G
RJT
RNS
RZJ
TR2
X7M
3O-
AAYXX
AOIJS
CITATION
HYE
JMI
RPM
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c466t-333e5e7a6168585e2adae671d24fb33932d2658cc1ee8d4af714c7c1e6d51c933
IEDL.DBID UNPAY
ISSN 1340-3478
1880-3873
IngestDate Thu Aug 28 10:58:09 EDT 2025
Fri Jul 11 12:19:18 EDT 2025
Thu Apr 03 07:09:58 EDT 2025
Tue Jul 01 02:27:07 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Wed Sep 03 06:29:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-333e5e7a6168585e2adae671d24fb33932d2658cc1ee8d4af714c7c1e6d51c933
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_pdf
PMID 24599170
PQID 1549633762
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_5551_jat_21774
proquest_miscellaneous_1549633762
pubmed_primary_24599170
crossref_primary_10_5551_jat_21774
crossref_citationtrail_10_5551_jat_21774
jstage_primary_article_jat_21_7_21_21774_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Atherosclerosis and Thrombosis
PublicationTitleAlternate JAT
PublicationYear 2014
Publisher Japan Atherosclerosis Society
Publisher_xml – name: Japan Atherosclerosis Society
References 3) Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, Thomas D; MRC Asymptomatic Carotid Surgery Trial(ACST) Collaborative Group: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet, 2004; 363: 1491-1502
16) Bayoglu B, Cakmak HA, Yuksel H, Can G, Karadag B, Ulutin T, et al: Chromosome 9p21 rs10757278 polymor-phism is associated with the risk of metabolic syndrome. Mol Cell Biochem, 2013; 379: 77-85
2) Alamowitch S, Eliasziw M, Algra A, Meldrum H, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial(NASCET) Group: Risk, causes, and prevention of ischaemic stroke in elderly patients with symptomatic internal-carotid artery stenosis. Lancet, 2001; 357: 1154-1160
30) Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010; 30: 620-627
29) Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol, 2004; 24: 1391-1396
26) Borin TF, Miyakawa AA, Cardoso L, Borges LF, Goncalves GA, Krieger JE: Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat. Int J Exp Path, 2009; 90: 328-337
5) Nowak J, Jogestrand T: Duplex ultrasonography is an efficient diagnostic tool for the detection of moderate to severe internal carotid artery stenosis. Clin Physiol Funct Imaging, 2007; 27: 144-147
33) Muendlein A, Saely CH, Rhomberg S, Sonderegger G, Loacker S, Rein P, Beer S, Vonbank A, Winder T, Drexel H: Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis, 2009; 205: 174-180
20) Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y: Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 2011; 30: 1956-1962
24) Nolan T, Hands BE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Natureprotocols, 2006; 1: 1556-1582
28) Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010; 6: e1001233, doi: 10.1371/journal.pgen.1001233
32) Anderson JL, Horne BD, Kolek MJ, Muhlestein JB, Mower CP, Park JJ, May HT, Camp NJ, Carlquist JF: Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J, 2008; 156: 1155-1162
9) Wang Q: Molecular genetics of coronary artery disease. Curr Opin Cardiol, 2005; 20: 182-188
22) Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS, McPherson R: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009; 29: 1671-1677
25) Kaya-Dagistanli F, Ozturk M: The role of clusterin on pancreatic beta cell regeneration after exendin-4 treatment in neonatal streptozotocin administrated rats. Acta Histochem, 2013; 115: 577-586
6) The Wellcome Trust Case Control Consortium: Genomewide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 2007; 447: 661-678
21) Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K, Onishi M, Sugimoto K, Katsuya T, Awata N, Ikebe K, Gondo Y, Oike Y, Ohishi M, Rakugi H: Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/ B. Atherosclerosis, 2012; 220: 449-455
34) Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a populationbased, prospective study. J Am Coll Cardiol, 2008; 52: 378-384
31) McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC: A common allele on chromosome 9 associated with coronary heart disease. Science, 2007; 316: 1488- 1491
35) Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, LeClerc Y, Fremes SE: Should radial arteries be used routinely for coronary artery bypass grafting? Circulation, 2004; 110: e40-e46 doi: 10.1161/01.CIR.0000136998. 39371.FF
13) Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008; 40: 217-224
37) Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B: Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with anril expression. PLoS Genet, 2010; 6: e1000899 doi: 10.1371/jour nal.pgen.1000899
11) Palomaki GE, Melillo S, Bradley LA: Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA, 303: 648-656
36) Cardenas JC, Owens AP 3rd, Krishnamurthy J, Sharpless NE, Whinna HC, Church FC: Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol, 2011; 31: 827-833
15) Cugino D, Gianfagna F, Santimone I, de Gaetano G, Bayoglu et al. Donati MB, Iacoviello L, Di Castelnuovo A: Type 2 diabetes and polymorphisms on chromosome 9p21: A metaanalysis. Nutr Metab Cardiovasc Dis, 2012; 22: 619-625
23) Holdt LM, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D: Expression of Chr9p21 genes CDKN2B(p15(INK4b ), CDKN2A(p16(INK4a), p14(ARF ) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011; 214: 264-270
1) Newby AC: Dual Role of Matrix Metalloproteinases(Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture. Physiol Rev, 2005; 85: 1-31
17) Hamsten A, Eriksson P: Identifying the susceptibility genes for coronary artery disease: from hyperbole through doubt to cautious optimism. J Intern Med, 2008; 263: 538-552
18) Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H: CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012; 419: 612-616
8) Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H; WTCCC and the Cardiogenics Consortium: Genomewide association analysis of coronary artery disease. N Engl J Med, 2007; 357: 443-453
27) Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002; 30: e36, doi: 10.1093/nar/30.9.e36
14) Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H; PROCARDIS consortium: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked, SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet, 2008; 17: 806-814
10) McPherson R: Chromosome 9p21 and coronary artery disease. N Engl J Med, 2010; 362: 1736-1737
19) Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM: Molecular inter play of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010; 38: 662-674
7) Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM, Albert CM: A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 2009; 120: 2062-2068
4) Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM, Thomas DJ, Francis S, Griffin M, Geroulakos G, Ioannidou E, Kyriacou E; ACSRS Study Group: The asymptomatic carotid stenosis and risk of stroke(ACSRS) study. Aims and results of quality control. Int Angiol, 2003; 22: 263-272
12) Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ; Cardiogenics Consortium: Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008; 117: 1675-1684
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4) Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM, Thomas DJ, Francis S, Griffin M, Geroulakos G, Ioannidou E, Kyriacou E; ACSRS Study Group: The asymptomatic carotid stenosis and risk of stroke(ACSRS) study. Aims and results of quality control. Int Angiol, 2003; 22: 263-272
– reference: 13) Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008; 40: 217-224
– reference: 32) Anderson JL, Horne BD, Kolek MJ, Muhlestein JB, Mower CP, Park JJ, May HT, Camp NJ, Carlquist JF: Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J, 2008; 156: 1155-1162
– reference: 37) Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B: Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with anril expression. PLoS Genet, 2010; 6: e1000899 doi: 10.1371/jour nal.pgen.1000899
– reference: 2) Alamowitch S, Eliasziw M, Algra A, Meldrum H, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial(NASCET) Group: Risk, causes, and prevention of ischaemic stroke in elderly patients with symptomatic internal-carotid artery stenosis. Lancet, 2001; 357: 1154-1160
– reference: 30) Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010; 30: 620-627
– reference: 26) Borin TF, Miyakawa AA, Cardoso L, Borges LF, Goncalves GA, Krieger JE: Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat. Int J Exp Path, 2009; 90: 328-337
– reference: 27) Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002; 30: e36, doi: 10.1093/nar/30.9.e36
– reference: 5) Nowak J, Jogestrand T: Duplex ultrasonography is an efficient diagnostic tool for the detection of moderate to severe internal carotid artery stenosis. Clin Physiol Funct Imaging, 2007; 27: 144-147
– reference: 24) Nolan T, Hands BE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Natureprotocols, 2006; 1: 1556-1582
– reference: 1) Newby AC: Dual Role of Matrix Metalloproteinases(Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture. Physiol Rev, 2005; 85: 1-31
– reference: 8) Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H; WTCCC and the Cardiogenics Consortium: Genomewide association analysis of coronary artery disease. N Engl J Med, 2007; 357: 443-453
– reference: 17) Hamsten A, Eriksson P: Identifying the susceptibility genes for coronary artery disease: from hyperbole through doubt to cautious optimism. J Intern Med, 2008; 263: 538-552
– reference: 15) Cugino D, Gianfagna F, Santimone I, de Gaetano G, Bayoglu et al. Donati MB, Iacoviello L, Di Castelnuovo A: Type 2 diabetes and polymorphisms on chromosome 9p21: A metaanalysis. Nutr Metab Cardiovasc Dis, 2012; 22: 619-625
– reference: 20) Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y: Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 2011; 30: 1956-1962
– reference: 18) Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H: CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012; 419: 612-616
– reference: 23) Holdt LM, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D: Expression of Chr9p21 genes CDKN2B(p15(INK4b ), CDKN2A(p16(INK4a), p14(ARF ) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011; 214: 264-270
– reference: 12) Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ; Cardiogenics Consortium: Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008; 117: 1675-1684
– reference: 25) Kaya-Dagistanli F, Ozturk M: The role of clusterin on pancreatic beta cell regeneration after exendin-4 treatment in neonatal streptozotocin administrated rats. Acta Histochem, 2013; 115: 577-586
– reference: 31) McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC: A common allele on chromosome 9 associated with coronary heart disease. Science, 2007; 316: 1488- 1491
– reference: 21) Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K, Onishi M, Sugimoto K, Katsuya T, Awata N, Ikebe K, Gondo Y, Oike Y, Ohishi M, Rakugi H: Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/ B. Atherosclerosis, 2012; 220: 449-455
– reference: 34) Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a populationbased, prospective study. J Am Coll Cardiol, 2008; 52: 378-384
– reference: 10) McPherson R: Chromosome 9p21 and coronary artery disease. N Engl J Med, 2010; 362: 1736-1737
– reference: 6) The Wellcome Trust Case Control Consortium: Genomewide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 2007; 447: 661-678
– reference: 3) Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, Thomas D; MRC Asymptomatic Carotid Surgery Trial(ACST) Collaborative Group: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet, 2004; 363: 1491-1502
– reference: 11) Palomaki GE, Melillo S, Bradley LA: Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA, 303: 648-656
– reference: 19) Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM: Molecular inter play of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010; 38: 662-674
– reference: 9) Wang Q: Molecular genetics of coronary artery disease. Curr Opin Cardiol, 2005; 20: 182-188
– reference: 33) Muendlein A, Saely CH, Rhomberg S, Sonderegger G, Loacker S, Rein P, Beer S, Vonbank A, Winder T, Drexel H: Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis, 2009; 205: 174-180
– reference: 7) Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM, Albert CM: A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 2009; 120: 2062-2068
– reference: 22) Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS, McPherson R: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009; 29: 1671-1677
– reference: 35) Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, LeClerc Y, Fremes SE: Should radial arteries be used routinely for coronary artery bypass grafting? Circulation, 2004; 110: e40-e46 doi: 10.1161/01.CIR.0000136998. 39371.FF
– reference: 28) Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010; 6: e1001233, doi: 10.1371/journal.pgen.1001233
– reference: 16) Bayoglu B, Cakmak HA, Yuksel H, Can G, Karadag B, Ulutin T, et al: Chromosome 9p21 rs10757278 polymor-phism is associated with the risk of metabolic syndrome. Mol Cell Biochem, 2013; 379: 77-85
– reference: 14) Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H; PROCARDIS consortium: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked, SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet, 2008; 17: 806-814
– reference: 36) Cardenas JC, Owens AP 3rd, Krishnamurthy J, Sharpless NE, Whinna HC, Church FC: Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol, 2011; 31: 827-833
– reference: 29) Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol, 2004; 24: 1391-1396
– ident: 9
  doi: 10.1097/01.hco.0000160373.77190.f1
– ident: 23
  doi: 10.1016/j.atherosclerosis.2010.06.029
– ident: 4
– ident: 16
  doi: 10.1007/s11010-013-1629-3
– ident: 18
  doi: 10.1016/j.bbrc.2012.02.050
– ident: 19
  doi: 10.1016/j.molcel.2010.03.021
– ident: 35
– ident: 21
  doi: 10.1016/j.atherosclerosis.2011.11.017
– ident: 37
– ident: 28
  doi: 10.1371/journal.pgen.1001233
– ident: 13
  doi: 10.1038/ng.72
– ident: 24
  doi: 10.1038/nprot.2006.236
– ident: 34
  doi: 10.1016/j.jacc.2007.11.087
– ident: 33
  doi: 10.1016/j.atherosclerosis.2008.10.035
– ident: 30
  doi: 10.1161/ATVBAHA.109.196832
– ident: 25
  doi: 10.1016/j.acthis.2012.12.007
– ident: 7
  doi: 10.1161/CIRCULATIONAHA.109.879049
– ident: 32
  doi: 10.1016/j.ahj.2008.07.006
– ident: 20
  doi: 10.1038/onc.2010.568
– ident: 31
  doi: 10.1126/science.1142447
– ident: 22
  doi: 10.1161/ATVBAHA.109.189522
– ident: 5
  doi: 10.1111/j.1475-097X.2007.00727.x
– ident: 15
  doi: 10.1016/j.numecd.2010.11.010
– ident: 27
  doi: 10.1093/nar/30.9.e36
– ident: 6
  doi: 10.1038/nature05911
– ident: 17
  doi: 10.1111/j.1365-2796.2008.01958.x
– ident: 36
  doi: 10.1161/ATVBAHA.110.221721
– ident: 8
  doi: 10.1056/NEJMoa072366
– ident: 10
  doi: 10.1056/NEJMcibr1002359
– ident: 14
  doi: 10.1093/hmg/ddm352
– ident: 2
  doi: 10.1016/S0140-6736(00)04332-4
– ident: 1
  doi: 10.1152/physrev.00048.2003
– ident: 11
  doi: 10.1001/jama.2010.118
– ident: 3
  doi: 10.1016/S0140-6736(04)16146-1
– ident: 26
  doi: 10.1111/j.1365-2613.2009.00648.x
– ident: 12
  doi: 10.1161/CIRCULATIONAHA.107.730614
– ident: 29
  doi: 10.1161/01.ATV.0000133605.89421.79
SSID ssj0033552
Score 2.048858
Snippet Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript...
The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript...
SourceID unpaywall
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms Adult
Aged
Aged, 80 and over
Biomarkers - analysis
Carotid atherosclerosis
Carotid Stenosis - genetics
Carotid Stenosis - metabolism
Carotid Stenosis - pathology
Case-Control Studies
CDKN2A
CDKN2BAS
Cell cycle
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
Female
Follow-Up Studies
Gene expression
Humans
Immunoenzyme Techniques
Male
Middle Aged
Prognosis
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - genetics
Severity of Illness Index
Title The Severity of Internal Carotid Artery Stenosis is Associated with the Cyclin-Dependent Kinase Inhibitor 2A Gene Expression
URI https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/24599170
https://www.proquest.com/docview/1549633762
https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_pdf
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Atherosclerosis and Thrombosis, 2014/07/28, Vol.21(7), pp.659-671
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: KQ8
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1880-3873
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033552
  issn: 1880-3873
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED_adOzxYe-H9yja48O-2KksWXLYp9C1Kxstgy6QwcDYktwlC05IHbaM_fG7i2WzjQ7GwNgYn8-y7nT66fUTwAvLhXGFMaGUZRxKbUU4SJ0IU9qbysq8LGNanHx8oo5G8u04GW_Bq3YtDE2rnCIuOnN0ic7m0XTR95nYn-bYWOd9jacMobSW_Wxhy23YUQkC8R7sjE7eDz9umlgSo4vcxGEiHCMGWdHwCiUIEUhRtFHwW210qfnwRVjzGlxZVYt8_TWfzX6pfw5vwKc25c20ky_Rqi4i8_0PUsf__LWbcN3jUjZsBG_Blqtuw-VjP_J-B36gP7FTh46PsJ3NS-a7EmeMpozUE0uvuuWandZEPz45Z3i0tneWUX8vQ7DJ9te0GDN87Tffrdm7SYU1Ker7PCkwvCxZPGREhs0OvvlJutVdGB0efNg_Cv3ODaGRStWhEMIlTueKb-jtXZzb3CnNbSzLQgjEjDZG6GMMdy4lj9BcGo13yibcDIS4B71qXrkHwPYK7QYOxVIlpLGykINSGYShvEwKrooAXrYWzIynNafdNWYZNm_I2BlmbZOlATzrRBcNl8dFQmljpE7Em8iLZDprTdQ9oQVyGGUCeNo6ToaFlEZe8srNV-cZ8eApgbE8DuB-41Gd-lgmiNH1XgDPOxf7e_Ie_pPUI7iKwE42XUWPoVcvV-4Jgqe62IXtN2O-64vKTxIBG4c
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6dGzrh70f7h5ojw_9YqeyZMlhn0LXUjZaBl2gg4GxJblLFpyQOmwZ_eN7F8tmGx2MgbExPp9l3en00-sngDeWC-MKY0IpyziU2opwkDoRprQ3lZV5Wca0OPnoWB2O5PvT5HQD3rZrYWha5QRx0ZmjS3Q2iybzvs_E_iTHxjrvazxlCKW17GdzW16DTZUgEO_B5uj44_DzuoklMbrIdRwmwjFikBUNr1CCEIEURWsFv9VG15sPX4U1t-Dmsprnq-_5dPpL_XNwB760KW-mnXyLlnURmZ9_kDr-56_dhdsel7JhI3gPNlx1H24c-ZH3B3CB_sROHDo-wnY2K5nvSpwymjJSjy296hYrdlIT_fj4nOHR2t5ZRv29DMEm21vRYszwnd98t2YfxhXWpKjv67jA8LJg8ZARGTbb_-En6VYPYXSw_2nvMPQ7N4RGKlWHQgiXOJ0rvqa3d3Fuc6c0t7EsCyEQM9oYoY8x3LmUPEJzaTTeKZtwMxDiEfSqWeWeANsttBs4FEuVkMbKQg5KZRCG8jIpuCoC2GktmBlPa067a0wzbN6QsTPM2iZLA3jVic4bLo-rhNLGSJ2IN5EXyXTWmqh7QgvkMMoE8LJ1nAwLKY285JWbLc8z4sFTAmN5HMDjxqM69bFMEKPr3QBedy729-Rt_5PUU7iFwE42XUXPoFcvlu45gqe6eOELySVykBqW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Severity+of+Internal+Carotid+Artery+Stenosis+is+Associated+with+the+Cyclin-Dependent+Kinase+Inhibitor+2A+Gene+Expression&rft.jtitle=Journal+of+Atherosclerosis+and+Thrombosis&rft.au=Deser%2C+Serkan+Burc&rft.au=Arslan%2C+Caner&rft.au=Arapi%2C+Berk&rft.au=Bayoglu%2C+Burcu&rft.date=2014-01-01&rft.pub=Japan+Atherosclerosis+Society&rft.issn=1340-3478&rft.eissn=1880-3873&rft.volume=21&rft.issue=7&rft.spage=659&rft.epage=671&rft_id=info:doi/10.5551%2Fjat.21774&rft.externalDocID=article_jat_21_7_21_21774_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon