The Severity of Internal Carotid Artery Stenosis is Associated with the Cyclin-Dependent Kinase Inhibitor 2A Gene Expression
Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/...
Saved in:
| Published in | Journal of Atherosclerosis and Thrombosis Vol. 21; no. 7; pp. 659 - 671 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Japan
Japan Atherosclerosis Society
01.01.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1340-3478 1880-3873 1880-3873 |
| DOI | 10.5551/jat.21774 |
Cover
| Abstract | Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16INK4a protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. Methods: A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16INK4a and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). Results: The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16INK4a immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). Conclusions: An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16INK4a expression is associated with carotid atherosclerosis in various patient subgroups. |
|---|---|
| AbstractList | Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16INK4a inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16INK4a protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. Methods: A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16INK4a and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). Results: The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16INK4a immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). Conclusions: An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16INK4a expression is associated with carotid atherosclerosis in various patient subgroups. The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples.AIMThe INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples.A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC).METHODSA total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC).The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001).RESULTSThe CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001).An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups.CONCLUSIONSAn increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups. The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript p16(INK4a) inhibits the activity of the cyclin-dependent kinases CDK4/CDK6 and arrests cell-cycle progression. CDK inhibitors also regulate G1/S phase progression in vascular smooth muscle cells(VSMCs) and may modulate the early stages of atherosclerosis. Therefore, we aimed to study the expression of the INK4/ARF locus genes CDKN2A and CDKN2BAS in order to examine the p16(INK4a) protein expression and the level of cell proliferation in carotid plaques and saphenous tissue samples. A total of 50 patients(33 symptomatic subjects and 17 asymptomatic subjects) with carotid atherosclerosis CA) were studied. The CDKN2A and CDKN2BAS gene expression levels were determined using quantitative real-time polymerase chain reaction(qRT-PCR). All tissue sections were also analyzed for the p16(INK4a) and proliferating cell nuclear antigen(PCNA) protein expression using immunohistochemistry(IHC). The CDKN2A gene expression was significantly higher in the carotid plaques than in the saphenous tissues(p=0.009), whereas no such differences were observed in the CDKN2BAS transcripts(p=0.157). The carotid plaque CDKN2A mRNA levels were higher in the symptomatic patients than in the asymptomatic patients(p=0.050); this finding was also associated with the severity of internal carotid artery(ICA) stenosis(p=0.034). The p16(INK4a) immune(+) cell counts in the carotid plaques were higher in the symptomatic patients than in the asymptomatic patients (p=0.056), as was the cell proliferation index(p=0.001). An increased CDKN2A gene expression in carotid plaques may increase the severity of ICA stenosis, thus raising the risk of atherosclerosis and contributing to the development of symptoms. In addition, the p16(INK4a) expression is associated with carotid atherosclerosis in various patient subgroups. |
| Author | Arslan, Caner Gode, Safa Arapi, Berk Dirican, Ahmet Cengiz, Mujgan Dagistanli, Fatma Kaya Bayoglu, Burcu Deser, Serkan Burc |
| Author_xml | – sequence: 1 fullname: Deser, Serkan Burc organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Arslan, Caner organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Arapi, Berk organization: Department of Heart and Vessel Surgery, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Bayoglu, Burcu organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Dagistanli, Fatma Kaya organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Gode, Safa organization: Department of Heart and Vessel Surgery, Istanbul Mehmet Akif Ersoy Chest and Cardiovascular Surgery Training and Research Hospital – sequence: 1 fullname: Cengiz, Mujgan organization: Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University – sequence: 1 fullname: Dirican, Ahmet organization: Department of Biostatistics and Medical Informatics, Istanbul Medical Faculty, Istanbul University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24599170$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE9v1DAQxa2qqP_ogS-AfASktLEdx8kJrZZSKipxaHu2Zp0J61XWDra3JRIfHre77AEhJGs8M_69Z-mdkkPnHRLyhpUXUkp2uYJ0wZlS1QE5YU1TFqJR4jD3osp9pZpjchrjqiyFkJIfkWNeybZlqjwhv-6XSO_wEYNNE_U9vXEJg4OBziH4ZDs6C3kx0buEzkcbaT6zGL2xkLCjTzYtacoe88kM1hWfcETXoUv0q3UQMfst7cImHyif0Wt0SK9-jgFjtN69Jq96GCKe7-4z8vD56n7-pbj9dn0zn90WpqrrVAghUKKCmtWNbCRy6ABrxTpe9QshWsE7XsvGGIbYdBX0ilVG5anuJDOtEGfkw9Z340aYnmAY9BjsGsKkWamfI9Q5Qv0SYYbfbeEx-B8bjEmvbTQ4DODQb6JmsmprIVTNM_p2h24Wa-z2pn_izcD7LWCCjzFg_99_L_9ijU2QckwpgB3-qfi4Vaxigu-494aQrBlwR2r1XF4U-xezhKDRid8tpLH9 |
| CitedBy_id | crossref_primary_10_1124_pr_115_010652 crossref_primary_10_3892_etm_2017_5310 crossref_primary_10_1007_s12015_018_9815_z crossref_primary_10_3389_fgene_2022_1062212 crossref_primary_10_1016_j_clinbiochem_2016_02_012 |
| Cites_doi | 10.1097/01.hco.0000160373.77190.f1 10.1016/j.atherosclerosis.2010.06.029 10.1007/s11010-013-1629-3 10.1016/j.bbrc.2012.02.050 10.1016/j.molcel.2010.03.021 10.1016/j.atherosclerosis.2011.11.017 10.1371/journal.pgen.1001233 10.1038/ng.72 10.1038/nprot.2006.236 10.1016/j.jacc.2007.11.087 10.1016/j.atherosclerosis.2008.10.035 10.1161/ATVBAHA.109.196832 10.1016/j.acthis.2012.12.007 10.1161/CIRCULATIONAHA.109.879049 10.1016/j.ahj.2008.07.006 10.1038/onc.2010.568 10.1126/science.1142447 10.1161/ATVBAHA.109.189522 10.1111/j.1475-097X.2007.00727.x 10.1016/j.numecd.2010.11.010 10.1093/nar/30.9.e36 10.1038/nature05911 10.1111/j.1365-2796.2008.01958.x 10.1161/ATVBAHA.110.221721 10.1056/NEJMoa072366 10.1056/NEJMcibr1002359 10.1093/hmg/ddm352 10.1016/S0140-6736(00)04332-4 10.1152/physrev.00048.2003 10.1001/jama.2010.118 10.1016/S0140-6736(04)16146-1 10.1111/j.1365-2613.2009.00648.x 10.1161/CIRCULATIONAHA.107.730614 10.1161/01.ATV.0000133605.89421.79 |
| ContentType | Journal Article |
| Copyright | 2014 Japan Atherosclerosis Society |
| Copyright_xml | – notice: 2014 Japan Atherosclerosis Society |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.5551/jat.21774 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1880-3873 |
| EndPage | 671 |
| ExternalDocumentID | 10.5551/jat.21774 24599170 10_5551_jat_21774 article_jat_21_7_21_21774_article_char_en |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- .55 29J 2WC 53G 5GY 5VS AAFWJ ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DU5 E3Z F5P GX1 JSF JSH KQ8 OK1 OVT P6G RJT RNS RZJ TR2 X7M 3O- AAYXX AOIJS CITATION HYE JMI RPM TKC CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c466t-333e5e7a6168585e2adae671d24fb33932d2658cc1ee8d4af714c7c1e6d51c933 |
| IEDL.DBID | UNPAY |
| ISSN | 1340-3478 1880-3873 |
| IngestDate | Thu Aug 28 10:58:09 EDT 2025 Fri Jul 11 12:19:18 EDT 2025 Thu Apr 03 07:09:58 EDT 2025 Tue Jul 01 02:27:07 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Wed Sep 03 06:29:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-333e5e7a6168585e2adae671d24fb33932d2658cc1ee8d4af714c7c1e6d51c933 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_pdf |
| PMID | 24599170 |
| PQID | 1549633762 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_5551_jat_21774 proquest_miscellaneous_1549633762 pubmed_primary_24599170 crossref_primary_10_5551_jat_21774 crossref_citationtrail_10_5551_jat_21774 jstage_primary_article_jat_21_7_21_21774_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-01 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | Journal of Atherosclerosis and Thrombosis |
| PublicationTitleAlternate | JAT |
| PublicationYear | 2014 |
| Publisher | Japan Atherosclerosis Society |
| Publisher_xml | – name: Japan Atherosclerosis Society |
| References | 3) Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, Thomas D; MRC Asymptomatic Carotid Surgery Trial(ACST) Collaborative Group: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet, 2004; 363: 1491-1502 16) Bayoglu B, Cakmak HA, Yuksel H, Can G, Karadag B, Ulutin T, et al: Chromosome 9p21 rs10757278 polymor-phism is associated with the risk of metabolic syndrome. Mol Cell Biochem, 2013; 379: 77-85 2) Alamowitch S, Eliasziw M, Algra A, Meldrum H, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial(NASCET) Group: Risk, causes, and prevention of ischaemic stroke in elderly patients with symptomatic internal-carotid artery stenosis. Lancet, 2001; 357: 1154-1160 30) Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010; 30: 620-627 29) Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol, 2004; 24: 1391-1396 26) Borin TF, Miyakawa AA, Cardoso L, Borges LF, Goncalves GA, Krieger JE: Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat. Int J Exp Path, 2009; 90: 328-337 5) Nowak J, Jogestrand T: Duplex ultrasonography is an efficient diagnostic tool for the detection of moderate to severe internal carotid artery stenosis. Clin Physiol Funct Imaging, 2007; 27: 144-147 33) Muendlein A, Saely CH, Rhomberg S, Sonderegger G, Loacker S, Rein P, Beer S, Vonbank A, Winder T, Drexel H: Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis, 2009; 205: 174-180 20) Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y: Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 2011; 30: 1956-1962 24) Nolan T, Hands BE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Natureprotocols, 2006; 1: 1556-1582 28) Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010; 6: e1001233, doi: 10.1371/journal.pgen.1001233 32) Anderson JL, Horne BD, Kolek MJ, Muhlestein JB, Mower CP, Park JJ, May HT, Camp NJ, Carlquist JF: Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J, 2008; 156: 1155-1162 9) Wang Q: Molecular genetics of coronary artery disease. Curr Opin Cardiol, 2005; 20: 182-188 22) Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS, McPherson R: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009; 29: 1671-1677 25) Kaya-Dagistanli F, Ozturk M: The role of clusterin on pancreatic beta cell regeneration after exendin-4 treatment in neonatal streptozotocin administrated rats. Acta Histochem, 2013; 115: 577-586 6) The Wellcome Trust Case Control Consortium: Genomewide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 2007; 447: 661-678 21) Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K, Onishi M, Sugimoto K, Katsuya T, Awata N, Ikebe K, Gondo Y, Oike Y, Ohishi M, Rakugi H: Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/ B. Atherosclerosis, 2012; 220: 449-455 34) Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a populationbased, prospective study. J Am Coll Cardiol, 2008; 52: 378-384 31) McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC: A common allele on chromosome 9 associated with coronary heart disease. Science, 2007; 316: 1488- 1491 35) Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, LeClerc Y, Fremes SE: Should radial arteries be used routinely for coronary artery bypass grafting? Circulation, 2004; 110: e40-e46 doi: 10.1161/01.CIR.0000136998. 39371.FF 13) Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008; 40: 217-224 37) Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B: Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with anril expression. PLoS Genet, 2010; 6: e1000899 doi: 10.1371/jour nal.pgen.1000899 11) Palomaki GE, Melillo S, Bradley LA: Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA, 303: 648-656 36) Cardenas JC, Owens AP 3rd, Krishnamurthy J, Sharpless NE, Whinna HC, Church FC: Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol, 2011; 31: 827-833 15) Cugino D, Gianfagna F, Santimone I, de Gaetano G, Bayoglu et al. Donati MB, Iacoviello L, Di Castelnuovo A: Type 2 diabetes and polymorphisms on chromosome 9p21: A metaanalysis. Nutr Metab Cardiovasc Dis, 2012; 22: 619-625 23) Holdt LM, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D: Expression of Chr9p21 genes CDKN2B(p15(INK4b ), CDKN2A(p16(INK4a), p14(ARF ) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011; 214: 264-270 1) Newby AC: Dual Role of Matrix Metalloproteinases(Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture. Physiol Rev, 2005; 85: 1-31 17) Hamsten A, Eriksson P: Identifying the susceptibility genes for coronary artery disease: from hyperbole through doubt to cautious optimism. J Intern Med, 2008; 263: 538-552 18) Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H: CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012; 419: 612-616 8) Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H; WTCCC and the Cardiogenics Consortium: Genomewide association analysis of coronary artery disease. N Engl J Med, 2007; 357: 443-453 27) Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002; 30: e36, doi: 10.1093/nar/30.9.e36 14) Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H; PROCARDIS consortium: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked, SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet, 2008; 17: 806-814 10) McPherson R: Chromosome 9p21 and coronary artery disease. N Engl J Med, 2010; 362: 1736-1737 19) Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM: Molecular inter play of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010; 38: 662-674 7) Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM, Albert CM: A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 2009; 120: 2062-2068 4) Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM, Thomas DJ, Francis S, Griffin M, Geroulakos G, Ioannidou E, Kyriacou E; ACSRS Study Group: The asymptomatic carotid stenosis and risk of stroke(ACSRS) study. Aims and results of quality control. Int Angiol, 2003; 22: 263-272 12) Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ; Cardiogenics Consortium: Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008; 117: 1675-1684 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – reference: 4) Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM, Thomas DJ, Francis S, Griffin M, Geroulakos G, Ioannidou E, Kyriacou E; ACSRS Study Group: The asymptomatic carotid stenosis and risk of stroke(ACSRS) study. Aims and results of quality control. Int Angiol, 2003; 22: 263-272 – reference: 13) Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jääskeläinen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsäter A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemelä M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008; 40: 217-224 – reference: 32) Anderson JL, Horne BD, Kolek MJ, Muhlestein JB, Mower CP, Park JJ, May HT, Camp NJ, Carlquist JF: Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am Heart J, 2008; 156: 1155-1162 – reference: 37) Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B: Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with anril expression. PLoS Genet, 2010; 6: e1000899 doi: 10.1371/jour nal.pgen.1000899 – reference: 2) Alamowitch S, Eliasziw M, Algra A, Meldrum H, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial(NASCET) Group: Risk, causes, and prevention of ischaemic stroke in elderly patients with symptomatic internal-carotid artery stenosis. Lancet, 2001; 357: 1154-1160 – reference: 30) Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol, 2010; 30: 620-627 – reference: 26) Borin TF, Miyakawa AA, Cardoso L, Borges LF, Goncalves GA, Krieger JE: Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat. Int J Exp Path, 2009; 90: 328-337 – reference: 27) Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 2002; 30: e36, doi: 10.1093/nar/30.9.e36 – reference: 5) Nowak J, Jogestrand T: Duplex ultrasonography is an efficient diagnostic tool for the detection of moderate to severe internal carotid artery stenosis. Clin Physiol Funct Imaging, 2007; 27: 144-147 – reference: 24) Nolan T, Hands BE, Bustin SA: Quantification of mRNA using real-time RT-PCR. Natureprotocols, 2006; 1: 1556-1582 – reference: 1) Newby AC: Dual Role of Matrix Metalloproteinases(Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture. Physiol Rev, 2005; 85: 1-31 – reference: 8) Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H; WTCCC and the Cardiogenics Consortium: Genomewide association analysis of coronary artery disease. N Engl J Med, 2007; 357: 443-453 – reference: 17) Hamsten A, Eriksson P: Identifying the susceptibility genes for coronary artery disease: from hyperbole through doubt to cautious optimism. J Intern Med, 2008; 263: 538-552 – reference: 15) Cugino D, Gianfagna F, Santimone I, de Gaetano G, Bayoglu et al. Donati MB, Iacoviello L, Di Castelnuovo A: Type 2 diabetes and polymorphisms on chromosome 9p21: A metaanalysis. Nutr Metab Cardiovasc Dis, 2012; 22: 619-625 – reference: 20) Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y: Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 2011; 30: 1956-1962 – reference: 18) Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H: CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun, 2012; 419: 612-616 – reference: 23) Holdt LM, Sass K, Gäbel G, Bergert H, Thiery J, Teupser D: Expression of Chr9p21 genes CDKN2B(p15(INK4b ), CDKN2A(p16(INK4a), p14(ARF ) and MTAP in human atherosclerotic plaque. Atherosclerosis, 2011; 214: 264-270 – reference: 12) Schunkert H, Götz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, König IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ; Cardiogenics Consortium: Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008; 117: 1675-1684 – reference: 25) Kaya-Dagistanli F, Ozturk M: The role of clusterin on pancreatic beta cell regeneration after exendin-4 treatment in neonatal streptozotocin administrated rats. Acta Histochem, 2013; 115: 577-586 – reference: 31) McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC: A common allele on chromosome 9 associated with coronary heart disease. Science, 2007; 316: 1488- 1491 – reference: 21) Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, Kawai T, Kusunoki H, Yamamoto H, Takeya Y, Yamamoto K, Onishi M, Sugimoto K, Katsuya T, Awata N, Ikebe K, Gondo Y, Oike Y, Ohishi M, Rakugi H: Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/ B. Atherosclerosis, 2012; 220: 449-455 – reference: 34) Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a populationbased, prospective study. J Am Coll Cardiol, 2008; 52: 378-384 – reference: 10) McPherson R: Chromosome 9p21 and coronary artery disease. N Engl J Med, 2010; 362: 1736-1737 – reference: 6) The Wellcome Trust Case Control Consortium: Genomewide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 2007; 447: 661-678 – reference: 3) Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, Thomas D; MRC Asymptomatic Carotid Surgery Trial(ACST) Collaborative Group: Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet, 2004; 363: 1491-1502 – reference: 11) Palomaki GE, Melillo S, Bradley LA: Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA, 303: 648-656 – reference: 19) Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM: Molecular inter play of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell, 2010; 38: 662-674 – reference: 9) Wang Q: Molecular genetics of coronary artery disease. Curr Opin Cardiol, 2005; 20: 182-188 – reference: 33) Muendlein A, Saely CH, Rhomberg S, Sonderegger G, Loacker S, Rein P, Beer S, Vonbank A, Winder T, Drexel H: Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis, 2009; 205: 174-180 – reference: 7) Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM, Albert CM: A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 2009; 120: 2062-2068 – reference: 22) Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, Buerki C, McLean BW, Cook RC, Parker JS, McPherson R: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol, 2009; 29: 1671-1677 – reference: 35) Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, LeClerc Y, Fremes SE: Should radial arteries be used routinely for coronary artery bypass grafting? Circulation, 2004; 110: e40-e46 doi: 10.1161/01.CIR.0000136998. 39371.FF – reference: 28) Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE: Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010; 6: e1001233, doi: 10.1371/journal.pgen.1001233 – reference: 16) Bayoglu B, Cakmak HA, Yuksel H, Can G, Karadag B, Ulutin T, et al: Chromosome 9p21 rs10757278 polymor-phism is associated with the risk of metabolic syndrome. Mol Cell Biochem, 2013; 379: 77-85 – reference: 14) Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H; PROCARDIS consortium: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked, SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet, 2008; 17: 806-814 – reference: 36) Cardenas JC, Owens AP 3rd, Krishnamurthy J, Sharpless NE, Whinna HC, Church FC: Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol, 2011; 31: 827-833 – reference: 29) Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, Bobik A: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol, 2004; 24: 1391-1396 – ident: 9 doi: 10.1097/01.hco.0000160373.77190.f1 – ident: 23 doi: 10.1016/j.atherosclerosis.2010.06.029 – ident: 4 – ident: 16 doi: 10.1007/s11010-013-1629-3 – ident: 18 doi: 10.1016/j.bbrc.2012.02.050 – ident: 19 doi: 10.1016/j.molcel.2010.03.021 – ident: 35 – ident: 21 doi: 10.1016/j.atherosclerosis.2011.11.017 – ident: 37 – ident: 28 doi: 10.1371/journal.pgen.1001233 – ident: 13 doi: 10.1038/ng.72 – ident: 24 doi: 10.1038/nprot.2006.236 – ident: 34 doi: 10.1016/j.jacc.2007.11.087 – ident: 33 doi: 10.1016/j.atherosclerosis.2008.10.035 – ident: 30 doi: 10.1161/ATVBAHA.109.196832 – ident: 25 doi: 10.1016/j.acthis.2012.12.007 – ident: 7 doi: 10.1161/CIRCULATIONAHA.109.879049 – ident: 32 doi: 10.1016/j.ahj.2008.07.006 – ident: 20 doi: 10.1038/onc.2010.568 – ident: 31 doi: 10.1126/science.1142447 – ident: 22 doi: 10.1161/ATVBAHA.109.189522 – ident: 5 doi: 10.1111/j.1475-097X.2007.00727.x – ident: 15 doi: 10.1016/j.numecd.2010.11.010 – ident: 27 doi: 10.1093/nar/30.9.e36 – ident: 6 doi: 10.1038/nature05911 – ident: 17 doi: 10.1111/j.1365-2796.2008.01958.x – ident: 36 doi: 10.1161/ATVBAHA.110.221721 – ident: 8 doi: 10.1056/NEJMoa072366 – ident: 10 doi: 10.1056/NEJMcibr1002359 – ident: 14 doi: 10.1093/hmg/ddm352 – ident: 2 doi: 10.1016/S0140-6736(00)04332-4 – ident: 1 doi: 10.1152/physrev.00048.2003 – ident: 11 doi: 10.1001/jama.2010.118 – ident: 3 doi: 10.1016/S0140-6736(04)16146-1 – ident: 26 doi: 10.1111/j.1365-2613.2009.00648.x – ident: 12 doi: 10.1161/CIRCULATIONAHA.107.730614 – ident: 29 doi: 10.1161/01.ATV.0000133605.89421.79 |
| SSID | ssj0033552 |
| Score | 2.048858 |
| Snippet | Aim: The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript... The INK4b-ARF-INK4a locus in the chromosome 9p21 region is known to play an important role in the development of atherosclerosis. The INK4/ARF transcript... |
| SourceID | unpaywall proquest pubmed crossref jstage |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 659 |
| SubjectTerms | Adult Aged Aged, 80 and over Biomarkers - analysis Carotid atherosclerosis Carotid Stenosis - genetics Carotid Stenosis - metabolism Carotid Stenosis - pathology Case-Control Studies CDKN2A CDKN2BAS Cell cycle Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism Female Follow-Up Studies Gene expression Humans Immunoenzyme Techniques Male Middle Aged Prognosis Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Messenger - genetics Severity of Illness Index |
| Title | The Severity of Internal Carotid Artery Stenosis is Associated with the Cyclin-Dependent Kinase Inhibitor 2A Gene Expression |
| URI | https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/24599170 https://www.proquest.com/docview/1549633762 https://www.jstage.jst.go.jp/article/jat/21/7/21_21774/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Atherosclerosis and Thrombosis, 2014/07/28, Vol.21(7), pp.659-671 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: KQ8 dateStart: 19940101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1880-3873 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033552 issn: 1880-3873 databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED_adOzxYe-H9yja48O-2KksWXLYp9C1Kxstgy6QwcDYktwlC05IHbaM_fG7i2WzjQ7GwNgYn8-y7nT66fUTwAvLhXGFMaGUZRxKbUU4SJ0IU9qbysq8LGNanHx8oo5G8u04GW_Bq3YtDE2rnCIuOnN0ic7m0XTR95nYn-bYWOd9jacMobSW_Wxhy23YUQkC8R7sjE7eDz9umlgSo4vcxGEiHCMGWdHwCiUIEUhRtFHwW210qfnwRVjzGlxZVYt8_TWfzX6pfw5vwKc25c20ky_Rqi4i8_0PUsf__LWbcN3jUjZsBG_Blqtuw-VjP_J-B36gP7FTh46PsJ3NS-a7EmeMpozUE0uvuuWandZEPz45Z3i0tneWUX8vQ7DJ9te0GDN87Tffrdm7SYU1Ker7PCkwvCxZPGREhs0OvvlJutVdGB0efNg_Cv3ODaGRStWhEMIlTueKb-jtXZzb3CnNbSzLQgjEjDZG6GMMdy4lj9BcGo13yibcDIS4B71qXrkHwPYK7QYOxVIlpLGykINSGYShvEwKrooAXrYWzIynNafdNWYZNm_I2BlmbZOlATzrRBcNl8dFQmljpE7Em8iLZDprTdQ9oQVyGGUCeNo6ToaFlEZe8srNV-cZ8eApgbE8DuB-41Gd-lgmiNH1XgDPOxf7e_Ie_pPUI7iKwE42XUWPoVcvV-4Jgqe62IXtN2O-64vKTxIBG4c |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6dGzrh70f7h5ojw_9YqeyZMlhn0LXUjZaBl2gg4GxJblLFpyQOmwZ_eN7F8tmGx2MgbExPp9l3en00-sngDeWC-MKY0IpyziU2opwkDoRprQ3lZV5Wca0OPnoWB2O5PvT5HQD3rZrYWha5QRx0ZmjS3Q2iybzvs_E_iTHxjrvazxlCKW17GdzW16DTZUgEO_B5uj44_DzuoklMbrIdRwmwjFikBUNr1CCEIEURWsFv9VG15sPX4U1t-Dmsprnq-_5dPpL_XNwB760KW-mnXyLlnURmZ9_kDr-56_dhdsel7JhI3gPNlx1H24c-ZH3B3CB_sROHDo-wnY2K5nvSpwymjJSjy296hYrdlIT_fj4nOHR2t5ZRv29DMEm21vRYszwnd98t2YfxhXWpKjv67jA8LJg8ZARGTbb_-En6VYPYXSw_2nvMPQ7N4RGKlWHQgiXOJ0rvqa3d3Fuc6c0t7EsCyEQM9oYoY8x3LmUPEJzaTTeKZtwMxDiEfSqWeWeANsttBs4FEuVkMbKQg5KZRCG8jIpuCoC2GktmBlPa067a0wzbN6QsTPM2iZLA3jVic4bLo-rhNLGSJ2IN5EXyXTWmqh7QgvkMMoE8LJ1nAwLKY285JWbLc8z4sFTAmN5HMDjxqM69bFMEKPr3QBedy729-Rt_5PUU7iFwE42XUXPoFcvlu45gqe6eOELySVykBqW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Severity+of+Internal+Carotid+Artery+Stenosis+is+Associated+with+the+Cyclin-Dependent+Kinase+Inhibitor+2A+Gene+Expression&rft.jtitle=Journal+of+Atherosclerosis+and+Thrombosis&rft.au=Deser%2C+Serkan+Burc&rft.au=Arslan%2C+Caner&rft.au=Arapi%2C+Berk&rft.au=Bayoglu%2C+Burcu&rft.date=2014-01-01&rft.pub=Japan+Atherosclerosis+Society&rft.issn=1340-3478&rft.eissn=1880-3873&rft.volume=21&rft.issue=7&rft.spage=659&rft.epage=671&rft_id=info:doi/10.5551%2Fjat.21774&rft.externalDocID=article_jat_21_7_21_21774_article_char_en |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-3478&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-3478&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-3478&client=summon |