Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI
•Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' perform...
Saved in:
| Published in | Journal of stroke and cerebrovascular diseases Vol. 33; no. 12; p. 108014 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1052-3057 1532-8511 1532-8511 |
| DOI | 10.1016/j.jstrokecerebrovasdis.2024.108014 |
Cover
| Abstract | •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' performance in detecting UIAs during routine T2WI reporting.•Artificial Intelligence (AI) can be utilized for opportunistic screening of UIAs with high sensitivity.
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models’ assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application. |
|---|---|
| AbstractList | •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' performance in detecting UIAs during routine T2WI reporting.•Artificial Intelligence (AI) can be utilized for opportunistic screening of UIAs with high sensitivity.
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models’ assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application. (1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application. (1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application. |
| ArticleNumber | 108014 |
| Author | Teodorescu, Bianca Goncharov, Andrei Gilberg, Leonard Guzel, Hamza Eren Berclaz, Luc M Wiedemeyer, Christian Koç, Ali Murat Ataide, Elmer Jeto Gomes |
| Author_xml | – sequence: 1 givenname: Bianca orcidid: 0000-0002-4333-5965 surname: Teodorescu fullname: Teodorescu, Bianca email: bianca.teodorescu@med.uni-muenchen.de, bianca.teodorescu@floy.com organization: Floy GmbH, Germany – sequence: 2 givenname: Leonard surname: Gilberg fullname: Gilberg, Leonard organization: Floy GmbH, Germany – sequence: 3 givenname: Ali Murat surname: Koç fullname: Koç, Ali Murat organization: Floy GmbH, Germany – sequence: 4 givenname: Andrei surname: Goncharov fullname: Goncharov, Andrei organization: Floy GmbH, Germany – sequence: 5 givenname: Luc M surname: Berclaz fullname: Berclaz, Luc M organization: Department of Medicine III, University Hospital, LMU Munich, Germany – sequence: 6 givenname: Christian surname: Wiedemeyer fullname: Wiedemeyer, Christian organization: Floy GmbH, Germany – sequence: 7 givenname: Hamza Eren surname: Guzel fullname: Guzel, Hamza Eren organization: Floy GmbH, Germany – sequence: 8 givenname: Elmer Jeto Gomes surname: Ataide fullname: Ataide, Elmer Jeto Gomes organization: Floy GmbH, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39293708$$D View this record in MEDLINE/PubMed |
| BookMark | eNqdkcuOEzEQRVtoEPOAX0DegZA62O5n2A0Rj0FBSCisrWq7OnHGbTe2O6P-Fn4WR5lhgdgMK5fsW6esU5fZmXUWs-wNowtGWf12v9iH6N0tSvTYeXeAoHRYcMrLFGgpK59kF6wqeN5WjJ2lmlY8L2jVnGeXIewpZaxqq2fZebHky6Kh7UX261odwEoc0MZAtCVuHJ2Pk9UhapkuogfpwWowBCxOfg4DCdIjWm2378hmh0QPI8hIXE-AKMSRGAR_fCZgts7ruBuIs8SD0s64bSKHVwkGZg46HNs2PL9Dvd1FVORh2NfvN8-zpz2YgC_uz6vsx8cPm9XnfP3t083qep3Lsq5jzhQWywZV3VV9T0vV0BKW2ErZA3Q9tF1VtxxbTpt-mVzxlicltO9SDamXFVfZ6sSd7AjzHRgjRq8H8LNgVBzVi734l3pxVC9O6hPl9YkyevdzwhDFoINEY5I2NwVRMFo3RcH4MfryPjp1A6o_0x7WkgLvTwHpXQge-__70PoEweTuoNGLIDWmXSvtUUahnH4c7stfOGm01RLMLc6Phf0GjUDong |
| Cites_doi | 10.1007/s11604-022-01341-7 10.11120/msor.2001.01010023 10.1097/MD.0000000000021518 10.4103/0976-3147.165425 10.1258/ar.2011.100421 10.3171/jns.2002.96.1.0003 10.1212/WNL.0000000000200785 10.1001/jamanetworkopen.2019.5600 10.1161/01.STR.29.1.251 10.1161/01.STR.25.7.1342 10.1038/s41598-020-77441-z 10.1148/radiol.2018180901 10.1177/23969873221099736 10.1148/radiology.175.1.2315474 10.1016/j.acra.2021.10.008 10.1056/NEJM197807202990303 10.1093/brain/124.2.249 10.1212/WNL.50.5.1413 10.1038/s41746-023-00798-8 10.1007/978-3-319-24574-4_28 10.1259/0007-1285-68-808-358 10.1016/S1474-4422(09)70126-7 10.1016/j.mri.2022.09.006 10.3349/ymj.2021.62.11.1052 10.1007/978-3-658-25326-4_7 10.3389/fnins.2020.00259 10.1016/j.diii.2015.06.003 10.1001/archneur.1972.00490160001001 10.1016/S1474-4422(11)70109-0 10.1161/STROKEAHA.122.041520 10.1016/S1474-4422(13)70263-1 10.1097/RLI.0000000000000918 10.1161/STROKEAHA.118.023079 10.3174/ajnr.A6926 10.1212/WNL.0000000000200869 10.1161/STROKEAHA.123.044072 10.1259/bjr.20190855 10.1038/s41467-020-19527-w 10.1161/STROKEAHA.114.005318 10.3174/ajnr.A0699 10.1038/s41746-023-00829-4 10.1007/s00330-020-06966-8 10.1371/journal.pone.0260560 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.jstrokecerebrovasdis.2024.108014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-8511 |
| ExternalDocumentID | 10.1016/j.jstrokecerebrovasdis.2024.108014 39293708 10_1016_j_jstrokecerebrovasdis_2024_108014 S1052305724004592 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACIEU ACJTP ACLOT ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXBA AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM L7B M2W M41 MO0 N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEL SES SEW SNG SNH SPCBC SSH SSZ T5K X7M Z5R ~G- ~HD 6I. AACTN AAFTH AFKWA AJOXV AMFUW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c466t-1de397ed6b5ff04d704a9e8ccfaabfa8b5682e8207f92022823050fb202a1de13 |
| IEDL.DBID | UNPAY |
| ISSN | 1052-3057 1532-8511 |
| IngestDate | Tue Aug 19 09:46:12 EDT 2025 Sat Sep 27 22:19:03 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Wed Oct 01 03:53:13 EDT 2025 Sat Jan 04 15:43:45 EST 2025 Tue Oct 14 19:36:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Intracranial Aneurysm Magnetic Resonance Imaging Opportunistic Screening Decision Support Deep Learning AI Detection |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c466t-1de397ed6b5ff04d704a9e8ccfaabfa8b5682e8207f92022823050fb202a1de13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4333-5965 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014 |
| PMID | 39293708 |
| PQID | 3106733124 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jstrokecerebrovasdis_2024_108014 proquest_miscellaneous_3106733124 pubmed_primary_39293708 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108014 elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2024_108014 elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2024_108014 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of stroke and cerebrovascular diseases |
| PublicationTitleAlternate | J Stroke Cerebrovasc Dis |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Edjlali, Rodriguez-Régent, Hodel (bib0005) 2015; 96 Cras, Hunink, Dammers (bib0043) 2022; 99 England (bib0047) 2021 Ueda, Yamamoto, Nishimori (bib0028) 2018; 290 Weir (bib0002) 2002; 96 El Naqa, Haider, Giger, Ten Haken (bib0048) 2020; 93 Data engine for AI model development. [cited 3 Dec 2023]. Available Nieuwkamp, Setz, Algra, Linn, de Rooij, Rinkel (bib0006) 2009; 8 Shin, Han, Ryu, Kim (bib0017) 2023; 6 Heit, Coelho, Lima (bib0037) 2021; 42 Shimada, Tanimoto, Nishimori (bib0040) 2020; 99 Qiu, Tan, Lin (bib0015) 2022; 94 Markus, Somers, O'Malley, Stevenson (bib0045) 1990; 175 Broderick, Brott, Duldner, Tomsick, Leach (bib0007) 1994; 25 Yang, Yu, Zhang (bib0014) 2023; 54 Greving, Wermer, Brown (bib0010) 2014; 13 Liu, Yu, Ouyang (bib0013) 2023; 54 Wakeley, Jones, Kabala, Prince, Goddard (bib0046) 1995; 68 Numminen, Tarkiainen, Niemelä, Porras, Hernesniemi, Kangasniemi (bib0031) 2011; 52 . Yoon, Yoon, Winkler, Liu, Lawton (bib0049) 2019; 50 Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv [cs.CV] 2015. Shi, Miao, Schoepf (bib0035) 2020; 11 Korja, Lehto, Juvela (bib0003) 2014; 45 Lee, Kim, Kim, Kim (bib0038) 2020; 10 Müller, Raaschou, Akhtar, Brejnebøl, Collatz, Andersen (bib0018) 2022; 29 Isensee, F.; Petersen, J.; Klein, A.; et al. nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv [cs.CV] 2018. Park, Chute, Rajpurkar (bib0039) 2019; 2 Shahzad, Younas (bib0011) 2011; 21 Etminan, de Sousa, Tiseo (bib0042) 2022; 7 Lubicz, Levivier, François (bib0034) 2007; 28 Kundisch, Hönning, Mutze (bib0012) 2021; 16 Alvord, Loeser, Bailey, Copass (bib0019) 1972; 27 Yun, Choi, Han (bib0036) 2023; 6 Radojewski, Dobrocky, Branca (bib0033) 2023 Joo, Ahn, Yoon (bib0041) 2020; 30 Caliskan, Pekcevik, Kaya (bib0030) 2016; 7 Ishihara, Shiiba, Maruno (bib0029) 2022; 41 Korja (bib0044) 2022 Pan, Zeng, Jia, Huang, Frizzell, Song (bib0016) 2020; 14 Statistics and Facts. [cited accessed on 3 December 2023]. Available Vlak, Algra, Brandenburg, Rinkel (bib0001) 2011; 10 Johnston, Selvin, Gress (bib0009) 1998; 50 van Gijn, Rinkel (bib0008) 2001; 124 Osmanodja, Rösch, Knott (bib0032) 2023; 58 Sundt, Whisnant (bib0020) 1978; 299 Joo, Choi, Ahn (bib0027) 2021; 62 Rinkel, Djibuti, Algra, van Gijn (bib0004) 1998; 29 Ripley (bib0025) 2001; 1 Gilberg, Teodorescu, Maerkisch (bib0024) 2023; 13 Gilberg (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0024) 2023; 13 Cras (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0043) 2022; 99 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0026 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0022 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0023 Joo (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0027) 2021; 62 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0021 Alvord (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0019) 1972; 27 Müller (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0018) 2022; 29 Shi (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0035) 2020; 11 Osmanodja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0032) 2023; 58 Korja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0003) 2014; 45 Lubicz (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0034) 2007; 28 Broderick (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0007) 1994; 25 Edjlali (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0005) 2015; 96 Wakeley (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0046) 1995; 68 Shimada (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0040) 2020; 99 Greving (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0010) 2014; 13 Rinkel (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0004) 1998; 29 Numminen (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0031) 2011; 52 Radojewski (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0033) 2023 Caliskan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0030) 2016; 7 Kundisch (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0012) 2021; 16 Ripley (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0025) 2001; 1 van Gijn (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0008) 2001; 124 Ueda (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0028) 2018; 290 Markus (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0045) 1990; 175 Korja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0044) 2022 El Naqa (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0048) 2020; 93 Etminan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0042) 2022; 7 Shahzad (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0011) 2011; 21 Qiu (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0015) 2022; 94 Yoon (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0049) 2019; 50 Vlak (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0001) 2011; 10 Park (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0039) 2019; 2 Liu (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0013) 2023; 54 Lee (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0038) 2020; 10 Heit (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0037) 2021; 42 Nieuwkamp (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0006) 2009; 8 Johnston (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0009) 1998; 50 Ishihara (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0029) 2022; 41 Yun (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0036) 2023; 6 Weir (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0002) 2002; 96 Shin (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0017) 2023; 6 England (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0047) 2021 Pan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0016) 2020; 14 Sundt (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0020) 1978; 299 Joo (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0041) 2020; 30 Yang (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0014) 2023; 54 |
| References_xml | – volume: 299 start-page: 116 year: 1978 end-page: 122 ident: bib0020 article-title: Subarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease publication-title: N Engl J Med – volume: 52 start-page: 670 year: 2011 end-page: 674 ident: bib0031 article-title: Detection of unruptured cerebral artery aneurysms by MRA at 3.0 Tesla: comparison with multislice helical computed tomographic angiography publication-title: Acta radiol – volume: 94 start-page: 105 year: 2022 end-page: 111 ident: bib0015 article-title: Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning publication-title: Magn Reson Imaging – reference: Data engine for AI model development. [cited 3 Dec 2023]. Available: – year: 2021 ident: bib0047 article-title: Diagnostic imaging dataset statistical release 2020/21 publication-title: NHS England and NHS Improvement – volume: 6 start-page: 82 year: 2023 ident: bib0017 article-title: The impact of artificial intelligence on the reading times of radiologists for chest radiographs publication-title: NPJ Digit Med – volume: 10 start-page: 20546 year: 2020 ident: bib0038 article-title: Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm publication-title: Sci Rep – volume: 96 start-page: 657 year: 2015 end-page: 666 ident: bib0005 article-title: Subarachnoid hemorrhage in ten questions publication-title: Diagn Interv Imaging – volume: 13 start-page: 8140 year: 2023 ident: bib0024 article-title: Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans publication-title: NATO Adv Sci Inst Ser E Appl Sci – volume: 7 start-page: 83 year: 2016 end-page: 86 ident: bib0030 article-title: Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging? publication-title: J Neurosci Rural Pract – volume: 54 start-page: 1357 year: 2023 end-page: 1366 ident: bib0014 article-title: Deep learning algorithm enables cerebral venous thrombosis detection with routine brain magnetic resonance imaging publication-title: Stroke – volume: 68 start-page: 358 year: 1995 end-page: 360 ident: bib0046 article-title: Audit of the value of double reading magnetic resonance imaging films publication-title: Br J Radiol – start-page: 363 year: 2022 end-page: 365 ident: bib0044 article-title: Follow-up Imaging of low-risk unruptured intracranial aneurysms: expensive way to make many people sick in the quest for better health? publication-title: Neurology – volume: 54 start-page: 2316 year: 2023 end-page: 2327 ident: bib0013 article-title: Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model publication-title: Stroke. – volume: 93 year: 2020 ident: bib0048 article-title: Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century publication-title: Br J Radiol – volume: 124 start-page: 249 year: 2001 end-page: 278 ident: bib0008 article-title: Subarachnoid haemorrhage: diagnosis, causes and management publication-title: Brain – volume: 29 start-page: 251 year: 1998 end-page: 256 ident: bib0004 article-title: Prevalence and risk of rupture of intracranial aneurysms: a systematic review publication-title: Stroke – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bib0035 article-title: A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images publication-title: Nat Commun – volume: 27 start-page: 273 year: 1972 end-page: 284 ident: bib0019 article-title: Subarachnoid hemorrhage due to ruptured aneurysms. a simple method of estimating prognosis publication-title: Arch Neurol – volume: 1 start-page: 23 year: 2001 end-page: 25 ident: bib0025 article-title: The R project in statistical computing publication-title: MSOR Connect – volume: 50 start-page: 1413 year: 1998 end-page: 1418 ident: bib0009 article-title: The burden, trends, and demographics of mortality from subarachnoid hemorrhage publication-title: Neurology – volume: 30 start-page: 5785 year: 2020 end-page: 5793 ident: bib0041 article-title: A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance publication-title: Eur Radiol – volume: 10 start-page: 626 year: 2011 end-page: 636 ident: bib0001 article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis publication-title: Lancet Neurol – volume: 16 year: 2021 ident: bib0012 article-title: Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies publication-title: PLoS One – reference: Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv [cs.CV] 2015. – reference: Isensee, F.; Petersen, J.; Klein, A.; et al. nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv [cs.CV] 2018. – volume: 175 start-page: 155 year: 1990 end-page: 156 ident: bib0045 article-title: Double-contrast barium enema studies: effect of multiple reading on perception error publication-title: Radiology – volume: 96 start-page: 3 year: 2002 end-page: 42 ident: bib0002 article-title: Unruptured intracranial aneurysms: a review publication-title: J Neurosurg – volume: 28 start-page: 1949 year: 2007 end-page: 1955 ident: bib0034 article-title: Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility publication-title: AJNR Am J Neuroradiol – volume: 14 start-page: 259 year: 2020 ident: bib0016 article-title: Early detection of Alzheimer's disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning publication-title: Front Neurosci – volume: 13 start-page: 59 year: 2014 end-page: 66 ident: bib0010 article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies publication-title: Lancet Neurol – volume: 50 start-page: 199 year: 2019 end-page: 203 ident: bib0049 article-title: Nationwide Analysis of cost variation for treatment of aneurysmal subarachnoid hemorrhage publication-title: Stroke – volume: 99 start-page: e21518 year: 2020 ident: bib0040 article-title: Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: a case series publication-title: Medicine – year: 2023 ident: bib0033 article-title: Diagnosis of small unruptured intracranial aneurysms: comparison of 7 T versus 3 T MRI publication-title: Clin Neuroradiol – volume: 7 year: 2022 ident: bib0042 article-title: European stroke organisation (ESO) guidelines on management of unruptured intracranial aneurysms publication-title: Eur Stroke J – volume: 2 year: 2019 ident: bib0039 article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet Model publication-title: JAMA Netw Open – volume: 41 start-page: 131 year: 2022 end-page: 141 ident: bib0029 article-title: Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation publication-title: Jpn. J. Radiol. – volume: 21 start-page: 325 year: 2011 end-page: 329 ident: bib0011 article-title: Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography publication-title: J Coll Physicians Surg Pak – volume: 42 start-page: 273 year: 2021 end-page: 278 ident: bib0037 article-title: Automated cerebral hemorrhage detection using RAPID publication-title: AJNR Am J Neuroradiol – reference: Statistics and Facts. [cited accessed on 3 December 2023]. Available: – volume: 8 start-page: 635 year: 2009 end-page: 642 ident: bib0006 article-title: Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis publication-title: Lancet Neurol – volume: 58 start-page: 121 year: 2023 end-page: 125 ident: bib0032 article-title: Diagnostic performance of 0.55 T MRI for intracranial aneurysm detection publication-title: Invest Radiol – volume: 45 start-page: 1958 year: 2014 end-page: 1963 ident: bib0003 article-title: Lifelong rupture risk of intracranial aneurysms depends on risk factors: a prospective Finnish cohort study publication-title: Stroke – volume: 62 start-page: 1052 year: 2021 end-page: 1061 ident: bib0027 article-title: A deep learning model with high standalone performance for diagnosis of unruptured intracranial aneurysm publication-title: Yonsei Med. J. – volume: 29 start-page: 1085 year: 2022 end-page: 1090 ident: bib0018 article-title: Impact of concurrent use of artificial intelligence tools on radiologists reading time: a prospective feasibility study publication-title: Acad Radiol – volume: 6 start-page: 61 year: 2023 ident: bib0036 article-title: Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial publication-title: NPJ Digit Med – reference: . – volume: 99 start-page: e890 year: 2022 end-page: e903 ident: bib0043 article-title: Surveillance of unruptured intracranial aneurysms: cost-effectiveness analysis for 3 countries publication-title: Neurology – volume: 25 start-page: 1342 year: 1994 end-page: 1347 ident: bib0007 article-title: Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage publication-title: Stroke – volume: 290 start-page: 187 year: 2018 end-page: 194 ident: bib0028 article-title: Deep learning for mr angiography: automated detection of cerebral aneurysms publication-title: Radiology – volume: 41 start-page: 131 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0029 article-title: Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-022-01341-7 – volume: 1 start-page: 23 year: 2001 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0025 article-title: The R project in statistical computing publication-title: MSOR Connect doi: 10.11120/msor.2001.01010023 – volume: 99 start-page: e21518 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0040 article-title: Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: a case series publication-title: Medicine doi: 10.1097/MD.0000000000021518 – volume: 7 start-page: 83 year: 2016 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0030 article-title: Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging? publication-title: J Neurosci Rural Pract doi: 10.4103/0976-3147.165425 – volume: 52 start-page: 670 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0031 article-title: Detection of unruptured cerebral artery aneurysms by MRA at 3.0 Tesla: comparison with multislice helical computed tomographic angiography publication-title: Acta radiol doi: 10.1258/ar.2011.100421 – volume: 21 start-page: 325 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0011 article-title: Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography publication-title: J Coll Physicians Surg Pak – volume: 96 start-page: 3 year: 2002 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0002 article-title: Unruptured intracranial aneurysms: a review publication-title: J Neurosurg doi: 10.3171/jns.2002.96.1.0003 – volume: 99 start-page: e890 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0043 article-title: Surveillance of unruptured intracranial aneurysms: cost-effectiveness analysis for 3 countries publication-title: Neurology doi: 10.1212/WNL.0000000000200785 – volume: 2 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0039 article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet Model publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.5600 – volume: 29 start-page: 251 year: 1998 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0004 article-title: Prevalence and risk of rupture of intracranial aneurysms: a systematic review publication-title: Stroke doi: 10.1161/01.STR.29.1.251 – volume: 25 start-page: 1342 year: 1994 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0007 article-title: Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage publication-title: Stroke doi: 10.1161/01.STR.25.7.1342 – volume: 10 start-page: 20546 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0038 article-title: Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm publication-title: Sci Rep doi: 10.1038/s41598-020-77441-z – volume: 290 start-page: 187 year: 2018 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0028 article-title: Deep learning for mr angiography: automated detection of cerebral aneurysms publication-title: Radiology doi: 10.1148/radiol.2018180901 – volume: 7 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0042 article-title: European stroke organisation (ESO) guidelines on management of unruptured intracranial aneurysms publication-title: Eur Stroke J doi: 10.1177/23969873221099736 – year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0047 article-title: Diagnostic imaging dataset statistical release 2020/21 publication-title: NHS England and NHS Improvement – volume: 175 start-page: 155 year: 1990 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0045 article-title: Double-contrast barium enema studies: effect of multiple reading on perception error publication-title: Radiology doi: 10.1148/radiology.175.1.2315474 – volume: 29 start-page: 1085 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0018 article-title: Impact of concurrent use of artificial intelligence tools on radiologists reading time: a prospective feasibility study publication-title: Acad Radiol doi: 10.1016/j.acra.2021.10.008 – volume: 299 start-page: 116 year: 1978 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0020 article-title: Subarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease publication-title: N Engl J Med doi: 10.1056/NEJM197807202990303 – volume: 124 start-page: 249 year: 2001 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0008 article-title: Subarachnoid haemorrhage: diagnosis, causes and management publication-title: Brain doi: 10.1093/brain/124.2.249 – volume: 50 start-page: 1413 year: 1998 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0009 article-title: The burden, trends, and demographics of mortality from subarachnoid hemorrhage publication-title: Neurology doi: 10.1212/WNL.50.5.1413 – volume: 6 start-page: 61 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0036 article-title: Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial publication-title: NPJ Digit Med doi: 10.1038/s41746-023-00798-8 – ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0026 – ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0023 doi: 10.1007/978-3-319-24574-4_28 – volume: 68 start-page: 358 year: 1995 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0046 article-title: Audit of the value of double reading magnetic resonance imaging films publication-title: Br J Radiol doi: 10.1259/0007-1285-68-808-358 – volume: 8 start-page: 635 year: 2009 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0006 article-title: Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70126-7 – volume: 94 start-page: 105 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0015 article-title: Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2022.09.006 – year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0033 article-title: Diagnosis of small unruptured intracranial aneurysms: comparison of 7 T versus 3 T MRI publication-title: Clin Neuroradiol – volume: 62 start-page: 1052 year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0027 article-title: A deep learning model with high standalone performance for diagnosis of unruptured intracranial aneurysm publication-title: Yonsei Med. J. doi: 10.3349/ymj.2021.62.11.1052 – ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0022 doi: 10.1007/978-3-658-25326-4_7 – volume: 14 start-page: 259 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0016 article-title: Early detection of Alzheimer's disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning publication-title: Front Neurosci doi: 10.3389/fnins.2020.00259 – volume: 96 start-page: 657 year: 2015 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0005 article-title: Subarachnoid hemorrhage in ten questions publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2015.06.003 – volume: 27 start-page: 273 year: 1972 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0019 article-title: Subarachnoid hemorrhage due to ruptured aneurysms. a simple method of estimating prognosis publication-title: Arch Neurol doi: 10.1001/archneur.1972.00490160001001 – volume: 13 start-page: 8140 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0024 article-title: Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans publication-title: NATO Adv Sci Inst Ser E Appl Sci – volume: 10 start-page: 626 year: 2011 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0001 article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70109-0 – volume: 54 start-page: 1357 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0014 article-title: Deep learning algorithm enables cerebral venous thrombosis detection with routine brain magnetic resonance imaging publication-title: Stroke doi: 10.1161/STROKEAHA.122.041520 – volume: 13 start-page: 59 year: 2014 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0010 article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70263-1 – ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0021 – volume: 58 start-page: 121 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0032 article-title: Diagnostic performance of 0.55 T MRI for intracranial aneurysm detection publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000918 – volume: 50 start-page: 199 year: 2019 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0049 article-title: Nationwide Analysis of cost variation for treatment of aneurysmal subarachnoid hemorrhage publication-title: Stroke doi: 10.1161/STROKEAHA.118.023079 – volume: 42 start-page: 273 year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0037 article-title: Automated cerebral hemorrhage detection using RAPID publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6926 – start-page: 363 year: 2022 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0044 article-title: Follow-up Imaging of low-risk unruptured intracranial aneurysms: expensive way to make many people sick in the quest for better health? publication-title: Neurology doi: 10.1212/WNL.0000000000200869 – volume: 54 start-page: 2316 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0013 article-title: Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model publication-title: Stroke. doi: 10.1161/STROKEAHA.123.044072 – volume: 93 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0048 article-title: Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century publication-title: Br J Radiol doi: 10.1259/bjr.20190855 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0035 article-title: A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images publication-title: Nat Commun doi: 10.1038/s41467-020-19527-w – volume: 45 start-page: 1958 year: 2014 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0003 article-title: Lifelong rupture risk of intracranial aneurysms depends on risk factors: a prospective Finnish cohort study publication-title: Stroke doi: 10.1161/STROKEAHA.114.005318 – volume: 28 start-page: 1949 year: 2007 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0034 article-title: Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A0699 – volume: 6 start-page: 82 year: 2023 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0017 article-title: The impact of artificial intelligence on the reading times of radiologists for chest radiographs publication-title: NPJ Digit Med doi: 10.1038/s41746-023-00829-4 – volume: 30 start-page: 5785 year: 2020 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0041 article-title: A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance publication-title: Eur Radiol doi: 10.1007/s00330-020-06966-8 – volume: 16 year: 2021 ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0012 article-title: Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies publication-title: PLoS One doi: 10.1371/journal.pone.0260560 |
| SSID | ssj0011585 |
| Score | 2.374334 |
| Snippet | •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are... (1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 108014 |
| SubjectTerms | Adult Aged AI Detection Decision Support Deep Learning Female Humans Image Interpretation, Computer-Assisted Intracranial Aneurysm Intracranial Aneurysm - diagnostic imaging Magnetic Resonance Angiography Magnetic Resonance Imaging Male Middle Aged Observer Variation Opportunistic Screening Predictive Value of Tests Radiologists Reproducibility of Results |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VPRQ4IN4sLxkJCQkpbNZxXsClWrUqSMsBWqk3y0nGbco2ibJZVb3wR_izzMTJAgIORdwiK57EnvHMN_bMGOCFSayVRZh4mJnUU1KmXoKkDGVO7jMZDETD-x2Lj9HBkfpwHB5vwXzMheGwykH3O53ea-uhZTrM5rQpy-nnWb-jGcYcBanClPWwUjHfYvD66ybMgwBPfy0nv-zx2zvw6keM19mqa-svmGNLDijHfhYll_CWqg-9m6m_GavfwegNuLauGnN5YZbLnwzU_i24OSBLset-_jZsYXUHdhbD2fld-Lbrjvv7nDZRVqJuGHvzcTb1oIauNTlZLhJIYbjM5eXqXJBSIUeXzNsbQQIlXE6lqK0wokBsxHDpxIkwy5O6LbvTc1FXojVFnwVDlFcviZire8LdDqV30W_GYiHGjy0-vb8HR_t7h_MDb7iawctVFHXerEACMlhEWWitr4rYVybFJM-tMZk1SRZGiURCF7FNJZfYYU75NqNnQ31nwX3YruoKH4KILSYxEuyQmVUpkYkUktfpW3Kf01RFE3g78kA3rgKHHkPTzvSfOKiZg9pxcALzkW16zDUl7ajJYFyJyt6Gyi_SeWU6z0fJ0bSM-WyGGFqvVzrgUn5BQGhrAg-cSG1GyxA2iP1kAu82MvYPU_HoPw3iMVwn1Bi6hMwnsN21a3xKyKzLnvVL7zvisT8c priority: 102 providerName: Elsevier |
| Title | Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1052305724004592 https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014 https://www.ncbi.nlm.nih.gov/pubmed/39293708 https://www.proquest.com/docview/3106733124 https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014 |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-8511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011585 issn: 1532-8511 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1532-8511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011585 issn: 1532-8511 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1532-8511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011585 issn: 1532-8511 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1532-8511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011585 issn: 1532-8511 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0Dio-WL-qJ_ZYQRCEHLnN5kt9OUrLVblDpAcVH5ZNMluvvSZHLkepD_4j_rPOZpPDT7D1LQRmws7Ozvwm87EAz1WkNc_8yMFExY7gPHYiJGPIUwqfyWEgKvO_YzINxjPx9tg_bqoqTS_MT_n7ug7rlEL-4gxTLClINPWZ2dyM2eaiLo8zd1h3A59weAe6s-n70cc6velzhxQ5tMNS6cgTrNiCl__O9G9e6ncUehturfOlurxQi8UPnulgGz61a7IFKWeDdZUM0i-_jHu83qLvwp0GsLKR1bB7cAPz-7A1aVLyD-DbyFYR1K1ybJ6zYmkgvcmSEwW9qEqVkkMkPWfKTM-8XJ0zslUUP5PXfMVIT5lt1WSFZopliEvW3GVxwtTipCjn1edzVuSsVFndXEOcVy-ImR2nYsiOuHNR_-PFjLUfm3w4fAizg_2jvbHT3PjgpCIIKmeYIeEjzILE19oVWegKFWOUplqpRKso8YOII4GWUMfcTO6hAMp3dULPimiH3g508iLHx8BCjVGIhGZ4okVMbAKBFMy6mqLyOBZBD163OyyXdrCHbCveTuWf5C-N_KWVfw_2WqWQbQsrGV1JO3klLvsbLg3gsUDmynyetXopyTqYlA9taLFeSc9MCPQ8AnE9eGQVdrNag4y90I168GajwdcQxZP_I38Knapc4y5Buyrpw83B12EfuqPDd-NpvznR3wHfaFgv |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VRWrhgHiW5WkkJCSksFmv8wIu1arVFro9wFbqzXKScUnZJlE2q6oX_gh_lpk8FhBwKOIWJfYk8YxnvrFnxgAvTGitTL3QwdhEjpIyckIkZSgTcp_JYCAaXu-YHfnTY_X-xDvZgEmfC8NhlZ3ub3V6o627O8NuNIdllg0_jZoVTS_gKEjlRaSHrylPBuyBvf66jvMgxNOcy8mtHW6-Ba9-BHmdLeuq-IIJVuSBcvBnmnENb6ma2LuR-pu1-h2N3oDtVV6aywuzWPxkofZvwc0OWord9utvwwbmd2Br1m2e34Vvu-1-f5PUJrJcFCWDb97Pph50o65MQqaLJFIYrnN5uTwXpFXI0yX79kaQRIk2qVIUVhiRIpaiO3XiVJjFaVFl9edzUeSiMmmTBkOUly-JWFv4hLvNpXPRrMZiKvqXzT4e3IPj_b35ZOp0ZzM4ifL92hmlSEgGUz_2rHVVGrjKRBgmiTUmtiaMPT-USPAisJHkGjvMKtfGdG2o72h8HzbzIscHIAKLYYCEO2RsVURkfIXkdrqW_OcoUv4A3vY80GVbgkP3sWln-k8c1MxB3XJwAJOebbpPNiX1qMliXInK3prKL-J5ZTrPe8nRNI95c4YYWqyWesy1_MZjglsD2GlFav23jGHHgRsO4N1axv5hKB7-p594BtvT-exQHx4cfXgE1_lJG-DzGDbraoVPCKbV8dNmGn4H5_ZCQA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GCh37sHbvlLZoMBgMHFxZfm39EkpLV0gZI4GMfRCyfcrSpnZwHEr3r-yf7cmyQ_eCpftmDHdGp9Pd73wPAbxRkdY88yMHExU7gvPYiZCMIU8pfCaHgajM_47BeXA6Emdjf9xUVZpemJ_y93Ud1gWF_MUlplhSkGjqM7OpGbPNRV0eZ-6w3gh8wuEd2Bidf-p_qdObPndIkUM7LJWOPMGKTXj370z_5qV-R6GP4OEyn6ubazWb3fFMJ1vwtV2TLUi57C2rpJd-_2Xc4_0WvQ2PG8DK-lbDnsADzJ_C5qBJyT-DH31bRVC3yrFpzoq5gfQmS04U9KIqVUoOkfScKTM982ZxxchWUfxMXvM9Iz1ltlWTFZopliHOWXOXxYSp2aQop9W3K1bkrFRZ3VxDnBdviZkdp2LIhty5rv_xYsbajw0-f3wOo5Pj4dGp09z44KQiCCrnIEPCR5gFia-1K7LQFSrGKE21UolWUeIHEUcCLaGOuZncQwGU7-qEnhXRHngvoJMXOb4CFmqMQiQ0wxMtYmITCKRg1tUUlcexCLrwod1hObeDPWRb8XYh_yR_aeQvrfy7cNQqhWxbWMnoStrJtbgcr7g0gMcCmbX5vG71UpJ1MCkf2tBiuZCemRDoeQTiuvDSKuxqtQYZe6EbdeFwpcH3EMXO_5HvQqcql7hH0K5K9pszfAsj5VWj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+opportunistic+intracranial+aneurysm+screening%3A+The+impact+of+a+deep+learning+algorithm+on+radiologists%27+analysis+of+T2-weighted+cranial+MRI&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Teodorescu%2C+Bianca&rft.au=Gilberg%2C+Leonard&rft.au=Ko%C3%A7%2C+Ali+Murat&rft.au=Goncharov%2C+Andrei&rft.date=2024-12-01&rft.pub=Elsevier+Inc&rft.issn=1052-3057&rft.volume=33&rft.issue=12&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2024.108014&rft.externalDocID=S1052305724004592 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon |