Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI

•Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' perform...

Full description

Saved in:
Bibliographic Details
Published inJournal of stroke and cerebrovascular diseases Vol. 33; no. 12; p. 108014
Main Authors Teodorescu, Bianca, Gilberg, Leonard, Koç, Ali Murat, Goncharov, Andrei, Berclaz, Luc M, Wiedemeyer, Christian, Guzel, Hamza Eren, Ataide, Elmer Jeto Gomes
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN1052-3057
1532-8511
1532-8511
DOI10.1016/j.jstrokecerebrovasdis.2024.108014

Cover

Abstract •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' performance in detecting UIAs during routine T2WI reporting.•Artificial Intelligence (AI) can be utilized for opportunistic screening of UIAs with high sensitivity. (1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models’ assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
AbstractList •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are often underreported in routine T2-weighted imaging (T2WI).•We developed a Deep Learning Algorithm (DLA) that enhanced radiologists' performance in detecting UIAs during routine T2WI reporting.•Artificial Intelligence (AI) can be utilized for opportunistic screening of UIAs with high sensitivity. (1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models’ assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
ArticleNumber 108014
Author Teodorescu, Bianca
Goncharov, Andrei
Gilberg, Leonard
Guzel, Hamza Eren
Berclaz, Luc M
Wiedemeyer, Christian
Koç, Ali Murat
Ataide, Elmer Jeto Gomes
Author_xml – sequence: 1
  givenname: Bianca
  orcidid: 0000-0002-4333-5965
  surname: Teodorescu
  fullname: Teodorescu, Bianca
  email: bianca.teodorescu@med.uni-muenchen.de, bianca.teodorescu@floy.com
  organization: Floy GmbH, Germany
– sequence: 2
  givenname: Leonard
  surname: Gilberg
  fullname: Gilberg, Leonard
  organization: Floy GmbH, Germany
– sequence: 3
  givenname: Ali Murat
  surname: Koç
  fullname: Koç, Ali Murat
  organization: Floy GmbH, Germany
– sequence: 4
  givenname: Andrei
  surname: Goncharov
  fullname: Goncharov, Andrei
  organization: Floy GmbH, Germany
– sequence: 5
  givenname: Luc M
  surname: Berclaz
  fullname: Berclaz, Luc M
  organization: Department of Medicine III, University Hospital, LMU Munich, Germany
– sequence: 6
  givenname: Christian
  surname: Wiedemeyer
  fullname: Wiedemeyer, Christian
  organization: Floy GmbH, Germany
– sequence: 7
  givenname: Hamza Eren
  surname: Guzel
  fullname: Guzel, Hamza Eren
  organization: Floy GmbH, Germany
– sequence: 8
  givenname: Elmer Jeto Gomes
  surname: Ataide
  fullname: Ataide, Elmer Jeto Gomes
  organization: Floy GmbH, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39293708$$D View this record in MEDLINE/PubMed
BookMark eNqdkcuOEzEQRVtoEPOAX0DegZA62O5n2A0Rj0FBSCisrWq7OnHGbTe2O6P-Fn4WR5lhgdgMK5fsW6esU5fZmXUWs-wNowtGWf12v9iH6N0tSvTYeXeAoHRYcMrLFGgpK59kF6wqeN5WjJ2lmlY8L2jVnGeXIewpZaxqq2fZebHky6Kh7UX261odwEoc0MZAtCVuHJ2Pk9UhapkuogfpwWowBCxOfg4DCdIjWm2378hmh0QPI8hIXE-AKMSRGAR_fCZgts7ruBuIs8SD0s64bSKHVwkGZg46HNs2PL9Dvd1FVORh2NfvN8-zpz2YgC_uz6vsx8cPm9XnfP3t083qep3Lsq5jzhQWywZV3VV9T0vV0BKW2ErZA3Q9tF1VtxxbTpt-mVzxlicltO9SDamXFVfZ6sSd7AjzHRgjRq8H8LNgVBzVi734l3pxVC9O6hPl9YkyevdzwhDFoINEY5I2NwVRMFo3RcH4MfryPjp1A6o_0x7WkgLvTwHpXQge-__70PoEweTuoNGLIDWmXSvtUUahnH4c7stfOGm01RLMLc6Phf0GjUDong
Cites_doi 10.1007/s11604-022-01341-7
10.11120/msor.2001.01010023
10.1097/MD.0000000000021518
10.4103/0976-3147.165425
10.1258/ar.2011.100421
10.3171/jns.2002.96.1.0003
10.1212/WNL.0000000000200785
10.1001/jamanetworkopen.2019.5600
10.1161/01.STR.29.1.251
10.1161/01.STR.25.7.1342
10.1038/s41598-020-77441-z
10.1148/radiol.2018180901
10.1177/23969873221099736
10.1148/radiology.175.1.2315474
10.1016/j.acra.2021.10.008
10.1056/NEJM197807202990303
10.1093/brain/124.2.249
10.1212/WNL.50.5.1413
10.1038/s41746-023-00798-8
10.1007/978-3-319-24574-4_28
10.1259/0007-1285-68-808-358
10.1016/S1474-4422(09)70126-7
10.1016/j.mri.2022.09.006
10.3349/ymj.2021.62.11.1052
10.1007/978-3-658-25326-4_7
10.3389/fnins.2020.00259
10.1016/j.diii.2015.06.003
10.1001/archneur.1972.00490160001001
10.1016/S1474-4422(11)70109-0
10.1161/STROKEAHA.122.041520
10.1016/S1474-4422(13)70263-1
10.1097/RLI.0000000000000918
10.1161/STROKEAHA.118.023079
10.3174/ajnr.A6926
10.1212/WNL.0000000000200869
10.1161/STROKEAHA.123.044072
10.1259/bjr.20190855
10.1038/s41467-020-19527-w
10.1161/STROKEAHA.114.005318
10.3174/ajnr.A0699
10.1038/s41746-023-00829-4
10.1007/s00330-020-06966-8
10.1371/journal.pone.0260560
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jstrokecerebrovasdis.2024.108014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8511
ExternalDocumentID 10.1016/j.jstrokecerebrovasdis.2024.108014
39293708
10_1016_j_jstrokecerebrovasdis_2024_108014
S1052305724004592
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACIEU
ACJTP
ACLOT
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2W
M41
MO0
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SNG
SNH
SPCBC
SSH
SSZ
T5K
X7M
Z5R
~G-
~HD
6I.
AACTN
AAFTH
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c466t-1de397ed6b5ff04d704a9e8ccfaabfa8b5682e8207f92022823050fb202a1de13
IEDL.DBID UNPAY
ISSN 1052-3057
1532-8511
IngestDate Tue Aug 19 09:46:12 EDT 2025
Sat Sep 27 22:19:03 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Wed Oct 01 03:53:13 EDT 2025
Sat Jan 04 15:43:45 EST 2025
Tue Oct 14 19:36:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Intracranial Aneurysm
Magnetic Resonance Imaging
Opportunistic Screening
Decision Support
Deep Learning
AI Detection
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-1de397ed6b5ff04d704a9e8ccfaabfa8b5682e8207f92022823050fb202a1de13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4333-5965
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014
PMID 39293708
PQID 3106733124
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_jstrokecerebrovasdis_2024_108014
proquest_miscellaneous_3106733124
pubmed_primary_39293708
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108014
elsevier_sciencedirect_doi_10_1016_j_jstrokecerebrovasdis_2024_108014
elsevier_clinicalkey_doi_10_1016_j_jstrokecerebrovasdis_2024_108014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of stroke and cerebrovascular diseases
PublicationTitleAlternate J Stroke Cerebrovasc Dis
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Edjlali, Rodriguez-Régent, Hodel (bib0005) 2015; 96
Cras, Hunink, Dammers (bib0043) 2022; 99
England (bib0047) 2021
Ueda, Yamamoto, Nishimori (bib0028) 2018; 290
Weir (bib0002) 2002; 96
El Naqa, Haider, Giger, Ten Haken (bib0048) 2020; 93
Data engine for AI model development. [cited 3 Dec 2023]. Available
Nieuwkamp, Setz, Algra, Linn, de Rooij, Rinkel (bib0006) 2009; 8
Shin, Han, Ryu, Kim (bib0017) 2023; 6
Heit, Coelho, Lima (bib0037) 2021; 42
Shimada, Tanimoto, Nishimori (bib0040) 2020; 99
Qiu, Tan, Lin (bib0015) 2022; 94
Markus, Somers, O'Malley, Stevenson (bib0045) 1990; 175
Broderick, Brott, Duldner, Tomsick, Leach (bib0007) 1994; 25
Yang, Yu, Zhang (bib0014) 2023; 54
Greving, Wermer, Brown (bib0010) 2014; 13
Liu, Yu, Ouyang (bib0013) 2023; 54
Wakeley, Jones, Kabala, Prince, Goddard (bib0046) 1995; 68
Numminen, Tarkiainen, Niemelä, Porras, Hernesniemi, Kangasniemi (bib0031) 2011; 52
.
Yoon, Yoon, Winkler, Liu, Lawton (bib0049) 2019; 50
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv [cs.CV] 2015.
Shi, Miao, Schoepf (bib0035) 2020; 11
Korja, Lehto, Juvela (bib0003) 2014; 45
Lee, Kim, Kim, Kim (bib0038) 2020; 10
Müller, Raaschou, Akhtar, Brejnebøl, Collatz, Andersen (bib0018) 2022; 29
Isensee, F.; Petersen, J.; Klein, A.; et al. nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv [cs.CV] 2018.
Park, Chute, Rajpurkar (bib0039) 2019; 2
Shahzad, Younas (bib0011) 2011; 21
Etminan, de Sousa, Tiseo (bib0042) 2022; 7
Lubicz, Levivier, François (bib0034) 2007; 28
Kundisch, Hönning, Mutze (bib0012) 2021; 16
Alvord, Loeser, Bailey, Copass (bib0019) 1972; 27
Yun, Choi, Han (bib0036) 2023; 6
Radojewski, Dobrocky, Branca (bib0033) 2023
Joo, Ahn, Yoon (bib0041) 2020; 30
Caliskan, Pekcevik, Kaya (bib0030) 2016; 7
Ishihara, Shiiba, Maruno (bib0029) 2022; 41
Korja (bib0044) 2022
Pan, Zeng, Jia, Huang, Frizzell, Song (bib0016) 2020; 14
Statistics and Facts. [cited accessed on 3 December 2023]. Available
Vlak, Algra, Brandenburg, Rinkel (bib0001) 2011; 10
Johnston, Selvin, Gress (bib0009) 1998; 50
van Gijn, Rinkel (bib0008) 2001; 124
Osmanodja, Rösch, Knott (bib0032) 2023; 58
Sundt, Whisnant (bib0020) 1978; 299
Joo, Choi, Ahn (bib0027) 2021; 62
Rinkel, Djibuti, Algra, van Gijn (bib0004) 1998; 29
Ripley (bib0025) 2001; 1
Gilberg, Teodorescu, Maerkisch (bib0024) 2023; 13
Gilberg (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0024) 2023; 13
Cras (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0043) 2022; 99
10.1016/j.jstrokecerebrovasdis.2024.108014_bib0026
10.1016/j.jstrokecerebrovasdis.2024.108014_bib0022
10.1016/j.jstrokecerebrovasdis.2024.108014_bib0023
Joo (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0027) 2021; 62
10.1016/j.jstrokecerebrovasdis.2024.108014_bib0021
Alvord (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0019) 1972; 27
Müller (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0018) 2022; 29
Shi (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0035) 2020; 11
Osmanodja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0032) 2023; 58
Korja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0003) 2014; 45
Lubicz (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0034) 2007; 28
Broderick (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0007) 1994; 25
Edjlali (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0005) 2015; 96
Wakeley (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0046) 1995; 68
Shimada (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0040) 2020; 99
Greving (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0010) 2014; 13
Rinkel (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0004) 1998; 29
Numminen (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0031) 2011; 52
Radojewski (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0033) 2023
Caliskan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0030) 2016; 7
Kundisch (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0012) 2021; 16
Ripley (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0025) 2001; 1
van Gijn (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0008) 2001; 124
Ueda (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0028) 2018; 290
Markus (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0045) 1990; 175
Korja (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0044) 2022
El Naqa (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0048) 2020; 93
Etminan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0042) 2022; 7
Shahzad (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0011) 2011; 21
Qiu (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0015) 2022; 94
Yoon (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0049) 2019; 50
Vlak (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0001) 2011; 10
Park (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0039) 2019; 2
Liu (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0013) 2023; 54
Lee (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0038) 2020; 10
Heit (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0037) 2021; 42
Nieuwkamp (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0006) 2009; 8
Johnston (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0009) 1998; 50
Ishihara (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0029) 2022; 41
Yun (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0036) 2023; 6
Weir (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0002) 2002; 96
Shin (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0017) 2023; 6
England (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0047) 2021
Pan (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0016) 2020; 14
Sundt (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0020) 1978; 299
Joo (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0041) 2020; 30
Yang (10.1016/j.jstrokecerebrovasdis.2024.108014_bib0014) 2023; 54
References_xml – volume: 299
  start-page: 116
  year: 1978
  end-page: 122
  ident: bib0020
  article-title: Subarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease
  publication-title: N Engl J Med
– volume: 52
  start-page: 670
  year: 2011
  end-page: 674
  ident: bib0031
  article-title: Detection of unruptured cerebral artery aneurysms by MRA at 3.0 Tesla: comparison with multislice helical computed tomographic angiography
  publication-title: Acta radiol
– volume: 94
  start-page: 105
  year: 2022
  end-page: 111
  ident: bib0015
  article-title: Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning
  publication-title: Magn Reson Imaging
– reference: Data engine for AI model development. [cited 3 Dec 2023]. Available:
– year: 2021
  ident: bib0047
  article-title: Diagnostic imaging dataset statistical release 2020/21
  publication-title: NHS England and NHS Improvement
– volume: 6
  start-page: 82
  year: 2023
  ident: bib0017
  article-title: The impact of artificial intelligence on the reading times of radiologists for chest radiographs
  publication-title: NPJ Digit Med
– volume: 10
  start-page: 20546
  year: 2020
  ident: bib0038
  article-title: Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
  publication-title: Sci Rep
– volume: 96
  start-page: 657
  year: 2015
  end-page: 666
  ident: bib0005
  article-title: Subarachnoid hemorrhage in ten questions
  publication-title: Diagn Interv Imaging
– volume: 13
  start-page: 8140
  year: 2023
  ident: bib0024
  article-title: Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans
  publication-title: NATO Adv Sci Inst Ser E Appl Sci
– volume: 7
  start-page: 83
  year: 2016
  end-page: 86
  ident: bib0030
  article-title: Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging?
  publication-title: J Neurosci Rural Pract
– volume: 54
  start-page: 1357
  year: 2023
  end-page: 1366
  ident: bib0014
  article-title: Deep learning algorithm enables cerebral venous thrombosis detection with routine brain magnetic resonance imaging
  publication-title: Stroke
– volume: 68
  start-page: 358
  year: 1995
  end-page: 360
  ident: bib0046
  article-title: Audit of the value of double reading magnetic resonance imaging films
  publication-title: Br J Radiol
– start-page: 363
  year: 2022
  end-page: 365
  ident: bib0044
  article-title: Follow-up Imaging of low-risk unruptured intracranial aneurysms: expensive way to make many people sick in the quest for better health?
  publication-title: Neurology
– volume: 54
  start-page: 2316
  year: 2023
  end-page: 2327
  ident: bib0013
  article-title: Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model
  publication-title: Stroke.
– volume: 93
  year: 2020
  ident: bib0048
  article-title: Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century
  publication-title: Br J Radiol
– volume: 124
  start-page: 249
  year: 2001
  end-page: 278
  ident: bib0008
  article-title: Subarachnoid haemorrhage: diagnosis, causes and management
  publication-title: Brain
– volume: 29
  start-page: 251
  year: 1998
  end-page: 256
  ident: bib0004
  article-title: Prevalence and risk of rupture of intracranial aneurysms: a systematic review
  publication-title: Stroke
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0035
  article-title: A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
  publication-title: Nat Commun
– volume: 27
  start-page: 273
  year: 1972
  end-page: 284
  ident: bib0019
  article-title: Subarachnoid hemorrhage due to ruptured aneurysms. a simple method of estimating prognosis
  publication-title: Arch Neurol
– volume: 1
  start-page: 23
  year: 2001
  end-page: 25
  ident: bib0025
  article-title: The R project in statistical computing
  publication-title: MSOR Connect
– volume: 50
  start-page: 1413
  year: 1998
  end-page: 1418
  ident: bib0009
  article-title: The burden, trends, and demographics of mortality from subarachnoid hemorrhage
  publication-title: Neurology
– volume: 30
  start-page: 5785
  year: 2020
  end-page: 5793
  ident: bib0041
  article-title: A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance
  publication-title: Eur Radiol
– volume: 10
  start-page: 626
  year: 2011
  end-page: 636
  ident: bib0001
  article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
  publication-title: Lancet Neurol
– volume: 16
  year: 2021
  ident: bib0012
  article-title: Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies
  publication-title: PLoS One
– reference: Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv [cs.CV] 2015.
– reference: Isensee, F.; Petersen, J.; Klein, A.; et al. nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv [cs.CV] 2018.
– volume: 175
  start-page: 155
  year: 1990
  end-page: 156
  ident: bib0045
  article-title: Double-contrast barium enema studies: effect of multiple reading on perception error
  publication-title: Radiology
– volume: 96
  start-page: 3
  year: 2002
  end-page: 42
  ident: bib0002
  article-title: Unruptured intracranial aneurysms: a review
  publication-title: J Neurosurg
– volume: 28
  start-page: 1949
  year: 2007
  end-page: 1955
  ident: bib0034
  article-title: Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility
  publication-title: AJNR Am J Neuroradiol
– volume: 14
  start-page: 259
  year: 2020
  ident: bib0016
  article-title: Early detection of Alzheimer's disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning
  publication-title: Front Neurosci
– volume: 13
  start-page: 59
  year: 2014
  end-page: 66
  ident: bib0010
  article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies
  publication-title: Lancet Neurol
– volume: 50
  start-page: 199
  year: 2019
  end-page: 203
  ident: bib0049
  article-title: Nationwide Analysis of cost variation for treatment of aneurysmal subarachnoid hemorrhage
  publication-title: Stroke
– volume: 99
  start-page: e21518
  year: 2020
  ident: bib0040
  article-title: Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: a case series
  publication-title: Medicine
– year: 2023
  ident: bib0033
  article-title: Diagnosis of small unruptured intracranial aneurysms: comparison of 7 T versus 3 T MRI
  publication-title: Clin Neuroradiol
– volume: 7
  year: 2022
  ident: bib0042
  article-title: European stroke organisation (ESO) guidelines on management of unruptured intracranial aneurysms
  publication-title: Eur Stroke J
– volume: 2
  year: 2019
  ident: bib0039
  article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet Model
  publication-title: JAMA Netw Open
– volume: 41
  start-page: 131
  year: 2022
  end-page: 141
  ident: bib0029
  article-title: Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation
  publication-title: Jpn. J. Radiol.
– volume: 21
  start-page: 325
  year: 2011
  end-page: 329
  ident: bib0011
  article-title: Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography
  publication-title: J Coll Physicians Surg Pak
– volume: 42
  start-page: 273
  year: 2021
  end-page: 278
  ident: bib0037
  article-title: Automated cerebral hemorrhage detection using RAPID
  publication-title: AJNR Am J Neuroradiol
– reference: Statistics and Facts. [cited accessed on 3 December 2023]. Available:
– volume: 8
  start-page: 635
  year: 2009
  end-page: 642
  ident: bib0006
  article-title: Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis
  publication-title: Lancet Neurol
– volume: 58
  start-page: 121
  year: 2023
  end-page: 125
  ident: bib0032
  article-title: Diagnostic performance of 0.55 T MRI for intracranial aneurysm detection
  publication-title: Invest Radiol
– volume: 45
  start-page: 1958
  year: 2014
  end-page: 1963
  ident: bib0003
  article-title: Lifelong rupture risk of intracranial aneurysms depends on risk factors: a prospective Finnish cohort study
  publication-title: Stroke
– volume: 62
  start-page: 1052
  year: 2021
  end-page: 1061
  ident: bib0027
  article-title: A deep learning model with high standalone performance for diagnosis of unruptured intracranial aneurysm
  publication-title: Yonsei Med. J.
– volume: 29
  start-page: 1085
  year: 2022
  end-page: 1090
  ident: bib0018
  article-title: Impact of concurrent use of artificial intelligence tools on radiologists reading time: a prospective feasibility study
  publication-title: Acad Radiol
– volume: 6
  start-page: 61
  year: 2023
  ident: bib0036
  article-title: Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial
  publication-title: NPJ Digit Med
– reference: .
– volume: 99
  start-page: e890
  year: 2022
  end-page: e903
  ident: bib0043
  article-title: Surveillance of unruptured intracranial aneurysms: cost-effectiveness analysis for 3 countries
  publication-title: Neurology
– volume: 25
  start-page: 1342
  year: 1994
  end-page: 1347
  ident: bib0007
  article-title: Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage
  publication-title: Stroke
– volume: 290
  start-page: 187
  year: 2018
  end-page: 194
  ident: bib0028
  article-title: Deep learning for mr angiography: automated detection of cerebral aneurysms
  publication-title: Radiology
– volume: 41
  start-page: 131
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0029
  article-title: Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-022-01341-7
– volume: 1
  start-page: 23
  year: 2001
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0025
  article-title: The R project in statistical computing
  publication-title: MSOR Connect
  doi: 10.11120/msor.2001.01010023
– volume: 99
  start-page: e21518
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0040
  article-title: Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence: a case series
  publication-title: Medicine
  doi: 10.1097/MD.0000000000021518
– volume: 7
  start-page: 83
  year: 2016
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0030
  article-title: Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging?
  publication-title: J Neurosci Rural Pract
  doi: 10.4103/0976-3147.165425
– volume: 52
  start-page: 670
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0031
  article-title: Detection of unruptured cerebral artery aneurysms by MRA at 3.0 Tesla: comparison with multislice helical computed tomographic angiography
  publication-title: Acta radiol
  doi: 10.1258/ar.2011.100421
– volume: 21
  start-page: 325
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0011
  article-title: Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography
  publication-title: J Coll Physicians Surg Pak
– volume: 96
  start-page: 3
  year: 2002
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0002
  article-title: Unruptured intracranial aneurysms: a review
  publication-title: J Neurosurg
  doi: 10.3171/jns.2002.96.1.0003
– volume: 99
  start-page: e890
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0043
  article-title: Surveillance of unruptured intracranial aneurysms: cost-effectiveness analysis for 3 countries
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000200785
– volume: 2
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0039
  article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet Model
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.5600
– volume: 29
  start-page: 251
  year: 1998
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0004
  article-title: Prevalence and risk of rupture of intracranial aneurysms: a systematic review
  publication-title: Stroke
  doi: 10.1161/01.STR.29.1.251
– volume: 25
  start-page: 1342
  year: 1994
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0007
  article-title: Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage
  publication-title: Stroke
  doi: 10.1161/01.STR.25.7.1342
– volume: 10
  start-page: 20546
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0038
  article-title: Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77441-z
– volume: 290
  start-page: 187
  year: 2018
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0028
  article-title: Deep learning for mr angiography: automated detection of cerebral aneurysms
  publication-title: Radiology
  doi: 10.1148/radiol.2018180901
– volume: 7
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0042
  article-title: European stroke organisation (ESO) guidelines on management of unruptured intracranial aneurysms
  publication-title: Eur Stroke J
  doi: 10.1177/23969873221099736
– year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0047
  article-title: Diagnostic imaging dataset statistical release 2020/21
  publication-title: NHS England and NHS Improvement
– volume: 175
  start-page: 155
  year: 1990
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0045
  article-title: Double-contrast barium enema studies: effect of multiple reading on perception error
  publication-title: Radiology
  doi: 10.1148/radiology.175.1.2315474
– volume: 29
  start-page: 1085
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0018
  article-title: Impact of concurrent use of artificial intelligence tools on radiologists reading time: a prospective feasibility study
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2021.10.008
– volume: 299
  start-page: 116
  year: 1978
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0020
  article-title: Subarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197807202990303
– volume: 124
  start-page: 249
  year: 2001
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0008
  article-title: Subarachnoid haemorrhage: diagnosis, causes and management
  publication-title: Brain
  doi: 10.1093/brain/124.2.249
– volume: 50
  start-page: 1413
  year: 1998
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0009
  article-title: The burden, trends, and demographics of mortality from subarachnoid hemorrhage
  publication-title: Neurology
  doi: 10.1212/WNL.50.5.1413
– volume: 6
  start-page: 61
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0036
  article-title: Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-023-00798-8
– ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0026
– ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0023
  doi: 10.1007/978-3-319-24574-4_28
– volume: 68
  start-page: 358
  year: 1995
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0046
  article-title: Audit of the value of double reading magnetic resonance imaging films
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-68-808-358
– volume: 8
  start-page: 635
  year: 2009
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0006
  article-title: Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70126-7
– volume: 94
  start-page: 105
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0015
  article-title: Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2022.09.006
– year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0033
  article-title: Diagnosis of small unruptured intracranial aneurysms: comparison of 7 T versus 3 T MRI
  publication-title: Clin Neuroradiol
– volume: 62
  start-page: 1052
  year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0027
  article-title: A deep learning model with high standalone performance for diagnosis of unruptured intracranial aneurysm
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2021.62.11.1052
– ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0022
  doi: 10.1007/978-3-658-25326-4_7
– volume: 14
  start-page: 259
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0016
  article-title: Early detection of Alzheimer's disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00259
– volume: 96
  start-page: 657
  year: 2015
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0005
  article-title: Subarachnoid hemorrhage in ten questions
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2015.06.003
– volume: 27
  start-page: 273
  year: 1972
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0019
  article-title: Subarachnoid hemorrhage due to ruptured aneurysms. a simple method of estimating prognosis
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1972.00490160001001
– volume: 13
  start-page: 8140
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0024
  article-title: Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans
  publication-title: NATO Adv Sci Inst Ser E Appl Sci
– volume: 10
  start-page: 626
  year: 2011
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0001
  article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70109-0
– volume: 54
  start-page: 1357
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0014
  article-title: Deep learning algorithm enables cerebral venous thrombosis detection with routine brain magnetic resonance imaging
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.122.041520
– volume: 13
  start-page: 59
  year: 2014
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0010
  article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70263-1
– ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0021
– volume: 58
  start-page: 121
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0032
  article-title: Diagnostic performance of 0.55 T MRI for intracranial aneurysm detection
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000918
– volume: 50
  start-page: 199
  year: 2019
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0049
  article-title: Nationwide Analysis of cost variation for treatment of aneurysmal subarachnoid hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.118.023079
– volume: 42
  start-page: 273
  year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0037
  article-title: Automated cerebral hemorrhage detection using RAPID
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6926
– start-page: 363
  year: 2022
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0044
  article-title: Follow-up Imaging of low-risk unruptured intracranial aneurysms: expensive way to make many people sick in the quest for better health?
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000200869
– volume: 54
  start-page: 2316
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0013
  article-title: Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.123.044072
– volume: 93
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0048
  article-title: Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190855
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0035
  article-title: A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19527-w
– volume: 45
  start-page: 1958
  year: 2014
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0003
  article-title: Lifelong rupture risk of intracranial aneurysms depends on risk factors: a prospective Finnish cohort study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.005318
– volume: 28
  start-page: 1949
  year: 2007
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0034
  article-title: Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A0699
– volume: 6
  start-page: 82
  year: 2023
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0017
  article-title: The impact of artificial intelligence on the reading times of radiologists for chest radiographs
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-023-00829-4
– volume: 30
  start-page: 5785
  year: 2020
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0041
  article-title: A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06966-8
– volume: 16
  year: 2021
  ident: 10.1016/j.jstrokecerebrovasdis.2024.108014_bib0012
  article-title: Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0260560
SSID ssj0011585
Score 2.374334
Snippet •Unruptured Intracranial Aneurysms (UIAs) are common in humans and pose an increasing risk of rupture with age, potentially resulting in fatality.•UIAs are...
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108014
SubjectTerms Adult
Aged
AI Detection
Decision Support
Deep Learning
Female
Humans
Image Interpretation, Computer-Assisted
Intracranial Aneurysm
Intracranial Aneurysm - diagnostic imaging
Magnetic Resonance Angiography
Magnetic Resonance Imaging
Male
Middle Aged
Observer Variation
Opportunistic Screening
Predictive Value of Tests
Radiologists
Reproducibility of Results
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VPRQ4IN4sLxkJCQkpbNZxXsClWrUqSMsBWqk3y0nGbco2ibJZVb3wR_izzMTJAgIORdwiK57EnvHMN_bMGOCFSayVRZh4mJnUU1KmXoKkDGVO7jMZDETD-x2Lj9HBkfpwHB5vwXzMheGwykH3O53ea-uhZTrM5rQpy-nnWb-jGcYcBanClPWwUjHfYvD66ybMgwBPfy0nv-zx2zvw6keM19mqa-svmGNLDijHfhYll_CWqg-9m6m_GavfwegNuLauGnN5YZbLnwzU_i24OSBLset-_jZsYXUHdhbD2fld-Lbrjvv7nDZRVqJuGHvzcTb1oIauNTlZLhJIYbjM5eXqXJBSIUeXzNsbQQIlXE6lqK0wokBsxHDpxIkwy5O6LbvTc1FXojVFnwVDlFcviZire8LdDqV30W_GYiHGjy0-vb8HR_t7h_MDb7iawctVFHXerEACMlhEWWitr4rYVybFJM-tMZk1SRZGiURCF7FNJZfYYU75NqNnQ31nwX3YruoKH4KILSYxEuyQmVUpkYkUktfpW3Kf01RFE3g78kA3rgKHHkPTzvSfOKiZg9pxcALzkW16zDUl7ajJYFyJyt6Gyi_SeWU6z0fJ0bSM-WyGGFqvVzrgUn5BQGhrAg-cSG1GyxA2iP1kAu82MvYPU_HoPw3iMVwn1Bi6hMwnsN21a3xKyKzLnvVL7zvisT8c
  priority: 102
  providerName: Elsevier
Title Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1052305724004592
https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014
https://www.ncbi.nlm.nih.gov/pubmed/39293708
https://www.proquest.com/docview/3106733124
https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108014
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-8511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011585
  issn: 1532-8511
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1532-8511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011585
  issn: 1532-8511
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-8511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011585
  issn: 1532-8511
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1532-8511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011585
  issn: 1532-8511
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0Dio-WL-qJ_ZYQRCEHLnN5kt9OUrLVblDpAcVH5ZNMluvvSZHLkepD_4j_rPOZpPDT7D1LQRmws7Ozvwm87EAz1WkNc_8yMFExY7gPHYiJGPIUwqfyWEgKvO_YzINxjPx9tg_bqoqTS_MT_n7ug7rlEL-4gxTLClINPWZ2dyM2eaiLo8zd1h3A59weAe6s-n70cc6velzhxQ5tMNS6cgTrNiCl__O9G9e6ncUehturfOlurxQi8UPnulgGz61a7IFKWeDdZUM0i-_jHu83qLvwp0GsLKR1bB7cAPz-7A1aVLyD-DbyFYR1K1ybJ6zYmkgvcmSEwW9qEqVkkMkPWfKTM-8XJ0zslUUP5PXfMVIT5lt1WSFZopliEvW3GVxwtTipCjn1edzVuSsVFndXEOcVy-ImR2nYsiOuHNR_-PFjLUfm3w4fAizg_2jvbHT3PjgpCIIKmeYIeEjzILE19oVWegKFWOUplqpRKso8YOII4GWUMfcTO6hAMp3dULPimiH3g508iLHx8BCjVGIhGZ4okVMbAKBFMy6mqLyOBZBD163OyyXdrCHbCveTuWf5C-N_KWVfw_2WqWQbQsrGV1JO3klLvsbLg3gsUDmynyetXopyTqYlA9taLFeSc9MCPQ8AnE9eGQVdrNag4y90I168GajwdcQxZP_I38Knapc4y5Buyrpw83B12EfuqPDd-NpvznR3wHfaFgv
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VRWrhgHiW5WkkJCSksFmv8wIu1arVFro9wFbqzXKScUnZJlE2q6oX_gh_lpk8FhBwKOIWJfYk8YxnvrFnxgAvTGitTL3QwdhEjpIyckIkZSgTcp_JYCAaXu-YHfnTY_X-xDvZgEmfC8NhlZ3ub3V6o627O8NuNIdllg0_jZoVTS_gKEjlRaSHrylPBuyBvf66jvMgxNOcy8mtHW6-Ba9-BHmdLeuq-IIJVuSBcvBnmnENb6ma2LuR-pu1-h2N3oDtVV6aywuzWPxkofZvwc0OWord9utvwwbmd2Br1m2e34Vvu-1-f5PUJrJcFCWDb97Pph50o65MQqaLJFIYrnN5uTwXpFXI0yX79kaQRIk2qVIUVhiRIpaiO3XiVJjFaVFl9edzUeSiMmmTBkOUly-JWFv4hLvNpXPRrMZiKvqXzT4e3IPj_b35ZOp0ZzM4ifL92hmlSEgGUz_2rHVVGrjKRBgmiTUmtiaMPT-USPAisJHkGjvMKtfGdG2o72h8HzbzIscHIAKLYYCEO2RsVURkfIXkdrqW_OcoUv4A3vY80GVbgkP3sWln-k8c1MxB3XJwAJOebbpPNiX1qMliXInK3prKL-J5ZTrPe8nRNI95c4YYWqyWesy1_MZjglsD2GlFav23jGHHgRsO4N1axv5hKB7-p594BtvT-exQHx4cfXgE1_lJG-DzGDbraoVPCKbV8dNmGn4H5_ZCQA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GCh37sHbvlLZoMBgMHFxZfm39EkpLV0gZI4GMfRCyfcrSpnZwHEr3r-yf7cmyQ_eCpftmDHdGp9Pd73wPAbxRkdY88yMHExU7gvPYiZCMIU8pfCaHgajM_47BeXA6Emdjf9xUVZpemJ_y93Ud1gWF_MUlplhSkGjqM7OpGbPNRV0eZ-6w3gh8wuEd2Bidf-p_qdObPndIkUM7LJWOPMGKTXj370z_5qV-R6GP4OEyn6ubazWb3fFMJ1vwtV2TLUi57C2rpJd-_2Xc4_0WvQ2PG8DK-lbDnsADzJ_C5qBJyT-DH31bRVC3yrFpzoq5gfQmS04U9KIqVUoOkfScKTM982ZxxchWUfxMXvM9Iz1ltlWTFZopliHOWXOXxYSp2aQop9W3K1bkrFRZ3VxDnBdviZkdp2LIhty5rv_xYsbajw0-f3wOo5Pj4dGp09z44KQiCCrnIEPCR5gFia-1K7LQFSrGKE21UolWUeIHEUcCLaGOuZncQwGU7-qEnhXRHngvoJMXOb4CFmqMQiQ0wxMtYmITCKRg1tUUlcexCLrwod1hObeDPWRb8XYh_yR_aeQvrfy7cNQqhWxbWMnoStrJtbgcr7g0gMcCmbX5vG71UpJ1MCkf2tBiuZCemRDoeQTiuvDSKuxqtQYZe6EbdeFwpcH3EMXO_5HvQqcql7hH0K5K9pszfAsj5VWj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+opportunistic+intracranial+aneurysm+screening%3A+The+impact+of+a+deep+learning+algorithm+on+radiologists%27+analysis+of+T2-weighted+cranial+MRI&rft.jtitle=Journal+of+stroke+and+cerebrovascular+diseases&rft.au=Teodorescu%2C+Bianca&rft.au=Gilberg%2C+Leonard&rft.au=Ko%C3%A7%2C+Ali+Murat&rft.au=Goncharov%2C+Andrei&rft.date=2024-12-01&rft.pub=Elsevier+Inc&rft.issn=1052-3057&rft.volume=33&rft.issue=12&rft_id=info:doi/10.1016%2Fj.jstrokecerebrovasdis.2024.108014&rft.externalDocID=S1052305724004592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-3057&client=summon